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Abstract

Pregnancies achieved through in-vitro fertilization (IVF) are associated with adverse first
trimester outcomes in comparison to spontaneously achieved pregnancies. Human chorionic
gonadotrophin β subunit (β-HCG) is a well-known and accurate biomarker for the diagno-
sis and monitoring of pregnancy after IVF. Low levels of β-HCG during the first trimester
of pregnancy are related to miscarriage, ectopic pregnancy and failure of IVF procedure.
Longitudinal profiles of β-HCG can be utilized to distinguish between normal and abnormal
pregnancies, and to assist and guide the clinician in better management and monitoring of
post-IVF pregnancies. Therefore, being able to assess the association between longitudinally
measured β-HCG and time to early miscarriage is of crucial interest to clinicians. A common
joint modeling approach proposal to achieve this objective is to use subject-specific random
effects in a mixed effects model for longitudinal β-HCG data as predictors in a model for the
time-to-event (TTE) data. This work was motivated by an observational study with normal
and abnormal pregnancies where serum concentrations of β-HCG were measured in 173
young women during a gestational age of 9-86 days at a private clinic in Santiago, Chile.
Some women experienced a miscarriage event but the rest did not. For those women who
experienced miscarriage, their exact event times were unknown, in such case we have inter-
val censored data, assuming that the event occurred between the last time of the observed
β-HCG measurement and ten days after. For our dataset we consider a nonlinear mixed
effects (NLME) model for both normal and abnormal pregnancies, but the joint model is
considered only for the subgroup of miscarriage women. All the estimation procedures are
based on the Stochastic Approximation of the EM (SAEM) algorithm implemented in the
Monolix software.
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1 Introduction

There is an increasing interest in the analysis of time-to-event (TTE) data and, most im-
portantly, in the joint modeling of TTE and longitudinal data. Joint models are a class of
statistical models that allow the researcher to jointly model TTE data and longitudinal data.
A mixed effects model is a statistical model containing both fixed and random effects. These
models are useful in many areas as diverse as agriculture, biology, economics, geophysics,
manufacturing, and medicine. They are particularly useful in settings where repeated mea-
surements are made on the same statistical units (i.e., longitudinal data settings), or where
measurements are made on clusters of related statistical units. In this specific case, obser-
vations in the same units/clusters usually cannot be considered to be independent and, thus,
mixed effects models constitute a convenient tool for modeling units/clusters dependence.
Mixed effects models are commonly used in longitudinal data analysis since they can cope
with missing observations and unbalanced data and, in addition, take into account individual
variations from a common pattern. A commonly encountered complication in the analysis of
longitudinal data is the variable length of follow-up due to interval censoring, or any other
type of censoring mechanism. This can be further exacerbated by the possible dependency
between the TTE data and the longitudinal measurements. Our interest, therefore, lies in
proposing a combination of a parametric model for the time-to-event data and a (nonlin-
ear) mixed effects model for the longitudinal measurements, including an alternative joint
modeling proposal for a subgroup of the available data. The dependency is handled via ran-
dom effects which are naturally incorporated. Estimation procedures based on the Stochastic
Aproximation of the EM (SAEM) algorithm are considered.

If we center on medical settings, we usually have a set of individuals where specific TTE
data under study are available (e.g., injuries, cancer recurrences, or death). One may be in-
terested in modeling the phenomenon inducing the event under study using a suitable chosen
hazard function to be able to describe the instantaneous probability of the specific occurrence
of the event. At the same time, for these same individuals, we may also have a longitudi-
nal measurement, such as, for example, a biomarker, and try modeling its evolution along
time. The relevance and importance of joint modeling lies in the possibility of studying the
effect the longitudinal biomarker or measurement has on the TTE data or phenomenon under
study. Initial proposals on joint modeling and its application to biological/medical settings
were introduced by Self and Pawitan (1992) and DeGruttola and Tu (1994). More recent and
more commonly used proposals, where the standard joint model was introduced, include
Faucett and Thomas (1996) and Wulfsohn and Tsiatis (1997). In addition and as expected,
developments in the area of joint modeling have continued and constitute a very much active
research area in the field. For a complete introduction to joint modeling, we refer the reader
to Rizopoulos (2012). As a brief description of this approach, joint modeling proposals try
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to characterize the relationship between a longitudinal measurement’s evolution and the risk
of a given event under study, putting special emphasis on the proposal of a reasonable model
for the longitudinal measurement evolution itself.

The evolution of the longitudinal measurement has been usually modeled with the use
of linear mixed effects models (Laird and Ware, 1982; Harville, 1977; Verbeke and Molen-
berghs, 2000), splines (Ruppert, Wand and Carroll, 2003), B-splines with random effects
(Rizopoulos, Verbeke and Molenberghs, 2009; Brown, Ibrahim and DeGruttola, 2005), or
penalized splines with random effects (Durbán et al., 2005). These approaches take into
account the correlation within measurements available on the same individual, a common
feature in longitudinal data, and they also allow for between-individuals random variability
with the use of random subject-specific slopes and/or intercepts in the longitudinal model.
Thus, means for the specific parameters can be estimated, and the evolution of the longitudi-
nal measurement for each individual in the study can be followed and/or modeled. Parameter
estimation is usually performed by using maximum likelihood approaches, under normality
and model’s linearity assumptions that, in general, either do not hold or are not realistic in the
specific application. Therefore, nonlinear mixed effects models are an alternative approach
to overcome this situation (Lindstrom and Bates, 1990; Davidian and Giltinan, 1995; Vonesh
and Chinchili, 1997), but these methods involve computationally intensive calculations when
estimating by maximum likelihood methods. Recent approaches, such as the stochastic ap-
proximation to the expectation-maximization (SAEM) algorithm (Kuhn and Lavielle, 2004),
implemented in the Monolix software, have led to much faster methods, are very flexible and,
most importantly, well suited for modeling longitudinal data within the linear and nonlinear
mixed effects models settings. With regard to the time-to-event data, approaches usually
include specifying the survival and hazard functions. Hazard functions may be constant or
time-varying. Joint modeling approaches focus on the possibility of studying the effect the
longitudinal measurement has on the TTE data or phenomenon under study. That is, joint
modeling is achieved by allowing the hazard function at time t to potentially depend on the
value of the longitudinal measurement predicted at time t. Under a general mixed effects
models setting, one or several random effects can enter the longitudinal and TTE models
in many different ways. This paper proposes an alternative combination of a parametric
model for the time-to-event data and a nonlinear mixed effects model for the longitudinal
measurements for a subgroup of the dataset under study. The dependency is handled via
random effects which are naturally incorporated. Estimation procedures based on the SAEM
algorithm implemented in the Monolix software are considered.

The paper is organized as follows. In Section 2 we introduce the dataset that motivated
this work, and in Section 3 we specify the alternative joint model formulation for the TTE
and the longitudinal data for a subgroup of the motivating dataset. In Section 4 we present
the results. Finally, we end with some conclusions in Section 5.
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2 Assisted Reproductive Therapy in Chilean Women

It is well known in obstetrics that, among other clinical variables, the beta subunit of hu-
man chorionic gonadotrophin (β-HCG) is one of the clinical variables that shows dramatic
changes in women during pregnancy. It has also been established that values of the β-HCG
vary from women who have normal pregnancies with terminal deliveries to women who
have spontaneous abortions or other types of adverse pregnancy outcomes (France et al.,
1996). This association has made it possible to predict (with some uncertainty) the preg-
nancy outcomes. The dataset motivating our proposal corresponds to a follow-up study done
in a private assisted reproduction center in Santiago, Chile, in which the β-HCG values and
related hormones were measured during the first 90 days of gestational age for 173 pregnant
women under the age of 30. The study was conducted for about two years and a total of 375
observations were recorded. The number of measurements per woman ranges between one
and six, with a median of two. About 30% of the subjects had one β-HCG measurement,
31% had two, 33% had three, and 6% had four or more measurements. By the time of deliv-
ery, women were classified as normal, if they had a normal delivery, or as abnormal if they
had any complication resulting in a non-terminal delivery and loss of the fetus.

Figure 1 shows the profiles for both groups against the time of pregnancy. Observe that
the mean values of the log10 β-HCG show a nonlinear trend over the time of pregnancy.
We notice the existence of a common growth pattern and that an exponential function (i.e.,
a nonlinear function) should be appropriate to represent the longitudinal behavior of the
values of the β-HCG in a log10 scale. We can also observe the differences between the
two groups. Such differences are more evident at lower concentrations of β-HCG, where
the abnormal group shows higher values than the normal group (lower concentrations being
almost four times more larger in the abnormal group). In addition, the abnormal group
exhibits a larger variability in comparison with the normal group. These differences need to
be accounted for by the model of choice, suggesting the use of a specific nonlinear model
with woman-specific asymptotes in each group. In this specific dataset, we advocate for
the use of TTE survival analyses, mainly because the event of interest under study, more
specifically abnormal delivery of the child, occurs at any time in the period of study between
0 and 96 days, which should be considered in the joint model for the survival hazard rate for
the i-th woman We would like to mention that our proposed approach is innovative in the
sense that we advocate for the use of a joint longitudinal model for both groups and a TTE
survival Weibull model only for the abnormal group. This is the main motivation to label our
alternative joint methodological proposal as a subgroup joint modeling approach. That is, a
joint modeling approach is used for the group of women having an abnormal delivery (i.e.,
those who had a complication resulting in a non-terminal delivery and loss of the fetus). In
addition, it is important to mention that the subgroup of women having a normal delivery
was included in the analysis. Moreover, as will be described in the proposal in Section 3 and
the analysis in Section 4, the advantage of the proposed methodology is that it allows for the
inclusion of several specific random effects in the nonlinear model and convergence occurs in
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Figure 1: Time profiles for abnormal and normal pregnancies.

a natural way in the SAEM algorithm, whereas the use of this nonlinear model in a two-stage
joint modeling approach (i.e. at the first stage, we summarize the longitudinal information
with nonlinear mixed effects model and, at the second stage, we include the Empirical Bayes
estimates of the subject-woman parameters as predictors in the TTE survival Weibull model,
see Murawska, Rizopoulos and Lesaffre, 2012) is not possible with well known software
packages, such as, for example, NLME in R, because covergence cannot be attained. The
main reason for this proposal is that, in our case, clinicians were mainly interested in this
subgroup because pregnancy did not come to an end within women belonging this subgroup,
and they were interested in both modeling this behavior with a TTE survival model but,
at the same time, be able to also follow the longitudinal evolution for the behavior of the
β-HCG biomarker for both groups. That is, we only applied the TTE survival model to
a subgroup of the original data, because clinicians were really interested in studying the
time from pregnancy to fetus loss, which was a phenomenon only occurring in the abnormal
group.

The analysis of the dataset is challenging, among other things, because the observations
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Figure 2: Characteristics of the measurements included in the pregnancy data set. The top
row corresponds to the group of normal pregnancies and the bottom one to the group of
abnormal pregnancies.

are unbalanced. Specifically, the number of observations per woman is very small and the
measurement time grid is very irregular. In the group of normal pregnancies, 28% of the
women only have one measurement and almost 98% of the women have three or fewer
measurements, whereas these percentages are of 35% and 86%, respectively, in the group of
abnormal pregnancies. In addition, the times at which the measurement were taken present a
large variability among women. Moreover, the time between two consecutive measurements
for the same woman exhibits a variability that goes from 2 up to 51 days. The number
of women in the normal group, the number of women in the abnormal group and the total
number of women in the study are, respectively, N0 = 124, N1 = 49 and N = N0 + N1 =
173. Furthermore, we let I0 and I1 be the set of indices of women in the normal and abnormal
groups, respectively. See Figure 2 for a summary of these features.

Our joint modeling approach includes a nonlinear mixed effects model for the longitu-
dinal measurements of the β-HCG values, which will provide the corresponding predicted
values of the random effects included therein. These predicted values will be the input for
the specific hazard rate for the i-th woman. In our specific settings, joint modeling charac-
terizes the relationship between a longitudinal biomarker’s evolution over time and the risk
of a given event (i.e., the TTE under study), while also providing a reasonable model of the
biomarker’s evolution itself (i.e., the longitudinal model). That is, when both longitudinal
measurement data (i.e., the β-HCG values) and time-to event data (i.e., the event of interest
under study, normal or abnormal delivery of the child) are observed, a joint modeling pro-
posal will be the best approach in terms of efficiently use of both types of data, specially
in the case where predicted values from the former model enter in the specification of the
latter, as is the case here and will be later described in detail in Section 3. In this work,
we follow the idea proposed in Mbogning, Bleakley and Lavielle (2015), but we handle the
dependency in both parts (i.e., the longitudinal and the TTE data) via random effects, which
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are naturally incorporated. That is, only some random individual effects are included in the
survival model. We then consider a nonlinear mixed effects model to model the longitudinal
data, and a parametric model to explain the TTE data, where both parts share a common
parameter. In the case of the TTE data, the recorded observations are the times at which
events occur, where we will consider that the event can be interval censored. Our proposal
fits into the so-called “shared parameter” approach in the sense that predicted values from the
random effects in the nonlinear mixed effects model are included in the hazard ratio specifi-
cation for the time-to-event model specification. We generalize the approach in Mbogning,
Bleakley and Lavielle (2015), and propose an estimation procedure using the SAEM algo-
rithm. That is, we propose a shared parameter model to both the time-to-event data and
continuous longitudinal data. A nonlinear mixed effects model for the longitudinal data and
a parametric survival model with the shared predicted values from the random effects in the
longitudinal data model are joined to predict the probability of the event under study. Our
joint model proposal centers on the time-to-event outcome of interest, taking advantage of
the longitudinal data measurements, which basically means that the probability of the event
under study will be more precisely predicted by incorporating the longitudinal β-HCG value
measurements.

3 The Joint Model Formulation for the Pregnant Women Dataset

As pointed by Mbogning, Bleakley and Lavielle (2015), we can use joint models as a class
of statistical methods for modeling together longitudinal data and time-to-event (TTE) data
into a unified approach. In biometrics setting, we often have, for a set of patients, time-to-
event data of interest, for instance the loss of the fetus during a pregnancy. One may be
interested in modeling the process inducing the event, using for example a suitable chosen
(time-dependent or not) hazard function to describe the instantaneous chance of an event
occurrence. Simultaneously, for each patient we may be able to measure a longitudinal
outcome and model its progression. It is common that a given longitudinal biomarker has a
real influence on the TTE process, which is the context within which this paper centers.

Liu and Ying (2007) introduced a combination of a semiparametric transformation model
for the TTE data and a linear mixed effects model for the longitudinal measurements. Mbogn-
ing, Bleakley and Lavielle (2015) proposed a nonlinear mixed-effects framework to jointly
model longitudinal and repeated time-to-event data using a parametric mixed-effects hazard
model for repeated event times. The link between both types of data (i.e., the longitudinal
and the TTE data) is the conditional expectation of the longitudinal observation given the
random effects or, more simply, a function of the predicted longitudinal biomarker.

In this work, we follow the idea proposed in Mbogning, Bleakley and Lavielle (2015), but
we handle the dependency in both parts (i.e., the longitudinal and the TTE data) via random
effects, which are naturally incorporated. That is, only some random individual effects are
included in the survival model. We then consider a nonlinear mixed effects model to model
the longitudinal data, and a parametric model to explain the TTE data, where both parts share
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a common parameter. In the case of the TTE data, the recorded observations are the times at
which events occur. Here, we will consider that the event is interval censored, i.e. we know
the event has happened during a time interval, but we do not know the exact time at which
it occurred. For instance we have (Li < Ti < Ui), where Ti is the time of occurrence of the
event of interest for the i-th woman of the abnormal group (i.e. i ∈ I1).

Suppose that the responses of interest are repeatedly measured for each of the N obser-
vations over a period of time. For the i-th observation, i = 1, . . . , N , observation times are
confined to a woman-specific time interval [0, Ti].

3.1 Model for the longitudinal data

Let yij be the measured concentration of the β–HCG hormone for the i-th woman at time tij .
We consider the longitudinal data arising from a nonlinear mixed effects model, which as-
sumes a nonlinear regression model with woman-specific random effects. More specifically,
the model can be written as:

yij = m(tij, φi) + εij, i = 1, · · · , N, j = 1, . . . , ni, (1)

where m is a real-valued function of time that depends on a subject-specific parameter φi
and where the residual error terms are independent and normally distributed such that εij ∼
N (0, σ2). For a given woman i, m(t, φi) is then the predicted concentration of β–HCG at
time t. To model the hormone concentration as a function of time, we use the following
three-parameter logistic model:

m(t, φi) =
ai

1 + exp
{
− (t−bi)

ci

} , i = 1, · · · , N, j = 1, . . . , ni, (2)

where φi = (ai, bi, ci)
′ is a vector of individual parameters.

3.2 Model for the time-to-event data

Here, the event of interest is the loss of the fetus in the abnormal group, which occurred
within 10 days after the last measurement of the hormone. Two functions have a key role
in TTE analysis: the survival function S(t) and the hazard function h(t), where S(t) is the
probability that the event happens after time t and h(t) is the instantaneous rate of an event,
given that it has not already occurred. Both functions are related by the following equation:

S(t) = P (T ≥ t) = e−
∫ t
0 h(u)d(u)

A common way to estimate S(t) non-parametrically is to calculate its Kaplan-Meier esti-
mate. Here, we are working under a population approach, so these functions, S(t) and h(t),
are, thus, individual-specific functions, i.e., each subject has its own. Depending on the goal
of the time-to-event analysis, different modeling approaches can be used: non-parametric,
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semi-parametric (Cox models) and parametric. In this work, we will consider individual
parametric functions Si and hi for the TTE analysis for women in the abnormal group (i.e.
i ∈ I1). In other words, these functions depend on the individual parameters φi, so that we
have: Si(t) = S(t, φi) = P (Ti > t;φi) and hi(t) = h(t, φi) for i ∈ I1.

To describe the various shapes that the survival function can take, several hazard func-
tions have been proposed. In this work, we will use the Weibull model for which the hazard
is defined by

h0(t) = γαtα−1 (3)

Two extensions of this baseline model will be considered in order to take into account
the link between the β–HCG concentration and the time of the loss:

h1i (t , φi) = h0(t)e
β1ai (4)

h2i (t , φi) = h0(t)e
β2m(t,φi) (5)

In the first model, only the individual limiting concentration ai has an impact on the
individual hazard, while the second model assumes that the hazard at time t depends on the
instantaneous concentration m(t, φi). Coefficients β1 and β2 measure the strength of the
association between the different characteristics of the underlying woman-specific nonlinear
evolution of the longitudinal profiles and the risk of losing the fetus.

Note that the hazard rates (4) and (5) are specified only for the abnormal pregnancy
group, that is, the joint model is formulated for a subgroup of the available dataset (i ∈ I1).

3.3 Model for the individual parameters

Let (zi, 1 ≤ i ≤ N) be a sequence of label variables such that zi = 0 if i ∈ I0, i.e. if the i-th
woman belongs to the normal group, and zi = 1 if i ∈ I1. We will then assume that the φi’s
are independent and normally distributed such that

φi ∼ N (µi , Ω) , (6)

where

µi =

 apop + δ zi
bpop
cpop

 ; Ω =

 ω2
a 0 0

0 ω2
b 0

0 0 ω2
c


According to the structural model (2), this model for the individual parameters assumes that
the asymptotic β-HCG level, ai, has mean apop for the normal pregnancy group and apop + δ
for the abnormal pregnancy group. Then, testing if the profiles of β–HCG concentration are
the same in the two groups reduces to testing if δ = 0.
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3.4 Parameter estimation and model selection

In this study, we compare several models based on two different covariate models for the
individual parameter ai (δ = 0 or δ 6= 0) and two different hazard functions defined in
equations (4) and (5). The four models to compare are summarized in Table 1.

Table 1: Four joint models to be compared.
Model covariate model hazard θ
M1 δ = 0 h1 (γ, α, β1, apop, bpop, cpop, ω

2
a, ω

2
b , ω

2
c , σ

2)
M2 δ 6= 0 h1 (γ, α, β1, apop, bpop, cpop, δ, ω

2
a, ω

2
b , ω

2
c , σ

2)
M3 δ = 0 h2 (γ, α, β2, apop, bpop, cpop, ω

2
a, ω

2
b , ω

2
c , σ

2)
M4 δ 6= 0 h2 (γ, α, β2, apop, bpop, cpop, δ, ω

2
a, ω

2
b , ω

2
c , σ

2)

We propose to fit this joint model to all longitudinal data (normal and abnormal groups),
using the hazard rate previously defined in (4) or (5) only for the abnormal group.

For each of these four models, the vector of parameters θ is estimated by maximizing the
joint observed likelihood

`(θ; y, T ) =
∏
i∈I0

`i(θ; yi)
∏
i∈I1

`i(θ; yi, Ti),

where the contribution of the i-th woman in the normal pregnancy group to the likelihood is
given by:

`i(θ; yi) = p(yi; θ) , i ∈ I0

=

∫
<3

p(yi|φi; θ)p(φi; θ)dφi, (7)

and the contribution of the i-th woman in the abnormal pregnancy group to the log-likelihood
is given by:

`i(θ; yi, Ti) = p(yi, Ti; θ) , i ∈ I1

=

∫
<3

p(yi|φi; θ)P (Li < Ti < Ui|φi; θ)p(φi; θ)dφi (8)

Here, p(yi|φi; θ) is the probability density function of the longitudinal observations con-
ditionally on the individual parameter φi. That is,

p(yi|φi; θ) = (2π)−
ni
2 exp

{
− 1

2σ2

ni∑
j=1

[yij −m(tij, φi)]
2

}
,

and P (Li < Ti < Ui|φi; θ) is the conditional distribution of the time-to-event Ti,

P (Li < Ti < Ui|φi; θ) = P (Ti < Ui|φi; θ)− P (Ti < Li|φi; θ) (9)

= e−
∫ Li
0 h(t,φi)dt − e−

∫ Ui
0 h(t,φi)dt, (10)
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where h = h1 is defined in (4) under modelsM1 andM2 and h = h2 is defined in (5) under
modelsM3 andM4. In our dataset, some women experienced a miscarriage event but the
rest did not. For those women who experienced miscarriage, their exact event times were
unknown, in such case we have interval censored data, assuming that the event occurred
between the last time of the observed β-HCG measurement and ten days after.

Finally, p(φi; θ) is the probability density function of the individual parameters φi

p(φi; θ) = (2π)−
3
2 |Ω|−

1
2 exp

{
−1

2
(φi − µi)′Ω−1(φi − µi)

}
,

where µi = (apop, bpop, cpop)′ under models M1 and M3 and µi = (apop + δ, bpop, cpop)′

under modelsM2 andM4.
For each of the four models in Table 1, the likelihood `(θ; y, T ) was maximized with

respect to θ using the SAEM algorithm (Delyon et al., 1999; Kuhn and Lavielle, 2004)
implemented in the Monolix software version 2019R2 (http://lixoft.com). The likelihood
was estimated by Monte Carlo integration using an Importance Sampling algorithm. All
calculations were performed in an Intel 8th Gen Core i7 processor 64bits, 2.77 GHz 4 Core
with 16GB RAM.

4 Results

In model (2), the vector φi = (ai, bi, ci)
′ characterizes the profile for the i-th woman. The

parameter ai refers to the asymptotic β-HCG hormone level, bi refers to the time at which
the woman reaches half of the asymptotic β-HCG hormone level, and ci is the time elapsed
for the woman to reach between half and three fourths of its asymptotic β-HCG hormone
level. We fit the four models considered in Table 1 for the pregnant women dataset described
in Section 2. Table 2 shows the estimated parameters, standard errors, as well as the BIC
and AIC values. The results for the estimation of the coefficients apop, bpop, cpop, δ and
the variance components σ, ωa, ωb and ωc for the longitudinal part present some important
differences, the same happens with the estimation of the coefficients β, γ, and α for the TTE
model. Here, β = β1 for modelsM1 andM2, whereas β = β2 for modelsM3 andM4. The
inclusion of the covariable zi in the longitudinal part significantly improves the values of the
AIC and BIC criteria in both modelsM2 (vsM1) andM4 (vsM3). Additionally, the Wald
tests for the hypothesis H0 : δ = 0 in modelsM2 andM4 are 8.43 and 9.81 respectively
(p < 0.001). These results confirm that each group should have a different mean asymptote
(i. e. the random coefficient ai has mean apop + δ for the abnormal group and apop for the
normal group).

We observe that the best joint models, based on AIC and BIC criteria, are the proposed
modelsM2 andM4. The AIC and BIC criteria for joint modelsM2 andM4 are similar,
but the nature of the dependency assumed between the longitudinal β-HCG biomarker and
the time to early miscarriage is different for these specific models. ModelM2 included the
individual deviations of the longitudinal β-HCG biomarker, that are the random effects, as
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predictors in the TTE model. Model M4 assumes that the prediction of the longitudinal
β-HCG biomarker is predictive of the time-to-event of early miscarriage. From our results
for modelM2, we estimate that ai have a mean equal to âpop = 4.76 for the normal pregnant
women and âpop + δ̂ = 3.975 for the abnormal pregnant women. We also have that the
time at which the woman reaches half of the asymptotic β-HCG hormone level is around 16
days, and that the time elapsed for the woman to reach between half and three fourths of its
asymptotic β-HCG hormone level is around 7 days.

Whatever the assumed dependency between the longitudinal β-HCG biomarker and the
time-to-event of early miscarriage is, the four models considered here concluded that there
exists a significant association between the two processes. The corresponding Wald tests for
the hypothesis H0 : β = 0 are 5.5, 2.6, 39.1 and 13.4 for modelsM1, M2, M3 andM4,
respectively (p < 0.05). However, based on the two-stage joint model of the formulation
corresponding to model M2, the Wald test is 1.85 (results not shown here for brevity of
exposition), concluding that the β-HCG asymptote did not have a significant impact on the
time-to miscarriage. The results show the benefits of use joint models in comparison with
the two-stage joint model in order to understand the association between the longitudinal
β-HCG biomarker and the time-to-event of early miscarriage.

Table 2: Estimated parameters and their standard errors (in parentheses). Here, β = β1 for
modelsM1 andM2, whereas β = β2 for modelsM3 andM4.

Parameters ModelM1 ModelM2 ModelM3 ModelM4

apop 4.61(0.0486) 4.76(0.048) 4.57(0.0487) 4.75(0.045)

δ - −0.784(0.093) - −0.775(0.079)

bpop 15.91(0.555) 15.80(0.479) 16.08(0.532) 15.70(0.477)

cpop 7.24(0.384) 7.01(0.405) 6.90(0.396) 6.98(0.340)

ωa 0.435(0.0357) 0.323(0.0396) 0.468(0.0396) 0.326(0.0349)

ωb 4.72(0.427) 3.51(0.708) 4.43(0.489) 3.95(0.534)

ωc 1.05(0.310) 1.99(0.40) 1.51(0.325) 1.72(0.366)

σ 0.252(0.0171) 0.253(0.0216) 0.236(0.017) 0.249(0.0192)

β 1.58(0.287) 0.717(0.280) 0.633(0.0162) 0.468(0.0349)

γ 12.42e−11(2.09e−11) 4.97e−8(2.33e−8) 8.52e−7(2.04e−7) 1.36e−6(6.62e−8)

α 4.61(0.418) 3.63(0.325) 3.01(0.032) 3.06(0.027)

BIC 730.63 668.01 739.27 668.25
AIC 699.09 633.32 707.74 633.57

Next, for the selection of the joint model, model evaluation relied on the analysis of the
model individual predictions, population predictions and residuals, as well as on the analysis
of the survival predictions. The goodness-of-fit plots for modelM2 are shown in Figures 3,
4 and 5. These plots are useful to detect any possible mispecifications in the structural and
residual error models. The population and individual models allow us to calculate predic-
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tionsm(tij, µ̂i) andm(tij, φ̂i) for each woman at the observation times tij . Observed β-HCG
hormone concentrations versus population predicted (left) and individual predicted (right) β-
HCG hormone concentrations are included in Figure 3, where it is clear that there is no evi-
dence for any model misspecification. That is, the data are well described by modelM2 as
assessed by visual inspection of the corresponding diagnostic plots. The residuals for the lon-
gitudinal part were assessed by using the Individual Weighted Residuals (IWRES), defined
as IWRESij =

[
yij −m(tij, φ̂i)

]
/σ̂ where σ̂ is the estimated standard deviation of the error

term and φ̂i is the vector of the predicted individual parameters, i.e., the Empirical Bayes Es-
timates. The analysis of the IWRES did not suggest any model misspecification in the model
fitting across time (left panel in Figure 4). The residuals at the population level were assessed
using the normalized prediction distribution errors (NPDE) which is a nonparametric version
of the population weighted residuals (PWRES), based on a rank statistic (Comets, Brendel
and Mentré, 2008). The PWRES are defined as PWRESij =

[
yij − Ê(yij)

]
/ ˆstd(yij), where

Ê(yij) and ˆstd(yij) are the mean and variance of yij estimated by Monte Carlo. From Figure
4 (right panel) no major systematic bias is observed for the NPDE. The points were equally
distributed around zero and most of the data in included in the -2 to +2 range, indicating
acceptable agreement between observed and predicted concentrations. Figure 5 includes the
comparison between the empirical and theoretical probability density function (PDF) and
cumulative distribution function (CDF) for the IWRES, in the left and right panels, respec-
tively. These Figures suggest that the normality assumption for the error terms is a reasonable
one. Figure 6 presents the visual predictive check (VPC) for the longitudinal part for each
group. The VPC is a diagnostic tool which allows the researcher to be able to summarize, in
the same graphical display, the structural and statistical models by computing quantiles for
the empirical distribution of the data after having regrouped them into bins over successive
intervals. Using Monte Carlo, we compute prediction intervals for these quantiles under the
selected model (i.e., modelM2 in our case). More specifically, in Figure 6, we report the
median of the empirical distribution of the data (solid line), the predicted median and the
respective 95% prediction interval. For more details on how a VPC is constructed in Mono-
lix, see Lavielle (2015). The VPC for the abnormal pregnancy group seems to indicate that
the structural model can be improved by considering a more complex model specification.
Moreover, the analysis of the IWRES and NPDE do not suggest any model misspecification,
showing that both the structural model and the residual error model properly fit the data.
In addition to the residuals analysis and in order to evaluate the overall prediction for the
survival, the mean survival curve was also calculated and compared to the Kaplan-Meier
curve. As can be seen in Figure 7, the mean survival curve was close to the Kaplan-Meier
curve, concluding that an approximate 23 day lag is evident before an event occurs, which
is a direct consequence of the use of the time since conception as a timeline. Finally, from
the analysis of the dataset under study and the results reported above, it can be seen that one
of the clear advantages of the proposed methodology is that it allows for the inclusion of
several specific random effects in the joint models and two-stage approach and convergence
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occurs in a natural way when using the Monolix software, whereas the use of the two-stage
approach is not possible with well known software packages, such as, for example, NLME
in R, because convergence cannot be attained. A simulated dataset and the code needed to
fit modelM2, compute the residuals and generate the diagnostic figures presented above are
available as supplementary materials with a README file.
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Figure 3: Observations versus predictions for the β-HCG hormone concentrations for model
M2, with population predictions on the left and individual predictions on the right.

5 Discussion

Alternative proposals in joint modeling of longitudinal biomarkers and time-to-event data
are important and of interest to better understand the possible connection between biologi-
cal changes in time and the occurrence of an event clinicians are interested in studying. In
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Figure 4: Individual weighted residuals versus time (left) and normalized prediction distri-
bution errors versus time (right) for the β-HCG hormone concentrations for modelM2.
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Figure 5: Empirical and theoretical probability density function (PDF) (left panel) and cu-
mulative distribution function (CDF) (right panel) comparison for the individual weighted
residuals (IWRES) for modelM2.
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Figure 6: Visual predictive check (VPC) for the β-HCG hormone concentrations with the
95% prediction intervals for the 50th percentile, empirical median (in solid line) and pre-
dicted median (in dashed line), separated by group for modelM2.
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Figure 7: Survival function estimated for abnormal group using the SAEM algorithm via
Monolix for modelM2. In blue, the predicted interval for the Kaplan Meier plot, in dashed
line the predicted median.
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recent years, there has been much interest in putting forward proposals were linear mixed-
effects models and time-to-single-event data are jointly modeled, and parameter estimation
has been performed, often using maximum likelihood together with the EM algorithm. How-
ever, when there are several random effects in the model, likelihood calculations may have
a convergence problem, discouraging the use of these methods. Motivated by the clinical
question regarding the association between β-HCG values and the risk of an abnormal deliv-
ery or fetus loss for pregnant women under the age of 30 in Chile, we proposed an innovative
joint modeling approach of a parametric Weibull model for the time-to-event data and a non-
linear mixed effects model for the longitudinal measurements, including an alternative joint
modeling approach for a subgroup of the data under study, and also using the remaining part
of the data as part of the analysis. The dependency was handled via random effects which
were naturally incorporated into the models. Estimation procedures based on the SAEM
algorithm were also proposed, where we have verified in our analysis and proposal that the
subgroup of women having a normal delivery was included in the analysis, that the joint
modeling approach was implemented to a subgroup of the dataset under study, and that one
of the advantages of the proposed methodology is that it allows for the inclusion of several
specific random effects in the model and convergence occurs in a natural way, whereas the
use of this model is not possible with well known software packages, such as, for example,
NLME in R, because covergence cannot be attained for the two-stage approach.

Here, we have shown that the SAEM algorithm can be considered as a valid methodolog-
ical alternative for performing parameter estimation in joint models where the mixed-effects
were nonlinear and a parametric Weibull TTE model was considered for a subgroup of the
dataset under study; i.e., the one corresponding to the abnormal group, mainly because clin-
icians were interested in both modeling this behavior with a TTE survival model but, at the
same time, be able to also follow the longitudinal evolution for the behavior of the β-HCG
biomarker for both groups. That is, we only applied the TTE survival model to a subgroup of
the original data, because physicians were really interested in studying the time from preg-
nancy to fetus loss, which was a phenomenon only occurring in the abnormal group. In
order to be able to implement the SAEM algorithm for joint models for the aforementioned
study and objectives, we derived specific expressions for the conditional likelihood of the
observations given the individual parameters. Our analyses showed that convergence of the
SAEM algorithm, within the joint modeling approach we have proposed, is fast, specially
when compared to alternative likelihood approaches for which, in some cases, convergence
was not achieved. As a consequence, we can also quickly estimate individual parameters and
be able to carry out any inferential process related to the parameters included in the proposed
models. In our modest view, this represents a clear advantage when comparing our proposed
approach to previous ones in the area.

In summary, given that, in our view, this proposal represents a simple, fast and high-
performance tool for joint modeling, we believe they should now be used more frequently in
the relevant statistical practice.
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