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Abstract—This invited contribution illustrates the theory and
application of a first-principle transport methodology employing
a basis set obtained directly from the Bloch functions computed
with a plane wave (PW) ab-initio solver. We start from a PW
density functional theory (DFT) Hamiltonian, use a unitary
transformation to real space in the transport direction, and then
discuss a basis of Bloch functions enabling a huge reduction of
the size of the Hamiltonian blocks and an effective suppression
of possible unphysical states. Our methodology enables ab-initio
transport simulations with a good computational efficiency, and
we here present results for self-consistent simulations of a single-
gate monolayer PtSe; field effect transistor.

Index Terms—Density functional theory, quantum transport,
NEGF, 2D materials

I. INTRODUCTION

In recent years many innovations in nanoelectronics devices
have been driven by the exploitation of new materials, such
as atomically thin 2D materials and their heterostructures [1]-
[5]. Ab-initio methods based on the DFT have been shown
to be quite effective to investigate the electronic and optical
properties of these new materials, but their direct use for
quantum transport calculations has been hindered by the size
and complexity of their Hamiltonians. Remarkable exceptions
are the contributions employing Hamiltonians based on the
linear combination of local orbitals (LCAO) [6], or on the
maximally localized Wannnier functions (MLWF) [7], [8].

Here we discuss an alternative approach to ab-initio quan-
tum transport [9], that leverages directly on the Hamiltonian
matrix and Bloch functions obtained with plane-wave DFT
solvers [10], [11]. We believe that such a methodology,
differently from the widely used MLWF approach, can be
naturally integrated into the workflow of an ab-initio solver,
and thus provide a fairly automatic pathway to ab-initio
quantum transport simulations.

II. METHODOLOGY

In order to obtain the DFT Hamiltonian, we start by self-

consistently solving the Kohn-Sham (KS) equations
HKS\IJn :En ‘Il'm HKS:T+Vscf (1)

where the KS Hamiltonian Hgg is the sum of the operators
corresponding to the kinetic energy 7" and to the self-consistent
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potential Vicr = Ver + Vg + Ve, where V5 is the electron-
ion interaction potential, Vi the Hartree electrostatic potential,
V¢ the exchange-correlation potential. To this goal we use a
PW basis set and pseudopotentials to represent the valence
electron-nuclei interactions. The KS Hamiltonian is then writ-
ten as

2
Hk+Gk+G) = %(k +G)%c.a + V(G -G
+ Vnr(k+G,k+G) (2)

where V7, (G — G’) is the Fourier transform of the local part
of the total potential and Vi1, (k + G,k + G’) is the spatially
non-local contribution of the pseudopotential, that for most
atoms is short ranged and vanishes for |[r—r'|>r., with r,
being the radius beyond which pseudo and true KS orbitals
coincide [12].

For transport calculations it is convenient to use an or-
thorombic unit cell [9], where the real space unit vectors
can be written as a;=(a,, 0,0), az=(0, a,0), ag=(0,0, a.),
with x being the transport direction. Hence the unit vectors of
the reciprocal lattice are by=(27/a,0,0), b2=(0, 27/a,, 0),
b3=(0,0,27/a,). The Brillouin zone (BZ) is therefore given
by the conditions —7/as < ks < 7/as (with s = z,y, 2).

A. Discussion of the reduced basis set

The DFT Hamiltonian in Eq. (2) is a dense matrix with a
rank equal to the number, Ng, of reciprocal lattice vectors, and
thus it cannot be directly employed in transport calculations.
Thus our first step is a unitary transformation from PW to real
space along the transport direction x, that provides the Hamil-
tonian in the hybrid 2K, basis given by real-space along x
and plane waves in the (y, z) plane [13]. In this representation
the Hamiltonian matrix is a block tri-diagonal matrix, which
is crucially important in order to exploit recursive algorithms
for non-equilibrium Green’s function (NEGF) calculations
[14]. In this hybrid K, basis each block describes an a,
long spatial region consisting of Ny, discretization points,
so that the matrix blocks have a rank Ng=Ng,NgyNg.
(with Ngz=Ng;). Even if the xK,. basis has been used to
perform quantum transport calculations as in [13], [15], the
size N¢ of the blocks is large and it increases by enlarging the
cutoff energy used in DFT calculations. Huge computational



advantages can thus be obtained by moving to a basis of unit-
cell restricted Bloch functions, that preserves the block tri-
diagonal structure of the Hamiltonian matrix [9], [16].

To this purpose we first argue that, due to the block tridi-
agonal form of the Hamiltonian, the unit cell restricted Bloch
functions {WQ} corresponding to the wave vector k=(k; k)
satisfy the secular equation

H{ ;e ™% + Hoo + Hoq e | {T0} = E(k) {T}}
3)
with Hg o, Hp; being the Hamiltonian blocks describing
respectively one unit cell and its interaction with the nearest
neighbor cell. Our reduced basis set consists of a subset of
the {¥0, } corresponding to a few k, values in the reduced
zone —7/a,<k,<w/a, along the transport direction and, for
each k,, to some tens of bands E,, (k) up to the energies of
interest for the problem at study.

It is noteworthy that the {¥Y, } are obtained directly from
the PW representation provided by the DFT solver, namely we
do not need to solve Eq. (3) to find the basis functions.

The size of the basis can be written as

ny
Np = Z NiB.n (€]

n=n;

where Nj g, denotes the number of &, values included in the
basis for the n-th band, with n ranging between n; and n;.
The {¥°, } functions are not orthogonal for different &, but
they can be orthogonalized and we denote by ® the basis set
orthonormalized over a unit cell. The Hamiltonian blocks in
the ® basis have a size Np that is typically much smaller than
the size Ng in the hybrid zK, . basis.

A first validation of the reduced basis set requires that it
allows us to calculate the band structure for any k, in the
reduced zone, which is discussed below in Sec.II-B.
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Fig. 1. Bandstructure of the monolayer PtSes.

B. Material system and validation of the reduced basis set

In this paper we exemplify our methodology by focusing on
the monolayer PtSe,, which is a noble metal dichalcogenure
identified as a promising channel material for MOSFETs due
to the small effective mass and large density of states (DOS)
[17]. Figure 1 reports the corresponding band structure along

the high-symmetry points of the primitive BZ obtained from
the DFT Hamiltonian in the PW basis. The DFT calculation
was performed with the Quantum ESPRESSO code [11],
by using the Perdew-Burke-Ernzerhof [18] approximation to
the exchange-correlation functional and a norm-conserving
pseudopotential [19]. We employed a 12 x 12 x 1 Monkhorst-
Pack k-points grid and a cutoff energy of E,, = 60 Ry.
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Fig. 2. Orthorombic unit cell of the 1T phase monolayer PtSes.

For transport calculations we first define the orthorombic
cell composed of 6 atoms and sketched in Fig. 2. The unit
vectors are a;=(ag,0,0), a2=(0,a,,0), ag=(0,0,a.) with
a,=3.712 A, a,=6.429372 A and a,=32 A, while the vertical
distance between the Pt and Se atoms is 1.312 A. In order to
validate the reduced Bloch state basis, we compared the bands
computed with the Hamiltonian blocks in the reduced basis
with the results of the plane-wave DFT solver. The accuracy
of the reduced basis depends on the included number of k,
Bloch functions [9], hence we optimized the basis by using a
larger Ny ,, for bands with energies in the range of interest,
and smaller Ny p ,, for bands at much lower or higher energies.

In Fig. 3 we show an excellent band-structure reconstruc-
tion obtained by using Nyp ,=4 for the bands close to the
energygap and NN ,=2 for smaller energy bands, and for an
overall number Ng=74 of Bloch functions. Such a definition
of the reduced basis results in no observable unphysical states
[20], [21].
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Fig. 3. Bandstructure of the monolayer PtSes for various k,, values computed
with (circles) the Bloch function basis and (lines) the PW basis.

C. Carrier densities and electron current

All relevant physical quantities are defined in terms of
the retarded(advanced), [G’"(a)]q>, and the lesser(greater)-than
Green’s functions, [G<(>)]¢, computed in the reduced Bloch



functions basis. In order to compute the carrier concentrations
in the real space, we first compute [G<(>)}¢, , then we
reconstruct the Green’s function in the hybrid basis according
to the expansion

Np
G<(>)(ijyZ,ij;Z;E) = Z G<*)(n,m; E)
n,m=1
X(b”(l‘j, Gyz) (b:n(xﬁ nyz) ®)

and finally evaluate electron and hole densities as described
in Ref. [9]. Thanks to this procedure we are able to evaluate
the 3D electron and hole concentrations, n(r) and p(r), with
atomistic accuracy as shown in the example of Fig. 4.
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Fig. 4. Contourplot of the cross section of the electron density at an abscissa
z corresponding to the center of the orthorombic unit cell. Colors are in
arbitrary units.

However, by leveraging the fact that the electrostatic poten-
tial varies over larger spatial scales compared to the discretiza-
tion used in Eq. (5), in the self-consistent solution of the NEGF
transport equations and the Poisson equation we evaluate n(r)
and p(r) on a coarser mesh. For the 3D Poisson problem
we assume Diriclect conditions at the metal boundaries and
Neumann conditions elsewhere.
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Fig. 5. Bandstructure of an infinitely-long monolayer PtSe> and the cor-
responding transmission probability obtained with the Hamiltonian in the
reduced basis consisting of unit-cell-restricted Bloch states. ky = 0.

The electron current is obtained within the elastic approxi-
mation as
_ g€
h
with g being the degeneracy and fg(py the Fermi-Dirac
function at the source (drain) contact. Figure 5 illustrates the
bandstructure and transmission of an infinitely long monolayer
PtSe, at k, = 0 calculated by using the reduced basis and
showing that, as expected, the transmission at a given energy
E equals the number of available bands.

The device under investigation is sketched in Fig. 6. It is a
single-gate FET with doped source and drain access regions
having a length Ls p~11.1 nm and an undoped channel region
with L5=18.5 nm. The donor concentration in the source
and drain region is Np=102 cm~3. The equivalent oxide
thickness (EOT) of the high-k dielectric layer is 0.65 nm. In
the device width direction, y, we assume periodic boundary
conditions, described by sampling the BZ along the k,, direc-
tion with a step Ak,=0.1 x 27/a,,.

Ip T(E)[fp(E) - fs(E)] dE (6)

Ls Ls Lp

Fig. 6. Sketch of the single-gate monolayer PtSeo FET.

Figure 7 shows the transfer characteristics for different Vpg
values. In the sub-threshold voltage regime we observe an
ideal sub-threshold swing of about 60 mV/dec, which stems
from the excellent electrostatic integrity of the device due, in
turn, to the ultra-thin channel and the aggressive EOT. The
device exhibits also a high transconductance resulting in a
high on-state current, that confirms the promising properties
of this material for high-performance MOSFETs. Of course
the transconductance and on-state current in Figure 7 should
be considered as upper limit figures, that can be significantly
degraded by series resistance and scattering [22].

Quite interestingly, in Figure 7 we can also observe a non-
monotonic /p dependence on V pg, in fact the I'p at large Vg
increases with Vpg for Vpg up to 0.3 V, but then it decreases
for larger Vpg. This behavior has been already observed in
simulated FETs with a monolayer MoS» channel [23], and it
has been ascribed to peculiar features of the DOS. We verified
that a similar explanation applies to our results, in fact Fig. 8
reports the local density of states (LDOS) at Vps=0.3 V and
0.6 V in the on-state regime (i.e. at Vp=0.8 V), showing that
in the drain region the LDOS for energies close to the top of
the barrier is larger at Vpg=0.3 V than it is at Vpg=0.6 V.

Such a non-monotonic I dependence on Vpg, however, is
expected to disappear in the presence of significant inelastic
scattering mechanisms, such as electron-phonon scattering.
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Fig. 7. Transfer characteristics of the monolayer PtSex FET for Vpg=0.1,
0.3 and 0.6 V.
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Fig. 8. LDOS computed for (a) Vps=0.3 V and (b) Vps=0.6 V and for
Vrg = 0.8 V. The transverse wave-vector is ky = 0.1 X 27/ay.

III. CONCLUSIONS AND OUTLOOK

We have shown that a unit-cell restricted Bloch functions
basis enables band structure and transport calculations with a
significant reduction of the computational burden compared to
the original plane-wave DFT formulation. This methodology
is a viable approach for ab initio and semi-empirical quantum
transport simulations, and it can be seen as an alternative
to the MLWF approach. In fact the Bloch functions can be
obtained directly from the DFT solvers, thus bypassing the
extraction of a MLWF basis and of the corresponding tight-
binding Hamiltonian. We foresee that further developments of
the methodology will enable us to deal with non homogenous
systems (i.e. including hetero-jnctions), and to include inelastic
scattering mechanisms.
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