N

N

On the usage of the Arm C Language Extensions for a
High-Order Finite-Element Kernel

Sylvain Jubertie, Guillaume Quintin, Fabrice Dupros

» To cite this version:

Sylvain Jubertie, Guillaume Quintin, Fabrice Dupros. On the usage of the Arm C Language Extensions
for a High-Order Finite-Element Kernel. EAHPC, Sep 2020, Kobe, Japan. hal-03029933

HAL Id: hal-03029933
https://hal.science/hal-03029933
Submitted on 29 Nov 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03029933
https://hal.archives-ouvertes.fr

On the usage of the Arm C Language Extensions
for a High-Order Finite-Element Kernel

Sylvain Jubertie
Univ. d’Orléans, INSA CVL
LIFO EA 4022
Orléans, France
sylvain.jubertie @univ-orleans.fr

Abstract—Physics-based three-dimensional numerical simula-
tions are becoming more predictive and have already become
essential. As an example in geophysics, simulations at scale with
a very fine resolution, including uncertainty quantification pro-
cedures are crucial to provide the relevant physical parameters
for forward modeling of seismic wave propagation. Consequently,
the diversity of HPC architectures available (heterogeneity, high
core counts or depth of the memory hierarchy) leads to increasing
concerns regarding the portability of applicative performances.
In this paper, we discuss the implementation of the classical
spectral finite-elements method using the Arm C Language
Extensions for both Neon and SVE SIMD units.

I. INTRODUCTION

Explicit parallel elastodynamics application usually exhibits
very good weak and strong scaling up to several tens of
thousands of cores ([1], [2], [3]). Regardless of the numer-
ical method involved (Finite-Differences, Finite-Elements or
Spectral-Element Method (SEM)), this class of application
benefits from quite dense numerical kernel and limited amount
of point-to-point communications between neighboring subdo-
mains. Significant works have been made to extend this paral-
lel results on heterogeneous and low-power processor ([4],
[5]). Due to their numerical efficiency, high-order finite-
elements methods are routinely used for seismic simulations
(e.g. foundational work of SpecFEM3D software package is
described here ([6]). Several challenges are well known for the
optimization of this algorithm. As an example, it is admitted
that the summation of the element contributions (assembly
phase) represents a major bottleneck of such approaches to
scale out. This is coming both from the shared values between
neighboring elements and the inherent indirection for data
accesses.

Additionally, the computation of the internal forces can repre-
sent as much as 80% of the total elapsed time. Unfortunately,
so far only hand-tuned implementations have been able to
benefit from advanced SIMD units available on modern ar-
chitectures ([7], [8]). The SVE (Scalable Vector Extension)
SIMD instruction set brings a Vector-Length Agnostic (VLA)
programming model that could address these limitations.

In this short paper, we discuss the implementation of a
spectral-elements method kernel using the Arm C Language
Extensions. We underline key aspect of both Neon or SVE im-
plementations and show performances obtained on two Neon-

Guillaume Quintin
Agenium Scale
France
guillaume.quintin @agenium.com

Fabrice Dupros
Arm
Sophia-Antipolis, France
fabrice.dupros @arm.com

based processors (the AWS Graviton2 and the Marvell Thun-
derX2). Results from the Arm Instruction Emulator (ArmlIE)
with varying SVE vector lengths are also presented.

The remainder of this paper is organized as follows. Section
II provides the numerical background regarding seismic wave
propagation. A detailed description of our implementations
using the Arm C Language Extension is provided in Section
III. Finally, we discuss the results obtained in Sections IV.

II. SPECTRAL ELEMENT NUMERICAL KERNEL
A. Governing equations

The forward wave propagation problem is governed by the
elastodynamic equations of motion:

pu; = fi + Tijj, ey
where p is the material density; «; is the i-th component
of the second time-derivative of the displacement u;; 745, ; is
the spatial derivative of the stress tensor component 7;; with
respect to x;; f; is the i-th component of the body force.

The weak form of eq. 1 is expressed in eq. 2, is solved in its
discretized form by using this method.

/va-ﬁdQ:/e(v)T:TdQ—/ VT~fdQ—/VT-TdF
Q Q Q r

2)
where) and I' are the volume and the surface area of
the domain under study, respectively; € is the virtual strain
tensor related to the virtual displacement vector v; f is the
body force vector and T is the traction vector acting on I'.
Superscript T' denotes the transpose, and a colon denotes the
contracted tensor product.

B. Characterization of the numerical kernel

The simplified version of this kernel is composed of four
loop levels. The outer most one iterates over elements. For
each element, we perform the following operations : 1) gath-
ering points of the element, 2) computing internal forces, 3)
assembly step. Each of these steps consists in three nested
loops to iterate along the three directions of each element.
Gathering points for each element consists in copying values
from a global-to-local operation. An indirection array is im-
plemented as the same grid point can be shared by up to eight

elements (corners). Internal forces are computed by traversing
the element along the three directions, multiplying point values
by Lagrangian coefficients and accumulating the results. Thus,
it essentially consists in additions and multiplications which
are likely to be merged into FMA (Fused Multiply Add)
instructions. Finally, results are to be stored back to the
global array following the same indirection pattern as for the
gathering step.

III. VECTORIZATION
A. Neon implementation

To the best of our knowledge, the most efficient strategy
to vectorize the kernel previously described is to target the
outer most loop (i.e. see here for details [7]). In this case,
porting the kernel to Neon is straightforward. First, we replace
the float data type by the float32x4_t one for the
definition of the local array. For the outer loop, we compute
four elements at the same time, thus we increment the iterator
by four instead of one. Since no gather instruction is available
in Neon for gathering a vector of data from the global array
and the indirection array, the gathering step just consists in
filling the local array using scalar loads but for four times more
elements. The vectorization of the computation of internal
forces is quite straightforward thanks to the automatic type
inference provided by the C++ auto keyword and to the
overload of arithmetic operators for Neon data types. Thus, the
code organization for the Neon version is almost identical to
the scalar version minus few modifications described hereafter.

1) Local variables: The float type of local variables
needs to be replaced by the f1loat32x4_t type, for example
the local array definition at order 4:

float local[5 = 5 = 5 % 9];

becomes:

float32x4 _t local[5 = 5 %= 5 % 9];

2) Gather/scatter: Non-contiguous loads required by the
vectorization and the data storage pattern had to be replaced
by four scalar loads, for example:

float32x4 _t dxidx;

dxidx[0] = rg_hexa_gll_dxidx[id0];
dxidx[1] = rg_hexa_gll_dxidx[idl 1];
dxidx[2] = rg_hexa_gll_dxidx[id2];
dxidx[3] = rg_hexa_gll_dxidx[id3];

3) Broadcast: The same coefficient has to be applied to all
the values in the vector, thus requiring to explicitly call the
vdupg_n_£32 intrinsics to duplicate the coefficient:

auto vcoeff = vdupq_n_f32(coeff);

4) Arithmetic instructions: In most cases, arithmetic ex-
pressions are not modified, for example, the expression:

duxdxixdxidx
+duxdetxdetdx
+duxdzexdzedx;

auto duxdx =

is automatically converted by the compiler to its vectorized
version since variables are vectors instead of floats and arith-
metic operators are overloaded by default. It is also possible
to overload operators between scalar and vectors to remove
some calls to the vdupqg_n_£32 intrinsics, like the one in
the following expression:

auto tau=(rhovp2-vdupq_n_f32(2.0f)*rhovs2)
#(duxdx+duydy+duzdz);

B. SVE implementation

The SVE approach is quite different since the vector length
is only at runtime through the use of the svcntw intrinsics
which returns the number of 32-bit words in one SVE register.
Obviously, one of the key aspect of this feature is to generate
a vector length agnostic code portable across SVE-enabled
hardwares. Other advantages over Neon are the availability of
gather/scatter instructions and of masked load/store instruc-
tions with a supplemental mask parameter which allows to
partially fill/store vectors. However, the implementation of the
SVE version is not as straightforward as expected for the
following reasons: 1) it is not possible to create local arrays
of vectors since their size is not known at compile time, 2)
arithmetic operators are not overloaded by default since they
require a mask, thus increasing the verbosity of the code. Our
SVE implementation requires to modify our scalar code as
described below.

1) Local variables and arrays: The definition of the local
array becomes:

float rl_displacement_gll[125%3«svcntw ()]

where the svnctw intrinsics returns the number of float values
in SVE vectors. Indeed, both Armclang and GCC compilers
do not support defining an array of vectors of type svfloat32_t
on the stack since the size of this type is not known at compile
time. It is possible to specify the vector length with a specific
flag for the GCC compiler but it limits the code portability.

2) Loop management: The main loop increment depends
on the vector length:

for(iel=elt_start ;...; iel+=svcntw ())

Since the number of elements may not be a multiple of the
SVE vector length, we need to use a mask to enable only
active lanes.

3) Masking: We define the mask for SVE intrinsics accord-
ing to the number of elements for each iteration as:

auto mask=svwhilelt_b32_u32(iel ,end);

In our case, the mask enables all the vector lanes for all
iterations except the last one if the number of elements is
not a multiple of the vector length. Note that, in our case,
the mask is only mandatory for gather/scatter intrinsics to
avoid segmentation faults caused by out of bound memory
accesses. Arithmetic intrinsics may operate on all vector lanes
since values in each lane are computed independently i.e.
computation on one lane does not require to access values

ThunderX2 Graviton2
frequencies 2.2-2.5GHz 2.5GHz
cache(L1/L2/L3) | 32kB/256kB/32MB | 64kB/IMB/32MB
memory 8x DDR4-2667 8x DDR4-3200

TABLE I: Arm-based architectures used for this study.

from other lanes. Thus, for these intrinsics we have the choice
between passing the mask we previously defined or using the
svptrue_b32 () intrinsics which enables all lanes.

4) Gather/scatter: Unlike Neon, SVE provides a set of
gather/scatter intrinsics to retrieve indexed data. For the gath-
ering step of our kernel, we first need to gather indices of
the first point of each element considered. At order 4, each
element is composed of 125 points. If we consider the first
elements processed at the first iteration, the index of the first
point of the first element is at position 0, the one for the second
element is at position 125, for the third element at position 250
and so on. SVE provides the svindex_u32 () intrinsics to
fill a vector with multiples of a given value. In our case, we
use the following code:

auto vstrides = svindex_u32(0u, 125u);

At iteration i, the first element of the vector is at position
ixsventw () 125 and we need to duplicate it and add the
vstrides values to obtain the indices of the first point of
each element in the vector:

auto base=svadd_z (mask,
vstrides ,
iel*125u));

The indices in this resulting vector will serve as the base for
accessing the following 124 points of these elements.

5) Arithmetic instructions: Since the mask parameter is
not optional for arithmetic intrinsics, there is no overloaded
operator available by default, which increases the code ver-
bosity. In our case, we have the choice between using the mask
computed at each iteration and already used for gather/scatter
instructions or we can use the svptrue_b32 () intrinsics
which activates all vector lanes.

IV. EXPERIMENTS AND RESULTS
A. Setup

In this section, we discuss both implementations of the seis-
mic kernel : 1) scalar version with autovectorization, 2) usage
of the Arm C Langauge Extensions for Neon and SVE. For
these experiments, we use GCC (v10.1) and Armclang (v20.1)
LLVM-based compilers. We use the -Ofast optimization
flag which enables automatic vectorization. To generate SVE
versions, we need to explicitly activate its support with the
-march=armv8-a+sve flag. Results presented in this sec-
tion are from a serie of exeuctions carried out on two Arm-
based platforms:

e a Marvell ThunderX2 dual-socket with 2x32 cores,
e a 64-cores AWS Graviton2 processor.

Processor characteristics are detailed in table 1. For the SVE

analysis, the Arm Instruction Emulator (ArmlE) is used as
this tool can execute unsupported instructions on AArch64
architecture by converting them into native ones. Dynamic
binary instrumentation (through DynamoRIO) is used to
extract additional metrics such as the memory traces([9]).

B. Timing results on Neon enabled hardware

Figure 1 shows the timing results. As expected, we observe
the impact of using intrinsics to enable vectorization with a
two-fold speedup on the ThunderX2 (2.3x). With the 128-bit
Neon unit, the theoretical maximum speedup is four (single
precision), but the irregularity of the memory access pattern
clearly hurts the performances. On the Graviton2 architecture,
the situation is rather different since the standard implemen-
tation of the kernel is significantly faster compared with the
same benchmark on the ThunderX2 processor (2.7x). As the
vectorization level is poor for this baseline version, these
results are mainly due to the improved micro-architecture. The
usage of intrinsics do not bring the same level of acceleration
on this second platform (1.3x). In this case, the pressure on
the memory hierarchy may explain these results. Overall, both
GNU and Arm Compiler for Linux deliver similar level of
performances and performance numbers are within a margin
of 5%.

700
600
500
400
300
200
100

0

GCC(10.1)

B Auto Vectorization

Arm C Language Extension

GCC (10.1)

Timing (ms)

Armclang (20.1) Armclang (20.1)

Marvell ThunderX2 AWS Graviton2

Fig. 1: Timing results on two different Arm-based architectures
with GNU and Arm Compiler for Linux compilers.

C. SVE study

Dynamic instruction execution traces at each SVE vector
length (from 128 to 1024 bits) are represented in Figure
2 using the same binary. We represent both the native and
the emulated instructions counts. As expected, the number of
instructions is divided by a factor of almost two every time
we double the length of the SVE vector. This demonstrates
both the high ratio of vectorization for this kernel (an average
of 70% for all the configurations) but also the efficacy of our
implementation.

The percentage of utilization of the vector lanes is a very
good metric to discuss this last point. SVE is predicate-centric
architecture, it is therefore key to collect metrics related to the

exploitation of the vector lanes. In our case, the usage of the
SIMD lanes appears to be optimal (nearly 100%) for all the
vector lengths evaluated.

As the introduction of native scatter and gather operations is

1.0E+09

9.0E+08

mSVE Native
8.0E+08
= 7.0E+08
>
S 6.0E408
"
S 5.0e408
B
3 4.0E+08
@
£ 3.0£+08
2.0E+08
1.0E+08 .
0.0E+00 -
SVE-128 SVE-256 SVE-512 SVE-1024

Fig. 2: Dynamic instructions count (GNU compiler) for the
Spectral Finite-element kernel

one of the key feature of SVE, the breakdown of the memory
operations is an interesting metric. Figure 3 summarizes the
corresponding instructions for the high-order finite-elements
kernel. As expected, a significant portion of the memory
accesses (20%) are implemented with gather /scatter instruc-
tions.

120%

SVE-Contiguous SVE-gather-scatter

100%
80%

60%

memory operations

40%
20%

0%

VL=128 VL=256 VL=512 VL=1024

Fig. 3: Memory operations (GNU compiler) for the Spectral
Finite-elements method.

V. CONCLUSION

In this paper, we study the explicit vectorization of a Seis-
mic Spectral-Element kernel using Neon and SVE intrinsics
to evaluate the complexity of both fixed length and VLA
programming models. The results from AWS Graviton2 and
Marvell ThunderX2 processors show the impact of explicit
vectorization with significant speedups on both platforms. The

SVE analysis demonstrates the efficacy of our implementation
despite the complexity of the key loops and the irregular mem-
ory accesses. Obviously these findings should be compared
with insights from real hardware and we expect to refine
these analysis in future works. Additionally, several higher
level abstractions over intrinsics like Vc[10], Boost.SIMDJ[11]
are available to provide both performance and portability.
We expect to explore these options to further improve our
implementations.

REFERENCES

[1] D. Roten, Y. Cui, K. B. Olsen, S. M. Day, K. Withers, W. H. Savran,
P. Wang, and D. Mu, “High-frequency nonlinear earthquake simulations
on petascale heterogeneous supercomputers,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2016, Salt Lake City, UT, USA, November 13-
18, 2016, 2016, pp. 957-968.

[2] S. Tsuboi, K. Ando, T. Miyoshi, D. Peter, D. Komatitsch, and J. Tromp,
“A 1.8 trillion degrees-of-freedom, 1.24 petaflops global seismic wave
simulation on the K computer,” IJHPCA, vol. 30, no. 4, pp. 411-422,
2016.

[3] A. Breuer, A. Heinecke, and M. Bader, “Petascale local time stepping
for the ADER-DG finite element method,” in 2016 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago,
IL, USA, May 23-27, 2016, 2016, pp. 854-863.

[4] D. Goddeke, D. Komatitsch, M. Geveler, D. Ribbrock, N. Rajovic,
N. Puzovic, and A. Ramirez, “Energy efficiency vs. performance of
the numerical solution of pdes: An application study on a low-power
arm-based cluster,” J. Comput. Physics, vol. 237, pp. 132-150, 2013.

[5] M. Castro, E. Francesquini, F. Dupros, H. Aochi, P. O. A. Navaux, and
J. Méhaut, “Seismic wave propagation simulations on low-power and
performance-centric manycores,” Parallel Computing, vol. 54, pp. 108—
120, 2016.

[6] D. Komatitsch, “Méthodes spectrales et éléments spectraux pour
I’équation de 1’élastodynamique 2D et 3D en milieu hétérogene (Spectral
and spectral-element methods for the 2D and 3D elastodynamics equa-
tions in heterogeneous media),” Ph.D. dissertation, Institut de Physique
du Globe, Paris, France, May 1997, 187 pages.

[71 S. Jubertie, F. Dupros, and F. D. Martin, “Vectorization of a spectral
finite-element numerical kernel,” in Proceedings of the 4th Workshop on
Programming Models for SIMD/Vector Processing, WPMVP@PPoPP
2018, Vienna, Austria, February 24, 2018, J. Eitzinger and J. C.
Brodman, Eds. ACM, 2018, pp. 8:1-8:7. [Online]. Available:
https://doi.org/10.1145/3178433.3178441

[8] F. Kruzel and K. Banas, “Vectorized opencl implementation of numerical
integration for higher order finite elements,” Computers & Mathematics
with Applications, vol. 66, no. 10, pp. 2030 — 2044, 2013, iCNC-FSKD
2012.

[91 M. T. Cruz, D. Ruiz, and R. Rusitoru, “Asvie: A timing-agnostic sve

optimization methodology,” in 2019 IEEE/ACM International Workshop

on Programming and Performance Visualization Tools (ProTools), Nov

2019, pp. 9-16.

M. Kretz and V. Lindenstruth, “Vc: A c++ library for explicit vector-

ization,” Software: Practice and Experience, vol. 42, 11 2012.

P. Estérie, J. Falcou, M. Gaunard, and J.-T. Lapresté, “Boost.simd:

generic programming for portable simdization,” in Proceedings of the

2014 Workshop on Programming models for SIMD/Vector processing.

ACM, 2014, pp. 1-8.

(10]

(11]

