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Abstract

We present the theory and the application of a first-principle transport model employing a basis

set obtained directly from the ab initio Bloch functions. We use a plane-wave density functional

theory Hamiltonian and show that a judicious choice of the reduced basis set can effectively suppress

the potentially thorny problem of the unphysical solutions. Our methodology enables ab initio

transport simulations with a huge reduction of the size of the problem compared to the original

ab initio formulation. Moreover, the approach can also be used for local and non-local empirical

pseudopotential Hamiltonians, thus promising a wide range of possible applications.

We report results for ab initio simulations of MoS2 field effect transistors, where the transport

and electrostatics equations are solved self-consistently for channel lengths up to about twenty

nanometers. The simulation results rapidly converge with the size of the basis set, so that the

blocks of the Hamiltonian matrix can be reduced to a size below one hundred. Our methodology is

a viable approach for ab initio and semi-empirical quantum transport simulations and, in particular,

it offers an alternative to the use of maximally localized Wannier functions.
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I. INTRODUCTION

A quantum transport methodology relying on an ab initio description of the physical sys-

tem is in several respects the frontier of the transport modelling in nanoscale systems. One

reason why such an approach has become necessary to steer the technological developments

is that the cross section of many devices has reached truly nanometric dimensions and the

transistor length has reached the 10 nm range, where quantum transport effects become im-

portant, such as the source-drain tunnelling in MOSFETs1–3, or the band-to-band-tunnelling

(BTBT) in Tunnel FETs (TFETs)4,5. Moreover, a quantum transport formalism based on

ab initio methods has become indispensable to explore the potentials of new device concepts

exploiting the recently discovered atomically thin 2D materials, and their many possible

combinations in terms of vertical or lateral hetero-junction options6–8.

The first-principle electronic-structure calculations are typically based on DFT and on

either a plane-wave basis9,10, or LCAO11. The former basis may be considered the most

natural option for periodic crystals, while the latter is closely related to the chemical bonding

picture.

The tight-binding method is the most widely used approximated implementation of the

Linear Combination of atomic orbitals (LCAO) approach. It is also the most popular method

for quantum transport based either on a fixed set of orbitals per atom with empirical cou-

pling parameters (e.g. the sp3d5s∗ model12,13), or on maximally localized Wannier functions

extracted as a post-processing, sometimes quite delicate and computationally demanding,

of first-principle calculations14–18.

Plane waves form a complete set of orthogonal functions. They allow for a good con-

trol of accuracy and convergence in electronic-structure calculations through a cutoff of

the kinetic energy (see also Sec. II). However, frequently they result in a large basis set,

particularly for those super-cells that include vacuum regions, where a good description

of the exponential wave-function decay demands a large plane-waves set. Consequently,

a direct use of first-principle calculations based on plane waves is often considered com-

putationally prohibitive for electronic transport in technologically relevant systems. Some

contributions have recently appeared for the empirical pseudopotentials method and using

either a quantum-transmitting-boundary approach19–22, or a Non Equilibrium Green’s Func-

tion (NEGF) method23,24. Until now, DFT-based transport calculations in relatively large
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systems have been addressed only by using LCAO basis25 with the adoption of equivalent

transport model techniques26.

In this work we present a new method for quantum transport in nanoscale devices and

physical systems, based on a plane-wave DFT Hamiltonian. The new method employs a

basis set of Bloch functions of the underlying system to drastically reduce the size of the

transport problem. Our approach does not require the solution of any eigenvalue problem

besides those addressed by first-principle calculations27, in fact the basis set is obtained

directly from the Bloch wave-functions determined by the ab initio solver. An appropriate

choice of Bloch functions allows us to effectively avoid the problem of unphysical solutions,

whose filtering can be theoretically and computationally challenging25,26. We found that

the size of the basis set for transport simulations is essentially independent upon the cutoff

energy used in first-principle calculations, which is extremely beneficial because it allows

one to decouple the size of the transport problem from the computational effort necessary

to obtain full convergence and high accuracy in first-principle calculations.

Our results demonstrate that the Bloch functions form an extremely effective basis set,

which enables band structure and transport calculations using a basis size that is hundreds

times smaller than the plane-wave basis used to calculate the Bloch functions in the ab initio

solver. The ability of the Bloch functions to retain most of the physics with a small basis set

is not surprising in consideration of the results obtained for band structure calculations with

empirical pseudopotential models28–32, and it is a precious asset for future developments of

quantum transport methods based on a first-principle Hamiltonian. During the writing of

this paper we became aware of a recent contribution33, where a basis of Bloch functions was

used for quantum transport simulations based on an empirical pseudopotential Hamiltonian

and a quantum transmitting boundary approach.

The paper is organized as follows. In Sec. II we provide the necessary information about

the first-principle methods employed in our calculations, and in particular we clarify the

relevant connections to the transport model. In Sec. III we introduce the reduced basis set

used in this work and consisting of unit cell restricted Bloch functions. This section also

illustrates several tests and comparisons which validate the basis in terms of the reconstruc-

tion of the ab initio electronic structure. Sec. IV presents the transport model based on the

NEGF formalism, and the procedure to achieve simulations accounting for a self-consistent

description of the electrostatics via the Poisson equation. Then in Sec. V we illustrate
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some examples of complete, self-consistent device simulations for an Mos2 based nanoscale

transistor, and in Sec. VI we finally offer some concluding remarks.

II. AB INITIO HAMILTONIAN

Electronic-structure methods from first principles are typically based on density-functional

theory, where one-electron states (“Kohn-Sham orbitals”) are obtained by solving self-

consistently the Kohn-Sham equations,

HKS Ψn = En Ψn, HKS = T + Vscf (1)

where the Kohn-Sham Hamiltonian HKS is the sum of the kinetic energy T and of the

self-consistent potential Vscf . In turn, Vscf = VeI + VH + Vxc, where VeI is the electron-ion

interaction potential, VH the Hartree electrostatic potential, VXC the “exchange-correlation”

potential. The two latter terms depend upon the charge density, which can be written as

the sum of the squares of all occupied Kohn-Sham orbitals.

Let us use a plane-wave bases set and pseudopotentials to represent the valence electron-

nuclei interactions. The solution of the Kohn-Sham equations reduces to a secular problem,

in which the potential is computed self-consistently. Leaving apart the problem of how to

compute the charge density and the self-consistent potential, the only difference between

Kohn-Sham and empirical-pseudopotential Hamiltonians is the presence of a non-local term

in the Kohn-Sham Hamiltonian.

Both the Hartree and the exchange-correlation potentials, the latter in the typical GGA

(generalized gradient approximation) form, are local functions v(r) of the position r. The

nonlocal term stems from atomic norm-conserving pseudopotentials, which contain two types

of contributions: (a) a local vL(r) part with the expected asymptotic vL(r) ∼ −Zve2/r

behavior at large r (e is the electron charge, Zv the number of valence electrons of the

atom); (b) a nonlocal, short-ranged vNL(r, r′) part.

For each atom µ, the nonlocal term vµNL can be expressed as a sum of Nµ projectors,

defined via atomic pseudopotential parameters βn(r) and Dnn′ as follows:

vµNL(r, r′) =
∑
n,n′

βµn(r)Dµ
nn′ [βµn′(r

′) ]∗ (2)

and throughout this paper we use a∗ to denote the complex conjugate of a scalar a, and M† to

denote the adjoint of a matrix or a vector M. Eq. (2) corresponds to the “separable” form
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of pseudopotentials. For the simple norm-conserving pseudopotentials used in this work,

the Dnn′ matrix is diagonal: Dnn′ = Dnδnn′ . The index n is a combined index, running

on angular momentum quantum numbers l and m, up to the highest angular momentum

values present in the atomic core. Typically, just a few projectors (< 10) per atom need to

be taken into account.

The βµn(r) functions are short-ranged and vanish for r > rc, where rc is the radius beyond

which pseudo-atomic and true atomic Kohn-Sham orbitals are the same. For most atoms,

rc ∼ 0.1÷ 0.3 nm.

The nonlocal term in the Kohn-Sham Hamiltonian of a crystal is thus

VNL(r, r′) =
∑
µ,R

vµNL(r− dµ −R, r′ − dµ −R)

=
∑
µ,R

∑
nn′

βµn(r− dµ −R)Dµ
nn′ [βµn′(r

′ − dµ −R)]∗ (3)

where dµ is the position of atom µ in the unit cell, the R’s are lattice vectors, and it is

understood that

(VNL ψ)(r) =

∫
VNL(r, r′)ψ(r′)dr′. (4)

Kohn-Sham orbitals have the Bloch form and can be expanded into plane waves

Pk+G(r) =
1√
Ω
ei(k+G)·r, (5)

where k is the Bloch vector, the G’s are reciprocal lattice vectors, Ω is the volume of the

crystal. A finite set is obtained by choosing plane waves up to a given kinetic energy value

Ew (the “cutoff”): ~2
2m0

(k + G)2 ≤ Ew, where m0 is the electron mass. The Kohn-Sham

Hamiltonian can be expanded into plane waves as well:

〈k+G|H|k+G′〉 ≡ Hk(G,G′) =
~2

2m
(k+G)2δG,G′ +VL(G−G′)+VNL(k+G,k+G′) (6)

where VL(G − G′) is the Fourier transform of the local part of the total potential (local

pseudopotential plus Hartree and exchange potential). The nonlocal contribution, coming

from the pseudopotential, is:

VNL(k + G,k + G′) =
1

Ω

∫
VNL(r, r′)e−i(k+G)rei(k+G′)r′ dr dr′. (7)

In principle the solution of the secular equation for the Kohn-Sham Hamiltonian matrix∑
G′

Hk(G,G′)B(G′) = E B(G) (8)
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provides the electronic structure En(k) and the Bloch functions Ψnk(r), which are completely

determined by the eigenvectors Bnk(G). In practice Hk(G,G′) is a very large matrix and

thus it is not stored or directly diagonalized, but rather one resorts to iterative techniques and

to on-the-fly computation of HkΨ products exploiting fast Fourier transform techniques34.

The potential and the charge density contain plane waves up to a cutoff energy Eρ=4Ew.

In our calculations we used an orthorombic unit cell (see examples in Sec. III B), where

the real space unit vectors can be written as a1=(ax, 0, 0), a2=(0, ay, 0), a3=(0, 0, az),

with x being the transport direction. Hence the unit vectors of the reciprocal lattice

are b1=(2π/ax, 0, 0), b2=(0, 2π/ay, 0), b3=(0, 0, 2π/az), the reciprocal lattice vectors are

G=nxb1+nyb2+nzb3 (with nx, ny, nz=0,±1,±2 · · · ). The Brillouin zone can be taken as

the parallelepiped defined by the conditions −π/as ¡ ks ≤ π/as (with s=x, y, z), that has a

volume ΩRZ=(2π)3/Ωcell with Ωcell=axayaz being the volume of the unit cell. It is under-

stood that for a 2D crystal in the (x,y) plane, for example, the unit cell includes a relatively

large vacuum region in the z direction that makes the extension of the reduced zone along

z practically negligible, thus resulting in a 2D electron gas. Ultra-thin films or nanowires

consisting of an underlying 3D crystal can be similarly described as a 2D or 1D system by

inserting vacuum regions in the unit cell.

III. REDUCED BASIS OF UNIT CELL RESTRICTED BLOCH FUNCTIONS

In our methodology for transport simulations the expansion volume for G vectors is given

by the cube inscribed to the sphere used in ab initio calculations, namely the cube set by

the condition ~2
2m0

G2
s ≤ Eρ/3 with s = x, y, z. The grid of G vectors naturally defines

a corresponding grid of points in real space and, if we denote by NGs the number of Gs

vectors (with Gx, Gy, Gz lying respectively along the x, y and z axis), the spacing of the

grid in real space is ds=as/Nds, where Nds=NGs is the number of grid points along s inside

the unit cell.

In the remainder of the paper we will often refer to the Hamiltonian matrix in different

basis sets. Matrices are denoted by using capital letters into square brackets and, whenever

necessary, a subscript indicates the basis. For example [H]K, [H]xKyz and [H]Φ denote

the Hamiltonian matrix respectively in the plane-wave basis used in Sec. II, in the hybrid

xKyz basis described in Sec. III A, and in the reduced basis of Bloch functions discussed in
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Sec. III B. The subscript may be omitted to lighten the notation when there is no ambiguity

about the basis set. When we refer to the elements of the matrices, instead, we drop the

square brackets and the subscript because the symbols used for the elements identify the

basis: for example we write H(xKyz, x
′K′yz) to denote the elements of the Hamiltonian

matrix [H]xKyz in the xKyz basis. Finally, we use curly brackets to denote column or row

vectors: for example {Ψ} will be used for the column vectors representing the wave-functions.

A. Hybrid xKyz basis

Let us now consider a system having Ncx unit cells in the transport direction x and

subject to periodic boundary conditions. The Hamiltonian matrices in the plane-wave basis

are given by Eq. (6) and are identified by k=(kx,kyz) with kyz=(ky,kz). The corresponding

Hamiltonian matrix in the hybrid basis, xKyz consisting of real-space grid points along x

and plane waves in the (y,z) directions, can be obtained by using the unitary transformation

described below. Before discussing the transformation, however, we here notice that the

short-range nature of the non local pseudopotential defined in Eqs. (2, 3) implies that the

non local terms practically vanish on distances much smaller than ax, as already mentioned

in Sec. II. In particular, we numerically verified that the Hamiltonian in the xKyz basis can

be accurately expressed by the block tridiagonal form

[H]xKyz =


H0,0 H0,1 0 0 · · · H†0,1

H†0,1 H0,0 H0,1 0 · · · 0

· · · · · · . . .
...

H0,1 0 · · · 0 H†0,1 H0,0

 (9)

where each block describes an ax long region consisting of Ndx discretization points

xj=0, dx, 2dx · · · (ax−dx), so that blocks H0,0 and H0,1 have a rank NG=NdxNGyNGz (with

Ndx=NGx).

The [H]xKyz in Eq. (9) corresponds to a given kyz and it has N2
cx blocks. The matrix is

sorted so that, for each discretization point xj, we have all the NGyNGz entries corresponding

to the spectral components Kyz=kyz+Gyz (with Gyz=(Gy,Gz)).

According to Eq. (9) the knowledge of [H]xKyz coincides with the knowledge of H0,0,

H0,1. In Appendix A we discuss in more details the structure of [H]xKyz in Eq. (9). In

particular we argue that the short range non local pseudopotentials make the off-diagonal
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blocks other than H0,1(i, j) negligible, and result in an H0,1 block that is a lower triangular

matrix, namely we have H0,1(i, j) ' 0 for j ≥ i.

For a system having Ncx unit cells along x, the [H]xKyz in Eq. (9) can be obtained by

transforming from Kx to x the Hamiltonian matrices Hk in Eq. (6) for the corresponding

Ncx wave-vectors k=(kx, kyz) with kx values spaced by 2π/(Ncxax). However we argue that

Ncx=2 is sufficient to determine H0,0, H0,1. In fact, for Ncx=2 we can rewrite Eq. (9) as

[H]xKyz =

 H0,0 H0,1 + H†0,1

H†0,1 + H0,1 H0,0

 (10)

and Eq. (10) allows us to unambiguously determine H0,0 and H0,1 in virtue of the above

mentioned property H0,1(i, j) ' 0 for j ≥ i. The [H]xKyz in Eq. (10) can be obtained by

transforming the two matrices Hk0 , Hk1 given by Eq. (6) for k0=(kx0, kyz) and k1=(kx1,

kyz), with kx0=0 and kx1=π/ax.

For any k=(kx, kyz) the transformation from Kx to the home unit cell given by xj =

0, dx, · · · (ax−dx) is governed by the NG ×NG unitary matrix35

[U0
kx ] =

1√
Ndx


I ei(kx+Gx,1)dxI · · · ei(kx+Gx,1)(ax−dx)I

I ei(kx+Gx,2)dxI · · · ei(kx+Gx,2)(ax−dx)I

· · · · · · . . .
...

I ei(kx+Gx,NGx )dxI · · · ei(kx+Gx,NGx ) (ax−dx)I

 (11)

where I is an identity matrix with rank NGyNGz=NG/Ndx and Ndx=NGx. Hence, the cor-

responding transformation to the unit cell p extending from xj=pax to xj=[(p + 1)ax−dx]

(with p=1, 2, · · · ) is governed by the matrix [Up
kx

]=[U0
kx

] eikx p ax . Consequently, the trans-

formation from Kx to the two unit cells necessary to calculate [H]xKyz in Eq. (10) can be

written as

[U
(2ax)
kx

] =
1√
2

[
[U0

kx
], [U0

kx
]eikx ax

]
. (12)

By using Eq. (12) we can express the [H]xKyz in Eq. (10) in terms of the two plane-wave

DFT Hamiltonian matrices [Hk0 ], [Hk1 ] as

[H]xKyz =
∑

k=k0,k1

[U
(2ax)
kx

]† [Hk] [U
(2ax)
kx

] =

=
1

2

∑
k=k0,k1

 [U0
kx

]†[Hk][U0
kx

] [U0
kx

]†[Hk][U0
kx

] eikx ax

[U0
kx

]† [Hk][U0
kx

] e−ikx ax [U0
kx

]†[Hk][U0
kx

]

 (13)
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where for k0=(0, kyz) and k1=(π/ax, kyz) the exponential terms simply evaluate to ±1.

Hence, we can finally identify H0,0 and H0,1 in the hybrid xKyz basis as36

[H0,0] =
1

2

(
[U0

kx0
]†[Hk0 ][U

0
kx0

] + [U0
kx1

]†[Hk1 ][U
0
kx1

]
)

(14a)

[H0,1] + [H0,1]† =
1

2

(
[U0

kx0
]†[Hk0 ][U

0
kx0

]− [U0
kx1

]†[Hk1 ][U
0
kx1

]
)

(14b)

In Appendix A we discuss a generalization of Eqs. (12), (13), (14) that can be used to build

the Hamiltonian in the hybrid xKyz basis by using any number Ncx of kx Bloch vectors.

B. Reduced basis of unit cell restricted Bloch functions

The blocks H0,0, H0,1 in Eq. (9) have an NG rank so that, for high precision ab-initio

calculations using a relatively large cutoff energy Eρ, the direct manipulation of such matrices

for transport simulations is practically intractable. A drastic reduction of the size of H0,0,

H0,1 can be achieved by moving to an appropriate basis set consisting of Bloch functions

restricted to a unit cell. To this purpose we first argue that, thanks to the block tridiagonal

form of the Hamiltonian in Eq. (9), the corresponding Bloch functions in the unit cell p

(with p=0, 1, · · · (Ncx−1)) take the form37

Ψk(xj + p ax,Gyz) = Ψ0
k(xj,Gyz) e

i kxp ax (15)

where the {Ψ0
k} are Bloch functions restricted to the home unit cell (i.e. for xj=0, dx, · · · (ax−dx)),

which are in turn the solutions of Ncx eigenvalue problems[
H†0,1 e

−ikxax + H0,0 + H0,1 e
ikxax

]
{Ψ0

k} = E(k) {Ψ0
k} (16)

with k=(kx,kyz). Equation (16) requires that the Ψ0
k(xj,Gyz) functions fulfill the kx depen-

dent boundary condition Ψ0
k(ax,Gyz)=Ψ0

k(0,Gyz) e
i kx ax .

The reduced basis employed in this paper is identified as a single basis set suitable for

all the eigenvalue problems in Eq. (16). In this respect, we recall that the Bloch functions

{Ψ0
k} are in effect known, because they are determined by the eigenvectors Bnk(G) of the

secular Eq. (8) solved in ab-initio calculations. We can express the column vectors {Ψ0
nk}

in matrix notation as

{Ψ0
nk} = [U0

kx ]
†{Bnk} (17)
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where [U0
kx

] is defined in Eq. (11) and k=(kx,kyz). Our reduced basis set consists of a subset

of the {Ψ0
nk} corresponding to a few kx values in the reduced zone −π/ax < kx ≤ π/ax]

and, for each kx, to some tens of energies En(k). There is substantial flexibility in such a

definition of the basis set, which can be used to find a good compromise between the size NB

of the basis and the accuracy in the reconstruction of the electronic structure. In general

the size of the basis can be written as

NB =

NkB∑
i=1

NE(kx,i) (18)

where NkB denotes the number of kx values and NE(kx,i) the number of energies at kx,i

included in the basis.

Appendix B offers more details about the choice of the basis functions. Most of the

calculations and simulations reported in this paper were obtained by using either two kx

values (i.e. kx=0, π/ax), or four kx values (i.e. kx=0, ±0.5π/ax, π/ax), as exemplified by

the results in Fig. 1 discussed below.

Because the {Ψ0
nk} for different kx are not orthogonal over ax, we apply an orthonormal-

ization procedure. Here, we remark that the use an orthonormal basis is not really necessary,

but it is in fact very convenient in the transformations from the reduced basis to real space

that are necessary, for example, for the calculation of space charge density in self-consistent

simulations (see Sec. IV A). The orthonormalization procedure simply consists in an ap-

propriate linear combination of the Bloch functions {Ψ0
nk}, but it is prone to numerical

instabilities. We overcame this problem by employing the modified Gram-Schmidt algo-

rithm, which is more robust than the standard approach in dealing with rounding errors38.

Since the {Ψ0
nk} are column vectors with NG components and we select only a number NB

of basis functions much smaller than NG, the orthonormalization procedure can be always

successfully completed.

We will denote by Φm(xj,Gyz) the orthonormalized Bloch functions restricted to a unit

cell, with m=1, 2, · · ·NB and xj=0, dx, 2dx · · · (ax−dx). The rectangular transformation ma-

trix from the hybrid xKyz basis to the Φ basis is defined as

[UΦ] = [ {Φ1}, {Φ2} · · · {ΦNB} ] (19)

and [UΦ] has NB columns and NG rows. Each {Φm} is a column vector such that for each

discretization point xj=0, dx, 2dx · · · (ax−dx) we have all the NGyNGz spectral components.
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Because the {Φm} have been orthonormalized, we have [UΦ]† [UΦ]=[I]NB with [I]NB being

the identity matrix with rank NB.

By recalling the expression in Eqs. (14) for the H0,0 and H0,1 in xKyz basis, we can

readily write H0,0 and H0,1 in the reduced basis as

[H0,0]Φ =
1

2

(
[Wkx0 ]

†[Hk0 ][Wkx0 ] + [Wkx1 ]
†[Hk1 ][Wkx1 ]

)
(20a)

[H0,1]Φ + [H0,1]†Φ =
1

2

(
[Wkx0 ]

†[Hk0 ][Wkx0 ]− [Wkx1 ]
†[Hk1 ][Wkx1 ]

)
(20b)

where we have introduced transformation matrices [Wkx0 ] = [U0
kx0

][UΦ], [Wkx1 ] = [U0
kx1

][UΦ].

Eqs. (20) express [H0,0]Φ, [H0,1]Φ directly in terms of the two plane-wave DFT Hamilto-

nian matrices [Hk0 ], [Hk1 ]. The expressions for [H0,0]Φ, [H0,1]Φ, in turn, allow us to transform

the Hamiltonian in Eq. (9) and the eigenvalue problems in Eq. (16) to the reduced Φ basis,

where the size of such blocks is much smaller than NG, as exemplified below.

Figure 1(a) illustrates the unit cell of the single layer MoS2 that we used in this work

as a baseline material for electronic-structure calculations and device simulations; the unit

vectors are a1=(ax, 0, 0), a2=(0, ay, 0), a3=(0, 0, az) with ax = 3.18818 Å, ay = 5.52208 Å

and az = 20.2 Å, while the vertical distance between the Mo and S atoms is 1.564 Å. This

cell was built by expanding the relaxed primitive unit cell of the monolayer MoS2, whose

bandstructure along the high-symmetry points of the primitive Brillouin zone matches very

well the results reported in Ref. 39 (not shown). Figure 1(b) reports the corresponding band

structure obtained from the DFT Hamiltonian in the plane-wave basis (solid line). The DFT

calculation was performed by means of the Quantum ESPRESSO code10, using a norm-

conserving pseudopotential40, and the Perdew-Burke-Ernzerhof41 (PBE) approximation to

the exchange-correlation functional. The self-consistent solution was obtained by employing

a 15× 12× 1 Monkhorst-Pack k-points grid and a cutoff energy of Ew = 90 Ryd, resulting

in a number on plane waves NG=26733. Fig. 1(b) also shows the band structure obtained

with Eq. (16) in the hybrid xKyz basis (symbols), still having a size NG =26733.

Figure 2 addresses the reconstruction of the electronic structure in the reduced basis Φ,

and in particular it reports the absolute energy difference ∆E (x-axis) between the energies

obtained by using Eq. (16) either in the reduced basis (i.e. for [H0,0]Φ, [H0,1]Φ with an NB

size), or in the complete xKyz basis (i.e. for [H0,0], [H0,1]) with an NG size). The results of

Fig. 2(a) were obtained by using two kx values to build the reduced basis (i.e. NkB=2 and

kx=0, π/ax), whilst those in Fig. 2(b) correspond to NkB=4 (i.e. kx=0, ±0.5π/ax, π/ax).
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For a given NkB the accuracy of the reduced basis improves by increasing the number NE

of Bloch functions at each kx. As it can be seen the error for NB = 160 is small enough

for most applications in both Fig. 2(a) and Fig. 2(b), which enables a drastic reduction

of the problem size compared to NG=26733. For NB=160 and 240 we also see that, for a

given NB, the reconstruction of the electronic structure improves by increasing NkB. This

behavior is not unexpected because the {Ψ0
nk} are continuous functions of kx, so that a

linear combination of the {Ψ0
nk} for a few kx can still approximate well the remaining Bloch

functions. Fig. 2 shows, however, that very few kx values are sufficient to achieve a close

agreement with the reference results.

We finally notice in Fig. 2(b) that, for NB =120, the energy error in the conduction band

steeply increases for energies above about 2 eV. This is because in this system we have 26

valence bands, all of which are included in the reduced basis set. Consequently, for NE =30

the basis set includes the Bloch functions for only the four lowest conduction bands, which

results in relatively large errors for higher conduction bands. In this respect we verified that,

by including in the basis set the Bloch functions for all the valence bands at each kx, we can

effectively suppress the problem of unphysical solutions25,26. Hence the number of valence

bands in the system sets a lower bound for the size NB of the reduced basis.

As for the unphysical states that have been sometimes observed upon the introduction

of a reduced basis, we have extended our analysis by inspecting the transmission across a

single layer MoS2 in the flat band condition, namely with neither built in nor externally

applied potential. The transmission calculated by using the reduced basis (not shown) is

very steeply, exponentially suppressed in the energy gap. In other words we do not observe

any feature of the transmission indicating the presence of evanescent, spurious states in the

energy gap. Moreover, for energies belonging to the valence or the conduction band the

transmission at a given lateral wave-vector ky equals, as expected, the number of available

bands. The inspection of the transmission is a good complement to the analysis of the

electronic states, and it reinforced our confidence in an effective suppression of unphysical

effects in our reduced basis calculations.
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IV. NEGF BASED TRANSPORT MODEL

In this section we describe the procedure based on the NEGF formalism to achieve a

self-consistent simulation of a nanodevice or a mesoscopic system subject to external bias

conditions. All the relevant physical quantities, such as density of states, carrier concentra-

tion and currents, were computed in terms of retarded and Green’s function matrices, which

are calculated in the reduced Bloch function basis.

A. Charge, current and self-consistent calculations

In the Bloch function basis the retarded(advanced), [Gr(a)]Φ, and lesser(greater)-than

Green’s functions, [G<(>)]Φ at a given energy E are defined as

[Gr(a)]Φ =
[
(E + iη)[I]Φ − [H]Φ − [Σr(a)]Φ

]−1
(21)

and

[G<(>)]Φ = [Gr]Φ[Σ<(>)]Φ[Ga]Φ (22)

where η is a positive(negative) infinitesimal, [Σr(a)]Φ = [Σ
r(a)
L ]Φ + [Σ

r(a)
R ]Φ + [Σ

r(a)
ph ]Φ and

[Σ<(>)]Φ = [Σ
<(>)
L ]Φ+[Σ

<(>)
R ]Φ+[Σ

<(>)
ph ]Φ are the retarded(advanced) and the lesser(greater)-

than self-energies describing the connection to contacts (i.e. left lead, L, and right lead, R),

or possible interaction with photons or phonons42. Thanks to the block-tridiagonal structure

of the Hamiltonian matrix, the sub-matrices of the retarded(advanced) and lesser(greater)-

than Green’s functions that are needed to calculate carrier concentrations and current den-

sity can be efficiently computed with well-known recursive algorithms43, and by manipulating

matrix blocks of rank NB.

More precisely, in order to calculate the 3D real space concentration of mobile carriers,

we need to compute the diagonal terms of the real space Green’s functions starting from the

Green’s functions in the Bloch functions basis. To this end we first transform the Green’s

functions from the Bloch functions to the xKyz basis, and then compute the charge in real

space. Inside each unit cell the Green’s functions in the xKyz basis can be concisely written

in matrix notation as [G<(>)]xKyz=[UΦ] [G<(>)]Φ [UΦ]†, with [UΦ] given by Eq. (19). An

explicit expression is given by

G<(>)(xjKyz, xjK
′
yz;E) =

NB∑
n,m=1

G<(>)(n,m;E) Φn(xj,Gyz) Φ∗m(xj,G
′
yz) (23)
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Then we evaluated the free electron concentration on the fine mesh grid with discretization

steps (dx, dy, dz) as

n(xj, ryz) =
−i

dxdydz

∫ ∞
E0(xj)

dE

2πNGyNGz

∑
Gyz ,G′

yz

G<(xjKyz, xjK
′
yz;E) ei(Gyz−G′

yz)·ryz (24)

and similarly for the free hole concentration

p(xj, ryz) =
i

dxdydz

∫ E0(xj)

−∞

dE

2πNGyNGz

∑
Gyz ,G′

yz

G>(xjKyz, xjK
′
yz;E) ei(Gyz−G′

yz)·ryz (25)

with Kyz=(kyz+Gyz) and with E0(xj) being the neutrality point that we assumed to be at

the center of the energy bandgap.

It is understood that all equations in this section refer to a given kyz and that, if the

system is periodic along either y or z, a sum over kyz is necessary to calculate all physical

quantities.

In order to simulate the transport properties of realistic devices, it is necessary to evaluate

the electrostatic potential induced by external biases, ionized dopants and mobile carriers.

Such an electrostatic potential φ(r) can be accurately described within the Hartree approx-

imation, namely by self-consistently solving the equations for the Green’s functions (that in

turn give the carrier concentrations via Eqs. (24,25)), with the 3D Poisson equation

∇ · [ε(r)∇φ(r)] = −e [p(r)− n(r) + ND(r)− NA(r)] (26)

where ε(r) is the material-dependent permittivity, and n(r), p(r), NA(r), ND(r) are the

electron, hole, acceptor and donor concentration, respectively.

Here, we assume that the electrostatic potential φ(r) varies over a relatively large spatial

scale compared to the discretizations (dx, dy, dz) used to calculate the atomistic Green’s func-

tions. Consequently, in order to reduce the size of the Poisson equation problem in devices

with a technologically relevant size, we transfer the free electron and hole concentrations com-

puted in Eqs. (24,25) on a coarser mesh with a discretization (∆x,∆y,∆z) ∼ 0.1÷ 0.2 nm.

The conversion from the finer to the coarser mesh is performed so as to conserve the integral

of the carrier concentration. The effect of external biases was imposed by setting Dirichlet

boundary conditions at the contacts and Neumann boundary conditions to non contacted

boundary regions.

Finally, once the self-consistent solution has been obtained, we express the electron cur-

rent as a function of the Green’s functions and self-energies computed at the contact L(R)
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as

IL(R) = −i e
~

∫
dE tr

{
[ΓL(R)]

[(
[Gr

L(R)]− [Gr
L(R))]

†) fL(R) + [G<
L(R)]

]}
(27)

where [ΓL(R)] = i
(
[ΣL(R)]− [ΣL(R)]

†), tr{· · · } is for the trace operation and fL(R) is the

Fermi-Dirac distribution. The calculation of the current can be carried out by using the

Green’s functions in the reduced Bloch functions basis, where the size of the matrices is the

smallest.

B. Implementation and computational burden

Our simulation procedure takes full advantage of the first principle calculations carried

out by the ab initio solver10. In fact, after a duly converged ab initio simulation has been

achieved for the unit cell of the physical system, our approach can be summarized in the

following steps.

1. Assuming NkB = 2, for example, select a subset of the Bloch states for k0=(0,kyz) and

k1=(π/ax,kyz) obtained by DFT calculations and transform them to the xKyz basis

using Eq. (17). Then orthogonalize the basis functions so as to obtain {Φk0}, {Φk1

with n=1, 2, · · ·NB and assemble the UΦ in Eq. (19).

2. Calculate [H0,0]Φ, [H0,1]Φ in the reduced Bloch function basis by using Eq. (20).

3. Solve for the Green’s functions in the reduced basis by using an initial guess of the

electrostatic potential φ(r).

4. Calculate carrier concentrations from Eqs. (24, 25) and then solve the Poisson equation

for a new guess of φ(r). Loop between steps 3 and 4 until a specified convergence is

reached and finally calculate the current using Eq. (27).

Here it should be mentioned that, for any physical system or nanoscale device, steps 1 and

2 above have to be performed only once. In fact they correspond to material properties,

so that the relevant quantities calculated in these steps can be stored and re-used in subse-

quent simulations corresponding to different bias conditions. The number NB of Bloch basis

functions is the most important parameter affecting the computational load of the Green’s

functions equations.
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Several important optimizations are possible and have been introduced in the implemen-

tation of our methodology. For example, it is apparent from Eqs. (24, 25) that the sums

over Gyz, G′yz for any couple of basis functions Φn, Φm can be carried out only once for

a given physical system. In other words we can introduce the new quantity Kn,m(xj, ryz)

defined as

Kn,m(xj, ryz) =
1

NGyNGz

∑
Gyz ,G′

yz

Φn(xj,Gyz)Φ
∗
m(xj,G

′
yz) e

i(Gyz−G′
yz)·ryz (28)

and then notice that the free electron concentration can be written in terms of Kn,m(xj, ryz)

as

n(xj, ryz) =
−i

dxdydz

∫ ∞
E0(xj)

NB∑
n,m=1

G<(n,m;E)Kn,m(xj, ryz)
dE

2π
. (29)

A similar expression holds for the free hole concentration p(xj, ryz).

As it can be seen, once Kn,m(xj, ryz) has been calculated for a given physical system,

then the carrier concentrations during self-consistent simulations can be obtained by using

Eq. (29), that is by skipping the sums over Gyz, G′yz.

V. SIMULATION RESULTS

We present in this section an example of a nanoscale transistor that we could efficiently

simulate by using the reduced basis of Bloch functions computed directly from plane-wave

DFT calculations.

The device under investigation is composed by the monolayer MoS2 n-MOSFET sketched

in Fig. 3(a), where the 2D semiconductor is sitting on a 10 nm thick back-oxide having a

dielectric constant εox = 3.9ε0 (with ε0 being the vacuum permittivity). Source and drain

regions are considered chemically doped with a donor concentration of 1020 cm−3 and the

top gate oxide has an equivalent oxide thickness of about 1 nm. The lateral direction was

assumed to be periodic and was described by including a discrete sampling of the wave-vector

ky with a constant ∆ky = 0.1 π/ay.

Figure 3 shows the drain current, IDS, versus the top gate voltage, VTG, characteristic

for a gate length of LG = 64ax ' 20 nm, 32 ax' 10 nm and 16 ax' 5 nm. The large

IDS values are due to the fact that neither scattering nor series resistance are included in

simulations. Thanks to the sub-nanometer thickness of the MoS2 layer the IDS versus VTG
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characteristics of the transistor are still well behaved for a channel length of about 5 nm,

even if a degradation of the sub-threshold swing is observed with respect to longer FETs.

The onset of short channel effects also manifests itself in a significant left-shift of the IDS

versus VTG characteristic in the shortest gate lengths.

The sub-threshold swing degradation in the shortest device is mainly due to the onset of a

sizeable source-to-drain quantum tunneling, as it is illustrated in Fig. 4 reporting the current

spectra and the profile of the lowest conduction band along the transport direction for the

MOSFET with either with LG = 5 nm or 10 nm. For the shortest gate length the spectral

current is spread over energies well below the top of the barrier, thus confirming a significant

source-to-drain tunneling contribution to the off current in this specific bias condition. In

the longer transistor, instead, the off current is dominated by thermionic emission above the

top of the barrier.

Figure 5 illustrates, for the device in Fig. 3(a) subject to a specific external bias, the

dependence of the self-consistently calculated IDS on the number NB of Bloch states in the

reduced basis. The corresponding CPU time versus NB is also reported. It can be observed

that, for the case at study, the self-consistent solution of the Poisson-NEGF equations rapidly

converges to a stable value for NB ≥ 90, which in turn enables the simulation of one bias

point with a wall clock computation time slightly longer than one hour by using only ten

CPU cores.

VI. CONCLUSIONS

We presented new theoretical developments and a sound implementation for a first-

principle transport model based on the NEGF formalism, and on a basis set obtained

directly from the ab initio Bloch functions. Differently from previous papers proposing

a similar approach for DFT calculations based on an LCAO basis, we used plane-wave ab

initio calculations and we argue that, thanks to an appropriate choice of the basis func-

tions, we could effectively suppress the problem of unphysical solutions, whose treatment is

delicate and computationally demanding25,26.

We found that the unit cell restricted Bloch functions basis enables band structure and

transport calculations with hundreds times reductions of the size of the problem compared

to the original DFT formulation. Moreover, while we have here reported results only for a
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homogeneous system consisting of a single layer MoS2, we envision that our approach can

also be used for hetero-structures, thus paving the way for a number of technologically and

physically important applications, such as contacts between metals and 2D materials, as

well as vertical or horizontal hetero-junctions between 2D semiconductors.

The methods of this work can be applied also to first-principle calculations based on an

LCAO basis, however we think that the herein reported demonstration for plane-wave DFT

Hamiltonians is particularly promising for future developments concerning the electron-

phonon interaction. In fact the NEGF formalism can naturally include electron-phonon

scattering42 and, moreover, the plane-wave DFT approach is especially suitable for the

calculation of phonon spectra44 and electron-phonon coupling coefficients45.

The benefits of a Bloch functions basis are not confined to first-principle methods, on the

contrary they directly apply also to empirical pseudopotential Hamiltonians in both their

local and non-local formulation46,47, and promise large computational advantages compared

to the methods recently proposed by some of the present authors23,24.

We believe that the results of this work qualify the methodology based on unit cell

restricted Bloch functions as a viable approach for ab initio and semi-empirical quantum

transport simulations and, in particular, as an alternative to maximally localized Wannier

functions. In this respect, while the direct use of Bloch functions is attractive in that it

circumvents the a posteriori determination of the Wannier functions basis, further work is

admittedly needed to demonstrate the general applicability of the methods of this paper,

and the feasibility of the above mentioned extensions to hetero-structures and dissipative

transport.
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M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto,
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Appendix A: Hamitonian matrix in the xKyz basis

In Sec. III the Hamiltonian in the hybrid basis was built by using two DFT Hamiltonian

matrices [Hk0 ], [Hk1 ], but the extension of the methodology to more than two k values is

quite natural. To this purpose we first generalize Eq. (12) and define the transformation

matrix

[U
(Ncx)
kx

] =
1√
Ncx

[
[U0

kx
], [U0

kx
]eikx ax , · · · , [U0

kx
]eikx(Ncx−1)ax

]
. (A1)
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where [U0
kx

] has been defined in Eq. (11). Then we can use Eq. (A1) and reformulate Eq. (13)

as

[H]xKyz =
∑
k

[U
(Ncx)
kx

]† [Hk] [U
(Ncx)
kx

] (A2)

where the sum runs over Ncx Bloch vectors k=(kx,kyz), with kx taking Ncx values in the

range −π/ax < kx ≤ π/ax with a spacing 2π/(Ncxax) and including kx=0. Eq. (A2) allows

us to calculate [H]xKyz for any value of Ncx and the matrix [H]xKyz has a rank NcxNG.

Eq. (A2) is useful in several respects. Firstly we see that, according to the assumption

for [H]xKyz in Eq. (9), the blocks [H0,0] and [H0,1] can be determined from the element (1,1)

and (1,2) of the matrix [H]xKyz , so that Eq. (A2) allows us to write

[H0,0] =
1

Ncx

∑
k

[U0
kx ]
†[Hk][U0

kx ] (A3a)

[H0,1] =
1

Ncx

∑
k

[U0
kx ]
†[Hk][U0

kx ] e
ikxax (A3b)

Eq. (A3) is a generalization of Eq. (14) for Ncx ≥ 3, that immediately leads to the corre-

sponding extension of Eq. (20) for the Hamiltonian blocks in the reduced basis.

By using Eq. (A3) we verified that the reconstruction of [H0,0], [H0,1] from the plane-wave

DFT Hamiltonian matrices [Hk] is practically independent of Ncx for Ncx > 2. Namely any

further increase of Ncx has a negligible effect on the electronic structure calculated in the

xKyz or in the Φ basis that has been analyzed, for example, in Figs. 1, 2.

In the remainder of this Appendix we discuss in more details the assumption in Eq. (9)

about the structure of the Hamiltonian in the xKyz basis.

As it is discussed in Secs. II and III A, the non local pseudopotential VNL(r, r′) defined

in Eq. (3) is the dominant non local term of the Hamiltonian matrix in the xKyz basis.

However [H]xKyz has to be calculated numerically by using Eq. (13) for Ncx=2 or Eq. (A2)

for larger Ncx values. Consequently, while it is expected that the short-range nature of the

non local pseudopotential results in a single off-diagonal block of the Hamiltonian matrix

as assumed by Eq. (9), we have no analytical expression for VNL(xj,Gyz) ensuring a priori

that, for example, a second off-diagonal block H0,2 is indeed negligible. Hence we carried

out a numerical analysis of this aspect.

In this respect we firstly notice that, if we hypothesize that H0,2 is not negligible then, in

order to identify H0,0, H0,1 and H0,2, it is necessary to write the [H]xKyz across at least four
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unit cells and thus by using four kx values (i.e. kx=0, ±0.5 π/ax, π/ax). In fact, for Ncx=4

we can extend Eq. (10) and write

[H]xKyz =


H0,0 H0,1 H0,2 + H†0,2 H†0,1

H†0,1 H0,0 H0,1 H0,2 + H†0,2

H†0,2 + H0,2 H†0,1 H0,0 H0,1

H0,1 H†0,2 + H0,2 H†0,1 H0,0

 (A4)

which allows us to identify H0,2 (besides H0,0 and H0,1), by assuming that the H0,2 block

is a lower triangular matrix (namely H0,2(i, j) ' 0 for j ≥ i). In the presence of H0,2, the

secular Eq. (16) can be rewritten as[
H†0,2 e

−ikx(2ax) + H†0,1 e
−ikxax + H0,0 + H0,1 e

ikxax + H0,2 e
ikx(2ax)

]
{Ψ0

nk} = En(k){Ψ0
nk}

(A5)

and Eq. (A5) allows one to determine the electronic structure in the xKyz basis and duly

accounting for H0,2.

For the single layer MoS2 studied in this work, we calculated [H]xKyz for Ncx=4 by using

Eq. (A2) and we verified that the electronic structure obtained with Eq. (A5) and accounting

for H0,2 is practically identical to the results of Eq. (16) that instead neglects H0,2. This

means that H0,2 can be neglected in the case at study, which legitimates the tridiagonal

form of [H]xKyz in Eq. (9) and implies that H0,1 block is a lower triangular matrix. This

latter observation, in turn, allows us to determine H0,0, H0,1 from Eq. (10).

We reiterate that the negligibility of H0,2 is an expected result from a physical perspective,

in virtue of the relatively short range nature of the non-local pseudopotential discussed in

Sec. II.

Appendix B: Selection of Bloch functions for the reduced basis

As already mentioned in Sec. III B, there exists a significant flexibility in the definition

of the Bloch functions basis set, so that we add a few conceptual and practical remarks

about the choice of the basis. The first is that the basis set cannot be formed by using the

Ψ0
nk(xj,Gyz) corresponding to a single kx value (with k=(kx,kyz)), because all such functions

fulfill the same boundary condition Ψ0
nk(ax,Gyz)=Ψ0

nk(0,Gyz) e
i kx ax for their specific kx

value, so that it is impossible to build solutions of Eq. (16) for a different kx value.
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Quite interestingly the Ψ0
nk(xj,Gyz) for two different kx values appear to be sufficient to

obtain solutions of Eq. (16) fulfilling the boundary condition Ψ0(ax,Gyz)=Ψ0(0,Gyz) e
i kx ax

for any kx value. In order to show this we first recall the standard notation for Bloch functions

Ψ0
nk(xj,Gyz)=un,k(xj,Gyz) e

i kxxj (where un,k(xj,Gyz) is the periodic part of Ψ0
nk), and then

we expand the unknown Ψ0 for a generic kx value in terms of the Ψ0
nk0

and Ψ0
nk1

for k0=(0,

kyz) and k1=(π/ax, kyz). By recalling Eq. (17) we write

Ψ0(xj,Gyz) =

M0∑
n=1

Cn,k0 un,k0(xj,Gyz) +

M1∑
m=1

Cm,k1 um,k1(xj,Gyz) e
i π
ax
xj (B1)

where xj=0, dx, 2dx · · · (ax−dx) and M0, M1 denote the number of respectively Ψ0
nk0

and

Ψ0
nk1

functions included in the expansion. Because un,k0 and un,k1 are periodic over ax, it is

straightforward to see that the boundary condition Ψ0(ax,Gyz)=Ψ0(0,Gyz) e
i kx ax becomes

(
1− ei kx ax

) M0∑
n=1

Cn,k0 un,k0(0,Gyz) =
(
1 + ei kx ax

) M1∑
m=1

Cm,k1 um,k1(0,Gyz) . (B2)

For kx=0 the Eq. (B2) can be fulfilled by taking all Cm,k1 = 0 so that, as expected, Ψ0

can be obtained by using only the Ψ0
nk0

functions. Likewise for kx=π/ax we can take all

Cm,k0 = 0 and build the solution by using only the Ψ0
k1

functions. For any other kx value,

Eq. (B2) provides the relation between the Cn,k0 and Cm,k1 coefficients ensuring that Ψ0

fulfills the boundary condition Ψ0(ax,Gyz)=Ψ0(0,Gyz) e
i kx ax , hence it can be a solution of

Eq. (16).

While two kx values appear to be sufficient to build a basis, we found that sampling the

reduced zone with more than two kx values can improve the accuracy in the reconstruction

of the electronic structure for a given overall number of basis functions, as it is exemplified

in Fig. 2. Moreover we found that, by including in the basis set the Bloch functions for all

the valence bands at each kx, we can effectively suppress the unphysical solutions sometimes

observed upon the introduction of a reduced basis25,26.
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FIG. 1. (Left) Cross section and the top view of the unit cell for the single layer MoS2 employed

in this work. (Right) Electronic structure for the single layer MoS2 versus kx and for ky=0. Ab

initio calculations (solid lines) are compared to results obtained by using Eq. (16) in the hybrid

xKyz basis (diamonds).
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FIG. 2. Absolute energy difference, ∆E, between the electronic structure calculated either in the

hybrid xKyz basis (i.e. Eq. (16) with [H0,0], [H0,1] blocks), or in the reduced basis (i.e. Eq. (16)

with [H0,0]Φ, [H0,1]Φ blocks). (a) ∆E for reduced basis calculations obtained with two kx values

(i.e. kx=0, π/ax) and different number NE of basis functions at each kx. (b) Same as (a) but for

reduced basis calculations obtained with four kx values (i.e. kx=0, ±0.5π/ax, π/ax).
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FIG. 3. (Left) Sketch of the single-gate MOSFET simulated in this work and consisting of a single

layer MoS2 channel material. The length of the source and drain extensions is LS = LD ' 9 nm and

LG indicates the top gate length. (Right) Simulated drain current, IDS , versus top gate voltage,

VTG, characteristics at VDS=0.6 V for n-type MoS2 MOSFETs featuring different gate lengths

LG ' 20, 10 and 5 nm. The IDS curves reported in semi-logarithmic scales have been VTG shifted

so as to have the same IDS=1µA/µm at VTG = 0 V for all gate lengths, whereas the curves in

linear scales have not.
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FIG. 4. Colormap of the current density spectrum and profile of the lowest conduction band at

ky=0 (red line) for a single layer MoS2 MOSFET having a gate length of either (left) LG ' 5 nm,

or (right) 10 nm. Both devices have VDS=0.6 V and a gate bias corresponding to approximately

the same sub-threshold current IDS ' 5 nA/µm.
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FIG. 5. Self-consistently calculated drain current for the LG =10 nm single layer MoS2 MOSFET

sketched in Fig. 3(left) for the bias point corresponding to VTG =0.6 V and VDS=0.6 V and plotted

versus the number NB of reduced basis functions. The right y-axis reports the corresponding wall-

clock simulation time. For this specific bias point eleven iterations were necessary to obtain the

self-consistent solution of the Poisson-NEGF equations. Calculations were performed by using a

parallelization of the energy points over 10 cores (Intel Xeon Gold 6150 CPU @ 2.70GHz).
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