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The breakup of an interface into a cascade of droplets and their subsequent coalescence
is a generic problem of central importance to a large number of industrial settings
such as mixing, separations, and combustion. We study the breakup of a liquid jet
introduced through a cylindrical nozzle into a stagnant viscous phase via a hybrid
interface-tracking/level-set method to account for the surface tension forces in a three-
dimensional Cartesian domain. Numerical solutions are obtained for a range of Reynolds
(Re) and Weber (We) numbers. We find that the interplay between the azimuthal and
streamwise vorticity components leads to different interfacial features and flow regimes
in Re-We space. We show that the streamwise vorticity plays a critical role in the
development of the three-dimensional instabilities on the jet surface. In the inertia-
controlled regime at high Re and We, we expose the details of the spatio-temporal
development of the vortical structures affecting the interfacial dynamics. A mushroom-
like structure is formed at the leading edge of the jet inducing the generation of a liquid
sheet in its interior that undergoes rupture to form droplets. These droplets rotate inside
the mushroom structure due to their interaction with the prevailing vortical structures.
Additionally, Kelvin-Helmholtz vortices that form near the injection point deform in the
streamwise direction to form hairpin vortices, which, in turn, trigger the formation of
interfacial lobes in the jet core. The thinning of the lobes induces the creation of holes
which expand to form liquid threads that undergo capillary breakup to form droplets.

1. Introduction

The breakup of a dispersed fluid in a stagnant phase is a classical problem in multiphase
flows, as it encompasses a multitude of interfacial singularities, which exemplify situations
wherein the interface undergoes topological transitions, e.g., liquid-threads breakup into
drops, and merging of drops/bubbles due to coalescence. These transitions involve the
development of singularities where interfacial distances vanish and velocity fields diverge,
and the system is controlled by a combination of capillary, inertial, and viscous forces. The
complex topological nature of the jet phenomenon has fascinated the scientific community
for decades which has led to numerous, comprehensive reviews, see for example Lin &
Reitz (1998); Eggers & Villermaux (2008); Lasheras & Hopfinger (2000).

† Email address for correspondence: o.matar@imperial.ac.uk
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Jet breakup is influenced by a range of multi-scale physics; these include the interaction
of turbulence with interfaces (creating cascades of motion featuring a large separation of
scales), capillarity, potentially complex rheology, the presence of fields (e.g. gravitational,
electromagnetic), as well as heat transfer and phase change. Reitz & Bracco (1986)
proposed four jet breakup regimes depending on the appearance of the jet far downstream
from the injection point. In the ‘Rayleigh regime’, the onset of breakup is the Rayleigh-
Plateau instability, in which the growth of the linear modes on the jet-surface leads to
the formation of large droplets with respect to the jet-nozzle. In the ‘first/second wind-
induced’ regime the resulting droplets have roughly the same scale or smaller as the
jet-nozzle. Finally, in the ‘atomisation regime’, the generated turbulence helps to create
spatio-temporal chaos resulting in droplets which are up to four orders of magnitude
smaller than the size of the injection nozzle. The physics of droplet generation in turbulent
jets remains partially-understood despite the significant scientific attention it has received
over the years (Dombrowski et al. 1954; Hoyt & Taylor 1977; Lasheras & Hopfinger 2000;
Marmottant & Villermaux 2004; Villermaux et al. 2004; Eggers & Villermaux 2008). The
rest of this introduction aims to provide an up-to-date summary of the experimental and
numerical efforts to study the jet breakup phenomenon.

The ground-breaking experiments of Hoyt & Taylor (1977) and Taylor & Hoyt (1983)
showed the complex topological features of the surface waves formed on the jet. They
revealed that these waves are responsible for the transition from laminar to turbulent
flow, and found underlying similarities of the occurring instabilities to inviscid linear
theory. Marmottant & Villermaux (2004) with their pioneering experiments scrutinised
the various stages of the jet dynamics: from the growth of linear modes (through a Kelvin-
Helmholtz instability) that characterises the early-time dynamics, to the development of
nonlinearities leading to ‘primary’ and subsequent ‘secondary’ breakup events (through
long filament pinchoff modulated by a Rayleigh-Taylor instability), and the formation of
a cascade of droplet sizes. These authors found that mean droplet-size is proportional to
the wavelength selected during the RayleighTaylor instability (also observed by Varga
et al. (2003)). In the same premise, Kooij et al. (2018) showed that the droplet size
distribution is also a function of the nozzle geometry and the surrounding pressure.
More recently, Ibarra et al. (2020) presented the results of an experimental study of the
spatial evolution of turbulent immiscible liquid-liquid jets; however, a detailed account of
the spatio-temporal development, and critical mechanisms leading to droplet generation
remains outstanding.

The multi-scale nature of the flow, and the complex interfacial topology complicate the
experimental scrutiny of the different physical mechanisms occurring across the scales.
Thus, elucidating the fundamental physics of this problem has also relied on high-
fidelity simulations exemplified by the work of Ménard et al. (2007); Desjardins et al.
(2008); Gorokhovski & Herrmann (2008); Desjardins & Pitsch (2010); Shinjo & Umemura
(2010); Herrmann (2011); Chenadec (2012); Desjardins et al. (2013); Jarrahbashi et al.
(2016); Ling et al. (2017); Agbaglah et al. (2017); Zandian et al. (2018); Ling et al.
(2019); Zandian et al. (2019). The first step towards the use of numerical simulations
to understand the physical mechanisms at play was conducted by Desjardins & Pitsch
(2010), who were able to identify a sequence of essential steps during the spatio/temporal
interfacial development of a planar liquid jet-segment: the formation of initial corruga-
tions on the surface, followed by the development of ligaments whose capillary instability
leads to droplet formation. They also showed that the early interfacial corrugations are
a consequence of the turbulent eddies which carry enough kinetic energy to overcome
capillary forces.

Using a similar approach to Desjardins & Pitsch (2010), but for a cylindrical liquid
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jet-segment surrounded by an outer gas phase, Jarrahbashi et al. (2016) provided a
comprehensive study of the flow structures in terms of the vortex-surface interaction.
They showed that ‘hole formation’ of a liquid-sheet is an essential requirement to
trigger the formation of droplets, and the thinning of the liquid-sheet is driven by the
superposition of hairpin-vortices near the interface rather than by capillarity action.
Similar findings have been reported for a planar liquid jet-segment surrounded by an
outer gas phase Zandian et al. (2018), and for the transient dynamics of a cylindrical
liquid jet surrounded by a coaxial air phase Zandian et al. (2019). Ling et al. (2017, 2019)
performed simulations of a two-phase mixing layer between parallel gas and liquid streams
to investigate the interfacial dynamics, and the statistics for the multiphase turbulence.
They also observed that the formation of ligaments, and subsequently-formed droplets,
are triggered by the hole-induced perforation of the liquid sheets.

In the previous numerical studies, interface-capturing capabilities were used to account
for the surface tension forces in the absence of intermolecular forces (i.e., disjoining
pressure). For static sheets, the disjoining pressure is neglected as the minimum com-
putational cell is larger than the film sheet thickness in which the intermolecular forces
will drive its perforation. Therefore, the hole formation is an outcome of the numerical
cut-off interfacial length scale, i.e., minimum mesh size (O(10−6)m). Nevertheless, recent
experiments (Kooij et al. 2018; Marston et al. 2016; Néel & Villermaux 2018) demonstrate
the existence of hole formation in dynamic sheets with a characteristic film thickness on
the order of microns.

In this study, we aim to provide a comprehensive explanation of the physical mecha-
nisms governing the interfacial dynamics of turbulent jets focusing on the less well-studied
liquid-liquid systems. We will perform high-resolution three-dimensional direct numerical
simulations using a hybrid interface-tracking/level-set approach to resolve the interfacial
dynamics. We will demonstrate how the interaction between the vortical structures, which
accompany the development of the flow, and the interface influence the mechanisms
underlying droplet generation over a wide range of Reynolds and Weber numbers.

The rest of this paper is organised as follows. In Section 2, we present the governing
equations along with the numerical technique used to carry out the simulations. In Section
3, we begin with the presentation of a regime map in Re − We space, classifying jet
spatio-temporal development, followed by an in-depth discussion of the vortex-surface
interactions linked to the topological changes; in addition, we elucidate the role of hole
formation as a precursor to droplet generation. Finally, concluding remarks are provided
in Section 4.

2. Problem formulation, and numerical techniques

Figure 1 shows a three-dimensional representation of the interface highlighting several
specific features that are discussed in detail in the present work: Kelvin Helmholtz (KH)
waves close to the injection nozzle, outer lobes formed on the main body of the jet,
a leading edge ‘mushroom’-like structure, and droplets resulting from the atomisation
process. The numerical framework is based on solving the two-phase incompressible
Navier-Stokes equations in a three-dimensional Cartesian domain x = (x, y, z). The
surface tension force in the momentum equation is treated by using a hybrid front-
tracking/level-set method presented by Shin & Juric (2002). The governing flow equations
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Figure 1: Injection of a turbulent water jet into a stagnant silicone-oil phase. Three-
dimensional representation of the interfacial shape for Case 4 of table 2 (i.e., Re = 6530
and We = 303) at t = 28.97 with definitions of particular regions and specific features
discussed in this work.

in the ‘one-fluid’ formulation are described by

∇ · u = 0 ,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · µ(∇u +∇uT ) + Fs ,

(2.1)

where t, u, p, and Fs stand for time, velocity, pressure, and the surface tension force,
respectively. The density and viscosity are expressed using the following formulation

ρ = ρ
so

+ (ρ
w
− ρ

so
)H (x, t),

µ = µ
so

+ (µ
w
− µ

so
)H (x, t).

(2.2)

wherein H (x, t) represents a smoothed Heaviside function, which is zero in the dispersed
phase (water) and unity in the stagnant phase (silicone-oil), while the subscripts ‘w’ and
‘so’ refer to the individual phases. The surface tension force Fs is defined by using the
hybrid formulation as in Shin & Juric (2009) and Shin et al. (2017)

Fs = σκH∇H, (2.3)

where σ refers to surface tension, and κH is twice the mean interface curvature calculated
from the the Eulerian grid by using

κH =
FL ·G
σG ·G, (2.4)

where

FL =

∫
Γ (t)

σκnδ(x− xf )ds, G =

∫
Γ (t)

nδ(x− xf )ds. (2.5)

Here, xf is the parametrisation of the interface, Γ (t), and δ(x − xf ) is a Dirac delta
function which vanishes everywhere except at the interface; n is the outward-pointing
unit normal vector to the interface, and ds is the length of the surface element.

The incompressible Navier-Stokes equations (2.1) are solved by using a second-order
finite-difference method on a staggered grid (Harlow & Welch 1965; Temam 1968). The
computational domain is then discretised by a fixed, regular, Eulerian grid, and the
spatial derivatives are approximated by standard centred difference discretisation, except
for the non-linear term, which makes use of a second-order essentially non-oscillatory
(ENO) scheme (Sussman et al. 1994). As for the viscous term, we use a second-order
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Table 1: Density and viscosity of the fluids used throughout this work (Ibarra 2017).

ρw ρso µw µso

kg/m3 kg/m3 mPa.s mPa.s
998 824 1.0 5.4

centred difference scheme. We have used the projection method to handle the incom-
pressibility condition combined with a multigrid iterative method for solving the elliptic
pressure Poisson equation (Chorin 1968; Kwak & Lee 2004). The numerical method
uses an additional adaptive Lagrangian grid based on a hybrid front-tracking/level-
set method (Shin & Juric 2007; Shin et al. 2017) to track the interface location. The
geometrical information, the pressure and velocity variables are exchanged between
the adaptive Lagrangian mesh and the fixed Eulerian grid following the Immersed
Boundary Method of Peskin (1977). The physical elements that form the Lagrangian
interface are advected according to dxf/dt = V, where V is the interface velocity
interpolated numerically from the fixed Eulerian grid, using a second-order Runge-
Kutta method. Finally, the numerical method uses a domain-decomposition technique
for its parallelisation and Message Passing Interface (MPI) for exchanging information
between adjacent subdomains. More information regarding the full implementation of
the numerical method can be found in Shin et al. (2017, 2018)

2.1. Numerical configuration and physical parameters

Figure 1 shows the three-dimensional computational domain, which is a rectangular
box of size 20D × 4D × 4D, where D stands for the inner diameter of the nozzle (e.g.,
4mm). The jet is produced when water leaves the cylindrical nozzle to enter progressively
into the stagnant silicone oil. The physical properties of the fluids are given in table 1.
An inflow boundary condition is applied to the nozzle on the left of the domain, i.e., at
(x = 0), which follows a simplified power-law turbulent velocity profile:

u (r, t) =
15

14
U

(
1−

(
r

D/2

)28
)

(1 +A sin (2πft)) . (2.6)

Here, U , A and f , stand for the average injection velocity, amplitude and frequency,
respectively, of the external pulsatile perturbation. The radial distance, r, within the jet

measured from its centreline (y0, z0) is r =

√
(y − y0)

2
+ (z − z0)

2
. The values for A and

f are informed by the previous work of Ling et al. (2015) (e.g., A = 0.05 m/s and f = 20
Hz). The numerical setup closely follows other computational studies; for example, we
impose a free boundary condition on the walls of the computational domain to let the
fluid freely enter or leave the boundaries (Taub et al. 2013; Ling et al. 2015, 2019). A
pressure outflow boundary condition is applied on the right surface of the domain to
allow the fluid to exit the domain. The solid nozzle is treated as a no-slip surface (Asadi
et al. 2018).

The distance x, velocity u, time t, and pressure p in equation (2.1) are rendered di-
mensionless using the following characteristic scales, D, U , D/U , and ρwU

2, respectively.
Hence, the dimensionless control parameters governing the phenomena we will study are
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Table 2: The Reynolds-Weber number combinations for the four cases studied in detail
with the M3-mesh (see table 4 in the Appendix).

Case Re We
1 1000 30
2 1000 100
3 3260 75
4 6530 303

given by:

Re =
ρwUD

µw
, We =

ρwU
2D

σ
, (2.7)

where Re stands for the Reynolds number (i.e. the ratio of inertial to viscous forces), and
We represents the Weber number (i.e. the ratio of inertial to capillary forces). All the
variables appearing in the equations and boundary conditions are rendered dimensionless
using the aforementioned scalings, unless stated otherwise.

The first part of the results section corresponds to a discussion of a regime map of jet
dynamics in the Re−We space. In this instance, we have used the M2-mesh (see table
4 in the Appendix) to perform the fully three-dimensional simulations. The selection of
this mesh is dictated by the need to map out parameter space relatively rapidly before
focusing on elucidating the details of the dynamics using the M3-mesh, which provides
higher resolution, for four cases; the Re−We combinations for these cases are listed in
table 2. Information regarding the mesh-refinement study, resolution considerations, and
the validation for this work are detailed in the Appendix.

3. Results

3.1. Interfacial dynamics: phase diagram in Re−We space

We start the discussion of the results by presenting a phenomenological picture of
the interfacial dynamics in a phase diagram in Re − We space. The Reynolds and
Weber numbers range between 103 − 104 and 30 − 900, respectively. Figure 2 shows
the regime map in terms of the interfacial dynamics predicted from our numerical
simulations. Several features emerge from this figure, which we have divided into four
phenomenological regions based on the appearance of the interfacial structures. We aim
to quantify the different jet behaviours by close inspection of the interplay between the
vorticity field, ω = ∇×u, and the interface. Such in-depth analysis is carried out following
the introduction of each region, utilising the higher resolution M3-mesh examples, as
shown in table 2.

Region ‘A’ in figure 2 is characterised by low Reynolds and Weber numbers and defined
by the dominance of the capillary over inertial forces, yielding an axisymmetric behaviour
of the jet. The formation of neither a leading mushroom-like structure nor interfacial
lobes is observed. Figure 3 shows the interplay between the azimuthal and streamwise
vorticity components, ωθ and ωx, respectively for Case 1 (see table 2). We observe that
ωθ exceeds ωx by two orders of magnitude for the entirety of the jet, which explains the
lack of deformation of the jet-core, and its axisymmetric shape. Region ‘B’ is defined
by low Reynolds and high Weber numbers. As shown in figure 2, the snapshots of the
interface in this region of parameter space reveal the development of interfacial waves as
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Figure 2: Regime map of the phenomenological interfacial dynamics in the Re-We space
using the M2-mesh (see table 4 in Appendix for mesh details). Four different regimes
and their boundaries are identified. A snapshot of the flow corresponding to the three-
dimensional representation of the interface for each simulated point (i.e., black marker)
is shown. The red squares refer to the cases presented in table 2.

KH vortices
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Figure 3: Two-dimensional representation of the interfacial location together with ωθ
(top panel) and ωx (bottom panel) in the x − z plane (y = 2) for Case 1 in table 2
(Re = 1000 and We = 30) at t = 24.38. The colour represents the respective vorticity
field, where appropriate scales are shown in each panel.
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Figure 4: Two-dimensional representation of the interfacial location together with ωθ
(top panel) and ωx (bottom panel) in the x − z plane (y = 2) for Case 2 in table 2
(Re = 1000 and We = 100) at t = 26.87. The colour represents the respective vorticity
fields, where appropriate scales are shown in each panel.
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Figure 5: Two-dimensional representation of the interfacial location together with ωθ
(top panel) and ωx (bottom panel) in the x − z plane (y = 2) for Case 3 in table 2
(Re = 3260 and We = 75) at t = 24.65. The colour represents the respective vorticity
fields, where appropriate scales are shown in each panel.

well as the formation of a ‘mushroom’-like structure at the jet leading edge. This is due
to the large capillary pressure generated as a result of the interfacial curvature at this
leading edge, which induces radial flow that is retarded by the viscous resistance from the
stagnant phase. Figure 4 shows that although the magnitude of ωθ exceeds that of ωx by
almost two orders of magnitude for Case 2, the relative significance of ωx has increased
in comparison with Case 1. This is correlated with the corrugations which are observed
on the main body of the jet in Case 2 that appear to be largely absent in Case 1. These
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corrugations are related to the development of Kelvin-Helmholtz (KH) instabilities that
arise from the velocity difference between the injected jet and the surrounding, initially
stagnant phase.As shown in figure 4, the mushroom structure is also accompanied by
the formation of droplets within it. More information regarding the mechanisms which
induce droplet formation is provided in Section 3.3.

Region ‘C’ is characterised by low Weber and high Reynolds numbers. To elucidate
the mechanisms at play in this region, we refer to Case 3 (see table 2), as shown in
figure 5. It is seen clearly that the magnitude of ωθ is an order of magnitude larger
than that of ωx. The higher levels of inertia in Case 3, in comparison to Case 2, leads
to formation of pronounced KH instabilities with vortical rings close to the interface,
yielding spanwise interfacial deformations. Close inspection of figure 5 reveals that the
mushroom structure, which is also present in Case 3, undergoes significant deformation
leading to the formation of a toroidal sheet, which envelopes that main body of the jet.

In region ‘D’, the flow is characterised by both high Reynolds and Weber numbers.
Here, it is seen from the snapshots of the interface in figure 2 that the interfacial dynamics
in this region of Re−We space are the most complex. The mushroom structures suffer
severe deformation as does the main body of the jet which also features the formation
of lobes arising from the KH-induced corrugations. It is also evident that flow in region
D is also accompanied by droplet generation. In Section 3.2 below, we focus on Case
4 in figure 2 and provide an extensive explanation of the mechanisms linking droplet
formation to vortex-interface interaction.

3.2. Interfacial dynamics explained through vortex-surface interaction

This section focuses on the inertia-controlled Region D and Case 4 as a principal
example of the flow in this region. In figure 6, we examine the spatio-temporal interfacial
dynamics overlaid with the magnitude of ωθ and ωx in the x− z plane. During the early
stages of the injection, the mushroom-shape structure develops due to the capillary-driven
radial flow arising from the large interfacial curvature at the jet leading edge, which is
resisted by the stagnant phase. As time evolves, the entrainment and formation of a
toroidal liquid sheet of stagnant phase are observed inside the mushroom structure (see
for example figure 6a,b). Upstream of the mushroom, it is seen that the KH instability
develops (see figure 6c) amplified by the pulsatile-injection into waves which cause a local
adverse pressure gradient by virtue of the local interfacial curvature (see figure 6d). With
increasing time, we observe the formation of outer lobes as a result of the entrainment
of the stagnant phase in the jet-core (see figure 6e).

Figure 6 also highlights the spatio-temporal development of the azimuthal and stream-
wise components of the vorticity. At early times, vorticity generation coincides with the
velocity boundary layer attached to the interface, which corresponds to strong tangential
flow near the interface. The roll-up of the shear layers, and subsequently, the vortex roll-
up gives rise to the formation of KH vortex rings close to the interface (see figure 6c). As
time increases, the vorticity boundary layer is convected towards the jet-core (see figure
6e). Additionally, vorticity dissipates strongly in the stagnant phase due to the damping
effect of the viscosity.

Attention is now turned towards the competition between ωθ and ωx. In the region
adjacent to the injection point, the azimuthal vorticity component dominates over its
streamwise counterpart by two orders of magnitude; this dominance is reflected by the
fact that the KH vortex rings shown in figure 6c are essentially axisymmetric. As the
flow develops downstream (see figure 6d,e), ωx becomes comparable in magnitude to ωθ
leading to streamwise stretching of the KH vortex rings to form hairpin-shaped vortices.
Hairpin vortical or ‘horseshoe’ structures were proposed by Theodorsen (1952) to describe
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t = 2.04 t = 4.07 t = 6.03

(a) (b) (c)
t = 7.33 t = 10.10

(d) (e)
t = 28.97

(f)

Figure 6: Two-dimensional representation of the spatio-temporal evolution of the
interface for Case 4 in table 2 (Re = 6530 and We = 303) together with ωθ (top panel
of each sub-figure) and ωx (bottom panel of each sub-figure) in the x− z plane (y = 2)
for the dimensionless times shown in each panel. The colour represents the respective
vorticity fields, where appropriate scales are shown in each panel.
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(a)

A B C D E

(b)

(c)

Figure 7: Three-dimensional representation of the interface for Case 4 (Re = 6530 and
We = 303) at t = 28.97, showing the spatial locations ‘A’-‘E’, (a). The streamwise
location of the ‘A’-‘E’ probe lines correspond to x = (1.50, 2.50, 2.75, 4.25, 5.25),
respectively. (b) Velocity (top panel) and vorticity profiles (middle panel) in the y = 2
plane for each probe location. (c) Streamwise vorticity in the y − z plane for each
sampling location. The arrows show examples of identified hairpin-vortex legs. Solid
and dashed arrows correspond to inner and outer hairpin vortex legs, respectively. The
colour represents the streamwise vorticity field, ωx.

the features of turbulence dynamics related to the existence of a shear or boundary layer
near a wall. A hairpin vortex is made from a ‘vortex-head’ which is the arched region
farther away from the boundary layer. The head is connected to the free surface or wall by
its ‘vortex-legs’. The hairpin-head orientation results from a balance between the effect
of shear flow and the local velocity.

Interestingly, the streamwise alignment of hairpin vortices near the surface (see figure
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Figure 8: Illustration of the coherent vortical structures close to the interface for Case 4
(Re = 6530 and We = 303) at t = 28.97. The coherent vortical structures are visualised
by the Q-criterion with a value of Q = 0.1, where the colour represents the streamwise
vorticity field, ωw. Magnified views of the KH-vortex rings near the injection point, and
the hairpin-vortical structures in the jet core are also shown.

6e,f) has been reported previously by Jarrahbashi et al. (2016) and Zandian et al. (2018)
for coaxial round and planar jets, respectively. In spite of the absence of a coaxial
phase in our case, we observe the same phenomenon. Additionally, we observe the
successive alignment of opposite-signed vortices, where the angle between each vortex
pair is determined by the induction effect of the opposite-signed ‘neighbour’ vortex.
Similar arrangement of vortices has been reported previously by Jeong et al. (1997) for
boundary layer turbulence, and Davoust et al. (2012) for compressible homogeneous jets.
Further details about the specific alignment of the vortical structure is provided below.

Figure 7a presents a three-dimensional representation of the jet at t = 28.97 alongside
five spatial locations which will be used to show the evolution of vorticity and velocity
across the jet core. The specific locations were chosen as follows: panel ‘A’ is represen-
tative of the dynamics near the injection point, where there is little disturbance to the
interface; panel ‘B’ displays the cross-section of the jet in a jet-ring (i.e., the part of the
interface where we observe the capillary wave crest), whereas panel ‘C’ depicts a jet-braid
(i.e., the capillary wave trough); panels ‘D’ and ‘E’ portray the jet core dynamics where
lobe formation is present. Figure 7b shows the velocity and vorticity line profiles at the
y = 2 plane alongside the streamwise vorticity in the y−z plane for each of those locations.
Near the injection point (location ‘A’), ωθ >> ωx, which is in agreement with the lack of
deformation of the vortical structures in the streamwise direction (see also figure 6f). The
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tangential motion of the fluid close to the surface results in the emergence of the velocity
boundary layer. In turn, this causes the formation of two large peaks of opposite signs for
ωθ. As the flow evolves downstream, ωθ still dominates the physics, although, its value
has been reduced in favour of an increase in ωx, and consequently the local formation of
corrugations on the jet-core (location ‘B’). Additionally, the ωθ peaks have widened in
their base due to the growth of the velocity boundary layer as the jet moves downstream
(Liepmann & Gharib 1992). Further downstream (location ‘D’ and ‘E’), the interface has
lost its cylindrical shape due to the entrainment of the stagnant phase as ωx becomes
comparable in magnitude to ωθ. Several peaks can be seen in the vorticity profiles as the
probe line passes through several lobes. By inspecting the instantaneous velocity-fields
in locations ‘D’ and ‘E’, we observe that the main component of velocity is associated
with the direction of injection, where there is a decay of its mean centreline value as flow
evolves downstream, which is in agreement with Pope (2000) for single-phase jets. The
velocity decay leads to a reduction in the velocity difference between the injected and
stagnant phases, which attenuates the interfacial shearing, supporting the development
of the vortical rings close to the surface of the jet. Notice that the y and z velocity-
components are positive or negative close to the surface, showing the entrainment of
injected fluid towards the stagnant viscous phase or vice versa.

Next our attention is turned towards the physical mechanisms which lead to the
alignment of the hairpin-like vortical structures along the free-surface. Figure 7c shows
cross-section panels with ωx of the jet at the streamwise locations shown in figure 7a. As
depicted in panel ‘A’, ωx is mainly confined inside of the injected stream, where hairpin
vortex legs are observed (see first panel of figure 7c). In panel ‘B’, the outer layer of
vorticity comes from the braid located immediately downstream, which starts to roll-up
around the ring. Further analysis of panel ‘B’ shows the existence of additional pairs of
vortex legs which are 180◦ out-of-phase with respect to the inner layer, and subsequently
they correspond to a second hairpin vortex layer with opposite direction (e.g., upstream
direction). Similarly, in panel ‘C’ we observe that the inner layer of the vorticity comes
from the ring located upstream, whereas the outer layer comes from the ring located
immediately downstream. Therefore, we can conclude that the alignment of the hairpin
vortices is a result of the existence of a vortex-induction mechanism which causes the
reorientation of vortical structure within the ring and braid skeleton. This phenomenon
is in agreement with Brancher et al. (1994) for homogeneous jets, Jarrahbashi et al.
(2016) for the coaxial atomisation of a round liquid jet, Zandian et al. (2018) for coaxial
atomisation of planar jets, and Bernal & Roshko (1986) for plane mixing layers. The
analysis between the panels ‘B’ and ‘C’, can be extended to other locations of the jet
where the core has undergone further interfacial development. For example, in panels ‘D’
and ‘E’ we observe the same distribution of inner and outer layer of hairpin vortex legs.
The alignment of vortical structures has a detrimental effect on the interfacial dynamics,
which will be shown in section 3.3.

Additionally, we have used the Q-criterion to present a three-dimensional visualisation
of the vortices in the present study. The Q-criterion was described by Hunt et al. (1988)

as a quantity which measures the dominance of vorticity ω over strain s, Q = 1/2(‖ω‖2−
‖s‖2). Figure 8 shows the spatial development of the coherent structures for Q = 0.1.
Near the injection point, axisymmetric KH vortex rings are located close to the surface
(a magnified view is shown). As explained previously, when ωx and ωθ are of comparable
magnitude, the KH vortices are stretched downstream or upstream. The topological shape
of these vortical structures resembles the instantaneous hairpin-like vortical structures
reported in experiments and numerical simulations by Head & Bandyopadhyay (1981);
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Figure 9: Three-dimensional representation of the surface of the jet for Case 4 (Re = 6530
and We = 303) at t = 28.97 showing the spatial formation of outer lobes. The colour
represents the streamwise vorticity field, ωx.

Zhou et al. (1999); Zandian et al. (2018). Outer hairpin vortices (a magnified view is
also shown) are observed clearly and the inner hairpin vortices not as clearly as they
are localised underneath the interface. Further downstream, we observe the presence of
a ‘cap-vortex’ covering the mushroom-like structure. Inside of this structure, the vortices
are unstable and break down.

To conclude, we have identified three different zones in the transient flow field which
are associated with different vortical dynamics. We present the different regions at
t = 28.97 (see figure 8). Zone 1 starts from the injection point and extends up to the
deformation of the free-surface (x ∼ 1.8). This zone is characterised by the dominance of
ωθ. Zone 2, which extends from x ∼ 1.8 up to x ∼ 11.5 (e.g., behind the mushroom-like
structure). This region is characterised by the interfacial deformation of the jet-core by
KH vortex rings and their posterior deformation by the competition between ωx and
ωθ. As the flow moves downstream, ωx becomes responsible for the entrainment of the
stagnant phase to form interfacial lobes (this agrees with Liepmann & Gharib (1992) for
homogeneous jets). In this region, vortex rings pair up and merge together. Additionally,
the ending of the visible-potential core of the jet and the beginning of the mixing region
is also observed. Zone 3, expands from the end of zone 2 up to the leading edge of the
mushroom-like structure. A large vortex-ring dominates the dynamics in this region (so-
called ‘cap-vortex’, Zandian et al. (2019)), wherein its interaction with upstream vortex
structures via means of velocity induction leads to the formation of the neck, connecting
the mushroom-like structure with the cylindrical body of the jet. The narrowing of the
neck as a result of the streamwise convection of vortical structures is in agreement with
the work of Asadi et al. (2018).
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Figure 10: Three-dimensional representation of the interface showing the spatio-temporal
evolution of the formation of droplets via the stretching of the outer lobe for Case 4
(Re = 6530 and We = 303). Dimensionless times are shown in each panel.

3.3. Cascade mechanism for droplet formation: hole-formation genesis

In the previous section, we discussed the vortex dynamics of the transient jet. This
section focuses on the effect of vortices on the formation of inner/outer lobes, the thinning
of which leads to genesis of droplets. Figure 9 shows a close view of the interfacial jet
dynamics where outer lobes are present. The formation of lobes is observed along the
spanwise direction of the jet. Close inspection of the interface shows it has assumed the
shape of the surrounding hairpin vortical structures, where a change of the vorticity
direction is observed for subsequent lobes (similar observations have been made by
Jarrahbashi et al. (2016); Zandian et al. (2018)). Consequently, the alignment of the
hairpin vortices induces the thinning of the outer lobes, leading to formation of holes,
which expand and eventually give rise to droplets.

Figure 10 shows the temporal stretching of an outer lobe to form a ligament, and
eventually droplets. The ligament orientation is linked to the vortical structures, as
suggested above. A bulbous-tip is formed at the edge of the ligament driven by capillarity.
The ligament posterior breaks at its base due to thinning then retracts under the action
of surface tension forces to form droplets from both its up- and downstream ends an
end-pinching mechanism (Notz & Basaran 2004). The characteristic radial length scale
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Figure 11: (a) Three-dimensional representation of the interface for Case 4 (Re =
6530 and We = 303) at t = 7.33 showing a selected region in the jet core
where inner lobes will form, together with two probe locations in the leading-
edge structure, where the arrows indicate the direction of the view. (b-k) Cascade
mechanism for the formation of entrapped droplets within the jet core at t =
(8.84, 9.96, 10.10, 10.92, 11.36, 11.41, 12.06, 13.61, 16.38), respectively. (l) Illustration of
the entrapped-droplets inside of the mushroom-like structure at t = 7.33 from the back
(probe ‘A’) and front (probe ‘B’) of the structure, respectively. A magnified region of the
structure is also shown to illustrate the hole-formation behind the rim-edge.
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Figure 12: Three-dimensional representation of the interface for Case 4 (Re = 6530
and We = 303) at dimensionless times shown in each panel. A magnified region of the
structure is also shown to illustrate droplet-droplet coalescence and the droplet-rotation
inside of the leading-edge structure.

of the ligament is influenced by the external velocity field, the ratio of densities, and the
surface tension. The ligament is characterised by having a small thickness prior to its
detachment from the base. However, the droplets formed after the breakup process have
a larger length scale (in agreement with Villermaux (2007)).

Figure 11 shows the formation of droplets inside the jet core, and the mushroom
structure. Specifically, figures 11b-k depict the formation and elongation of the inner lobe
in the streamwise direction. As before, the stretching of the interface gives rise to a thin
sheet as a result of the mutual induction of neighbouring hairpin-vortices. The hairpin
vortex located above the liquid sheet induces flow downwards, whereas the vortex located
under the sheet induces flow upwards. Under the joint action of the vortical structures,
the liquid sheet thins until it is perforated (see figure 11e). Following the formation of
the hole, retraction of the liquid sheet is radially driven by capillarity (see figures 11f
and 11g), and as shown in figure 11i, it subsequently gives rise to the formation of a
curved liquid thread or ligament. Once more, ligament retraction is driven by capillarity
where bulbous ends that form initially undergo ‘end-pinching’ to form smaller droplets, as
shown in figures 11j-k. The inertia-induced mechanism for the sheet-thinning presented
here has been previously reported by Jarrahbashi et al. (2016).

The analysis will now focus on the dynamics underneath the mushroom-like structure.
Figure 11 shows entrapped droplets inside of the leading-edge structure. The formation
of these droplets is also linked to the interfacial rupture of the toroidal liquid sheet. The
liquid sheet retracts driven by surface tension to accumulate liquid in a rim at its edge.
The rim experiences a spanwise destabilisation (i.e., Rayleigh-Plateau type), which leads
to a non-uniform rim-radius. The film retraction is also accompanied by the formation
of interfacial capillary waves that precede the rim. The capillary waves vary the film
thickness, and consequently induce the perforation of the film adjacent to the rim in
regions where the film thickness is sufficiently small (in agreement with Mirjalili et al.
(2018)).The radial expansion of multiple holes yields the formation of liquid threads
which experience a capillary instability to produce droplets. Following their formation,
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(a) (b)

Figure 13: Probability density function (p.d.f.) for the entrapped and injected droplets
for Case 4 (Re = 6530 and We = 303) at t = 9.37, 20.37, and 28.52 shown in panels (a)
and (b), respectively. The distributions are normalised by the calculated mean diameter
for each time, dm.

the entrapped droplets rotate inside the leading structure due to their interaction with
the vorticity field (not shown here). The rotation leads to complex interfacial phenomena
such as coalescence or collision (similar to that reported by Desjardins & Pitsch (2010)).
The coalescence has been observed not only between droplets, but also between droplets
and ligaments or droplets and the jet core (see figure 12).

Next, we aim to explain the validity of the hole formation mechanism as a result of
liquid film thinning. Our numerical method does not consider the destabilising effect
brought about by the van der Waals attractive forces as the film thickness tends to
zero. Churaev et al. (1987) reported that while the thinning takes place, the dynamics
of the film enters into an asymptotic behaviour leading to its rupture, depending only
on a balance between viscous, van der Waals, and surface tension forces. After the film
puncture, the circular hole expansion is driven by capillarity, and fluid is accumulated in a
circular rim which grows in size as it moves away from the puncture point. The retraction
speed, VTC can be estimated by the classical ‘Taylor-Culick’ theory, VTC = (2σ/ρh)1/2,
where h is the film thickness. Prior to the puncture h ∼ 40 µm, giving an estimate of the
retraction velocity as VTC ∼ 1.2 m/s. The measured retraction speed of the holes in our
simulations ranges from 0.75 m/s to 1.2 m/s. This ensures that although our simulations
cannot predict the exact location of the puncture, and their formation is mesh-dependent,
its expansion is well predicted, ensuring that the physics is fully-resolved following the
formation of the hole. Additionally, the film thickness of the sheet prior to its rupture
is on the order of h ∼ 10−6 m, which agrees with the findings of Marston et al. (2016),
Lhuissier & Villermaux (2009), and Néel & Villermaux (2018) who observed interface
rupture for film sheets of the same order of magnitude.

3.3.1. Droplet size distribution

This section draws attention to the size distribution of the droplets, formed as a result
of the ruptures of the liquid threads. Attention is focused on Case 4, which is in the
inertia-dominated regime characterised by high Re and We; as discussed above, the
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flow in this case is accompanied by significant drop creation. During the early stages,
the formation of droplets is only observed inside the leading-edge structure owing to
film rupture via hole formation. At later times, both entrapped and dispersed droplets
coexist in the computational domain. We have identified all the droplets inside the entire
domain, and each droplet diameter is calculated through knowledge of its volume, and
the assumption of a spherical shape.

Figure 13 shows the probability density function (pdf) of the entrapped and dispersed
droplets normalised by the mean droplet diameter at different temporal stages: t =
9.37, 20.37 and 28.52. The shape of the distribution for the entrapped droplets (see figure
13a) remains largely unchanged with increasing time except for the development of a tail;
this represents the creation of larger numbers of smaller droplets due to ligament breakup
as explained previously. It is possible to obtain information regarding the characteristics
of the droplets in the domain; for instance, at t = 9.37, the mean and median diameters
of the entrapped droplets are approximately 342 µm and 246 µm, respectively, with a
standard deviation of 296 µm. Figure 13b shows that the pdf for the injected droplets
has a similar shape to that of the entrapped ones depicted in 13a, and the distribution
remains essentially unaltered for t = 20.37 and 28.52.

4. Conclusions

Three-dimensional numerical simulations using a hybrid interface-tracking/level-set
approach were carried out for turbulent water jets entering a stagnant and more viscous
silicon oil phase. Particular attention has been paid to the temporal interfacial dynamics
that arise as a result of the vortex-surface interaction. Using less computationally expen-
sive simulations, we explored the Re−We space, identifying four distinct regions based
on the appearance of the interfacial structures. On this basis, we carried out high-fidelity
simulations representative of each region which showed that the streamwise vorticity
plays a major role in the development of the three-dimensional instabilities on the jet
surface.

At low Re and We numbers (i.e., in the capillary-controlled regime), the jet interface
remains axisymmetric and no surface corrugations are observed due to strong capillarity.
Moreover, this region is also characterised by the fact that the streamwise vorticity, ωx,
never becomes comparable to the azimuthal vorticity, ωθ: the azimuthal vorticity always
remains two orders of magnitude larger than the streamwise vorticity. At low Re and
high We numbers, the reduction of capillarity enhances the formation of a mushroom-like
structure at the leading edge of the jet, and the formation of corrugations in the jet core;
however, ωx is still almost two orders of magnitude smaller than ωθ. At high Re and low
We numbers, streamwise vorticity gains in importance resulting in further deformation
of the jet core.

In the inertia-controlled regime (i.e., for high Re and We numbers), the streamwise
vorticity becomes comparable to the azimuthal vorticity triggering the streamwise de-
formation of KH vortices. We show the formation of hairpin vortices near the interface,
which are aligned in the streamwise direction forming layers of inner- and outer- hairpin-
vortices. The formation of inner and outer lobes in the jet core are closely linked to
their neighbouring hairpin-vortices. The alignment of vortices enhances the perforation
of the lobes to form holes which expand radially by capillarity, and ultimately give rise
to the formation of droplets. Another main feature of the inertia-controlled regime is
the creation of a thin toroidal sheet inside of the leading-edge structure. The thinning
of this sheet leads to its perforation to form droplets. The droplets rotate as a result of
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their interaction with the vorticity field, and further topological transitions occur (e.g.,
coalescence).

While in the present study we have focused on the spatial and temporal development of
the interfacial dynamics as a result of the vortex-surface interaction, further investigations
should be carried out on the statistical response of the turbulent multiphase flow, similar
to the work presented by Ling et al. (2019) for a mixing layer between parallel gas
and liquid streams. Additionally, our study assumes a constant value of surface tension,
but it is known that streams are usually contaminated with deliberately-placed or
naturally-occurring surfactants, which reduce the surface tension and give rise to surface
tension gradients and Marangoni stresses. As shown recently by Constante-Amores et al.
(2020b), surfactants are capable of inhibiting capillary singularities and rigidifying the
interface, subsequently changing the fate of the atomisation. Hence, the presence of
surfactants may change the present results, providing us with an exciting avenue of
future research.
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Appendices

Mesh study and resolution considerations

Solving the small scales of the atomisation phenomenon is a challenging process, and in
order to ensure the physical validity of the results, we have assessed the grid dependence
nature of our results by performing a mesh study for Case 4 (see table 4). The appropriate
choice for the minimum grid length-scale will depend on either the vanishing interfacial
singularity or the smallest turbulence length-scale (i.e., Kolmogorov-length-scale).

For single-phase jets, Pope (2000) suggested that the Kolmogorov-length-scale η is
resolved if ∆x/η 6 2.1, where ∆x represents the minimum computational cell size, and η
is estimated by η = Re−3/4l, where l is the length scale. Previous computational studies
of temporal and spatial multiphase jets are presented in table 3, showing the current
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Table 3: List of computational studies of atomisation showing compliance with the Pope
criterion (Pope 2000).

Study Configuration Type of study Re ∆x/l ∆x/η

Desjardins & Pitsch (2010) Planar Temporal 2000− 3000 0.015 ∼ 5− 6
Herrmann (2011) Round Spatial 5000 0.031/0.0078 ∼ 5− 19

Jarrahbashi et al. (2016) Round Temporal 1600− 16000 0.0125 ∼ 3− 18
Zandian et al. (2016, 2018) Planar Temporal 2500− 5000 0.025 ∼ 9− 15

Zandian et al. (2019) Round Spatial 2000− 3200 0.01 ∼ 3− 4
Ling et al. (2019) Planar Temporal 8000 0.0039 ∼ 3

Current study Round Spatial 1000− 6530 0.0065 ∼ 1− 4.5

Table 4: Characteristics of different mesh sizes used to study the jet dynamics in this
study.

Run
Global mesh size
(number of cells)

Number of parallel
process threads

Minimum mesh
size (µm)

Total
Comput. hours

M1 768× 192× 192 3× 3× 12 = 72 104.1 180
M2 1536× 192× 192 6× 6× 24 = 864 58.5 100
M3 3072× 384× 384 48× 6× 6 = 1728 26.1 500

state-of-the-art in terms of Pope’s criterion. It is evident that Pope’s criterion is difficult
to meet due to the high computational costs of the simulations. In their recent work, Ling
et al. (2017, 2019) performed simulations of a two-phase mixing layer between parallel
gas and liquid streams to investigate the interfacial dynamics and the statistics of the
multiphase turbulence, estimating the Kolmogorov length scale to be η ∼ 0.945µm, which
leads to ∆x/η ∼ 3. Through their simulations, they estimated that η = 3 − 4.5µm and
also showed that their lower resolution mesh, i.e., ∆x/η ∼ 6 (see their figure 19d), was
capable of predicting similar results in terms of turbulence dissipation.

For our highest Reynolds number (case-5), our simulation does not meet Pope’s
criterion. But as shown by Ling et al. (2019), the actual η could be larger. Additionally,
the atomisation of the injected phase in a stagnant viscous phase alleviates the range of
relevant physical scales.

The second biggest challenge of computational atomisation is ‘numerical breakup’ of
liquid threads. A coarse grid would trigger the formation of thicker numerical threads, and
consequently the formation of larger droplets (this problem has been previously reported
by Shinjo & Umemura (2010), Herrmann (2011), Gorokhovski & Herrmann (2008), and
Jarrahbashi & Sirignano (2014)). Shinjo & Umemura (2010) stated that the mesh should
be refined up to the point where the dynamics of the thread are solely governed by surface
tension forces. These forces would trigger the formation of capillary waves during the
retraction of these ligaments, giving rise to the onset of the Rayleigh-Plateau instability
(i.e., the ‘end-pinching’ mechanism). After those mechanisms are initialised, the thread-
dynamics enter in an asymptotic behaviour towards the interfacial singularity (i.e., a
refined mesh would not affect the size of the resulting droplets). On this basis, the
numerical resolution regarding the interfacial length scales will be assessed following
the methodology proposed by Ménard et al. (2007) and Desjardins & Pitsch (2010),
who used a ‘grid-based Weber number’, defined by We∆xmin

= ρ
w
U2∆xmin/σ. This
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Figure 14: Mesh study for Case 4 (Re = 6530 and We = 303). The panels highlight
the temporal evolution of the kinetic energy Ek (left panel), the interfacial area (middle
panel) and the maximum axial location of the jet tip (right panel).

equation provides us with the smallest interfacial length scale that the simulation is
capable of resolving by assuming that the smallest interfacial structure is equal to the
minimum mesh size of the computational domain. Ménard et al. (2007) suggested that no
further breakup is observed for values under 10. For a Reynolds number corresponding
to Re ∼ 104 and M3-type mesh, the grid-based Weber number is We∆xmin

∼ 4.12, which
meets the above criterion, suggesting that all capillary singularities would be resolved.

Therefore, we have proved that the M3 mesh is capable of resolving turbulent-scales
and interfacial singularities, and consequently detailed analysis of interfacial and vortical
structures is performed using a M3 mesh-type (unless stated otherwise). Figure 14 shows
the temporal evolution of the kinetic energy, Ek =

∫
V

(ρu2)/2dv, the interfacial area
and the maximum axial location of the jet tip (i.e., leading edge) for different meshes.
Additionally, the vorticity profiles were checked between the M2- and M3-mesh, and no
significant differences were found.

Scalings laws for the capillary breakup of liquid threads

As we have presented in the introduction, direct numerical simulations must be capable
of predicting the developing two-phase fluid interfacial dynamics featuring interface
breakup, and droplet coalescence. In light of this, we aim to show the capabilities of our
numerical framework in the prediction of the scaling laws for the capillary singularity of
liquid threads. As the point of singularity approaches, the system is driven locally by the
large interfacial curvature, and its interfacial dynamics depends solely upon the physical
properties of the liquid. Lister & Stone (1998) have suggested that the pinchoff of a
viscous thread (of radius r(z, t), density ρ, viscosity µ and surface tension σ) surrounded
by another viscous fluid transits between different dynamical regimes as r(t)→ 0 towards
the breakup time τ (see figure 1 of Lister & Stone (1998)). The thinning of a water thread,
surrounded by air, transitions from an inertial-capillary regime (r ∼ τ2/3 and u ∼ τ−1/3
) to an inertial-viscous regime (r ∼ τ and u ∼ τ−1/2 ), more details can be found in Day
et al. (1998), Eggers (1993) and Lister & Stone (1998).

Therefore, we consider the capillary singularity of a water thread (of initial radius R)
surrounded by air in absence of gravity as the interfacial dynamics are locally driven
by a balance of viscous-capillary and inertial forces, which can be expressed by the
Ohnesorge number Oh = µ/(ρσR). As time evolves, the thinning of the thread is driven
by capillarity, and the predicted thread radius towards the singularity agrees with the
theoretical scalings (see figure 15) as the thread transits between different regimes (i.e.,
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Table 5: Characteristics of different mesh sizes used to study the capillary breakup of a
water thread.

Run
Global mesh size
(number of cells)

Number of parallel
process threads

Pinchoff time
(s)

Total
Comput. hours

V1 64× 64× 256 16 0.375 ∼ 2
V2 96× 96× 384 54 0.372 ∼ 20
V3 192× 192× 768 432 0.369 ∼ 48

(a) (b)

Figure 15: Scaling laws for the capillary singularity of a water-thread surrounded by air
for different numerical resolutions (see table 5). Here, the Ohnesorge number is 1.178×
10−3. The minimum thread radius, (a), and the maximum streamwise velocity, (b), versus
the remaining time to breakup τ , agree with the inertial-capillary and inertial-viscous
regimes presented by Eggers (1993); Day et al. (1998). Additionally, a three-dimensional
representation of the interface is shown to depict the retraction of the satellite ligament
to produce daughter droplets via the ‘end-pinching’ mechanism (in agreement with Notz
& Basaran (2004)).

r(t) → 0). After the singularity point, the formation of a satellite ligament is observed
which has an initially cylindrical shape (with Oh = 2.62×10−3 and Lo = 11.55); however,
it undergoes retraction driven by capillarity to form more spherical droplets. This process
known as ‘end-pinching’ has been previously well described by Notz & Basaran (2004).
By performing this analysis we have proved the capability of our numerical technique to
predict the dynamics of the capillary singularity of a liquid thread and its post-breakup
events (table 5 shows a summary of the different meshes evaluated for this study).

Additionally, the accuracy and validation of the numerical method has been pre-
viously addressed to other complex interfacial phenomena. These phenomena include
breakup and recoiling of liquid threads (Constante-Amores et al. 2020b), falling film flows
(Batchvarov et al. 2020a), propagation of elongated bubbles in channels (Batchvarov
et al. 2020b), bubbles undergoing bursting (Constante-Amores et al. 2020a), and drops
coalescing partially or completely with deformable interfaces.

Time step

Finally, the temporal integration scheme is based on a second-order Gear method, with
implicit solution of the viscous terms of the velocity components. The time step ∆t is
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adaptive to ensure stability, and it is defined through the criterion:

∆t = min {∆tcap, ∆tvis, ∆tCFL, ∆tint} (4.1)

where ∆tcap, ∆tvis, ∆tCFL, ∆tint stand for the capillary time step, the viscous time
step, the Courant- Friedrichs-Lewy (CFL) time step, and interfacial CFL time step,
respectively. Those terms are defined by

∆tvis = min
(
ρw
µw
,
ρso

µso

)
∆x2

min

6 ∆tcap = 1
2

(
(ρw+ρso )∆xmin

3

πσ

)1/2
,

∆tCFL = min
j

(
min
domain

(
∆xj

uj

))
∆tint = min

j

(
min
Γ (t)

(
∆xj

‖V‖

))
,

(4.2)

where ∆xmin = minj(∆xj). In our simulations the adaptive time-step is restricted by
∆tint (e.g., O(10−5)s).
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Bull Soc Math Fr 96, 115–152.

Theodorsen, T. 1952 Mechanism of turbulence. Proceedings of the Midwestern Conference
Fluid Mechanics, 1-19. .

Varga, C. M., Lasheras, J. C. & Hoepfinger, E. J. 2003 Initial breakup of a small-diameter
liquid jet by a high-speed gas stream. J. Fluid Mech. 497, 405–434.

Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39 (1), 419–446.
Villermaux, E., Marmottant, P. & Duplat, J. 2004 Ligament-mediated spray formation.

Phys. Rev. Lett. 92, 074501.
Zandian, A., Sirignano, W. A. & Hussain, F. 2016 Three-dimensional liquid sheet breakup:

vorticity dynamics. 54th AIAA Aerospace Sciences Meeting. .
Zandian, A., Sirignano, W. A. & Hussain, F. 2018 Understanding liquid-jet atomization

cascades via vortex dynamics. J. Fluid Mech. 843, 293–354.
Zandian, A., Sirignano, W. A. & Hussain, F. 2019 Vorticity dynamics in a spatially

developing liquid jet inside a co-flowing gas. J. Fluid Mech. 877, 429–470.
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for

generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–
396.


