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Rationale: High-resolution mass spectrometry-based non-targeted screening has a huge potential 

for applications in environmental sciences, engineering and regulation. However, it produces big 

data for which full appropriate processing is a real challenge; the development of processing 

software is the last building-block to enable large-scale use of this approach. 

Methods: A new software application, SPIX, has been developed to extract relevant information 

from high-resolution mass-spectrum datasets. Dealing with intrinsic sample variability and reducing 

operator subjectivity, it opens up opportunities and promising prospects in many areas of analytical 

chemistry. SPIX is freely available at: http://spix.webpopix.org. 

Results: Two features of the software are presented in the field of environmental analysis. An 

example illustrates how SPIX reveals photodegradation reactions in wastewater by fitting kinetic 

models to significant changes in ion abundance over time. A second example shows the ability of 

SPIX to detect photoproducts at trace amounts in river water, through comparison of datasets from 

samples taken before and after irradiation. 

Conclusions: SPIX has shown its ability to reveal relevant modifications between two series of 

big data sets, allowing for instance to study the consequences of a given event on a complex 

substrate. Most of all – and this is to our knowledge the only software currently available allowing 

that – it can reveal and monitor any kind of reaction in all types of mixture.  

 

 

 

Keywords: High-resolution mass spectrometry; non-targeted approach; spectral big data 

management; software development; chemical reactions; complex mixtures; kinetics 

  

http://spix.webpopix.org/


3 
 

1. Introduction 

High-resolution mass spectrometry (HRMS) is now experiencing unprecedented growth. It 

appeared in the early 1970s with dual-focus devices combining magnetic and electrostatic fields, 

and continued its development with the introduction of time-of-flight, Orbitraps, and Fourier 

Transform-Ion Cyclotron Resonance (FT-ICR) analyzers. If FT-ICR mass spectrometers remain the 

most accurate today, high end QTOFs and QEx Orbitraps provide accuracies below 3 ppm. The 

resolution of an analyzer reflects its ability to separate ions with close m/z ratios. High-resolution 

analyzers can thus differentiate isobaric ions: i.e., ions with the same nominal mass but different 

exact masses, and therefore different chemical formulas, such as N2
+. (m/z 28.0056) and CO+. (m/z 

27.9944). High resolution is a very valuable asset: it not only greatly improves the selectivity and 

specificity of "traditional" detection and quantification methods (in comparison with low-resolution 

analyzers), but also greatly facilitates structural elucidation by assigning raw formulae to the 

detected ions.1 

More recent use of high resolution takes advantage of its ability to separate isobaric ions, in an 

attempt to break free from separation methods - mainly gas or liquid chromatography, or more rarely 

capillary electrophoresis or ion mobility – so as to expand the range of molecules detectable in a 

single analysis. This is particularly interesting in the context of non-targeted analyses – in which the 

operator does not know which molecules are likely to be present in the sample – because the choice 

of a chromatographic system focuses the analysis on certain classes of compounds based on their 

properties (volatile or not, polar or apolar, large or small, etc.) and thereby introduces a bias 

attributable to the subjectivity of the analyst. Direct introduction (DI) into the ion source without 

prior pretreatment or chromatographic separation was shown to be a useful alternative for rapid and 

comprehensive diagnosis of environmental samples, but this approach remains very challenging due 

to the extreme complexity of environmental matrices and the large number of contaminants likely 

to be present.2 On direct introduction of a mixture, different molecules are simultaneously ionized, 

resulting in mass spectra yielded by the overlapping of spectra of the detectable species. Thus, 

complex mixture analyses provide mass spectra that can contain tens or hundreds of thousands of 

ions, even with soft ionization techniques such as electrospray ionization, atmospheric pressure 

ionization or atmospheric pressure photoionization; these spectra are of no possible use to the 

operator without the help of adapted software. Finding a molecule showing significant change 

between two conditions (upstream/downstream or after treatment, for instance) in its trace amounts 

in an environmental sample is like looking for a needle in a haystack. Being able to quickly evaluate 
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all of the chemical consequences of an industrial accident on the biotope can be crucial to decision-

making. In these situations, non-targeted HRMS-based screening is one of the last resorts for 

identifying unexpected or unknown contaminants.3,4,5,6,7,8 This approach has recently been evaluated 

in a comprehensive collaborative study organized by the NORMAN association, in which a total of 

18 institutes from 12 European countries analyzed an extract of the same water sample collected 

from the Danube River. The results revealed that non-targeted analytical techniques were already 

widespread and that practices were substantially harmonized between the participants, but that data 

processing remained complicated and time-consuming.9 Among the main recommendations 

formulated to improve the non-targeted approach is the development of robust user-friendly 

processing software. Likewise, AQUAREF – the French national reference laboratory for aquatic 

environment monitoring, which works in close concertation with other European reference 

laboratories – published guidelines for HRMS untargeted analysis, for which SPIX could be a 

powerful tool.10 

The first part of this article discusses the notions of uncertainty and subjectivity related to untargeted 

analysis. The second part presents the general working principle of SPIX software. The third part is 

dedicated to the presentation of results obtained on real samples. It discusses the strengths and 

limitations of the software and its specificities compared to the few programs currently 

commercially available. A brief overview of current computational and statistical approaches to 

extract relevant information from the big data of mass spectrometry analyses is provided in 

Supplementary information SI-1; it describes Kendrick11,12 and Van Krevelen13,14,15 approaches, as 

well as Multivariate statistical analysis.16,17,18,19,20,21,22 Multivariate analysis tools enable global 

understanding of many concomitant variables and of their inter-correlations. Metabolomics 

processing pipelines often include univariate and multivariate statistical approaches. Univariate 

analysis is usually used as a pre-processing step, while multivariate analysis is used for classification 

of samples or features. For example, PCA is used to characterize differences of two groups of 

metabolomics GC-MS data for the diagnosis of gastric cancer. Wilcoxon rank sum test showed the 

marker metabolites specific to the tumor group. Multivariate analysis, specifically PCA successfully 

divided the two groups of samples of normal and malignant gastric tissue.23 Comprehensive 

workflow for univariate analysis of LC-HRMS was developed to follow human adult urinary 

metabolome variations. Univariate analysis was used as a preprocessing step: nonparametric 

hypothesis testing was used to assess correlations with covariables and Wilcoxon test was used to 

calculate the median differences between genders. The univariate p-values results together with 

multivariate importance in projection evidenced that 108 urine metabolites whose concentrations 
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varied with either age, body mass index, or gender.24 Concerning direct infusion mass spectrometry 

a comprehensive workflow for data processing and quality control was developed for metabolomics 

analysis of cardiac tissue extract. It can be used for different metabolomics analyses as it focuses on 

the correction of intra- and inter-batch variations and offers best-practice workflows and rigorous 

quality assessment. The data processing steps include Wilcoxon-test and multivariate analysis.25 

These applications could be extended for environmental samples; however no approach has been 

reported using univariate or multivariate analysis which focuses on the kinetics of compounds in 

HRMS datasets. The concept behind multivariate analysis is different from that of the SPIX 

software: the latter aims at observing all statistically relevant variables individually. Examples of 

SPIX applications are given in the following article. 

2. Notions of uncertainty and subjectivity in modern untargeted analytical 

approaches, and introduction to SPIX 

To illustrate the functionality of the SPIX software, it is necessary to address the notions of 

uncertainty and subjectivity that are fundamental in analytical chemistry. We propose to take an 

example in environmental chemistry. Consider a plant located on the bank of a river; it may be a 

treatment plant or, on the contrary, a source of pollution; the question is whether its presence 

significantly alters the composition of the water. The question seems simple enough, but providing 

a relevant answer is much less so. The conventional approach is to take water samples upstream and 

downstream of the plant, analyze them chemically and compare the results. This approach, while 

scientifically reasonable, nevertheless raises many questions at each step of the process. How many 

samples are needed to take account of the spatial and temporal variability of upstream and 

downstream water composition? Where, when and how to sample? What sample preparation to 

adopt, given that each choice of solvent, filter, SPE (Solid Phase Extraction) column, 

chromatographic protocol and mass spectrometry ionization mode conditions the results of the 

analysis by favoring detection of certain molecules based on their size or polarity. Every single step 

in the analytical process introduces metrological uncertainties related to the measuring instruments 

used (balances, pipettes, etc.), but also to the so-called "matrix effect": i.e., the matrix of the 

reference used to validate the method is generally not rigorously identical to the matrix being 

analyzed. Stochastic biases and uncertainties are also caused by adsorption, evaporation, etc. The 

proliferation of sources of error obliges analysts to use internal standards to reduce the overall 

uncertainty of the results and try to conform to industry-specific standards. Limiting the subjectivity 

in a method needs to make no assumptions at all, which is in contradiction with the use of an internal 
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standard; thus, the analytical scientist is left with choosing between limiting subjectivity or limiting 

uncertainties. To the problem of uncertainties must be added that of operator subjectivity, at two 

main levels. As mentioned above, this subjectivity comes into play before measurement: when the 

operator establishes the analytical protocol, choices are made, conditioned by assumptions – the 

operator’s own or those of third parties - as to what might have contaminated the water of the river. 

Even if the method is not "targeted" (i.e., specifically designed for the selective detection of given 

analytes), it cannot be considered totally "non-targeted" as there is no effective protocol capable of 

extracting and detecting everything simultaneously (e.g., both polar and apolar molecules) and any 

selected protocol effectively excludes some potential analytes. This will lead the analyst to try to 

minimize sample preparation, with the dual objective of limiting uncertainties and of reducing 

operator-induced subjectivity; an immediate consequence of this simplification is to increase the 

complexity of the data. For example, mass spectra recorded from environmental samples will be 

much more complex if the sample is introduced directly into the mass spectrometer without prior 

purification and separation. A point that is generally much less considered is operator subjectivity 

in interpreting results, especially when the data are complex and voluminous, when it comes to 

manually integrating a peak or comparing two chromatograms or two mass spectra, for example. 

In 2019, a visual trial devoted to subjectivity evaluation was carried out during a European winter 

school on mass spectrometry, on a panel of 37 people with a strong scientific background in 

analytical chemistry. It consisted of a series of one-minute projections of two images differing by 5 

to 22 differences; panelists were asked to note the number of differences they were able to spot. 

Some images were quite simple (pictures with modified areas) while others were very complex 

(fractals containing very small differences within complex areas). A set of simulated mass spectra 

containing 15 differences (variations in peak intensity, addition and removal of peaks) was presented 

to the panel – in triplicate and not consecutively – without prior notice. The variability between the 

results of these triplicates gave an average standard deviation of 2.3 observed differences per 

individual, with mean and median values of 9.6 and 9.7, respectively and a range of 0-19. 

Considering the variability between panelists, a standard deviation of 20.6 differences was 

determined over the whole dataset, with mean and median values of 85.6 and 90, respectively, for 

a total 148 differences to be identified. The number of observed differences ranged from 31 to 122. 

The number of differences identified varied to the point that one operator would conclude that two 

spectra were almost identical while another would consider them significantly different!26  
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The problem is substantially more complicated when comparing not only spectra but series of 

spectra corresponding, for example, to samples taken upstream and downstream of a treatment plant. 

A big variation in an ion count between upstream and downstream spectra may not be significant if 

the magnitude of variation is equal within and between the downstream and upstream populations; 

changes in the abundance of this ion reflects only the intrinsic chemical variability of the 

environment and is not a relevant marker of the impact of the plant. On the other hand, a slight 

change in the abundance of an ion between “upstream and downstream spectra” may be significant 

if abundance is almost constant within each population; it then reflects a real effect of the plant on 

water quality. The SPIX software was created to remedy the observed fact that it is impossible for 

an operator to determine what makes sense based on simple observation of complex datasets, 

especially since the data are subject to intrinsic variability. The aim is to extract relevant information 

from numerous complex data. As explained below, the software can identify significant differences 

between mass spectra series and track the kinetic evolution of reagents, unknown reaction 

intermediates, and reaction products at low concentrations in complex mixtures. 

3. Materials and methods 

3.1. The SPIX software 

SPIX was developed in MATLAB 2018a. A stand-alone version is freely available on the website 

(http://spix.webpopix.org). The source code can be made available on request. Prior to performing 

any statistical analysis of the data, pre-processing is required to identify and align significant peaks 

in the data. The method used for detection and alignment actually depends on the type of data 

available: 

• When the device provides data in xml format, this data has already been filtered and contains 

only the most significant peaks. These peaks are then aligned by using the mspalign function of 

the Bioinformatics Toolbox (MATLAB) with the “shortest-path” option. 

• When the data obtained are raw data (e.g. xy Bruker format in the present study), i.e. intensities 

measured on a fine and regular grid, the following algorithm is used: considering K series to 

analyze, the approximate positions of the significant peaks are first roughly determined by 

building a single series, consisting of the maximum intensities of the K series at all data points, 

and by thresholding this series. This procedure is used to determine disjoint segments in which 

the peaks of each of the K series are located. 
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The position and intensity of each of these peaks are then estimated for each spectrum by fitting a 

model of the form 𝐴 exp(−𝛼(𝑥 − 𝑚)) for which the maximum value A is reached for x=m. 

SPIX can be used in essentially two situations. The first one allows evidencing some modifications 

in the composition of a complex mixture over time. The focus here is on how the abundance of 

certain species varies as a function of a given parameter (time, pH, reagent, etc.). The objective is 

twofold: to detect ions with significantly varying abundance (in terms of statistical relevance), and 

to describe how the abundance varies by kinetic modeling. After aligning the peaks as previously 

described, different kinetic models, including various patterns associated with compound 

degradation and formation and reaction intermediates, are fitted to the data. A library including 

seven typical kinetics profiles is currently available; examples of graphical representations are 

provided in supplementary information SI-2. The selected model minimizes the Bayesian 

Information Criterion (BIC). The coefficient of determination r2 is calculated to quantify the part of 

the variability of the data explained by the model and an ANOVA assesses whether this part of 

explained variability is statistically significant. The p-value of the F-test and the r2 value are 

represented graphically so as to easily visualize ions with abundance accurately fitting a kinetic 

model.  

SPIX also permits to compare 2 series of samples collected under 2 experimental conditions. The 

objective is to identify the ions with significant differences in intensity and to quantify these 

differences. The algorithm first consists in identifying the peaks considered significant: i.e., present 

and above a given threshold in at least 1 of the 2 conditions. For an ion detected in this way, the 

procedure is as follows: first, the series are locally shifted so that all the peaks are aligned. The 

maximum intensity at the peak is estimated for each spectrum by fitting a model of the form 

𝐴 exp(−𝛼(𝑥 − 𝑚)) for which the maximum value A is reached when x=m. This provides 2 series 

of values that can be compared on statistical tests. A t-test detects differences in the mean while a 

non-parametric Wilcoxon test more generally detects whether the peak intensity tends to be higher 

in one condition than in the other. A graphical representation of the p-values obtained for all the 

peaks detected, as well as of the size effects (i.e., differences in mean values between the 2 

conditions) provides quick visualization of the chemically significant differences and the statistical 

relevance of the differences. 

Blank correction can be done as follows: The user chooses as a threshold, a ratio and a percentile. 

By default, the median of intensities is used for the calculations (p = 0.5). For the given percentile, 

the ratio is defined as:  
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𝑟𝑝(𝑚 𝑧⁄ ) =
𝐵𝑝(𝑚 𝑧⁄ )

𝑆𝑝(𝑚 𝑧⁄ )
 

with 𝐵𝑝(𝑚 𝑧⁄ ) : percentile of order p of the blank intensities’ maximum and 𝑆𝑝(𝑚 𝑧⁄ ) : percentile 

of order p of the experimental data intensities’ maximum. If the peak intensity is higher than 

𝑆𝑝(𝑚 𝑧⁄ )  (as a threshold value) in at least one of the experiment spectra, it will be kept as a peak, 

if not it will be ignored. 

With .mat or .xml files, SPIX occupies about 500 MB (it's the MATLAB runtime that takes up all the 

space). With .xy, formats the .mat conversion stage has to be added (sequentially): if a sub-repertory 

(time_0 for example) is 250 MB, then SPIX occupies about 750 MB of memory. It does not 

represent the total volume of all sub-repertories because SPIX loads them and converts them one by 

one. In all cases, it works very well on a standard PC.  

 

3.2. Chemicals, reagents, irradiation processes and analysis 

The ability of SPIX to extract relevant information from sets of complex high-resolution mass 

spectra is illustrated in two experiments. The first concerned peroxide photocatalyzed degradation 

of Maprotiline (an antidepressant drug) in a wastewater treatment pilot plant. In this case, the 

comparison aimed at revealing reagents, intermediates and products using kinetic models, from 

mass spectra recorded at different irradiation times. The second experiment concerned UV 

irradiation of Acetamiprid (a neonicotinoid insecticide) in a complex mixture of aqueous fulvic acid 

to simulate river water; it aimed at revealing Acetamiprid photoproducts at trace levels and 

evaluating the impact of UV treatment on dissolved organic matter. The comparison covers 2 data 

sets, for spectra recorded before and after irradiation. Maprotiline and Acetamiprid chemical 

structures are depicted Figure 1. Supplementary information file SI-3 describes the chemicals, 

sampling and irradiation processes used for the two experiments. 

Figure 1 

 

3.3. High-resolution mass spectrometry analysis 
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An ultra-high-resolution mass spectrometer, FT-ICR SolarixXR 9.4T (Bruker Daltonics, Bremen, 

Germany), was used for direct infusion mass spectrometry analysis. The electrospray ion source 

was set in positive mode and solutions were injected using an automated Acquity HPLC system 

(Waters, Saint Quentin en Yvelines, France). The injection volume was 10 µL. Elution was carried 

out using a 0.002 mL/min flow of H2O/ACN/FA (50/50/0.1). Nitrogen was used as nebulizer and 

as drying gas, set at 1 bar and 4 L/min, respectively. The drying gas temperature was set at 180°C. 

The capillary voltage and endplate offset potential were set at -4500 V and -500 V, respectively. 

Ions were accumulated for 0.2 sec in the collision cell, and 50 scans were summed. Resolution was 

set at 4 Mpt on a scan range from m/z 57 to m/z 1,000 in order to obtain resolution > 400,000 at m/z 

200. A tune mix (Agilent Technologies, Les Ulis, France) was used for mass calibration. Exact 

formulae were assigned with error < 1 ppm. 

  

4. Results and discussion 

4.1. Highlighting chemical reactions in complex mixtures 

Degradation of Maprotiline in wastewater under an advanced oxidation process (peroxide/UV) was 

carried out in a pilot plant, with the aim of testing the ability of SPIX to follow the degradation of 

contaminants and the evolution of their transformation products. This pilot plan was set up by 

FACSA, a Spanish company operating water treatment plants, to design, optimize and compare 

novel water treatment processes; the operational parameters and analytical conditions are given in 

the Supplementary information SI-3. Considering that the abundances of reagents, intermediates 

and products of a chemical reaction are not expected to evolve stochastically, an original way to 

extract relevant information from untargeted analysis consists in filtering the results based on ion 

abundance trends. Briefly, A-type models are selected to detect molecules with decreasing 

abundance during the reaction while B-type and C-type models detect the products and 

intermediates, respectively. The software detects all significant changes over time and provides a 

kinetic model; statistical data can be exported for further analysis in the Table format described in 

Supplementary information SI-4. As a first example, from one set of samples using the software 

default threshold (1.2E+08), SPIX automatically extracted the m/z 278.19056 signal (protonated 

Maprotiline) for each irradiation time, and associated the fitting model referred to as A1 in SPIX 

with r2 > 0.99 (Figure 2). 
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Figure 2 

A first attempt to extract transformation products from the background noise, conducted on the basis 

of 1 set of measurements, gave a few Maprotiline-related peaks, but a thorough study of the raw 

data showed that using data from duplicate measurements yielded a kinetic model better fitting ion 

intensity evolution. The aim was to maximize the relevant data obtained while minimizing the 

number of parallel measurements, to gain valuable analysis time. Using 2 parallel measurements for 

each irradiation time, 88 ions fitting one of the SPIX kinetic models were extracted with default 

threshold intensity 1.2E+08; this list was reduced to 12 ions keeping m/z ratios fitting a kinetic 

model with r2 > 0.9 (Table 1), these fittings being also those corresponding to the lowest p-values. 

The formulas were assigned using the Bruker software based on accurate mass measurements (sub-

ppm accuracy) and isotopic pattern-matching. All the extracted m/z values were related to 

Maprotiline or its photoproducts (oxidized compounds); they corresponded to singly charged ions 

with 12C and 13C isotopic contributions. One signal (m/z 92.73055) corresponded to an artifact 

related to the harmonics of the m/z 278.19054 signal, resulting from signal digitization and Fourier 

transformation, a phenomenon previously described and explained by Mathur and O’Connor.27 To 

study the threshold effect and determine whether additional photoproducts would be found if more 

peaks were considered, the threshold was halved (6E07) and the same methodology was applied. 

197 peaks were thus selected by SPIX and the data were ordered according to statistical relevance. 

23 peaks were then selected on the criterion r2 > 0.9 (see Table 1). Here again, m/z values were all 

1related to Maprotiline and its photoproducts; a second artifact (m/z 93.06499) was found and 

attributed to the harmonics of m/z 279.19386. 

 

Table 1. Ions extracted and associated kinetic models related to the photodegradation of Maprotiline 

in wastewater with r2 > 0.9 (data ordered by decreasing intensity) 

m/z r2 p-value Model a 
Maprotiline-

related 
Ion formula Intensity 

Relative 

Intensity 

(%) 

With intensity > 1.2E08 

278.19054 0.93 5.25E-06 A1 Yes C20H24N+ 8350669911 100.0 

279.19386 0.94 3.82E-06 A1 Yes C19H24N^13C+ 1643233281 19.7 

294.18552 0.98 3.91E-07 C1 Yes C20H24NO+ 1126960171 13.5 

276.17486 0.92 7.58E-05 C1 Yes C20H22N+ 451170002 5.4 
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292.16992 0.94 2.73E-05 B2 Yes C20H22NO+ 352390361 4.2 

92.73055 0.92 1.48E-05 A1 Yes b 339591819 4.1 

310.18038 0.94 4.09E-06 B1 Yes C20H24NO2
+ 228987461 2.7 

295.18881 0.97 2.30E-06 C1 Yes C19H24NO^13C+ 218499045 2.6 

280.19727 0.94 3.44E-06 A1 Yes C18H24N^13C2
+ 157067516 1.9 

308.16472 0.91 1.69E-04 B2 Yes C20H22NO2
+ 140798543 1.7 

344.18594 0.95 1.52E-05 B2 Yes C20H26NO4
+ 135672030 1.6 

342.17029 0.95 1.50E-05 B2 Yes C20H24NO4
+ 112723518 1.3 

With 1.2E08 > intensity > 6E07 

360.18088 0.96 8.69E-06 B2 Yes C20H26NO5
+ 95678296 1.1 

312.19604 0.94 2.71E-05 C1 Yes C20H26NO2
+ 84376971 1.0 

328.19096 0.94 2.74E-05 C1 Yes C20H26NO3
+ 79243551 0.9 

318.17025 0.94 2.46E-05 B2 Yes C18H24NO4
+ 75240290 0.9 

302.1753 0.98 6.44E-07 C1 Yes C18H24NO3
+ 66900122 0.8 

93.06499 0.92 9.63E-06 A1 Yes b 66023322 0.8 

242.15416 0.95 1.34E-05 B2 Yes C16H20NO+ 63982463 0.8 

326.17543 0.92 8.04E-05 C1 Yes C20H24NO3
+ 50496456 0.6 

300.17259 0.95 1.27E-06 A1 Yes C20H23NNa+ 20928662 0.2 

139.09569 0.91 9.43E-04 C2 Yes [C20H24N]2+ 7061477 0.1 

336.14927 0.91 1.76E-05 A1 No C23H18N3
+ 104081459 1.2 

a Currently available SPIX kinetic models are given in Supplementary information SI-2. 

b m/z 93.06499 and m/z 92.73055 signals correspond to artifact peaks related to the harmonics of m/z 278.19054 and 

m/z 279.19386 ions, respectively; they resulted from signal digitization.27 

 

Using the selection parameters referred to above, one protonated species was detected at m/z 

336.14927. Considering Kind & Fiehn’s “7 golden rules” and selecting atoms C, H, N, O, P, S, F, 

Cl, Br, Si, Na and K, the only matching formula was C23H18N3
+.28 This species is logically assumed 

not to be related to Maprotiline; it could correspond to a contaminant in high concentration in waste 

water, degrading under UV radiation. According to the kinetics revealed by SPIX, some 

photoproducts were present in detectable abundance after 2.5 minutes’ irradiation. To estimate the 

relevance of the results provided by SPIX, 1 of the spectra recorded at this reaction time was 

selected. After blank subtraction (the blank consisting of wastewater matrix without Maprotiline), 

the spectrum was exported in .csv format (Bruker’s FTICR-MS file format). The spectra were 

recorded using 8 Mpts, and as the experiments were carried out using secondary treated wastewater, 

4,479 peaks were exported by Bruker software which were above the S/N ratio threshold of 4. Out 
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of these 4,479 peaks, the 11 most abundant ions in the selected spectrum corresponded to the 11 

most statistically relevantly changing m/z values extracted by SPIX. The two m/z signals 

corresponding to harmonics of major ion signals were also extracted with good fit, and ranked 18th 

and 115th in the original file (overall blank subtracted-spectrum). The photoproducts showing the 

highest significance (lowest p-values) were those corresponding to m/z 294.18552 and m/z 

302.17530 (protonated molecules), fitting is presented in Figure 3 for the former. One of the 

Maprotiline-related peaks that was not in the list of the highest intensities was not found in the 

spectrum recorded at 2.5 min of irradiation: it was removed by the blank subtraction process, since 

the wastewater matrix was very complex. It is thus noteworthy that SPIX does not require blank 

subtraction to provide valuable information, allowing relevant peaks that coincidentally overlap 

with some of the matrix peaks not to be removed. The experiment conducted on photodegradation 

of Maprotiline showed that the SPIX software efficiently revealed the most relevant changes in the 

composition of the irradiated mixture on the basis of only 12 mass spectra. It was able to 

automatically detect reagents, intermediates and products at trace levels. Most extracted ions were 

related either to Maprotiline or to its photoproducts. Only 1 compound was found which was 

assumed not to be related to Maprotiline on the basis of its molecular formula (C23H17N3); no 

significant change in the composition of the dissolved organic matter was found, although of course 

only ESI-ionized species were considered. The photodegradation pathways of Maprotiline have 

been reported in a study more oriented toward structural elucidation.29 

Figure 3 

 

4.2. Comparison of two conditions: the example of photodegradation of Acetamiprid in an 

aqueous solution of fulvic acid 

This example demonstrates the ability of the SPIX software to point out relevant changes between 

two conditions from changes in low-abundance ions within a complex matrix. We studied the effect 

of UV radiation on Acetamiprid in a complex mixture, simulating river water. A prior photolysis 

study of Acetamiprid in ultrapure water identified Acetamiprid degradation products in ultrapure 

water and demonstrated that the presence of other substances in the matrix leads to the formation of 

different degradation products.30 These results led us to study the effect of dissolved organic matter 

on the photodegradation of Acetamiprid as it may happen under real environmental conditions. The 

peak intensity of Acetamiprid represented 9.2% of the base peak of the mass spectrum before 
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photolysis and only 1.9% after 30 minutes’ irradiation. A sodium adduct, originating from the use 

of glassware during sample preparation, impurity in solvents or ESI needle for instance, was 

detected with a relative intensity of 10.4% in the spectrum recorded before and 2.4% after 

photolysis. These differences, not detectable looking at the whole spectrum, are obvious when 

zooming on the region from m/z 223.00 to 223.20 (Figure 4). 

Figure 4 

Sets of spectra recorded before and after photolysis were compared using the SPIX software. Given 

the intensity of Acetamiprid within the mixture, a peak detection limit was set at only three times 

the average intensity of spectral noise (average noise at 1E6, detection threshold set at 3E6). This 

threshold was set as low as possible so as to identify Acetamiprid degradation products in small 

amounts. Blank spectra were subtracted to eliminate any interference from solvents or instruments. 

Exported from SPIX, Table 2 lists the ions the abundance of which underwent significant change 

after irradiation. Here, only ions with a probability of ≥ 95% (p-value ≤ 0.05) were retained: i.e., 

with significant difference in intensity between the two conditions. In this example, results are 

organized by increasing p-value, but any parameter can be chosen for presentation of the results. A 

negative value in the “Difference” column indicates that ion abundance increased after photolysis. 

Visual comparison (Figure 5) confirms the results displayed in Table 2: the greatest change in 

intensity - and with the highest significance – was the concomitant decrease of the m/z 223 (MH+) 

and m/z 245 (MNa+) ions. Many other peaks decreased or increased after photolysis, but with lower 

p-values for the difference in intensity; some were related to Acetamiprid photodegradation, others 

to changes in dissolved organic matter. The ions at m/z 205.10847 (C10H13N4O+) and m/z 227.09036 

(C10H12N4NaO+) shown here correspond to the protonated and cationized forms of a photoproduct 

previously described, the structure of which was elucidated in a study on UV irradiation of 

Acetamiprid in pure water.30 This photoproduct was the major one, so it is not possible to say 

whether others which were previously described were not detected here due to too high detection 

thresholds or because they are not formed in the presence of fulvic acid. It is interesting to note that 

SPIX revealed two ions, 284.12725 (C12H19ClN5O+) and m/z 245.10095 (C10H14N4NaO2
+) - 

resulting from ionization of Acetamiprid photoproducts based on their formula - that were not 

detected by LC-MS in pure water. With a relative intensity below 1% in infusion mode, these two 

molecules could not have been revealed without SPIX. Fifteen ions with abundance significantly 

varying before and after UV irradiation were indicated. Based on their chemical formulae, they were 

assumed not to be related to Acetamiprid or to its photoproducts; they all included a large number 
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of oxygen atoms (≥ 6) and likely resulted from oxidation of dissolved organic matter. This is of 

great interest because it opens a way to investigate the global consequences of a depollution 

treatment, evaluating the treatment - apart from its ability to efficiently degrade pollutants - in terms 

of biotope preservation. 

Figure 5 

Table 2. m/z for which intensity significantly varied between series of spectra recorded before and 

after 30 minutes of irradiation (n = 6). Ions are listed by increasing p-value. 

m/z 
Difference 

in intensity 
p-value Ion formula 

Related to 

Acetamiprid a 

224.07792 10523197 1.47E-06 C9H12ClN4
^13C+ Yes 

223.07459 103518217 3.20E-06 C10H12ClN4
+ Yes 

225.07161 24820606 1.08E-05 C10H12N4
^37Cl+ Yes 

246.05988 10966361 1.30E-05 C9H11ClN4Na^13C+ Yes 

247.05358 30754403 2.86E-05 C10H11N4Na^37Cl+ Yes 

245.05653 107329585 4.50E-05 C10H11ClN4Na+ Yes 

201.03705 -3542730 1.84E-02 C6H10NaO6
+ No 

205.10847 -28497851 2.11E-02 C10H13N4O+ Yes 

251.05269 -7062764 2.71E-02 C12H11O6
+ No 

297.05819 -5696496 2.72E-02 C11H14NaO8
+ No 

267.04760 -5586613 2.99E-02 C10H12NaO7
+ No 

283.04253 -4479881 3.20E-02 C10H12NaO8
+ No 

237.03704 -4871105 3.25E-02 C9H10NaO6
+ No 

253.03194 -4495727 3.33E-02 C9H10NaO7
+ No 

245.10095 -14590229 3.65E-02 C10H14N4NaO2
+ Yes 

211.02138 -5849796 3.65E-02 C7H8NaO6
+ No 

227.09036 -38558966 3.70E-02 C10H12N4NaO+ Yes 

239.05270 -7601354 3.77E-02 C9H12NaO6
+ No 

213.03705 -8698910 4.00E-02 C7H10NaO6
+ No 

275.05267 -3822758 4.02E-02 C12H12NaO6
+ No 

284.12725 12781460 4.41E-02 C12H19ClN5O+ Yes 

253.06834 -7132886 4.57E-02 C10H14NaO6
+ No 

255.08400 -3840684 4.60E-02 C10H16NaO6
+ No 

325.05308 -3163824 4.66E-02 C12H14NaO9
+ No 

241.03195 -4410055 4.98E-02 C8H10NaO7
+ No 

a assumption based on the ion chemical formula 
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5. Conclusion 

The SPIX software aims at extracting relevant data from mass spectra data sets. User-friendly and 

totally free, it is available for all at: http://spix.webpopix.org. Two features of SPIX are presented 

in this article, based on examples taken from the field of environmental analysis. The first example 

showed how SPIX revealed photodegradation reactions by correlating significant changes in ion 

abundance over time with kinetic models. Thus, the software revealed the reagents, products and 

intermediate species in a very complex mixture (wastewater). This functionality can be extended to 

monitor any kind of reaction - even unknown - in all types of mixture. Some features of the SPIX 

software are still under development. One aims at extending compatibility with many more file 

formats (wiff, .d, .pkl, .qgd, etc.), in order to be used with most of the marketed mass spectrometers. 

Another focus of development – already running but requiring some improvements – concerns the 

extension of SPIX to three-dimensional datasets from hyphenated techniques such as GC-MS, LC-

MS or IM-MS. Some commercial software applications allow comparison of chromatograms but, 

to our knowledge, an approach consisting in extracting relevant data from hyphenated techniques 

based on fitting with kinetic models has never been reported. The second example showed the ability 

of SPIX to detect photoproducts at trace amounts in an aqueous solution containing dissolved 

organic matter, through comparison of datasets for 2 conditions (before/after photolysis in the 

present case). Regarding this example, the ability of SPIX to deal with intrinsic variability and 

reduce operator subjectivity opens up promising prospects in all areas of analytical chemistry. It 

could, in particular, be a very useful tool to assess fragrance and flavor counterfeits, where expertise 

is very challenging due to the normal variations in abundance of natural substances featuring at low 

levels in their composition. This feature can also be used to estimate the global consequences of a 

given treatment on the treated medium, for example to monitor the oxidation of dissolved organic 

matter and its consequences on biotope preservation. 
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Figure captions 

Figure 1. Chemical structures of Maprotiline (left hand) and Acetamiprid (right hand) 

Figure 2. m/z 278.19056 signal (protonated Maprotiline) extracted for each irradiation time and 

fitting model associated to degradation kinetics: 8.19E-5+4.37E+10*exp(-0.23*x); r2 = 0.991 

Figure 3. 294.18552 signal extracted for each irradiation time and associated kinetic model 

Figure 4. Mass spectra of Acetamiprid in mixture with fulvic acid. a) Mass spectrum before 

photolysis; b) Mass spectrum after 30 min photolysis; c) Zoom on the protonated Acetamiprid peak 

(m/z 223.0746) in spectrum a; d) Zoom on the protonated Acetamiprid peak in spectrum b 

Figure 5. Visual result provided by the SPIX software after processing of mass spectra series 

recorded from samples taken before and after 30 min photolysis. The differences in ion intensities 

are given on the y-axis, positive values corresponding to decreased intensity after irradiation. The 

associated p-value is given by the color scale: the more the color tends toward red, the more 

statistically significant the difference. 
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SI-1. State of the art of modern approaches in managing high-resolution mass 

spectrometry data 

In mass spectrometry, the emergence of high-resolution analyzers has enabled analysis of samples of 

ever-increasing complexity. Whether in direct infusion or with hyphenated techniques (LC-MS and 

GC-MS couplings), the amount of information issuing from high-resolution analysis of complex 

mixtures requires computer processing and simplified data representation. Direct infusion of a sample 

can thus provide a mass spectrum including several thousands of distinct ions. Various 

representations are commonly used to simplify the visualization and comparison of samples analyzed 

by mass spectrometry. As the approaches are so diverse, this section does not seek to be exhaustive, 

but restricts itself to presenting the Kendrick and Van Krevelen diagrams and the multivariate 

statistical analyses most commonly used by high-resolution mass spectrometry specialists. 

Kendrick diagrams 

The Kendrick diagram allows easy identification, from a mass spectrum, of series of compounds that 

include the same number of heteroatoms and unsaturations but differ from each other by the number 

of -CH2- groups.1 The diagram is built by plotting the Kendrick mass defect (KMD) for each ion (eq. 

1) as a function of the Kendrick mass (KM) (eq. 2). 

𝐾𝑀𝐷 = (𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐾𝑒𝑛𝑑𝑟𝑖𝑐𝑘 𝑀𝑎𝑠𝑠 − 𝐸𝑥𝑎𝑐𝑡 𝐾𝑒𝑛𝑑𝑟𝑖𝑐𝑘 𝑀𝑎𝑠𝑠) (eq. 1) 

𝐾𝑀 = 𝐼𝑈𝑃𝐴𝐶 𝑚𝑎𝑠𝑠 ∗ (
14

14.01565
) (eq. 2) 

Compounds in the same series (i.e., with the same number of heteroatoms and degrees of 

unsaturation) will have the same KMD. In the diagram, each series is aligned horizontally with a 

deviation of 14 that reflects a difference of one -CH2- pattern. A shift of 0.01340 on the vertical axis 

corresponds to implementation of 1 unsaturation. Originally reported for the investigation of 

 
1 Kendrick, E. A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic 

compounds. Anal. Chem. 1963, 35(13), 2146-2154 
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petroleomics-type samples in the early 2000s,2,3 the use of the Kendrick diagram has been extended 

and adapted over the years for complex environmental samples,4,5,6 metabolomic studies,7,8 and 

proteomics on phosphopeptides.9 As needs differ between environmental chemistry and petroleomics, 

many studies have focused on modification of the mass defect10 in order to characterize reaction 

products such as oxidation or chlorination.11,12 Even with a mass measurement accuracy of 1 ppm, a 

 
2 Marshal, A.G.; Rodgers, R.P. Petroleomics: the next grand challenge for chemical analysis. Acc. Chem. Res. 

2004, 37, 53-59 

3 Hughey, C.A.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Kendrick mass defect spectrum: a compact 

visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 2001, 73, 4676-4681 

4 Chu, F.L.; Pirastru, L.; Popovic, R.; Sleno, L. Carotenogenesis up-regulation in Scenedesmus sp. using a 

targeted metabolomics approach by liquid chromatography – high-resolution mass spectrometry. J. Agric. 

Food Chem. 2011, 59, 3004-3013 

5 Sleighter, R.L.; Hatcher, P.G. The application of electrospray ionization coupled to ultrahigh resolution mass 

spectrometry for the molecular characterization of natural organic matter. J. Mass Spectrom. 2007, 42, 559-

574 

6 Kramer, R.W.; Kujawinski, E.B.; Hatcher, P.G. Identification of black carbon derived structures in a volcanic 

ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 

2004, 38, 3387-3395 

7 Ni, S.; Qian, D.; Duan, J.; Guo, J.; Shang, E.; Shu, Y.; Xue, C. UPLC-QTOF/MS-based screening and 

identification of the constituents and their metabolites in rat plasma and urine after oral administration of 

Glechoma longituba extract. J. Chromatogr. B 2010, 878, 2741-2750 

8 Zhang, H.; Zhang, D.; Ray, K.; Zhu, M. Mass defect filter technique and its applications to drug metabolite 

identification by high-resolution mass spectrometry. J. Mass Spectrom. 2009, 44, 999-1016 

9 Bruce, C.; Shifman, M.A.; Miller, P.; Gulcicek, E.E. Probabilistic enrichment of phosphopeptides by their 

mass defect. Anal. Chem. 2006, 78, 4374-4382 

10 Sleno, L. The use of mass defect in modern mass spectrometry. J. Mass. Spectrom. 2012, 47, 226-

236 

11 Jobst, K.J.; Shen, L.; Reiner, E.J.; Taguchi, V.Y.; Helm, P.A.; McCrindle, R.; Backus, S. The use of mass 

defect plots for the identification of (novel)halogenated contaminants in the environment, Anal. Bioanal. 

Chem. 2013, 405, 3289-3297 

12 Taguchi, V.Y.; Nieckarz, R.J.; Clement, R.E.; Krolik, S.; Williams, R. Dioxin analysis by gas 

chromatography-Fourier transform ion cyclotron resonance mass spectrometry (GC-FTICRMS). J. Am. Soc. 

Mass Spectrom. 2010, 21, 1918-1921 
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mass of 200 Da is assigned only 1 raw formula, while a mass of 500 Da is assigned 21.13 Regarding 

this issue, the Kendrick diagram can significantly increase the number of single raw formulae that 

can be assigned from m/z values in a mass spectrum. From the raw formula of the first compound, 

the identification of homologous series aids in assigning the raw formula of other compounds in the 

series regardless of their mass. This allows a complex spectrum to be recalibrated, to obtain the best 

possible accuracy and thus assign as many raw formulae as possible (e.g., prior to a principal 

component analysis).14,15 

Van Krevelen diagrams 

The van Krevelen diagram, originally used in petroleomics to control oil and kerosene quality, 

represents the H/C ratio as a function of the O/C or N/C ratio for each ion of a complex mixture.16 

This allows the composition of a sample to be quickly estimated based on constituent molecular 

families (lipids, proteins, sugars, carbohydrates, lignin, tannins, etc.).17 Today, this representation is 

commonly used for environmental samples to track their evolution following an event such as 

 
13 Kind, T.; Fiehn, O. Metabolomic database annotations via query of elemental compositions: Mass accuracy 

is insufficient even at less than 1 ppm. BMC Bioinform. 2006, 7, 234-243 

14 Ajaero, C.; McMartin, D.W.; Peru, K.M.; Bailey, J.; Haakensen, M.; Friesen, V.; Martz, R.; Hughes, S.A.; 

Brown, C.; Chen, H.; McKenna, A.M.; Corilo, Y.E.; Headley, J.V. Fourier transform ion cyclotron resonance 

mass spectrometry characterization of Athabasca oil sand process-affected waters incubated in the presence of 

wetland plants. Energy Fuels 2017, 31, 1731-1740 

15 Ajaero, C.; Peru, K.M.; Hughes, S.A.; Chen, H.; McKenna, A.M.; Corilo, Y.E.; McMartin, D.W.; Headley, 

J.V. Atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry 

characterization of oil sand process-affected water in constructed wetland treatment. Energy Fuels 2019, 33, 

4420-4431 

16 van Krevelen, D.W. Graphical-statistical method for the study of structure and reaction processes of coal. 

Fuel 1950, 29, 269-284  

17 Kew, W.; Blackburn, J.W.T.; Clarke, D.J.; Uhrín, D. Interactive van Krevelen diagrams – advanced 

visualisation of mass spectrometry data of complex mixtures. Rapid Commun. Mass Spectrom. 2017, 31, 658-

662 
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treatment or pollution.18,19,20,21,22 Some studies have extended the van Krevelen diagram over 3 

dimensions to achieve better classification of compounds and better differentiation between complex 

mixtures. In some cases, this approach is associated with other t-test type statistical tests.23,24 

Multivariate statistical analysis 

Multivariate statistical analysis is a versatile tool for dealing with high-dimensional datasets, and 

many methods can be used to extract valuable information, perform data compression, assess 

subclasses and compare groups of samples assessing relationships between variables. For quantitative 

datasets, two categories of model can be distinguished in terms of the relationship between variables 

and response, according to the parameters: linear and non-linear. An example is UV-Vis absorbance 

analysis of a complex mixture, where absorbance depends on the concentrations of all the compounds 

present in the mixture, based on a linear relationship; in this case, multivariate linear regression can 

 
18 Minor, E.C.; Swenson, M.M.; Mattson, B.M.; Oyler, A.R. Structural characterization of dissolved organic 

matter: a review of current techniques for isolation and analysis. Environ. Sci.-Proc. Imp. 2014, 16, 2064-2079 

19 D’Andrilli, J.; Foreman, C.M.; Marshall, A.G.; McKnight, D.M. Characterization of IHSS Pony Lake fulvic 

acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass 

spectrometry and fluorescence spectroscopy. Org. Geochem. 2013, 65, 19-28 

20 Wozniak, A.S.; Bauer, J.E.; Sleighter, R.L.; Dickhut, R.M.; Hatcher, P.G. Technical Note: Molecular 

characterization of aerosol-derived water-soluble organic carbon using ultrahigh resolution electrospray 

ionization Fourier transform ion cyclotron resonance mass spectrometry. Atmos. Chem. Phys. 2008, 8, 5099-

5111 

21 Hertkorn, N.; Benner, R.; Frommberger, M.; Schmitt-Kopplin, P.; Witt, M.; Kaiser, K.; Kettrup, A.; Hedges, 

J.I. Characterization of a major refractory component of marine dissolved organic matter. Geochim. 

Cosmochim. Acta 2006, 70, 2990-3010 

22 Kim, S.; Kramer, R.W.; Hatcher, P.G. Graphical method for analysis of ultrahigh-resolution broadband mass 

spectra of natural organic matter, the van Krevelen diagram. Anal. Chem. 2003, 75, 5336-5344 

23 Martins, N.; Jiménez-Morillo, N.T.; Freitas, F.; Garcia, R.; Gomez da Silva, M.; Cabrita, M.J. Revisiting 3D 

van Krevelen diagrams as a tool for the visualization of volatile profile of varietal olive oils from Alentejo 

region, Portugal. Talanta 2020, 207, 120276-120285 

24 Wu, Z.; Rodgers, R.P.; Marshall, A.G. Two- and three-dimensional van Krevelen Diagrams: A graphical 

analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic 

mixtures based on ultrahigh-resolution broadband Fourier Transform ion cyclotron resonance mass 

measurements. Anal. Chem. 2004, 76, 2511-2516 
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describe the correlations.25 On the other hand, supervised and unsupervised methods are applied for 

qualitative datasets.26,27 Principal component analysis, an unsupervised method, is usually 

implemented as a first approach for visualization, dimensionality reduction, classification, and 

finding patterns of similarities in the dataset.28,29 Supervised methods require a priori information, 

meaning that classes, determined by specific qualitative properties, are known in advance, and this 

information is used to sharpen the distinction between the given classes. A subclass of these methods, 

discriminant analysis, studies why the classes are different and which variables drive their separation, 

bearing the largest discriminatory power (e.g., Partial Least Squares Discriminant Analysis).30 The 

main areas of application in mass spectrometry data interpretation include food analysis and 

 
25 Massart, D.L.; Vandeginste, B.G.M.; Deming, S.M.; Michotte, Y.; and Kaufman, L. Chemometrics: a 

textbook. 1988, 165-182 

26 Jurs, P.C. Pattern recognition used to investigate multivariate data in analytical chemistry. Science, 1986, 

232, 1219-1224 

27 Kemsley, E.K. Discriminant analysis of high-dimensional data: a comparison of principal components 

analysis and partial least squares data reduction methods. Chemom. Intell. Lab. Syst. 1996, 33, 47-61 

28 Abdi, H.; Williams, L.J. Principal component analysis. WIREs Comput. Stat. 2010, 2, 433-459 

29 Ringnér, M. What is principal component analysis?, Nat. Biotechnol. 2008, 26(3), 303-304 

30 Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS discriminant 

analysis: combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006, 20, 341-351 
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authentication,31,32,33,34 environmental sample analysis,35,36 proteomics,37,38 metabolomics in 

diagnostics and biology,39,40,41 and imaging.42,43 However, when dealing with high-dimensionality 

data (e.g., direct infusion HRMS) it is difficult to assess and visualize which variables account for the 

 
31 Callao, M.P.; Ruisanchez, I. An overview of multivariate qualitative methods for food fraud detection. Food 

Control 2018, 86, 283-293 

32 Marti, M.P.; Busto, O.; Guasch, J. Application of a headspace mass spectrometry system to the 

differentiation and classification of wines according to their origin, variety and ageing. J. Chromatogr. A 2004, 

1057, 211-217 

33 Kenar, A.; Çiçek, B.; Arslan, F.N.; Akin, G.; Karuk Elmas, S.N.; Yilmaz, I. Electron impact-mass 

spectrometry fingerprinting and chemometrics for rapid assessment of authenticity of edible oils based on fatty 

acid profiling. Food Anal. Methods 2019, 12, 1369-1381 

34 Rubert, J.; Lacina, O.; Zachariasova, M.; Hajslova, J. Saffron authentication based on liquid chromatography 

high resolution tandem mass spectrometry and multivariate data analysis. Food Chem. 2016, 204, 201-209 

35 Karpuzcu, M.E.; Fairbairn, D.; Arnold, W.A.; Barber, B.L.; Kaufenberg, E.; Koskinen, W.C.; Novak, P.P.; 

Rice, P.J.; Swackhamera, D.L. Identifying sources of emerging organic principal components analysis. 

Environ. Sci. Process. Impacts 2014, 16, 2390-2399 

36 Corilo, Y.E.; Podgorski, D.C.; McKenna, A.M.; Lemkau, K.L.; Reddy, C.M.; Marshall, A.G.; Rodgers, R.P. 

Oil spill source identification by principal component analysis of electrospray ionization fourier transform ion 

cyclotron resonance mass spectra. Anal. Chem. 2013, 85, 9064-9069 

37 Gaspari, M.; Verhoeckx, K.C.M.; Verheij, E.R.; van der Greef, J. Integration of two-dimensional lc-ms with 

multivariate statistics for comparative analysis of proteomic samples. Anal. Chem. 2006, 78, 2286-2296 

38 Wang, X.; Chambers, M.C.; Vega-montoto, J.; Bunk, D.M.; Stein, S.E.; Tabb, D.L. QC metrics from CPTAC 

Raw LC-MS/MS data interpreted through multivariate statistics. Anal. Chem. 2014, 86, 2497-2509 

39 Wang, C.; Kong, H.; Guan, Y.; Yang, J.; Gu, J.; Yang, S.; Xu, G. Plasma phospholipid metabolic profiling 

and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray 

mass spectrometry and multivariate statistical analysis. Anal. Chem. 2005, 77, 4108-4116 

40 A. Kiss, A.; Lucio, M.; Fildier, A.; Buisson, C.; Schmitt-Kopplin, P.; Cren-Olivé, C. Doping control using 

high and ultra-high resolution mass spectrometry based non-targeted metabolomics - a case study of 

salbutamol and budesonide abuse. PLoS One 2013, 8, 1-13 

41 Tsugawa, H.; Tsujimoto, Y.; Arita, M.; Bamba, T.; Fukusaki, E. GC/MS based metabolomics: development 

of a data mining system for metabolite identification by using soft independent modeling of class analogy 

(SIMCA). BMC Bioinform. 2011, 12, 131-144 
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differences. Usually, variable selection44 or sparse methods45 must be applied, which are able to 

remove or suppress variables that are irrelevant to response prediction or classification.46 These 

methods proved their efficiency but have to be used with caution to avoid losing valuable information, 

to prevent overfitting, and to handle chance correlations correctly. In summary, multivariate analysis 

tools enable global understanding of many concomitant variables and of their inter-correlations. The 

concept behind multivariate analysis is different from that of the SPIX software: the latter aims at 

observing all statistically relevant variables individually. 

  

 
42 Dill, A.L.; Eberlin, L.S.; Zheng, C.; Costa, A.B.; Ifa, D.R.; Cheng, L.; Masterson, T.A.; Koch, M.O.; Vitek, 

O.; Cooks, R.G. Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by 

ambient ionization imaging mass spectrometry. Anal. Bioanal. Chem. 2010, 398, 2969-2978 

43 Alexandrov, T. MALDI imaging mass spectrometry: statistical data analysis and current computational 

challenges. BMC Bioinform. 2012, 13, S16-S11 

44 Peres, F.A.P.; Fogliatto, F.S. Variable selection methods in multivariate statistical process control: A 

systematic literature review. Comput. Ind. Eng. 2018, 115, 603-619 

45 Zou, H.; Hastie, T.; Tibshirani, R. Sparse principal component analysis. J. Comput. Graph. Stat. 2006, 15, 

265-286 

46 Filzmoser, P.; Gschwandtner, M.; Todorov, V. Review of sparse methods in regression and classification 

with application to chemometrics. J. Chemom. 2012, 26, 42-51 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Eberlin%20LS%5BAuthor%5D&cauthor=true&cauthor_uid=20953777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zheng%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20953777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Costa%20AB%5BAuthor%5D&cauthor=true&cauthor_uid=20953777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ifa%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=20953777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Masterson%20TA%5BAuthor%5D&cauthor=true&cauthor_uid=20953777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Koch%20MO%5BAuthor%5D&cauthor=true&cauthor_uid=20953777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vitek%20O%5BAuthor%5D&cauthor=true&cauthor_uid=20953777
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cooks%20RG%5BAuthor%5D&cauthor=true&cauthor_uid=20953777


9 
 

SI-2. Current kinetic models in SPIX 

 

Model Theoretical equation Experimental equations for the examples shown 

A1 
f=f0+A*exp(-k*t) 
k>0  

1.18E+06 + 1.70E+08 * exp(-5.50E-02 * t) 

A2 
f=f0+A1*exp(-k1*t)+A2*exp(-k2*t) 
k1>0 ; k2>0 

8.22E+05 + 1.89E+06 * exp(-9.61E-01 * t) + 1.25E+06 * exp(-
6.93E-02 * t) 

B1 
f=f0+B*(1-exp(-k*t)) 
k>0 

4.69E+06 - 3.91E+06 * exp(-3.17E-02 * t) 

B2 
f=A+B/(1+C*exp(-k*t)) 
k>0 

1.21E-12 + 1.47E+07 / (1 + exp(-4.83E-02 * (t - 65.23))) 

C1 
f=f0+A*(exp(-k1*t)-exp(-k2*t)) 
k2 > k1 > 0 

1.90E+07 + 3.25E+08 * (exp(-1.00E-01 * t) - exp(-1.06E-01 * t)) 

C2 
f=f0+A1*exp(-k1*t)-A2*exp(-k2*t) 
k2 > k1 > 0 ;  A1 > A2 

3.64E+07 + 3.70E+08 * exp(-3.96E-02 * t) - 3.52E+08 * exp(-4.29E-
02 * t) 

D1 
f=f0+A1*exp(-k1*t)-A2*exp(-k2*t) 
k1 > k2 > 0 ;  A2 > A1 

1.01E+09 + 6.22E+05 * exp(-2.14E-01 * t) - 1.01E+09 * exp(-5.12E-
05 * t) 
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SI-3. Chemicals, reagents, irradiation processes and sample preparation 

 

Chemicals and reagents 

Acetamiprid ((E)-N-(6-chloro-3-pyridylmethyl)-N’-cyano-N-methylacetamidine), maprotiline 

hydrochloride (N-methyl-3-(1-tetracyclo[6.6.2.02,7.09,14]hexadeca-2,4,6,9,11,13-hexaenyl) propan-1-

amine;hydrochloride), acetonitrile (ACN) and formic acid (FA) (chromatographic grade purity > 

99.99% for both) were purchased from Sigma-Aldrich (Saint Quentin Fallavier, France). Suwannee 

River Fulvic Acid Standard was purchased from International Humic Substances Society (Denver, 

Colorado, USA). Ultrapure water (specific resistance, 18 MΩ cm-1 at 25 °C) was produced by a 

Purelab Chorus 1 water purification system purchased from Veolia Water Technologies (Wissous, 

France). 

 

Sample preparation 

1. Peroxide/UV photodegradation of maprotiline in wastewater 

The UV photocatalyzed degradation of maprotiline was carried out in a 45-liter pilot plant with 

continuous flow at a wastewater treatment plant operated by the FACSA company in Alhama de 

Murcia (Spain). The molecule was submitted to peroxide/UV advanced oxidation process. The pilot 

plant included a tank for mixing with a stirrer, a reactor with UV lamp (model UVLA-325-4, 

controlled by Synergy 3 control panel - ATG UV Technology), a pump for water circulation, a 

rotameter to assess the water flow, and a compressor (Metabo Basic 250-50 W) to provide airflow in 

the rotameter equipped-reactor. The wastewater, secondary treated water originating from municipal 

and industrial sources, was transferred into the pilot plant after undergoing preliminary treatment 

(screening, sand and grease removal): decantation, biological treatment and sand filtration, before the 

chlorination step. At this point there were still bacteria in the mixture as well as micropollutants, 

which the traditional wastewater treatment methods are not able to remove. The wastewater was 

spiked with Maprotiline hydrochloride at 5 ppm, the total organic carbon content of the mixture was 

measured as 37.2 mg/L. 4 mL of hydrogen peroxide of technical grade (33 v/w%, VWR chemicals, 

Llinars del Vallès, Spain) were added to the pilot plant; it corresponds to the stoichiometric amount 

needed for Maprotiline mineralization. Since the reaction with peroxide radical is usually fast, the 

reaction time was 10 minutes and the sampling for HRMS (2 x 1 mL) was done at the following 
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times: t0 (3 samples), 1 min, 2.5 min, 5 min, 7.5 min and 10 min. The only sample preparation before 

direct infusion mass spectrometry analysis was the addition of 0.1 mL of acetonitrile and 0.1% of 

formic acid to the 1 mL samples, to achieve better ionization and solubility. Using direct infusion 

HRMS aimed at suppressing many sample preparation steps, to gain a considerable amount of time 

and avoid too much variability and operator subjectivity. 

 

2. UV irradiation of acetamiprid in an aqueous solution of humic acid 

Acetamiprid has been detected in agriculture water samples at concentrations of up to 44 µg/L.47 

Therefore, a 40 µg/L acetamiprid solution was prepared using an aqueous solution of fulvic acid at 

20 mg/L, a mean value regarding the amount usually found in natural waters.48 Six glass tubes of the 

solution were simultaneously irradiated for 30 minutes in a laboratory-made reactor equipped with a 

UV-Vis high-pressure mercury lamp HPL-N125W/542 E27 SC (Philips, Ivry-sur-Seine, France) 

emitting light on wavelengths ranging from 200 nm to 650 nm, with a maximum irradiation 

wavelength at 254 nm and a radiation flux of 6200 lm. Each tube contained 50 mL of solution to 

ensure good surface irradiation. 1 mL of solution was taken twice from each tube before and after 

irradiation. Samples were analyzed in ESI-MS using automated direct infusion with a solvent made 

of 50% H2O/AF (0.1%) and 50% ACN/AF (0.1%) at a flow of 0.002 mL/min. The six replicates and 

blanks (H2O/ACN 50/50 v/v) were randomly analyzed and data were extracted in a «.xy » text format 

so that they can be treated with the SPIX software. 

 

  

 
47 Anderson, T.A.; Salice, C.J.; Erickson, R.A.; McMurry, S.T.; Cox, S.B.; Smith,  L.M. Effects of landuse 
and precipitation on pesticides and water quality in playa lakes of the southern high plains. Chemosphere, 
2013, 92, issue 1, 84-90 
 
48 Thurman, E.M. Amount of organic carbon in natural waters. In: Organic geochemistry of natural waters,  
Springer, Dordrecht, 1985, 2, 7–65 
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SI-4. Exported data from the SPIX software after assignation of a kinetic model 

to a m/z ratio 

Segment m/z Intensity Time File 

65 278.19055 3.53E+10 0.0 Maprotiline WW H2O2 0min B.xy 

65 278.19057 3.39E+10 1.0 Maprotiline WW H2O2 1min B.xy 

65 278.19050 8,34E+09 2.5 Maprotiline WW H2O2 2min B.xy 

65 278.19052 3,74E+09 5.0 Maprotiline WW H2O2 5min B.xy 

65 278.19057 1,95E+09 7.5 Maprotiline WW H2O2 7min B.xy 

65 278.19053 8,84E+08 10.0 Maprotiline WW H2O2 10min B.xy 

 

m/z r2 p-value model 

278.19053 0.99 0.000776 A1 

 


