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I. INTRODUCTION

In recent years many innovations in nanoelectronics devices have been driven by the exploitation of new materials, such as atomically thin 2D materials and their heterostructures [START_REF] Mingda | Single Particle Transport in Two-dimensional Heterojunction Interlayer Tunneling Field Effect Transistor[END_REF]- [START_REF] Marin | Lateral heterostructure field-effect transistors based on two-dimensional material stacks with varying thickness and energy filtering source[END_REF]. Ab-initio methods based on the DFT have been shown to be quite effective to investigate the electronic and optical properties of these new materials, but their direct use for quantum transport calculations has been hindered by the size and complexity of their Hamiltonians. Remarkable exceptions are the contributions employing Hamiltonians based on the linear combination of local orbitals (LCAO) [START_REF] Soler | The SIESTA method for ab initio order-n materials simulation[END_REF], or on the maximally localized Wannnier functions (MLWF) [START_REF] Marzari | Maximally localized generalized Wannier functions for composite energy bands[END_REF], [START_REF] Szabó | Ab initio simulation of singleand few-layer MoS 2 transistors: Effect of electron-phonon scattering[END_REF].

Here we discuss an alternative approach to ab-initio quantum transport [START_REF] Pala | Unit cell restricted Bloch functions basis for first-principle transport models: Theory and application[END_REF], that leverages directly on the Hamiltonian matrix and Bloch functions obtained with plane-wave DFT solvers [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF], [START_REF] Giannozzi | Quantum Espresso: a modular and open-source software project for quantum simulations of materials[END_REF]. We believe that such a methodology, differently from the widely used MLWF approach, can be naturally integrated into the workflow of an ab-initio solver, and thus provide a fairly automatic pathway to ab-initio quantum transport simulations.

II. METHODOLOGY

In order to obtain the DFT Hamiltonian, we start by selfconsistently solving the Kohn-Sham (KS) equations

H KS Ψ n = E n Ψ n , H KS = T + V scf (1) 
where the KS Hamiltonian H KS is the sum of the operators corresponding to the kinetic energy T and to the self-consistent potential

V scf = V eI + V H + V xc
, where V eI is the electronion interaction potential, V H the Hartree electrostatic potential, V xc the exchange-correlation potential. To this goal we use a PW basis set and pseudopotentials to represent the valence electron-nuclei interactions. The KS Hamiltonian is then written as

H(k + G, k + G ) = 2 2m (k + G) 2 δ G,G + V L (G -G ) + V N L (k + G, k + G ) (2) 
where V L (G -G ) is the Fourier transform of the local part of the total potential and V N L (k + G, k + G ) is the spatially non-local contribution of the pseudopotential, that for most atoms is short ranged and vanishes for |r-r |>r c , with r c being the radius beyond which pseudo and true KS orbitals coincide [START_REF] Giannozzi | Advanced capabilities for materials modelling with Quantum Espresso[END_REF].

For transport calculations it is convenient to use an orthorombic unit cell [START_REF] Pala | Unit cell restricted Bloch functions basis for first-principle transport models: Theory and application[END_REF], where the real space unit vectors can be written as a 1 =(a x , 0, 0), a 2 =(0, a y , 0), a 3 =(0, 0, a z ), with x being the transport direction. Hence the unit vectors of the reciprocal lattice are b 1 =(2π/a x , 0, 0), b 2 =(0, 2π/a y , 0), b 3 =(0, 0, 2π/a z ). The Brillouin zone (BZ) is therefore given by the conditions -π/a s < k s ≤ π/a s (with s = x, y, z).

A. Discussion of the reduced basis set

The DFT Hamiltonian in Eq. ( 2) is a dense matrix with a rank equal to the number, N G , of reciprocal lattice vectors, and thus it cannot be directly employed in transport calculations. Thus our first step is a unitary transformation from PW to real space along the transport direction x, that provides the Hamiltonian in the hybrid xK yz basis given by real-space along x and plane waves in the (y, z) plane [START_REF] Pala | Full-band quantum simulation of electron devices with the pseudopotential method: Theory, implementation, and applications[END_REF]. In this representation the Hamiltonian matrix is a block tri-diagonal matrix, which is crucially important in order to exploit recursive algorithms for non-equilibrium Green's function (NEGF) calculations [START_REF] Anantram | Modeling of Nanoscale Devices[END_REF]. In this hybrid xK yz basis each block describes an a x long spatial region consisting of N dx discretization points, so that the matrix blocks have a rank N G =N dx N Gy N Gz (with N dx =N Gx ). Even if the xK yz basis has been used to perform quantum transport calculations as in [START_REF] Pala | Full-band quantum simulation of electron devices with the pseudopotential method: Theory, implementation, and applications[END_REF], [START_REF] Pala | NEGF based transport modeling with a full-band, pseudopotential Hamiltonian: Theory, Implementation and Full Device Simulations[END_REF], the size N G of the blocks is large and it increases by enlarging the cutoff energy used in DFT calculations. Huge computational advantages can thus be obtained by moving to a basis of unitcell restricted Bloch functions, that preserves the block tridiagonal structure of the Hamiltonian matrix [START_REF] Pala | Unit cell restricted Bloch functions basis for first-principle transport models: Theory and application[END_REF], [START_REF] Van De Put | Scalable atomistic simulations of quantum electron transport using empirical pseudopotentials[END_REF].

To this purpose we first argue that, due to the block tridiagonal form of the Hamiltonian, the unit cell restricted Bloch functions {Ψ 0 k } corresponding to the wave vector k=(k x ,k yz ) satisfy the secular equation

H † 0,1 e -ikxax + H 0,0 + H 0,1 e ikxax {Ψ 0 k } = E(k) {Ψ 0 k } (3 
) with H 0,0 , H 0,1 being the Hamiltonian blocks describing respectively one unit cell and its interaction with the nearest neighbor cell. Our reduced basis set consists of a subset of the {Ψ 0 nk } corresponding to a few k x values in the reduced zone -π/a x <k x ≤π/a x along the transport direction and, for each k x , to some tens of bands E n (k) up to the energies of interest for the problem at study.

It is noteworthy that the {Ψ 0 nk } are obtained directly from the PW representation provided by the DFT solver, namely we do not need to solve Eq. ( 3) to find the basis functions.

The size of the basis can be written as

N B = n f n=ni N kB,n (4) 
where N kB,n denotes the number of k x values included in the basis for the n-th band, with n ranging between n i and n f . The {Ψ 0 nk } functions are not orthogonal for different k x , but they can be orthogonalized and we denote by Φ the basis set orthonormalized over a unit cell. The Hamiltonian blocks in the Φ basis have a size N B that is typically much smaller than the size N G in the hybrid xK yz basis.

A first validation of the reduced basis set requires that it allows us to calculate the band structure for any k x in the reduced zone, which is discussed below in Sec.II-B. 

B. Material system and validation of the reduced basis set

In this paper we exemplify our methodology by focusing on the monolayer PtSe 2 , which is a noble metal dichalcogenure identified as a promising channel material for MOSFETs due to the small effective mass and large density of states (DOS) [START_REF] Almutairi | PtSe 2 field-effect transistors: New opportunities for electronic devices[END_REF]. Figure 1 reports the corresponding band structure along the high-symmetry points of the primitive BZ obtained from the DFT Hamiltonian in the PW basis. The DFT calculation was performed with the Quantum ESPRESSO code [START_REF] Giannozzi | Quantum Espresso: a modular and open-source software project for quantum simulations of materials[END_REF], by using the Perdew-Burke-Ernzerhof [START_REF] Perdew | Generalized gradient approximation made simple[END_REF] approximation to the exchange-correlation functional and a norm-conserving pseudopotential [START_REF] Hamann | Optimized norm-conserving Vanderbilt pseudopotentials[END_REF]. We employed a 12 × 12 × 1 Monkhorst-Pack k-points grid and a cutoff energy of E w = 60 Ry. For transport calculations we first define the orthorombic cell composed of 6 atoms and sketched in Fig. 2. The unit vectors are a 1 =(a x , 0, 0), a 2 =(0, a y , 0), a 3 =(0, 0, a z ) with a x =3.712 Å, a y =6.429372 Å and a z =32 Å, while the vertical distance between the Pt and Se atoms is 1.312 Å. In order to validate the reduced Bloch state basis, we compared the bands computed with the Hamiltonian blocks in the reduced basis with the results of the plane-wave DFT solver. The accuracy of the reduced basis depends on the included number of k x Bloch functions [START_REF] Pala | Unit cell restricted Bloch functions basis for first-principle transport models: Theory and application[END_REF], hence we optimized the basis by using a larger N kB,n for bands with energies in the range of interest, and smaller N kB,n for bands at much lower or higher energies.

In Fig. 3 we show an excellent band-structure reconstruction obtained by using N kB,n =4 for the bands close to the energygap and N kB,n =2 for smaller energy bands, and for an overall number N B =74 of Bloch functions. Such a definition of the reduced basis results in no observable unphysical states [START_REF] Mil'nikov | Equivalent transport models in atomistic quantum wires[END_REF], [START_REF] Shin | Density functional theory based simulations of silicon nanowire field effect transistors[END_REF]. 

C. Carrier densities and electron current

All relevant physical quantities are defined in terms of the retarded(advanced), [G r(a) ] Φ , and the lesser(greater)-than Green's functions, [G <(>) ] Φ , computed in the reduced Bloch functions basis. In order to compute the carrier concentrations in the real space, we first compute [G <(>) ] Φ , then we reconstruct the Green's function in the hybrid basis according to the expansion

G <(>) (x j K yz , x j K yz ; E) = N B n,m=1 G <(>) (n, m; E) ×Φ n (x j , G yz ) Φ * m (x j , G yz ) (5) 
and finally evaluate electron and hole densities as described in Ref. [START_REF] Pala | Unit cell restricted Bloch functions basis for first-principle transport models: Theory and application[END_REF]. Thanks to this procedure we are able to evaluate the 3D electron and hole concentrations, n(r) and p(r), with atomistic accuracy as shown in the example of Fig. 4. However, by leveraging the fact that the electrostatic potential varies over larger spatial scales compared to the discretization used in Eq. ( 5), in the self-consistent solution of the NEGF transport equations and the Poisson equation we evaluate n(r) and p(r) on a coarser mesh. For the 3D Poisson problem we assume Diriclect conditions at the metal boundaries and Neumann conditions elsewhere. The electron current is obtained within the elastic approximation as

I D = ge h T (E) [f D (E) -f S (E)] dE (6) 
with g being the degeneracy and f S(D) the Fermi-Dirac function at the source (drain) contact. Figure 5 illustrates the bandstructure and transmission of an infinitely long monolayer PtSe 2 at k y = 0 calculated by using the reduced basis and showing that, as expected, the transmission at a given energy E equals the number of available bands.

The device under investigation is sketched in Fig. 6. It is a single-gate FET with doped source and drain access regions having a length L S,D ≈11.1 nm and an undoped channel region with L G ≈18.5 nm. The donor concentration in the source and drain region is N D =10 20 cm -3 . The equivalent oxide thickness (EOT) of the high-k dielectric layer is 0.65 nm. In the device width direction, y, we assume periodic boundary conditions, described by sampling the BZ along the k y direction with a step ∆k y =0.1 × 2π/a y . Figure 7 shows the transfer characteristics for different V DS values. In the sub-threshold voltage regime we observe an ideal sub-threshold swing of about 60 mV/dec, which stems from the excellent electrostatic integrity of the device due, in turn, to the ultra-thin channel and the aggressive EOT. The device exhibits also a high transconductance resulting in a high on-state current, that confirms the promising properties of this material for high-performance MOSFETs. Of course the transconductance and on-state current in Figure 7 should be considered as upper limit figures, that can be significantly degraded by series resistance and scattering [START_REF] Esseni | Nanoscale MOS Transistors[END_REF].

Quite interestingly, in Figure 7 we can also observe a nonmonotonic I D dependence on V DS , in fact the I D at large V T G increases with V DS for V DS up to 0.3 V, but then it decreases for larger V DS . This behavior has been already observed in simulated FETs with a monolayer MoS 2 channel [START_REF] Chang | Atomistic full-band simulations of monolayer MoS 2 transistors[END_REF], and it has been ascribed to peculiar features of the DOS. We verified that a similar explanation applies to our results, in fact Fig. 8 reports the local density of states (LDOS) at V DS =0.3 V and 0.6 V in the on-state regime (i.e. at V T G =0.8 V), showing that in the drain region the LDOS for energies close to the top of the barrier is larger at V DS =0.3 V than it is at V DS =0.6 V.

Such a non-monotonic I D dependence on V DS , however, is expected to disappear in the presence of significant inelastic scattering mechanisms, such as electron-phonon scattering. 

III. CONCLUSIONS AND OUTLOOK

We have shown that a unit-cell restricted Bloch functions basis enables band structure and transport calculations with a significant reduction of the computational burden compared to the original plane-wave DFT formulation. This methodology is a viable approach for ab initio and semi-empirical quantum transport simulations, and it can be seen as an alternative to the MLWF approach. In fact the Bloch functions can be obtained directly from the DFT solvers, thus bypassing the extraction of a MLWF basis and of the corresponding tightbinding Hamiltonian. We foresee that further developments of the methodology will enable us to deal with non homogenous systems (i.e. including hetero-jnctions), and to include inelastic scattering mechanisms.
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 1 Fig. 1. Bandstructure of the monolayer PtSe 2 .
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 2 Fig. 2. Orthorombic unit cell of the 1T phase monolayer PtSe 2 .
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 3 Fig. 3. Bandstructure of the monolayer PtSe 2 for various ky values computed with (circles) the Bloch function basis and (lines) the PW basis.
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 4 Fig. 4. Contourplot of the cross section of the electron density at an abscissa x corresponding to the center of the orthorombic unit cell. Colors are in arbitrary units.
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 5 Fig. 5. Bandstructure of an infinitely-long monolayer PtSe 2 and the corresponding transmission probability obtained with the Hamiltonian in the reduced basis consisting of unit-cell-restricted Bloch states. ky = 0.
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 6 Fig. 6. Sketch of the single-gate monolayer PtSe 2 FET.
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 7 Fig. 7. Transfer characteristics of the monolayer PtSe 2 FET for V DS =0.1, 0.3 and 0.6 V.
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 8 Fig. 8. LDOS computed for (a) V DS =0.3 V and (b) V DS =0.6 V and for V T G = 0.8 V. The transverse wave-vector is ky = 0.1 × 2π/ay.