
HAL Id: hal-03029901
https://hal.science/hal-03029901v1

Preprint submitted on 29 Nov 2020 (v1), last revised 14 Dec 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the role of roughness valleys in turbulent
Rayleigh-Bénard convection

Mebarek Belkadi, Anne Sergent, Yann Fraigneau, Bérengère Podvin

To cite this version:
Mebarek Belkadi, Anne Sergent, Yann Fraigneau, Bérengère Podvin. On the role of roughness valleys
in turbulent Rayleigh-Bénard convection. 2020. �hal-03029901v1�

https://hal.science/hal-03029901v1
https://hal.archives-ouvertes.fr


This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

On the role of roughness valleys in turbulent
Rayleigh-Bénard convection

Mebarek Belkadi1,2,3, Anne Sergent1,4†, Yann Fraigneau1 and
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Three-dimensional direct numerical simulations are used to characterize turbulent buoy-
ant convection in a box-shaped Rayleigh Bénard cavity with a rough bottom plate made
of a series of square based blocks separated by valleys. The cavity is filled with water, and
the Rayleigh number varies over five decades up to 1010. As mentioned in the literature,15

three successive heat transfer regimes are identified: from inactive roughness (I) to a
regime (III) where the heat transfer increase is larger than the one expected from the
only roughness induced surface increase. The heat transfers of the transitional regime II
are particularly intense. After validation against experimental and numerical data from
literature, we highlight the role of the inner fluid trapped within valleys. It is shown that20

the heat transfer through the fluid interface between the cavity bulk and the inner fluid
is strongly related to the overall heat transfer at the rough plate, with an exponent of
the heat transfer scaling law close to 1/2 in the regime II. We found that this regime
is active when the thermal boundary layer is thinner than the roughness height and, at
the same time, the kinetic boundary layer is larger. As compared to regimes I and III,25

regime II is characterized by larger temperature fluctuations, especially near the rough
plate, and a larger friction coefficient. A fluctuating rough layer overlaying both blocks
and valleys appears in the regime III, in addition to the classical boundary layers formed
along the plate topography.

Key words: Bénard convection, turbulent convection, roughness30

1. Introduction

The addition of wall roughness in thermal systems involving turbulent convection
is a common strategy to enhance the heat transfer of industrial systems. Roughness
also constitute a major factor in many turbulent flows met in nature. To explain the
mechanisms arising at the roughness-flow and at the origin of heat transfer intensification,35

many efforts have been made on the convection of Rayleigh-Bénard (Chillà & Schumacher
2012). The classic Rayleigh-Bénard (RB) convection consists in a fluid flow enclosed in a
cavity heated from the bottom and cooled at the top. The corresponding flow depends on
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the following main control parameters: the Rayleigh number, Ra, the Prandtl number,
Pr, and the cavity aspect ratio, Γ , while the main response of the system can be expressed40

in terms of dimensionless heat transfer in the form of the Nusselt number, Nu. The
dependence of the Nusselt number to the control parameters (Nu ∼ αRaβPrζ) has been
widely investigated (Ahlers et al. 2009; Chillà & Schumacher 2012), and the unifying
theory of Grossmann & Lohse (2000, 2001)(Stevens et al. 2013) has been proposed to
describe the multiple scaling laws of NuGL in the (Ra− Pr) parameter space.45

In the case of turbulent Rayleigh-Bénard (RB) convection with rough plates, three
successive heat transfer regimes have been observed with increasing Ra. It was first
demonstrated experimentally in a series of convection cavitys by varying the roughness
aspect ratio λ, defined as the pyramid-shaped roughness height over its base (Xie &
Xia 2017). They showed that the two transitions delimiting the enhanced heat transfer50

”regime II” occur when the thicknesses of thermal, then kinematic, boundary layers are
of the same size as the roughness height Hp. Similar results were obtained by (Rusaouën
et al. 2018) in a cylindrical water RB cavity, but whose horizontal plates were smooth
at the top and roughened by rectangular shaped obstacles at the bottom. They found
an increase of the scaling exponent β close to 0.5 in the regime II, while a heat transfer55

scaling law similar to those of the smooth plate is obtained in the regime III but with
an increased prefactor. Several experimental studies describe results inside the regime
II (Roche et al. 2001; Qiu et al. 2005; Tisserand et al. 2011; Wei et al. 2014), while
other configurations correspond to the regime III (Du & Tong 1998; Wei et al. 2014).
However, in both cases, an intensification of the emission of the thermal plumes from60

roughness is viewed as responsible for the increase of heat transfer. A quantitative study
of plumes (Belkadi et al. 2020) has shown an alteration of the plume density and plume
velocity distribution by the presence of roughness, when compared to a smooth plate.
By introducing a critical Rayleigh number Rac defined as the Rayleigh number at which
the thermal boundary layer is of the size of the roughness height, (Rusaouën et al. 2018)65

succeeds to make collapsing results obtained in different asymmetric rough RB cavitys
over the three regimes, whatever the roughness shape.

Due to the interest of the regime II from an energy efficiency point of view, a lot
of recent works has focused on the manipulation of the boundary layers by modifying
roughness geometry to optimize the heat transport or even extend the range of existence70

of the regime II (Toppaladoddi et al. 2015, 2017; Xie & Xia 2017; Jiang et al. 2018;
Xia 2019; Zhu et al. 2019). These studies have retained sinusoidal-shaped roughness
blocks when performing two-dimensional direct numerical simulations (2D DNS) or
pyramid-shaped roughness blocks for experiments. They defined an additional geometric
parameter λ describing the roughness in terms of wavelength or pyramid aspect ratio (λ is75

the height over the base of the element). In all these cases, it has been demonstrated that
the roughness density or λ increase the β scaling exponent to a value close to 1/2, at least
inside a particular region of Ra. Similar trends were obtained in the case of rectangular
blocks. Wagner & Shishkina (2015) and Emran & Shishkina (2020) performed three-
dimensional 3D DNS of cubic or cylindrical domains for which the effect of roughness80

is respectively modelled in the form of straight or cylindrical bars of large size. The
influence of the gap size (g) between blocks and the roughness height (Hp) on the heat
transfer and the flow structure has been documented for Rayleigh numbers up to 5 · 108

and Pr ∼ 1. Bulk flow has been shown to be enhanced both by increasing Hp and g, while
the secondary flow circulations located inside the obstacle gap weakens as the width of85

the obstacle increases. This leads to an increase of Nu when Hp and g are larger than
the thermal boundary layer thickness. The influence of rectangular-shaped obstacles on
the flow has been previously investigated experimentally at higher Ra in a water-filled
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cavity (Salort et al. 2014; Liot et al. 2017). It has been shown that roughness does not
clearly change the mean flow, but enhances drastically velocity fluctuations in the whole90

cavity with observation of a short logarithmic layer above the roughness blocks. Two
potential mechanisms are put forward, a transition to a turbulent boundary layer above
the roughened plate and a plume emission increase, whose relative influences may vary
with the roughness shape.

These previous studies demonstrate that the roughness topography is a crucial factor95

in the alteration of flow and heat transfer, illustrating the key role of flow surrounding
roughness blocks. Taking advantage of the full 3D information obtained through the
use of direct numerical simulations, this paper aims to describe the evolution of fluid
dynamics around the roughness blocks for the three heat transfer regimes and to explain
how it contributes to enhance heat transfer.100

For this purpose, we simulate the flow inside an asymmetric RB cavity with a bottom
plate roughened by box-shaped obstacles. This asymmetric geometry allows to study
separately the smooth and rough plates in a single simulation, when considering the
bulk temperature (Tisserand et al. 2011; Salort et al. 2014). However, due to resolution
requirements, numerical studies are commonly performed with simplified geometries105

(macroscopic scale roughness blocks, in limited numbers, with specific symmetries or
quasi-two-dimensional geometry), or at moderate Rayleigh numbers (Wagner & Shishk-
ina 2015; Zhu et al. 2019; Emran & Shishkina 2020). To overcome this difficulty, we
set the roughness height Hp at a particular value which locates the first transition
between regimes I and II at a moderate Ra (here around 107). Both transition regimes110

are then feasible at intermediate Rayleigh numbers (less than 1010) with a reasonable
mesh size. This range of Rayleigh numbers corresponds to the experimental study of
Tummers & Steunebrink (2019). But we note that this geometric configuration puts
the regime transitions about two to three decades lower in Rayleigh number than
previous experiments in water (Wei et al. 2014; Xie & Xia 2017; Rusaouën et al. 2018).115

Furthermore, the resulting Hp leads to a spatial arrangement of a sufficient number of
box-shaped obstacles to consider the central part of the cavity is not too much influenced
by a direct effect of the flow along the vertical walls.

In this paper, we report DNS results covering five decades in Rayleigh number. The
main objective is to determine whether the two successive heat transfer regime transitions120

can be captured numerically in a single physical set-up. Then, we investigate which
physical mechanisms in the neighbourhood of the roughness blocks can explain the
enhanced heat transfer of the regimes II and III. In particular, we seek to identify the
respective roles of the flow above the top surface of the blocks, and of the fluid circulating
within the roughness valleys. Finally, we examine how the flow dynamics is altered by125

the regime changes.

The paper is organized as follows. Section 2 introduces the physical and numerical
problem. Section 3 presents the roughness effect on the global heat transfer for the three
heat transfer regimes and compares the DNS results to experimental data. Next, the
study details the respective contributions of the roughness blocks and the inner fluid130

trapped between them, to global heat transfer in section 4. Finally, the roughness effect
on the fluid flow is described in section 5.
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Figure 1. (a) Asymmetric Rayleigh-Bénard cavity (R/S) with a rough bottom plate. (b)
Blow-up of the spatial arrangement of the blocks regularly distributed.

2. Physical configuration and governing equations

2.1. Physical setup

We study the fluid flow occurring in an asymmetric RB rectangular cavity with a135

rough bottom plate as sketched in figure 1. The geometrical aspect ratios are set at
Γx = W/H = 1 and Γy = D/H = 0.5 where H is the height, D the depth and W the
width of the cavity. The smooth cold top plate (resp. the hot bottom plate including
roughness blocks) is isothermal at the constant temperature TS (resp. TR). Vertical side-
walls are considered to be adiabatic. No-slip conditions are imposed on walls. The physical140

problem depends on the Rayleigh number defined as Ra = αg∆TH3/νκ and the Prandtl
number (Pr = ν/κ), where α is the volumetric thermal expansion coefficient, g the
gravity, ∆T = TR − TS the temperature difference, ν the kinematic viscosity and κ the
thermal diffusivity. The Prandtl number is taken equal to 4.38, that corresponds to taking
water as the working fluid at the mean temperature of 40◦C.145

The roughness is modelled by a set of square-based blocks. We call valley the fluid space
present between the blocks. The typical size of the blocks (width Wp, depth Dp and height
Hp) and their horizontal distribution (Dr,Wr) have been chosen to meet two criteria: (i)
A roughness height sufficiently large to obtain the first transition between regimes I and
II at a Rayleigh number close to 107 ; (ii) A spatial distribution of roughness blocks150

sufficiently close to Lyon’s experiments (Salort et al. 2014) to facilitate comparison.

Accordingly, we set the roughness height to Hp = 0.03H. Following Rusaouën et al.
(2018), we estimate the critical Rayleigh number (Rac) of the first transition equal to
Rac = 9 · 106 based on an approximation of the thickness of the thermal boundary layer
(δθ) estimated from the Grossman-Lohse (GL) theory (Stevens et al. 2013). The retained155

shape and distribution of roughness blocks (Wp = 0.075H, Dp = 0.075H, Hp = 0.03H
and Wr = 0.075H, Dr = 0.05H, see figure 1 for definitions) is equivalent to Lyon’s
experiment (Salort et al. 2014), leading to attach four rows of six box-shaped blocks
to the bottom plate. The resulting ratio between the heat-exchange surface (A) of the
asymmetric cavity and that of a fully symmetrical smooth cavity (hereafter respectively160

denoted as R/S and S/S) is equal to Cs = (AR + AS)/(2AS) = 1.216, where AS (AR)
stands for the dimensionless area of the smooth and the rough plates respectively.
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2.2. Governing equations and system response

We solve the Navier-Stokes equations under the Boussinesq approximation. Dimen-

sionless equations are written in the following form considering H, ∆T and
κ

H

√
Ra as165

reference scales for the length, the temperature and the velocity

∇ · u = 0 (2.1a)

∂tu + u · ∇u = −∇P ∗ + Pr Ra− 1
2∇2u + Pr θez (2.1b)

∂tθ + u · ∇θ = Ra− 1
2∇2θ (2.1c)

where u = (u, v, w) is the velocity vector, t the time, P ∗ the dimensionless driving
pressure, θ the temperature, and ez the unit vector in the vertical upward direction. The
temperature of top cold plate is taken as reference, so that the dimensionless temperature
θ ranges from θS = 0 to θR = 1.170

The response of the system to the temperature difference ∆T applied on the two
horizontal plates is measured in terms of dimensionless heat transfer by the local Nusselt
number

Nu(x, t) =
√
Ra× w(x, t)× θ(x, t)− ∂zθ(x, t), (2.2)

where x = (x, y, z) is the coordinate vector. We note NuR/S , the time and space average
of Nu(x, t) over the fluid volume contained in the upper part of the asymmetrical RB175

cavity for z > Hp. Similarly, RaR/S refers hereafter to the Rayleigh number imposed to
the asymmetric cavity.

Due to the geometrical asymmetry of the configuration, the bulk temperature θbulk
is no longer equal to the mean between smooth and rough plates temperatures, i.e.
θbulk 6= (θR+θS)/2. The temperature difference between the bulk region and the hot plate180

(respectively the cold plate) is called ∆θR (resp. ∆θS). Following Tisserand et al. (2011),
we assume that the top and bottom parts of the cavity are independent. Consequently,
one can define two additional Rayleigh and Nusselt numbers related to each plate as
follows, 

∆θS = 2× (θbulk − θS) , ∆θR = 2× (θR − θbulk)

RaS = RaR/S ×∆θS , RaR = RaR/S ×∆θR
NuS = NuR/S /∆θS , NuR = NuR/S /∆θR

(2.3)

where we denote by RaS (respectively RaR) and NuS (resp. NuR) the Rayleigh and185

Nusselt numbers related to the smooth (resp. rough) plate. This is equivalent to taking

into account different reference heat fluxes (ΦrefR = AS∆θR and ΦrefS = AS∆θS , here
expressed dimensionless).

2.3. Numerical methods and validation

A finite volume approach is applied to discretize the governing equations (eq. 2.1),190

by means of the in-house SUNFLUIDH solver. A centred scheme is used for the spatial
discretization on a staggered grid and the time discretization is done by second order
backward differentiation scheme. The diffusive terms are implicitly treated while convec-
tive terms are estimated by the Adams-Bashforth method. This leads to a Helmholtz-like
equation for each velocity component and the temperature, which is solved by applying195

the Alternating Direction Implicit method. The incompressibilty constraint is ensured by
using a prediction-projection method (Goda 1979; Guermond et al. 2006). The resulting
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RaR/S Nx ×Ny ×Nz τ NuR/S RaS NuS RaR NuR

105 320× 200× 320 /(1) 3.8 9.96 · 104 3.8 1.00 · 105 3.8

2 · 105 320× 200× 320 /(1) 4.8 2.00 · 105 4.8 2.00 · 105 4.8
5 · 105 320× 200× 320 300 6.3 5.03 · 105 6.3 4.97 · 105 6.4

106 320× 200× 320 400 8.0 1.01 · 106 7.9 9.90 · 105 8.0
2 · 106 320× 200× 320 500 10.0 2.04 · 106 9.9 1.96 · 106 10.2
5 · 106 320× 200× 320 460 13.5 5.23 · 106 12.9 4.77 · 106 14.2

107 320× 200× 320 300 17.9 1.06 · 107 16.8 9.36 · 106 19.1
2 · 107 320× 200× 320 300 23.1 2.19 · 107 21.0 1.81 · 107 25.5
5 · 107 512× 256× 512 450 31.9 5.68 · 107 28.1 4.32 · 107 36.9

108 512× 256× 512 430 40.6 1.16 · 108 35.1 8.42 · 107 48.2
2 · 108 512× 256× 512 450 51.0 2.36 · 108 43.2 1.64 · 108 62.1
5 · 108 768× 384× 768 287 68.4 5.97 · 108 57.3 4.03 · 108 84.9

109 768× 384× 768 220 85.9 1.20 · 109 71.7 8.02 · 108 107.1
2 · 109 768× 384× 768 200 107.0 2.40 · 109 89.2 1.60 · 109 133.7
5 · 109 768× 384× 768 200 144.6 5.98 · 109 120.9 4.02 · 109 179.8

1010 1024× 512× 1024 155 179.5 1.20 · 1010 149.6 8.00 · 109 224.4

Table 1. Computational parameters and heat transfer: RaR/S , Rayleigh number imposed to
the cavity; Nx × Ny × Nz, mesh size; τ , time period used for statistics in dimensionless time
units; NuR/S , the Nusselt number in the R/S cavity; (RaS , NuS), the Rayleigh and Nusselt
numbers relative to the smooth part of the cavity; (RaR, NuR), idem for the rough part of the

cavity (see eq. 2.3). (1) Note that for Ra 6 2× 105 the flow is stationary.

Poisson’s equation for the pressure is solved by a multi-grid method coupled to the
iterative Successive Over-Relaxed algorithm (Strang 2007). A domain decomposition
method using MPI is implemented, combined to openMP directives to increase the level200

of parallelism. In this context, the Alternating Direction Implicit method is completed by
a Schur decomposition technique. Roughness blocks are not modelled, because we have
defined body-fitted meshes. As a consequence, standard boundary conditions are applied
to all wall boundary conditions, preserving the second order accuracy.

SUNFLUIDH code is a general purpose solver for modelling quasi-incompressible205

fluid flows, like rotating flows with free interface (Yang et al. 2020), turbulent flows
(Derebail Muralidhar et al. 2019) or multi-physics studies (Hireche et al. 2020).

Computations are performed for a large range of Rayleigh numbers (Ra ∈ [105 : 1010])
in order to cover the three heat transfer regimes. Details about the test cases can be
found in table 1. An irregular mesh is constructed for each test case in order to resolve210

the Kolmogorov microscale (η). The mesh size never exceeds 0.55η (or 0.76η) between
blocks (or within the cavity bulk respectively).

The space and time convergence of statistics have been verified by computing the global
Nusselt number from different formulations as proposed by Stevens et al. (2010). This
methodology remains applicable for z > Hp due to the adiabatic sidewalls. The obtained215

values converge with a deviation smaller than 1% around the mean value (NuR/S).

The code SUNFLUIDH has been validated in classic RB configuration beforehand. For
this purpose, simulations have been performed in a fully smooth cavity (called S/S) of
aspect ratio Γy = 0.5 filled with water for Rayleigh numbers up to Ra = 2 · 109, in order
to compare with Kaczorowski et al. (2014) data. A very good agreement is obtained for220

the compensated Nusselt number (NuRa−1/3), as shown in figure 2.
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Figure 2. Compensated Nusselt number as a function of Rayleigh number for the fully smooth
cavity (S/S) and the asymmetric cavity (R/S). The blue line corresponds to the increased
Nusselt number by a factor corresponding to the relative increase of the heat exchange surface
in the (R/S) cavity. Red points refer to DNS results from Kaczorowski et al. (2014).

3. Roughness effect on the global heat transfer

3.1. Global heat transfer measured in the asymmetric cavity

The influence of roughness on the heat transfer is first brought to light by comparing
the responses of a fully smooth cavity (S/S) and of the asymmetric cavity (R/S). The225

effect of the roughness on heat transfer due to the increase of the heat exchange surface
area (Cs × NuS/S) is plotted as an indication. Three regimes of heat transfer clearly
appear for the R/S cavity in the figure 2. (i) A reduction of the Nusselt number NuR/S
comparing with NuS/S is observed at low Rayleigh numbers for one decade in the range
Ra . 106. This phenomenon has already been described experimentally (Tisserand et al.230

2011) or using two-dimensional simulations (Zhang et al. 2018). (ii) For Ra & 108, an
increase of the Nusselt number NuR/S compared to the S/S cavity is obtained, that
exceeds the relative increase due to additional surface induced by roughness blocks as
reported in previous works (Tisserand et al. 2011). (iii) In-between, a transitional regime
is present, corresponding to an enhancement of the heat transfer.235

The following section aims to verify whether the effect of roughness on the heat transfer
of each of the two plates, whether smooth or rough, is the same as that observed in the
asymmetrical cavity.

3.2. Analysis of the scaling laws based on the approach of plates separation

We use the plate separation method to identify respective behaviours of the smooth240

and rough plates, as proposed by Tisserand et al. (2011). The resulting (RaS , NuS) and
(RaR, NuR) (see equations 2.3 and table 1) are plotted in figure 3. First, we note that the
heat transfer on the smooth plate (NuS) follows a single Nu−Ra scaling law. Conversely,
the heat transfer on the rough plate (NuR) clearly presents two changes in the scaling
law, around RaR ∼ 3 · 106 and 1.2 · 108. We note that the critical Rayleigh number245

(Rac = 9 · 106) is in between, which is explainable by the increase in heat transfer in the
presence of roughness.

As a result, three heat transfer regimes can be identified on the rough plate, in
agreement with previous experimental studies (Xie & Xia 2017; Rusaouën et al. 2018;
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Figure 3. (a) Comparison of the Rayleigh-scaling of the Nusselt numbers for the asymmetric
R/S cavity, the smooth S/S cavity or for the rough R and the smooth S plates. (b,c)
Compensated Nusselt numbers. The solid lines correspond to the least-squares fits of the R
plate results for the three regimes: regime I: NuR ∼ 0.078Ra0.34R , regime II: NuR ∼ 0.024Ra0.42R

and regime III: NuR ∼ 0.136Ra0.33R . The shaded area marks the Ra−range of the heat transfer
regime II.

Tummers & Steunebrink 2019). In the regime I, no difference between the rough and the250

smooth plate are distinguishable. In the regime III, the rough plate presents a scaling
law exponent β almost similar to the regime I and close to the classical value 1/3. But
the prefactor α is smaller for regime I than for regime III. In contrast, the regime II
corresponds to an exponent of β ∼ 0.42, indicating an intensified heat transfer. Figure
3-c is used as a basis for setting the limits for regime II. The range of Ra numbers thereby255

determined, will be shaded on all the figures in the rest of the article.
To summarize, roughness enhances the heat transfer either by increasing the exponent

β (regime II) or the prefactor α of the (Nu − Ra) scaling law in the regime III for
simulations up to Ra = 1010. This suggests that the regime II can be seen as a transitional
regime, after which the flow would revert to a classical organization. However, it is worthy260

noted that in Regime III, the overall heat transfer NuR/S is larger than the simple
additional contribution due to the increase in exchange surface area.

Results obtained in the S/S cavity have been added to the figure 3-b for comparison
with the smooth plate (S). Generally speaking, a similar behaviour is observed for NuS/S
and NuS . This result is consistent with previous experimental observations (Tisserand265

et al. 2011; Wei et al. 2014). But we note in regime I that the heat transfer is slighly
reduced by the addition of roughness in the asymmetric cavity when compared to the S/S
cavity, as previously shown by (Tisserand et al. 2011; Zhang et al. 2018). An opposite
effect is observed in the regime III, where NuS is slightly larger than NuS/S . A potential
interpretation is that not only the thermal boundary layers are altered by the roughness,270

but also the dynamics of the bulk flow, as suggested by Wei et al. (2014).

3.3. Comparison with experimental data

Recently, Rusaouën et al. (2018) proposed to make use of the critical Rayleigh number
(Rac) to bring out the effect of roughness on the heat transfer. It is based on the idea
that the transition to the enhanced heat transfer regime (II) occurs when the thermal275

boundary layer thickness δθ becomes of the same size as roughness blocks. The authors
obtained collapsed data, showing the same trend from the reduced heat transfer regime
(I) for RaR < Rac to an increased regime (III), when applied to experiments performed
in asymmetric RB cavitys.

Despite a gap of three Ra−decades between our physical configuration and the dis-280
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Figure 4. Comparison of the normalized heat transfer on the rough plate with experimental
data. NuR is normalized by the Grossmann - Lohse model (NuGL) estimated from (Stevens et al.
2013). DNS data are plotted with red open circles (◦). Symbols correspond to experimental data:
Hp = 2mm in the small cavity (MM M), or the tall R/S cylindrical cavity (◦◦) from Tisserand
et al. (2011); Hp = 4mm in the small cavity (N N) or the tall R/S cylindrical cavity (•••) from
Rusaouën et al. (2018); Hp = 3mm R/S (⊗) and Hp = 8mm S/R (⊕) and Hp = 8mm R/S (∗)
cylindrical cavity with pyramid-shaped roughness blocks from Wei et al. (2014), Hp = 2mm in
a R/S rectangular cavity (���) from Salort et al. (2014).

played experiments, the present DNS results agree well with this physical representation
(figure 4). The figure 4-b retains the reduced variables (NuR/NuGL;RaR/Rac) to com-
pare our DNS data with experiments performed in water. The shape of the experimental
containers are either cylindrical (Tisserand et al. 2011; Wei et al. 2014; Rusaouën et al.
2018) or rectangular (Salort et al. 2014). The roughness is made by square-based blocks,285

except the Wei et al. (2014) set-up, where pyramid-shape blocks are used.
Normalization by the respective Rac for each data set allows to bring together most

results including our numerical data, which fit a similar trend of Nu increase, especially
with Lyon’s data. In particular, the agreement is remarkable during the regime II. This
result was expected, as we use comparable shape and distribution of roughness blocks.290

In contrast, a clear decreasing Nu for RaR/Rac > 102 is reported by Wei et al. (2014),
when using pyramid-shape roughness. This illustrates the potential influence of the 3D
flow dynamics around roughness blocks on the global heat transfer.

4. Contribution of the inner fluid trapped within roughness valleys
to the heat transfer295

The heat transfer regime depends strongly on the pair (Rayleigh number ; height of
roughness blocks), as shown by the unifying aspect of Rac. In the R/S cavity, the vertical
heat flux (Nu) below the roughness height is smaller than its global value (Nu (z < Hp) <
NuR/S) due to the horizontal contribution originated from the vertical surfaces of the
roughness blocks. Conversely, Nu(z > Hp) = NuR/S , because of the adiabaticity of the300

vertical sides of the cavity. This is also valid for NuR, the heat flux in the rough part of
the cavity. Consequently, NuR results from both the dynamics of the thermal boundary
layer above the roughness blocks and the dynamics of the inner fluid trapped within
roughness valleys. The heat flux measured at z = Hp is an indicator of both dynamics.

In order to gain insights into the mechanisms of heat exchange at the roughness height,305

we first focus on the rough heat flux NuR at z = Hp, noted hereafter NuR|Hp
. NuR|Hp

consists of a contribution from the top surface of the solid blocks (NuR|solidHp
), and a

contribution from the fluid interface (NuR|fluidHp
) between the bulk of the cavity and the
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Figure 5. (a) Sketch of the geometric division of the horizontal plane at z = Hp. (b) Separation

of rough heat flux at z = Hp (NuR|Hp) into contribution from the fluid interface (NuR|fluidHp
)

and from the solid surface (NuR|solidHp
).The solid lines correspond to the least-squares fits of the

results on the fluid interface for the three regimes: regime I: NuR|fluidHp
∼ 0.041Ra0.34R , regime

II: NuR|fluidHp
∼ 0.005Ra0.49R and regime III: NuR|fluidHp

∼ 0.072Ra0.34R . The shaded area marks

the Ra−range of the heat transfer regime II.

inner fluid trapped within roughness valleys (see figure 5-a). The heat transfer across the

fluid interface at z = Hp (NuR|fluidHp
) can be divided into two contributions, depending310

on the heat transfer mode, a conductive (NucdR |fluidHp
) and convective (NucvR |fluidHp

) parts.
It leads to the following expression

NuR|Hp
= NuR|solidHp

+NucdR |fluidHp
+NucvR |fluidHp

(4.1)

with

NuR|solidHp
=

1

∆θRAS

∫
Asolid

−∂z〈θ〉Asolid
ds; (4.2)

NucdR |fluidHp
=

1

∆θRAS

∫
Afluid

−∂z〈θ〉Afluid
ds; (4.3)

NucvR |fluidHp
=

1

∆θRAS

∫
Afluid

√
RaR/S 〈wθ〉Afluid

ds, (4.4)

where Asolid (Afluid) is the total area of the top surface of all blocks (of the fluid
interface at z = Hp respectively), i.e. AS = Asolid + Afluid. The notations 〈φ〉A and φ315

stand for the space average over the horizontal surface area A and the time average of
the variable φ, respectively.

4.1. Contributions from solid and fluid zones to the rough heat flux

The figure 5-b compares the evolution of the global rough Nusselt number NuR as a
function of Ra, with Nusselt numbers originated from the top solid surface of the blocks320

and from the fluid interface. First, it is shown that the three regimes of heat transfer
observed on the (RaR − NuR) scaling law come mainly from a change of NuR|fluidHp

.

The three power-law fittings for NuR|fluidHp
are given in the caption of the figure 5. In

agreement with previous 2D DNS or experiments with pyramid-shaped roughness (see
for example Roche et al. (2001); Qiu et al. (2005); Toppaladoddi et al. (2017); Zhu et al.325

(2017)), we obtain a scaling exponent for the regime II close to 1/2 (β = 0.49). In contrast,
NuR|solidHp

is hardly modified by the successive regimes. It can be roughly associated with
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Figure 6. (a) Comparison of the different contributions from the solid surfaceNucdR |solidHp
and

the fluid interface (NucdR |fluidHp
and NucvR |fluidHp

) to the rough heat flux NuR at z = Hp as a

function of the rough Rayleigh number (RaR). The vertical red line marks the critical Rayleigh
number (Rac). (b) Bulk temperature (θbulk) as a function of RaR. The shaded area marks the
Ra−range of the heat transfer regime II.

a single scaling exponent close to β ≈ 2/7 as expected in the hard turbulence regime,
that supposes diffusive thermal boundary layers (Castaing et al. 1989).

As a consequence, the physical mechanisms responsible of the two transitions between330

the successive heat transfer regimes appears being mainly driven by the fluid dynamics
occurring within the valleys. This finding is consistent with manipulating the scaling laws
of heat transfer through roughness wavelength modification (Toppaladoddi et al. 2015;
Xie & Xia 2017; Zhu et al. 2019).

4.2. Contributions of conduction and convection to the rough heat flux335

The heat transfer through the fluid interface depends both on the temperature field
for its conductive part (NucdR |fluidHp

) and on the temperature and velocity fields for its

convective part (NucvR |fluidHp
) (see equation 4.1). The figure 6-a illustrates this dividing.

First, we observe that the three successive heat transfer regimes do not appear clearly
with Ra increasing on this figure. But surprisingly, the critical Rayleigh number (Rac)340

seems to be becoming a significant parameter: when Ra < Rac, the conduction mode
is dominant and the convection mode through the fluid interface negligible, while this
is the opposite when Ra > Rac. A negligible convective heat transfer through the fluid
interface does not mean that the fluid within valleys is at rest, but that the mass exchange
between the valleys and the bulk is negligible. Around Rac, the three contributions to345

NuR are on the same order.
Besides, some specific features can be identified in the regimes I and III, the interme-

diate regime II appearing as transitional with athe competition between the conductive
and convective modes at the fluid interface. In the regime I, NuR|solidHp

and NucdR |fluidHp

share a similar trend (in particular the exponent β of the scaling law in Ra), that is350

compatible with a diffusive boundary layer covering the top of blocks. In the regime III,
the dominance of NucvR |fluidHp

on NuR reveals an intensification of the mass exchange
through the fluid interface. Concurrently, we observe a saturation of the conductive part
of the heat transfer through the fluid interface, that forms a plateau around a constant
value (NucdR |fluidHp

≈ 3.7). This is also the case for the bulk temperature that saturates355

around θbulk ∼ 0.6 in the regime III on the figure 6-b. This figure also demonstrates the
up-down symmetry breaking of the temperature field in regimes II and III.
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The dominance of convection and the saturation of θbulk and NucdR |fluidHp
towards

constant values suggest that the fluid is well mixed in the regime III, within the cavity
bulk but also within the valleys. Considering uniform diffusive boundary layers of similar360

thickness covering the top and bottom walls, a simple thermal balance between the top
and bottom walls gives an estimate of the bulk temperature as

θ∗bulk =
AR θR +AS θS
AR +AS

. (4.5)

The asterisk (∗) marks the theoretical estimate of variable. The above formula gives a
good estimate of θ∗bulk ' 0.59, when compared to the asymptotic value of the figure
6-b. The bulk temperature in the regime III is thus only determined by the roughness365

geometry.
We now explain that it is also the case for NucdR |fluidHp

. At z = Hp, we cannot
consider that the temperature is equal to θbulk due to the inhomogeneity imposed by the
alternating of blocks and fluid interfaces. A fluid layer at an intermediate temperature
(θ∗i ) results from mixing processes occurring above the roughness height. We refer370

hereafter to this layer as the fluctuating rough layer.
In addition, the internal fluid trapped in the valleys can be seen to act as small, well-

mixed RB cells with an overall temperature of zero.
Additionally, the inner fluid trapped inside the valleys can be seen to act as small,

well-mixed RB cells with a bulk temperature equal to the mixing temperature of the375

fluctuating rough layer (θ∗i ). This enables to define a film temperature of the inner
boundary layer of valleys, which goes along the bottom wall, as θ∗f = 1

2 (θ∗i + θR). As a
consequence, the conductive heat flux through the fluid interface exchanges heat between
the fluctuating rough layer at θ∗i and the inner boundary layer at θ∗f , as

Nu∗cdR |fluidHp
=

Afluid
AS∆θR

(
θ∗f − θ∗i

)
Hp

with θ∗i =
Afluid
AS

θ∗bulk +
Asolid
AS

θR . (4.6)

This reasoning leads to a theoretical estimate of Nu∗cdR |fluidHp
' 4.5 for the regime III,380

which is in good agreement with the DNS result. It suggests that, in the regime III, the
global thermal organization of the cavity is fixed by the geometry, with a diffusive and
viscous boundary layers following the geometry of the roughness and a thicker fluctuating
rough layer overlaying roughness, the rest of the cavity being well mixed including the
inner fluid within the valleys.385

5. Effect of roughness on the flow structure

5.1. Boundary layers along the plate centre

In this section, we focus on a restrictive volume of the cavity far from the vertical
side-walls, in order to describe the mean boundary layers developing along the top solid
surface of the blocks, or within the valleys and above. To do this, we retain the spatial390

division methodology of the previous section (in terms of solid or fluid zones), but only
considering eight of the twenty-four blocks located in the centre of the bottom plate, or
their direct fluid neighbourhood. Before focusing on the evolution of the boundary layer
(BL) thicknesses with the heat transfer regimes, we present the space and time averaged
vertical profiles of the temperature and horizontal velocity fields close to the top and395

bottom plates. The horizontal velocity is defined as U =
√
u2 + v2. For clarity reason,

we consider three particular Ra belonging to the three regimes, as shown in the figures
7 and 8.
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Figure 7. Space and time averaged vertical temperature profiles in the solid, fluid and smooth
zones for three particular Ra: (a) Ra = 2 · 106 (regime I) ; (b) Ra = 5 · 107 (regime II) ;
(c) Ra = 109 (regime III). The profile for the smooth zone (in green) has been reflected in
(1− z; 1− θ) allowing the comparison with rough zone profiles. A profile offset by the distance
Hp is plotted for the solid zone with a dashed black line. The red line marks the roughness
height Hp.
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Figure 8. Space and time averaged vertical profiles of the horizontal velocity magnitude
(U =

√
u2 + v2) in solid, fluid and smooth zones for three particular Ra: (a) Ra = 2 · 106

(regime I) ; (b) Ra = 5 · 107 (regime II) ; (c) Ra = 109 (regime III). A profile offset by the
distance Hp is plotted for the solid zone with a dashed black line. The red line marks the
roughness height Hp.

As expected, we observe that the thermal BL located along the block top surface
and the smooth plate becomes thinner with Ra. But surprisingly, in the regimes II and400

III, the temperature profiles above blocks and close to the smooth plate appears to be
similar in near wall region, although the bulk temperature value is not equal to the
mean temperature of plates ((θS + θR)/2). The temperature profile in the fluid zone is
more complicated. In the regime I, a slow decrease of the temperature is observed in the
valleys. In the regime II, the decrease is more pronounced, but with a change of slope405

as z passes through Hp. This slope change illustrates the onset of the convective heat
transfers between the bulk of the cavity and the inner fluid of valleys. In the regime III, the
temperature shows a quasi-plateau in the centre of valleys (see figure 7-c), confirming the
presence of a kind of secondary well-mixed cells within valleys. Similar interpretations
can be drawn for the viscous BL. In particular, in the valleys, the horizontal velocity410

increases with the heat transfer regime, up to presenting a plateau in the regime III that
we can liken to a mean wind (figure 8-c).

As seen above, the temperature distribution and the fluid flow within valleys do not
present a classic BL shape. As a consequence, we consider the displacement thickness
definition, to take into account of inhomogeneity of the temperature and velocity fields,415

especially within the valleys. The definitions of the thermal and viscous BL thicknesses
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Figure 9. Displacement boundary layer thicknesses as a function of Ra and of the
space-averaging zone (smooth, solid and fluid). (a) Thermal thickness δθ, (b) Kinetic thickness
δU . The shaded area illustrates the Ra−range of the regime II. The red line marks the roughness
height (Hp). The black and blue solid lines correspond to the least-squares fits of the results

for the solid and fluid zones δsolidθ ∼ 0.90Ra−0.25, δfluidθ ∼ 0.42Ra−0.17, δsolidU ∼ 0.50Ra−0.21,

δfluidU ∼ 0.28Ra−0.12.
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Figure 10. RMS-based boundary layer thicknesses as function of Rayleigh number Ra and of
the space-averaging zone (smooth, solid and fluid), see equations 5.1 and 5.2 for definition. (a)
Thermal BL thickness δrmsθ measured as the peak of θrms; (b) kinetic BL thickness measured as
the peak of Urms. The red line marks the roughness height (Hp).

(δθ and δU ) are as follows,

δθ =

∫ 0.5

0

( 〈θ〉A(z)− θbulk
θR − θbulk

)
dz (5.1)

δU =

∫ z0

0

(
1− 〈U〉A(z)

U0

)
dz with (5.2)

U0 = max(〈U〉A(z) : 0 6 z 6 0.5) and z0 = z(〈U〉A = U0)

The BL thicknesses can be measured over the smooth plate, but also separately above
the block top surfaces and the fluid interfaces, following the methodology proposed at
the beginning of the present section. Their Ra-dependences are plotted in the figure 9.420

First, we note that a single law (given in the caption of the figure 9) is sufficient to
describe the δθ and δU decreases with Ra over the three heat transfer regimes, once the
spatial division (solid/fluid) is applied. The similarity between the smooth and solid BL,
previously described for three particular Ra in figures 7 and 8, is confirmed. In the fluid
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Figure 11. Temperature fluctuation rms field (θrms) on vertical planes close to the rough plate
for three particular Ra: (a,d) Ra = 2 · 106 (regime I) ; (b,e) Ra = 5 · 107 (regime II) ; (c,f)
Ra = 109 (regime III). (a,b,c) between two rows of roughness blocks y = 0.3125, (d,e,f) at
mid-depth of the cavity y = 0.25).

zone, the decrease of both BL thicknesses (δθ and δU ) is much slower, although it always425

remains larger than the BL thicknesses above the solid and smooth zones. However, it
is noteworthy that the regime II begins with the crossing of δfluidθ with Hp. This is in
good agreement with previous experimental investigations made with different roughness
shapes such as (Du & Tong 2000) using pyramids, (Tisserand et al. 2011; Salort et al.
2014; Xie & Xia 2017) using square based parallelepipeds or with the numerical study430

of Stringano et al. (2006) using grooved plates. Additionally, we observe that the regime

II ends when δfluidU becomes smaller than Hp, which was also observed experimentally
(Xie & Xia 2017).

A second measure of the boundary layer thicknesses (noted δrms) considers the distance
from the wall to the peak of the temperature or horizontal velocity rms-fluctuations. The435

figure 10 illustrates their evolution with Ra. Once again, we divide the rough cavity part
into two parts, the solid zone above the roughness blocks and the fluid zone above the
roughness valleys. As already observed, the smooth and solid δrmsθ and δrmsU follow a
similar trend, with a single scaling law describing the BL thickness decrease whatever
the regime. We note that the thermal BL along the smooth wall remains always slightly440

thicker than the solid one above the roughness blocks. The fluid BL behaves in a different
way. After becoming thinner with Ra in the regime I and II, δrmsθ and δrmsU tend towards
a plateau in the regime III, that corresponds approximately to the roughness height. This
plateau can be interpreted as the signature of a fluctuating rough layer mentioned in the
section 4.2. Moreover, for this regime and the fluid region, a second local maxima can445

be determined in the vertical profiles of temperature and velocity field rms-fluctuations,
that defines a turbulent BL within valleys of a similar thickness to δrmsθ and δrmsU for the
solid region and the smooth plate. It confirms the onset of a turbulent RB convection-like
flow within valleys in the regime III.

5.2. Global flow structure450

The effect of roughness on flow structure is first investigated by considering temper-
ature fluctuations around roughness (see figure 11). We observe that a turbulent layer
develops around roughness in all cases. But, while in the regime I, this layer remains
mainly above roughness, it fills almost entirely the valleys in the regime II. In the regime
III, a less fluctuating small flow takes place within the valleys, with a BL along the455

bottom plate and a turbulent layer around z ∼ Hp, illustrating interactions between the
valley flow and the large scale circulation (LSC). These two layers are responsible of the
two peaks observed in the rms-fluctuations used to define the BL thicknesses displayed in
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(a) (b)
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Figure 12. Instantaneous temperature field for (a) Ra = 2 · 106 (regime I), (b) Ra = 5 · 107

(regime II), (c) Ra = 109 (regime III) and (d) Ra = 1010 (regime III). Isosurface values
correspond to θ = ( 0.2, 0.45, 0.65, 0.8).
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Figure 13. (a) Integral of rms temperature fields over the fluid volume of a half cavity (VR
volume of the rough half cavity ; VS volume of the smooth half cavity). The vertical red line
represents the critical Rayleigh number Rac. (b) Friction coefficient normalized by dissipation
vs Reynolds number. The dashed lines display Re−0.5

U power laws.

figure 10. Additionally, it is noticeable that the temperature fluctuations are particularly
intense in the regime II, when comparing with regimes I and III.460

The figure 12 illustrates how the change in the heat transfer regime modifies plume
organization. A qualitative overview of the iso-contours of instantaneous temperature
shows a number of large hot plumes within the cavity bulk in the regime II (figure 12-b),
while plumes appear more altered by the LSC in the regime III (figures 12-c,d). Moreover,
the asymmetry of the flow seems to appear for regimes II and III.465

A more global point of view can be obtained by considering the spatial average of rms
temperature over a half cavity volume (V = VR or VS), as a function of Ra. As plotted
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in figure 13-a, the asymmetry of temperature rms-fluctuations only occurs in regime II,
where larger values are present on the rough part of the cavity rather than on the smooth
part. But for each half cavity, the maximum value of fluctuations is reached around Rac.470

Unlike regime II, the intensity of θrms is similar on both parts of the cavity in regimes I
and III. These observations are in agreement with the statement of Du & Tong (1998),
that interactions between roughness and LSC enhances the detachment of the thermal
boundary layer leading to extra thermal plumes, but only in the regime II in our case.

Mechanical interactions of the LSC with roughness can be quantified considering the475

friction coefficient expressed as NuRa/(Re3UPr
2), as suggested by Chavanne et al. (2001).

The figure 13-b presents its evolution as a function of ReU , that is the Reynolds number
based on the maximum of the horizontal velocity (

〈
U
〉
). In a similar manner as Nu and

Ra, ReU can be estimated separately for the rough or smooth parts of the cavity. It
is seen that the friction coefficient fits well with the expected Re−1/2 power law, but480

surprisingly with a higher prefactor during the regime II by comparing with regime I and
III. For very large Ra (> 5 ·109), the friction coefficient tends to revert to the scaling law
of the regime I. This can be interpreted as stronger interactions between the flow coming
from the roughness region and the LSC, when the block top is sandwiched between the
thermal and kinetic BL (δθ 6 Hp 6 δU ).485

6. Conclusion

In this paper, we present DNS results of turbulent Rayleigh-Bénard convection in
an asymmetric rough water-filled cavity for five decades in Rayleigh number (Ra ∈
[105 − 1010]). The sizing of the study case has been done to obtain a moderate value of
the critical Rayleigh number (Rac = 9 ·106) based on the roughness height. The primary490

objective was to determine whether the two successive heat transfer regime transitions
can be captured numerically in a same physical set-up. Then, we investigated which
physical mechanisms in the block surroundings can explain the enhanced heat transfer
in regimes II and III.

First, a global description of the heat transfer in the asymmetric cavity R/S is495

discussed. As expected, we have identified three successive regimes of heat transfer:
a thermally resistant regime I where the global Nusselt number (NuR/S) is reduced
comparing with the heat transfer in a perfectly smooth cavity (NuS/S), a transitional
regime II where the heat transfer is particularly intense, and a regime III in which
the increase of NuR/S is larger than relative increase of surface due to roughness. By500

separating the smooth and rough plates, we found only one scaling law (Nu ∼ Raβ) for
the smooth plate, whereas two scaling exponents are associated with the rough plate. In
regimes I and III, we found βR ∼ 1/3, while it get increased to βR = 0.42 in regime II.

In order to highlight the role of the inner fluid trapped within roughness valleys, a
spatial division of the horizontal plane at the roughness height into two contributions is505

applied: one contribution coming from the solid top surface of roughness blocks, and the
second one through the fluid interface between the cavity bulk and the inner fluid. First,
a unique scaling law for the heat transfer on the solid top surface is found whatever the
heat transfer regime. In contrast, the fluid interface appears to drive the heat transfer
along the rough plate NuR. For regimes I and III and the fluid interface, the β exponent510

of the (Nu − Ra) scaling law is around βF ∼ 1/3 while it get increased to βF ∼ 0.5 in
the regime II.

By using the decomposition of the rough Nusselt number (NuR) into conductive and
convective parts, we showed that conduction is the dominant heat transfer mode in
regime I. Convection contribution becomes sufficiently large in regime II to compete with515
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conduction. In the regime III, convection becomes the dominant mode, while heat transfer
by conduction saturates at a specific value. This value as well as the bulk temperature
have been shown to depend only on geometric parameters. It suggests that the flow in the
regime III is organized in terms of two boundary layers flowing along the topography of
the top and bottom plates, and a separate fluctuating rough layer overlaying roughness.520

The rest of the fluid volume can be considered as well mixed including the small fluid
volumes within the roughness valleys.

As the heat transfer is initiated inside the boundary layers, we have investigated the
evolution of their thicknesses by retaining the spatial division in terms of smooth plate,
the solid zone above the top surface of blocks, and the fluid zone located inside the525

valleys and above. Considering the displacement boundary layer thicknesses, it is shown
that the boundary layers above valleys mark the limits of the regime II. As proposed by
Xie & Xia (2017), this regime begins when the thermal boundary layer is thinner than
roughness height and ends when the kinetic boundary layer is thinner than the roughness
height. Concurrently, the boundary layer above blocks behaves like the smooth boundary530

layer, becoming thinner than the roughness height early in the regime I. A measure of the
fluctuating rough layer thickness has been obtained by tracking the peaks of temperature
rms-fluctuations. It points out its presence only in the regime III.

Finally, it is brought to light that the maximum of thermal fluctuations is obtained at
the critical Rayleigh number. The top and bottom half-cavities have the same level of535

thermal fluctuations, except in the regime II where more intense fluctuations are present
in the rough part. This is in agreement with the Du & Tong (1998) interpretation of
extra plumes emissions by roughness, but only for the regime II. More surprisingly, we
found an increase of global friction coefficient in both half-cavities during the regime II,
suggesting larger interactions between roughness and LSC.540

However, these conclusions pertain to a range of moderate Rayleigh numbers due to
the value of the chosen critical Rayleigh number. Further investigations are needed to
clarify the interplay between roughness, LSC and a higher level of turbulence.
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