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Introduction

Resonances are spectral objects attached to differential operators acting on non-compact domains and appear as poles of the meromorphic continuation of the resolvent of these operators. Their study evolved from an investigation of the Schrödinger operators on the Euclidean spaces 2010 Mathematics Subject Classification. Primary: 43A85; secondary: 22E30,58J50.

1 like R n , to a study of the Laplacian on curved spaces, like hyperbolic or asymptotically hyperbolic manifolds, symmetric or locally symmetric spaces. In a typical setting, one works on a complete Riemannian manifold X with a finite geometry, for which the positive Laplacian ∆ is an essentially self-adjoint operator on the Hilbert space L 2 (X) of square integrable functions on X. We suppose that ∆ has a continuous spectrum [ρ X , +∞[, with ρ X ≥ 0. The spectrum of ∆ might have some discrete parts, but these parts do not play any significant role, so we neglect them. Also, for simplicity, we assume to have shifted the Laplacian so that its spectrum has bottom at 0, and have changed variables z → z 2 for the resolvent so that, as above, the resolvent is analytic away from the real axis. The resolvent R(z) = (∆-ρ X -z 2 ) -1 of the shifted Laplacian ∆ -ρ X is then a holomorphic function of z on the upper (and on the lower) complex half plane. For each such z, R(z) is a bounded linear operator from L 2 (X) to itself. As such, it cannot be extended across the real axis. However, let us restrict the resolvent to the dense subspace C ∞ c (X) of compactly supported smooth functions on X. Then the map z → R(z) might admit a meromorphic extension across the real axis to a larger domain in C or to a cover of such a domain. The poles, if they exist, are the resonances, also called quantum resonances or scattering poles, of ∆. The basic questions concern the existence of the meromorphic extension of the resolvent, the distribution and counting properties of the resonances, the rank and interpretation of the socalled residue operators associated with the resonances. Resonances are linked to interesting geometric, dynamical, and analytic objects. As a consequence, they are intensively studied, in many different settings, using a variety of techniques and different viewpoints. Standard references for the introduction of resonances are [START_REF] Agmon | Spectral theory of Schrödinger operators on Euclidean and on non-Euclidean spaces[END_REF][START_REF] Agmon | Spectral properties of Schrödinger operators and scattering theory[END_REF]. A recent overview, also containing an extensive list of references, is [START_REF] Zworski | Mathematical study of scattering resonances[END_REF]. Riemannian symmetric spaces of the non-compact type are important geometrical settings to study resonances of the Laplacian. Besides being intrinsically interesting objects, they play the role of model spaces to understand phenomena on more complicated or less regular geometries.

Let us introduce some notations. A Riemannian symmetric space of the non-compact type is a homogeneous space of the form X = G/K where G is a connected non-compact real semisimple Lie group with finite center and K is a maximal compact subgroup of G. The basic examples are the n-dimensional real hyperbolic spaces H n . In this case, the Lie group G is the Lorentz group SO e (n, 1) and K = SO(n). A Riemannian symmetric space of the non-compact type X has maximal flat subspaces, all of the same dimension, called the (real) rank of X. For instance, the rank of H n is 1. Since X is a symmetric space of the Lie group G, all natural operators acting on X, like the Laplacian and its resolvent, are G-invariant. They can therefore be studied using the representation theory of G. The analytic study of the resolvent of the Laplacian acting on functions on H n , in particular its meromorphic continuation across its spectrum, is classical and well-understood. It plays a central role when studying the resolvent on more general complete Riemannian manifolds for which the hyperbolic spaces are models. Still in the case of functions on a more general Riemannian symmetric space X = G/K, the study of resonances can in principle be done using an adapted harmonic analysis, the so called Helgason-Fourier analysis, which provides a diagonalization of the Laplacian and hence an explicit formula for its resolvent as a singular integral operator over the spectrum. This formula allowed Hilgert and Pasquale [START_REF] Hilgert | Resonances and residue operators for symmetric spaces of rank one[END_REF] to determine and study the resonances for an arbitrary X of rank one. The general higher-rank case is still open. Relevant works in this context are [START_REF] Mazzeo | Analytic continuation of the resolvent of the Laplacian on symmetric spaces of noncompact type[END_REF] and [START_REF] Strohmaier | Analytic continuation of resolvent kernels on noncompact symmetric spaces[END_REF]. Complete answers to the basic problems concerning the existence and location of the resonances of the Laplacian, as well as the representation-theoretic interpretation of the so-called residue operators at the resonances, are available only for (most of the) Riemannian symmetric spaces of rank 2. These results appeared in joint articles by Hilgert, Pasquale and Przebinda; see [START_REF] Hilgert | Resonances for the laplacian on products of two rank one riemannian symmetric spaces[END_REF][START_REF] Hilgert | Resonances for the Laplacian on Riemannian symmetric spaces: the case of SL(3, R)/SO(3)[END_REF][START_REF] Hilgert | Resonances for the Laplacian: the cases BC 2 and C 2 (except SO 0 (p, 2) with p > 2 odd)[END_REF].

All the articles mentioned above consider the Laplacian acting on scalar functions on X. A more general question is to consider the Laplacian acting on sections of a homogeneous vector bundle on X. Such a bundle is determined by a finite-dimensional representation τ of K. Let us denote this bundle by E τ . The sections of E τ can be seen as vector-valued functions on G, with values in the space of the representation τ , such that f (xk) = τ (k -1 )f (x) for all x ∈ G and k ∈ K .

The space of such functions which are smooth and compactly supported is denoted by C ∞ c (G, τ ). This means that we are replacing complex-valued functions on X with vector-valued functions which have specific transformation properties on the orbits of the compact subgroup K. Examples of sections of homogeneous vector bundles on X are the differential forms, the vector fields, and more generally the tensor fields on X: all these objects naturally arise in physical models, and it is therefore natural to look for resonances of the Laplacian in these settings.

The resolvent of the Laplacian of forms on a rank-one Riemannian symmetric space of the noncompact type has been studied by several authors; see [START_REF] Camporesi | The Helgason Fourier transform for homogeneous vector bundles over Riemannian symmetric spaces[END_REF][START_REF] Camporesi | The Helgason Fourier transform for homogeneous vector bundles over compact Riemannian symmetric spaces-the local theory[END_REF][START_REF] Camporesi | A generalization of the Cartan-Helgason theorem for Riemannian symmetric spaces of rank one[END_REF][START_REF] Camporesi | The spherical transform for homogeneous vector bundles over Riemannian symmetric spaces[END_REF][START_REF] Pedon | Analyse harmonique des formes différentielles sur l'espace hyperbolique réel[END_REF][START_REF] Carron | On the differential form spectrum of hyperbolic manifolds[END_REF][START_REF] Bunke | The spectrum of Kleinian manifolds[END_REF]. In partciular, [START_REF] Carron | On the differential form spectrum of hyperbolic manifolds[END_REF] gives (for the differential forms on rank 1) the list of resonances and the Riemann surface on which the resolvent admits meromorphic extension. Nevertheless, to our knowledge, there is only one article studying the resonances and the residue operators of the Laplacian acting on the sections of a homogeneous vector bundle over X, namely [START_REF] Will | The meromorphic continuation of the resolvent of the Laplacian on line bundles over CH(n)[END_REF], where X is a complex hyperbolic space and the fibers have dimension one.

The goal of the present paper is to study the resonances of the Laplacian acting on the sections of a homogeneous vector bundle over a Riemannian symmetric space of the non-compact type X = G/K. The symmetric space is assumed to have rank one but the representation of K is arbitrary. Since every finite-dimensional representation of K decomposes into irreducibles, we restrict our attention to irreducible representations. As in the case of functions, the basic problems are to determine the existence, the localisation of the resonances and study the residue operators associated with them.

This paper is organized as follows. In section 1, we introduce the notation and recall some basic facts about the structure of Riemannian symmetric spaces of the non-compact type and real rank one. There are four cases, listed in the following table:

G K X = G/K Spin(n, 1)
Spin(n) real hyperbolic space SU(n, 1) S(U(n) × U(1)) complex hyperbolic space Sp(n, 1) Sp(n) quaternionic hyperbolic space F 4 Spin(9) octonion hyperbolic space

We set a to be a maximal flat subspace in p = T eK (X) the tangeant space of X at the base point eK, and M the centralizer of a in K. In section 2, we recall some facts on the generalisation of the Helgason-Fourier transform to homogeneous vector bundles. They are principally due to Camporesi [START_REF] Camporesi | The Helgason Fourier transform for homogeneous vector bundles over Riemannian symmetric spaces[END_REF]. In particular, the Plancherel Theorem for L 2 sections of the homogeneous vector bundles is given there. Denote the decomposition of τ over M as follows:

τ = σ∈ M (τ ) d σ σ (1)
where M (τ ) is the set of irreducible unitary representations of M which occurs in the restriction of τ to M , d σ is the degree of σ. We need some properties of the generalised spherical functions ϕ σ,λ τ associated with the irreducible representations σ ∈ M (τ ), which is detailed in section 2. The explicit formula for the Plancherel density p σ corresponding to these σ ∈ M is given in Proposition 3.1 (see also Appendix A). Corollary 2.1 proves the convergence of the singular integral operator providing an explicit formula for the resolvent R of the Laplacian using the inversion formula of vector-valued Helgason-Fourier transform. In section 3, we compute the resonances, which is the first main goal of this paper. The holomorphic function z → R(z) is meromorphically extended from the complex upper half-plane to the whole space, using the residue theorem. The extended resolvent is a meromorphic function with simple poles on the imaginary axis: these poles are the resonances. This leads to our first theorem:

Theorem 1

Let G be a connected non-compact semisimple Lie group with finite center and with Iwasawa decomposition G = KAN , where K be a fixed maximal compact subgroup of G. Suppose dim A = 1. Let M denote the centralizer of A in K. Let (τ, H τ ) be an irreducible unitary representation of K, and let E τ be the homogeneous vector bundle over G associated with τ . For each σ ∈ M (τ ), let N σ be the set of k ∈ Z such that

λ k := -i(B max + k)
is a pole of the Plancherel density (see (33) for the formula) and B max + k ≥ 0. Here B max is a nonnegative constant depending only on G and σ. We refer to (35), ( 36) and (38) for the precise definition.

In this setting, the meromorphic continuation of the resolvent R of the Laplace operator acting on the smooth compactly supported sections of E τ can be written as the sum

R = σ∈ M (τ ) d σ R σ , ( 2 
)
where R σ is given for all f ∈ C ∞ c (G, τ ) and for all N ∈ N by the following formula:

(R σ (ζ σ )f ) (x) = 1 |α| R-i(N+1/4) 1 ζ σ -λ|α| ϕ σ,λα τ * f (x) p σ (λα) λ dλ + 2iπ |α| k∈Nσ λ k >-i(N +1/4) (ζ σ -λ k |α|) ϕ σ,λ k α τ * f (x) Res λ=λ k p σ (λα) λ (3) In (3), α is the longest restricted root, ϕ λ,σ τ
is a spherical function of type σ and

ζ σ := -z -ρ, ρ + µ σ + ρ M , µ σ + ρ M ) (4) with z ∈ C such that (ζ σ ) > -(N + 1/4).
Here √

• denotes the single-valued branch of the square root function determined on C \ [0, +∞[ by the condition √ -1 = -i. The resonances of the Laplace operator acting on the sections of E τ appear in families parametrized by the elements of M (τ ). The family corresponding to such a representation σ consists of the complex numbers

z σ k = (B max + k) 2 |α| 2 -ρ 2 α |α| 2 + µ σ + ρ M , µ σ + ρ M (5)
where µ σ is the highest weight of the representation σ, the numbers k are in N σ and ρ M is the half sum of roots for M .

We refer to section 1 for the definitions of the various objects appearing in this Theorem and to section 3 for its proof.

The second problem we address in this article is the representation theoretic interpretation of the resonances. More precisely, consider the residual part of the meromorphic continuation of the resolvent in (3). For each pole λ k of the Plancherel density for σ ∈ M (τ ), one can introduce an operator, called the residue operator at λ k α, defined as follows:

R σ k : C ∞ c (G, τ ) -→ C ∞ (G, τ ) f -→ ϕ σ,λ k α τ * f (6)
Since the convolution product is on the left, it seems that it does not commute with the left translation of f . But it does, as we shall see in (24). As G acts on the image of R σ k by the left translations, we get a representation of G, called the residue representation at λ k α.

In section 4 we restrict our attention to the representations τ which contains the trivial representation of M . In this case the structure of the principal series is well known [START_REF] Howe | Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations[END_REF][START_REF] Johnson | Composition series and intertwining operators for the spherical principal series[END_REF][START_REF] Johnson | Composition series and intertwining operators for the spherical principal series[END_REF]. The complexity of the general case (see [START_REF] Collingwood | Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules[END_REF]) is formidable and might lead to much less pleasing results, thus we avoid it. We consider the family of resonances corresponding to σ = triv. To simplify the notation, we write R k instead of R triv k . Let E k be the residue representation at λ k α. We show that the E k 's are irreducible and equivalent to a subquotient of a spherical principal series representation of G. We determine which of them are unitary and which are finite-dimensional. Also, we identify their Langlands parameters and compute their wave front sets. The Langlands parameters are of the form (M A, δ, λ) and denotes the induced representation Ind G M AN (δ ⊗ e iλ ⊗ triv) for a nilradical N . A lowest K-type of the induced representation with highest weight µ min identifies a unique irreducible subquotient of that induced representation (See [START_REF] Vogan | Classification of the irreducible representations of semisimple Lie groups[END_REF]). The wave front set of a representation has been introduced by Howe (see [START_REF] Howe | Wave front sets of representations of Lie groups[END_REF]). When G is semisimple, it is a closed set consisting of nilpotents orbits. For E k it turns out to be the closure of a single nilpotent orbit. In the following theorem, α is the longest restricted root as in Theorem 1 and for each restricted root β, the corresponding root space in g is denoted by g β . The minimal K-type of E k is given in the proof the theorem in each case: they can be found in tables 1, 2, 3 and 4 respectively for the real, complex, quaternionic and octonionic hyperbolic spaces.

Theorem 2

Suppose that the representation τ contains the trivial representation of M . The residue representations E k are then irreducible.

(1) If G = Spin(2n, 1), then τ has highest weight of the form (N, 0, . . . , 0), where N is a nonnegative integer.

• If N ≥ k + 1, then E k has Langlands parameters M A, H k+1 (R 2n-1
), n -3 2 α with (k + 1, 0, . . . , 0) as a lowest K-type's highest weight. Here H k+1 (R 2n-1 ) are harmonics of degree k + 1 on R 2n-1 . This representation is unitary. Its wave front set is the nilpotent orbit generated by g α .

• If N < k + 1, then E k has Langlands parameter M A, triv, iλ k with the trivial representation as a lowest K-type. It is finite-dimensional. Also, it is non-unitary if k = 0.
(2) If G = SU(n, 1), then τ has highest weight of the form (M 1 , 0, . . . , 0, -M 2 , -L), where

M 1 and M 2 are positive integers such that M 1 ≥ M 2 ≥ 0, L ∈ Z and M 1 + M 2 + L is even. • If M 1 + M 2 ≥ 2k + 2 and |L| ≤ -2k -2 + M 1 + M 2 , then E k is unitary. -if n > 2, then E k has minimal K-type of highest weight (k +1), 0, . . . , 0, -(k + 1), 0). Its Langlands parameter is M A, δ, n 2 -1 α
where the highest weight of δ is (k + 1), 0, . . . , 0, -(k + 1), 0 . Its wave front set is the nilpotent orbit generated by g α/2 . if n = 2, this representation is the discrete series with Blattner parameter ((k + 1), -(k + 1), 0, . . . , 0). Its wave front set is the nilpotent orbit generated by g α/2 .

• If L ≥ | -2k -1 + M 1 + M 2 | + 1, then E k is the representation with Langlands parameter M A, δ, k 2 + n 2 -1 2 α
, where the highest weight of δ is 0, 0, . . . , 0, -(k + 1), (k + 1)/2 . This representation is non-unitary. Its wave front set is the nilpotent orbit generated by the element n 2 of g α (see Lemma 5.4 for the definition).

• If L ≤ | -2k -1 + M 1 + M 2 | -1, then E k is the representation with Langlands parameter M A, δ, k 2 + n 2 -1 2 α
, where the highest weight of δ is (k + 1), 0, . . . , 0, (k + 1)/2 . This representation is non-unitary. Its wave front set is the nilpotent orbit generated by the element n 1 of g α (see Lemma 5.4 for the definition). A nice consequence of our case-by-case results is the following.

• If M 1 +M 2 ∈ [0, 2k+2[ and L < |2k+2-M 1 +M 2 |, then E k is the representation with Langlands parameter M A, triv, iλ k α . It is finite-dimensional and non unitary (if k = 0). (3) If G = Sp(n,

Corollary 1

For a fixed k ∈ N, there is one-to-one correspondence between the irreducible subquotients of H λ k α and the (real) nilpotent orbits of g under the adjoint action. This correspondence maps each subquotient into the orbit whose closure is the wave front set of that subquotient. As we showed, E k is equivalent to one of these subquotients. Its wave front set is then the closure of one nilpotent orbit in g.
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General notations

We shall use the standard notations N, Z, R, C and C × for the nonnegative integers, the integers, the real numbers, the complex numbers and the nonzero complex numbers. For a complex number z ∈ C, we denote by (z) and (z) its real and imaginary parts. The positive constants in the Haar measures do not matter in our computations and equalities. Integrals have to be considered up to positive multiples.

Context: Let G be a connected non-compact real semisimple Lie group with finite center and let B(•, •) be the Killing form on the Lie algebra g of G. We denote by θ a Cartan involution on g. We denote by k the set of fixed points of θ and by p the eigenspace of θ for the eigenvalue -1. In other words:

k = {X ∈ g | θX = X} and p = {X ∈ g | θX = -X} .
Then k is a Lie subalgebra of g. The corresponding connected Lie subgroup of G is maximal compact. We denote it by K. The Cartan decomposition of the Lie algebra g is given by: g = k ⊕ p.

Let a be a maximal abelian subspace of p and A = exp a its associated subgroup of G. The exponential map exp : g → G restricts to a diffeomorphism between a and A. The inverse map is the logarithm "log".

Roots and restricted roots systems: Let a * be the vector space of linear forms on a and a * C its complexification. The set Σ of restricted roots of the pair (g, a) consists of all linear forms α ∈ a * for which the vector space 

g α := {X ∈ g | [H, X] = α(H)X ,
x = k(x)e H(x) n(x) (7) 
where k(x) ∈ K, H(x) ∈ a and n(x) = n ∈ N . In the following, we set

a λ := exp(λ(log a)) for a ∈ A and λ ∈ a * C . (8) 
Let M be the centralizer of a in K, m its Lie algebra and let t be a Cartan subalgebra of m. Then the Lie algebra h = t ⊕ a is a Cartan subalgebra of g. We denote by h C its complexification. The set Π of roots of the pair (g C , h C ) consists of all linear forms ε ∈ h * C for which the vector space

g ε := {X ∈ g C | [H, X] = ε(H)X , for every H ∈ h C } contains nonzero elements.
We choose a set Π + of positive roots in Π which is compatible with Σ + , i.e. such that a root ε ∈ Π is positive when ε| a ∈ Σ + . Let also Π k (Π k + ) be the set of (positiv) roots of the pair

(k C , h C ).
The rank-one case: In this paper, we are restricting ourself to real rank-one groups G. In other words, we suppose that a is one-dimensional.

Rank-one symmetric spaces of the non-compact type are classified into three infinite families -namely, the real, complex and quaternionic hyperbolic spaces -and one exceptional example, the octonionic hyperbolic plane.

Since G is of real rank one, the set Σ is either equal to {±α} or {±α, ±α/2}. Among the groups listed in the table in the introduction, only G = Spin(n, 1) has restricted root system {±α}. As a system of positive roots Σ + we choose {α} and {α, α/2}.

Then ρ = 1 2 m α + m α/2 2
α, where we set m α/2 = 0, if Σ = {±α}.

The Killing form B is positive definite on p, so X, Y := B(X, Y ) defines a Euclidean structure on p and on a ⊂ p. For all λ ∈ a * , let H λ denote the unique element in a such that H λ , H = λ(H) for all H ∈ a. We extend the inner product to a * by setting λ, µ := H λ , H µ for all λ, µ ∈ a * . Further, we denote the C-bilinear extension of •, • on a to a * C by the same symbol.

We identify a * C to C by means of the isomorphism:

a * C -→ C λ -→ λ α := λ,α α,α (9) which identifies ρ with ρ α := 1 2 m α + m α/2 2
. Homogeneous vector bundles: We fix a finite-dimensional unitary representation (τ, H τ ) of K. Let E τ := X × τ H τ denote the homogeneous vector bundle over X. For the definition and properties of E τ , we refer the reader to [Wal73, §5.2 p. 114]. We write Γ ∞ (E τ ) for the space of all smooth sections of E τ . As proved in [Wal73, §5.4 p. 119], there is an isomorphism between Γ ∞ (E τ ) and

C ∞ (G, τ ) := {f : G → H τ smooth | f (xk) = τ (k -1 )f (x) for all x ∈ G and k ∈ K} Set C ∞ (G, K, τ, τ ) := {F : G → End(H τ )C ∞ | F (k 1 xk 2 ) = τ (k -1 2 )F (x)τ (k -1 1 ) for all x ∈ G and k 1 , k 2 ∈ K}
The elements F ∈ C ∞ (G, K, τ, τ ) are sometimes called the radial systems of sections of E τ . The link with the sections comes by the fact that for every v ∈ H τ , the function

F (•)v is a smooth section of E τ . If τ is not irreducible then E τ = i E τ i
, where τ i are the irreducible components of τ . Studying the sections of E τ amounts to studying the sections of each bundle E τ i . We can therefore suppose without loss of generality that τ is irreducible. We notice that if τ is the trivial representation "triv" of K on the one-dimensional vector space C, Then the sections of E triv are the functions on G/K. They can be seen as right-K-invariant functions on G. Moreover, in this case, the radial systems of sections agree with the K-biinvariant functions on G. We will refer to this situation as the scalar case. Principal series representations: Let M be the set of all equivalence classes of irreducible unitary representations of M . For (σ, H σ ) ∈ M and λ ∈ a * C , we denote by π σ λ = Ind G M AN (σ ⊗ e iλ ⊗ triv) the induced representation from M AN to G by the representation σ ⊗ e iλ ⊗ triv. We will use the same notation for its derived representation of g too. The representation space H σ λ of π σ λ is the Hilbert space completion of {f :

G → H σ | f (xman) = a -iλ-ρ σ(m -1 )f (x) for all x ∈ G, m ∈ M, a ∈ A and n ∈ N } (10) with respect of the L 2 inner product f, g σ = K f (k), g(k) Hσ dk , where •, • Hσ is an inner product on H σ making σ unitary. The action of π σ λ on H σ λ is given by π σ λ (g)f (x) := f (g -1 x) for all g, x ∈ G and f ∈ H σ λ . The set {π σ λ | λ ∈ a * C , σ ∈ M } is called the minimal principal series of G.
The compact picture of the principal series representations is obtained by restriction of the elements of H σ λ to K. Its representation space, which we denote by H σ , is the Hilbert completion of:

{f : K → H σ | f (km) = σ(m -1 )f (k) for all k ∈ K, m ∈ M } with respect to L 2 inner product. It is independent of λ.
The action is given by:

π σ λ (g)f (k) := e -(iλ+ρ)H(g -1 k) f (k(g -1 k)) for all g ∈ G, k ∈ K and f ∈ H σ . The representation π σ
λ is unitary for λ ∈ ia * . In the following, when working with principal series, we actually work with their Harish-Chandra modules. The restriction of π σ λ to K is the representation Ind K M σ of K induced from σ. In particular, because of Frobenius reciprocity theorem, for any τ ∈ K:

m(τ, π σ λ | K ) = m(σ, τ | M ) .
Here the symbol m(β, α) denotes the multiplicity of the irreducible representation β in the representation α. We say that τ is a K-type of π σ λ if it occurs in π σ λ | K . We say that τ is a minimal K-type of an admissible representation π of G if and only if its highest weight µ minimizes the Vogan norm

µ V = µ + 2ρ K , µ + 2ρ K in the set of K-types of π. Here 2ρ K is the sum of positive roots of the pair (k C , h C | k C ). [Vog77,
Theorem 1] ensures that each minimal K-type τ min has multiplicity one in π σ λ . Therefore there exists a unique irreducible subquotient J(σ, λ, µ) of π σ λ containing τ min . Homogeneous differential operators: A homogeneous differential operator D on E τ is a linear differential operator from Γ ∞ (E τ ) to itself which is invariant under the G-action by left translations, that is

L(g)D = DL(g) for all g ∈ G . ( 11 
)
The set of homogeneous differential operators on E τ is an algebra with respect to composition.

We denote it by D(E τ ). It acts on C ∞ (G, τ ) because of the isomorphism with the space smooth sections Γ ∞ (E τ ). Unlike in the scalar case, i.e. when τ is the trivial representation, this algebra need not be commutative. Conditions equivalent to the commutativity of D(E τ ) are stated in Let U (g C ) be the universal enveloping algebra of the complexification g C of g. Each element of U (g C ) induces a left-invariant differential operator on G by:

X 1 • • • X k • f (g) := ∂ ∂t 1 ∂ ∂t 2 • • • ∂ ∂t k f (g exp t 1 X 1 exp t 2 X 2 • • • exp t k X k ) t 1 =...=t k =0 (12) for all X = X 1 • • • X n ∈ U (g C ), f ∈ C ∞ (G) and g ∈ G.
Let U (g C ) K denote the subalgebra of the elements in U (g C ) which are invariant under the adjoint action Ad of K. The elements of U (g C ) K act on on C ∞ (G, τ ) as homogeneous differential operators. As K is compact, Theorem 1.3 in [START_REF] Minemura | Invariant differential operators and spherical sections on a homogeneous vector bundle[END_REF] ensures that all elements of D(E τ ) can be written as an element of U (g C ) K . But there is no isomorphism in general.

We can extend this action to the set of radial systems of section C ∞ (G, K, τ, τ ) by setting:

D • φ v := D • (φ • v) for all D ∈ U (g C ), φ ∈ C ∞ (G, K, τ, τ ) and v ∈ H τ .
The Laplace operator: Let {X 1 , . . . , X dim g } be any basis of g. We denote by g ij the ij-th coefficient of the inverse of the matrix B(X i , X j )

1≤i,j≤dim g

, where B is the Killing form. The Casimir operator is defined by

Ω := 1≤i,j≤dim g g ij X j X i . If X k k=1,...,dim k
and X k k=dim k+1,...,dim g are respectively orthonormal basis of k and p with respect to B θ , then:

Ω = - dim k i=1 X 2 i + dim g i=dim k+1 X 2 i .
In fact, Ω is in the center of U (g C ). The invariant differential operator corresponding -Ω is the positive Laplacian ∆.

We can extend any representationof g to g C by linearity and to a representation of the as- sociative algebra U (g C ). These representations will always be denoted by the same symbol. Since Ω is in the center of U (g C ), the linear operator π σ λ (Ω) is an interwining operator of the representation π σ λ for all λ ∈ a * C and σ ∈ M . Lemma 4.1.8 in [Vog81] ensures that π σ λ (Ω) acts by a scalar. To compute this scalar, one can use [Kna01, Proposition 8.22 and Lemma 12.28], and get that:

π σ λ (Ω) = -λ, λ -ρ, ρ + µ σ + ρ m , µ σ + ρ m Id . ( 13 
)
Here µ σ is the highest weight of σ and ρ m is the half sum of the positive roots ε ∈ Π + such that ε| a = 0.

The vector-valued Helgason-Fourier transform and spherical functions of type τ

In this section we review some basic facts on Camporesi's extension of the Helgason-Fourier transform to homogeneous vector bundles. We refer the reader to [START_REF] Camporesi | The Helgason Fourier transform for homogeneous vector bundles over Riemannian symmetric spaces[END_REF] for more information.

We keep the notations of the introduction. In particular, since we suppose that G is of real rank one, in the Plancherel formula only (minimal) principal series representations, and if G = Spin(2n + 1, 1), discrete series representations occur.

Let (τ, H τ ) be an irreducible unitary representation of K. Let

M (τ ) = {σ ∈ M | m(σ, τ | M ) ≥ 1}
denote the set of unitary irreducible representations of M which occur in the restriction of τ to M . We will denote by d γ the dimension of a representation γ. For σ ∈ M (τ ), let P σ be the projection of H τ onto the subspace of vectors of H τ which transform under M according to σ. Explicitly,

P σ = d σ M τ (m -1 )χ σ (m) dm , ( 14 
)
where χ σ denotes the character of σ. We denote by p σ (λ) the Plancherel density associated to the principal series representation π σ λ . Recall the Iwasawa decomposition (7

) of x ∈ G. According to [Cam97a, Theorem 1.1], the vector-valued Helgason-Fourier transform of f ∈ C ∞ c (G, τ ) is the function from a * C × K to H τ defined by f (λ, k) = G F iλ-ρ (x -1 k) * f (x) dx . ( 15 
)
Here, for µ ∈ a C and x ∈ G,

F µ (x) = e µ(H(x)) τ (k(x)) (16) 
and * denotes the Hilbert space adjoint.

In the rank-one case, the inversion formula is

f (x) = 1 d τ σ∈ M (τ ) a * K F iλ-ρ (x -1 k) P σ f (λ, k) p σ (λ) dλ dk + γ∈D G C γ K F -iµ-ρ (x -1 k) P γ f (iµ, k) dk (17)
Here µ ∈ a * and γ ∈ M are chosen so that γ is infinitesimally equivalent to a subrepresentation of Ind G M AN (γ ⊗ e µ ⊗ triv). Moreover, C γ is a suitable constant depending on γ. The set D G is the set of discrete series of G. It consists of all irreducible unitary representations of G such that all its matrix coefficients are in L 2 (G). The second sum term is called the discrete part of the Plancherel formula. In the following, we will disregard this term. In fact, only the first term, i.e. the continuous part of the Plancherel formula, can contribute to the resonances, by means of the poles of the Plancherel density.

As a consequence not involving discrete series, Parseval's formula for the continuous spectrum reads as follows:

for f, h ∈ C ∞ c (G, τ ) f, h c = σ∈ M (τ ) 1 d σ a * K P σ f (λ, k), P σ h(λ, k) p σ (λ) dλ dk , ( 18 
)
where the index c underlines that we are only considering the contribution from the continuous spectrum. See [START_REF] Camporesi | The Helgason Fourier transform for homogeneous vector bundles over Riemannian symmetric spaces[END_REF]p. 286]. On the right-end side of (18), •, • denotes the inner product on H τ making τ unitary. The corresponding norm will be denoted by u = u, u . We will also need a vector-valued analogue of Harish-Chandra's spherical functions on a noncompact reductive Lie group. These vector-valued functions were introduced by Godement [God52] and Harish-Chandra [START_REF] Harish-Chandra | Differential equations and semisimple Lie groups in Collected Papers III[END_REF]. They depend on the fixed representation τ of K and on a representation of the principal series indexed by σ ∈ M (τ ) and λ ∈ a * C .

Keep the above notation for the principal series. Let P τ denote the projection of H σ λ onto its subspace of vectors which transform under K according to τ , that is,

P τ = d τ K π σ λ (k)χ τ (k -1 ) dk . ( 19 
)
Definition 2.1

The spherical function ϕ σ,λ τ is defined as the End(H τ )-valued function on G given by

ϕ σ,λ τ (x) := ϕ π σ λ τ (x) := d τ K τ (k)ψ σ,λ τ (xk -1 ) dk , ( 20 
)
where

ψ σ,λ τ (x) = Tr P τ π σ λ (x)P τ . ( 21 
)
Let Hom K (H σ λ , H τ ) be the space of K-intertwining operators between π σ λ | K and τ . We equip this space with the scalar product P, Q = 1 dτ Tr(P Q * ), where * denotes the adjoint. We fix an orthonormal basis {P ξ } ξ=1,...,m(σ,τ | M ) of this space. Then

ϕ σ,λ τ (g) = m(σ,τ | M ) ξ=1 P ξ π σ λ (g) P * ξ . ( 22 
)
See pp. 268-269 and 273 in [START_REF] Camporesi | The Helgason Fourier transform for homogeneous vector bundles over Riemannian symmetric spaces[END_REF].

Lemma 2.1

The spherical functions ϕ σ,λ τ are even functions of λ ∈ a * for all σ.

Proof. Due to Lemma 3.1 in [START_REF] Camporesi | The spherical transform for homogeneous vector bundles over Riemannian symmetric spaces[END_REF], the spherical functions ϕ σ,λ τ are in one-to-one correspondence with their traces. Now Tr(ϕ σ,λ τ ) = m(σ, τ | M ) χ τ * Θ σ λ , where χ τ and Θ σ λ are the respective characters of τ and π σ λ . Lemma 4, page 162, in [START_REF] Harish-Chandra | Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula[END_REF] gives us that Θ σ λ = Θ -σ -λ because -1 is in the Weyl group. As -1 acts trivially on M (so on σ), the lemma follows.

The spherical function ϕ σ,λ τ can be described as an Eisenstein integral (see [Cam97a, Lemma 3.2]),

ϕ σ,λ τ (x) = d τ d σ K τ (k(xk)) P σ τ (k -1 ) e (iλ-ρ)(H(xk)) dk . ( 23 
) Notice that ϕ σ,λ τ satisfies ϕ σ,λ τ (k 1 xk 2 ) = τ (k 1 )ϕ σ,λ τ (x)τ (k 2 ) for every x ∈ G and k 1 , k 2 ∈ K. The convolution with a function f ∈ C ∞ c (G, τ ) is defined by: (ϕ σ,λ τ * f )(x) := d τ d σ G ϕ σ,λ τ (x -1 g)f (g) dg . ( 24 
)
According to [Cam97a, Proposition 3.3], it can be expressed in terms of the vector-valued Helgason-Fourier transform of f :

(ϕ σ,λ τ * f )(x) = d τ d σ K F iλ-ρ (x -1 k) P σ f (λ, k) dk . ( 25 
)

Lemma 2.2

The spherical functions ϕ σ,λ τ are joint eigenfunctions of the homogeneous differential operators on E τ . Moreover, for all z ∈ Z(g C ), the center of U (g C ), we have

z • ϕ σ,λ τ = γ(z)(iλ -µ σ -ρ m ) ϕ σ,λ τ . ( 26 
)
Here γ is the Harish-Chandra homomorphism described in [Kna01, Chapter VIII, paragraph 5] and µ σ is the highest weight of σ.

Proof. In fact, the function Ψ λ defined in [START_REF] Yang | Poisson transforms on vector bundles[END_REF] by

Ψ λ (nak) := τ (k -1 )a λ+ρ , with k ∈ K, a ∈ A, n ∈ N, is nothing but the function x → F -λ-ρ (x -1
) defined in (16). Hence [Yan98, Proposition 1.3, Corollary 1.4 and Theorem 1.6] allows us to prove (26).

Remark

For the Casimir operator, the eigenvalue is given by (13) :

γ(Ω)(iλ -µ σ -ρ m ) = -λ, λ -ρ, ρ + µ σ + ρ m , µ σ + ρ m (27)
To compute the resonances of the Laplacian, we need to describe the vector-valued Helgason-Fourier transform of functions on C ∞ c (G, τ ).

By the Cartan decomposition, we can uniquely write an element x ∈ G as x = k exp X, with k ∈ K and X ∈ p. For X ∈ p, we write |X| = B(X, X) 1/2 . Define the open ball centered at 0 and of radius R > 0 in a ⊂ p by

B R a = {X ∈ a |X| < R} . Moreover, we denote the geodesic distance between o = eK in xK by d(o, xK). Let B R = {x ∈ G d(o, xK) ≤ R} .
We fix an orthonormal basis {e 1 , . . . , e dτ } of H τ , then we define

|| f (λ, k)|| 2 := dτ i=1 f (λ, k), e i 2 .
The direct implication of the Paley-Wiener theorem for C ∞ c (G, τ ) is given by the following Lemma.

Lemma 2.3 Let f be in C ∞ c (G, τ ) and R > 0. If supp f ⊂ B R , then f (λ, k) satisfying is an entire function of λ ∈ a * C for all N ∈ N: sup λ∈a * C ,k∈K e -R | (λ)| (1 + |λ|) N || f (λ, k)|| < ∞ ( * )
Proof. Using the integration formula with respect to the Iwasawa decomposition G = AN K (for example in [Hel00, Ch.I §5 Corollary 5.3]), one can prove that for all

f ∈ C ∞ c (G, τ ) f (λ, k) = F a L k -1 f (28)
Here λ ∈ a * and k ∈ K, f (g) := e ρ(H(g)) N f (gn)dn is called the Radon transform of f and

F a (φ)(λ) = a φ(X)e iλ(X) dX (29)
the Fourier transform on a for φ ∈ C ∞ c (a) and λ ∈ a * . Recall that the Euclidean Paley-Wiener theorem ensures that F a (φ) is an entire function of the exponential type and rapidly decreasing,

i.e. if supp φ ⊂ B a R then ∀N ∈ N, ∃C N ≥ 0, so that |F a (φ)(λ)| ≤ C N (1 + |λ|) -N e R | (λ)| Define fi (•) := f (•), e i .
Then fi is an smooth function.

The idea of the proof is as follows: 

supp f ⊂ B R 2 =⇒ supp L k -1 fi ⊂ B a R 1 ⇐⇒ ( 
e -r| λ| (1 + |λ|) N | f (λ, k), e i | < ∞ .
Moreover, by (28), this is also equivalent to

sup λ∈a * C , k∈K, i=1,...,dτ e -r| λ| (1 + |λ|) N |F A L k -1 fi (λ)| < ∞ .
In turn, by the Paley-Wiener theorem for the Fourier transform on a, this is equivalent to supp L k -1 fi ⊂ B a R as a function on a for every i and for every k ∈ K. 2 Suppose supp f ⊂ B R and let X ∈ B a R . For all k ∈ K and n ∈ N , due to [Hel00, Chapter IV, (13)]:

d(o, ke X nK) > H(ke X n) = |X| ≥ R So ke X n ∈ B R ⊃ supp f and then fi (ke X ) = 0 for every i which implies that X ∈ supp L k -1 fi .
From Lemma 2.3 using (25) and the fact that K is compact, we obtain the following corollary.

Corollary 2.1 For every function

f ∈ C c (G, τ ), the convolution product ϕ σ,λ τ * f is an even entire function of λ ∈ a *
C with the property that there exists a constant r > 0 such that for all N ∈ N the following inequality holds:

sup λ∈a * C e -r| λ| (1 + |λ|) N ||ϕ σ,λ τ * f || < ∞ . ( 30 
)

Computation of the resonances

In this section, we prove Theorem 1. We recall that the resonances of the positive Laplace operator ∆ are defined as the poles of the meromorphic continuation of its resolvent (∆ -z) -1 considered as an operator defined on C ∞ c (G, τ ). We know thanks to Lemma 2.2 that the spherical functions ϕ σ,λ τ are eigenfunctions of ∆ for eigenvalue M (σ, λ) := λ, λ + ρ, ρ -µ σ +ρ m , µ σ +ρ m . The Plancherel theorem (17) gives us a decomposition of L 2 (G, τ ) into a continuous and, possibly, a discrete part:

L 2 (G, τ ) = L 2 cont (G, τ ) ⊕ L 2 dicr (G, τ
) By a slight abuse of notation, we identify R(z) with its restriction to the set

L 2 cont (G, τ ) ∩ C ∞ c (G, τ
). The reader will notice that the discrete part we are omitting brings no additional resonances.

Lemma 3.1 Let z ∈ C \ [ ρ, ρ , +∞[. The function R(z) can be written R(z) = 1 d τ σ∈ M (τ ) R σ (ζ σ ) (31) for all f ∈ C ∞ c (G, τ ) where R σ (ζ σ )f (x) = 1 |α| R 1 ζ σ -λ|α| ϕ σ,λα τ * f (x) p σ (λα) λ dλ (32)
and ζ σ is defined in (4).

Proof. Let f ∈ C ∞ c (G, τ ).
Due to the inversion of the vector-valued Helgason-Fourier transform (17) and the formula (25) for the convolution product between ϕ σ,λ τ

and f ∈ L 2 cont (G, τ ) ∩ C ∞ c (G, τ ), we have f (x) = 1 d τ σ∈ M (τ ) a * ϕ σ,λ τ * f (x) p σ (λ) dλ
Because of Lemma 2.3, we know that ϕ σ,λ τ * f is a rapidly decreasing smooth function. So by Lemma 2.2,

R(z)f = 1 d τ σ∈ M (τ ) a * (∆ -z) -1 ϕ σ,λ τ * f (x) p σ (λ) dλ = 1 d τ σ∈ M (τ ) a * (M (σ, λ) -z) -1 ϕ σ,λ τ * f (x) p σ (λ) dλ . Computing R(z) is then equivalent to compute for each σ ∈ M (τ ) R σ (z) := a * (M (σ, λ) -z) -1 ϕ σ,λ τ * f (x) p σ (λ) dλ
As the values of µ σ , ρ and ρ M are constant we can introduce the variable ζ σ defined in (4). Finally, changing the variable with the isomorphism (9) between a * C and C:

R σ (ζ σ )f (x) := R (ζ 2 σ -λ 2 |α| 2 ) -1 ϕ σ,λα τ * f (x) p σ (λα) dλ
Notice that we are using the same symbol λ for the the variable in a * and the corresponding value λ α ∈ R. Since the function ϕ σ,λ τ is even in λ the same computation as in [HP09, Lemma 2.4] yields the formula (32).

Morera's theorem ensures that the function R σ ( • )f (x) is holomorphic in ζ σ ∈ C \ R. We want to extend meromorphically R σ ( • )f (x) from one half-plane to the other. To fix notation, we will consider R σ ( • )f (x) as a function defined on the upper half plane (ζ) > 0. We will find the meromorphic continuation of this function to C by shifting the contour of integration in the direction of the negative imaginary axis and by applying the residue theorem. The poles of the Plancherel density give then poles of the meromorphic continuation. That is why, if the Plancherel density has no poles, so does the meromorphic continuation, and the Laplacian has no resonances (as for G = Spin(2n + 1, 1)).

The formula of Plancherel density is given in Appendix A (equations ( 69), ( 70), ( 72) and ( 73)) for each of the rank-one groups G. The following proposition unifies the case-by-case formulas found in the literature. The proof is a direct computation.

Proposition 3.1

Let G be of real rank-one. Set

m α := 1 2 (m α/2 + m α -1) .
Then the Plancherel density is given by the following formula:

p σ (λα) = (-1) s λ tanh πλ + 3πsi 2 m α j=1 λ 2 + (B j + ρ -j) 2 (33) 
where

s =          2b 1 if G = Spin(2n, 1) 2b 0 + n -1 if G = SU(n, 1) 2b 0 if G = Sp(n, 1) 2b 1 if G = F 4 (34)
and

B j =          b j if G = Spin(2n, 1) b j+1 -b 0 if G = SU(n, 1) b 1+j -b 0 -1 for j = 1, . . . , n b 0 -b 2n+1-j -1 for j = n + 1, . . . , 2n -1 if G = Sp(n, 1) (35) 
If G = F 4 the exceptional case, then

(B 1 , . . . , B 7 ) = (b 1 + b 2 + b 3 , b 1 + b 2 -b 3 , b 1 /2, b 2 /2, b 3 /2, -b 1 + b 2 + b 3 , -b 1 + b 2 -b 3 ) (36)
Here the b j 's are the coefficients of the highest weight of σ. We refer the reader to Appendix A to see the computations of this formula.

Remark

To make the computations in each of the four cases, one needs the following table:

G K Σ + m α/2 m α ρ α m α Spin(2n, 1) Spin(2n) {α} 0 2n -1 n -1 2 n -1 SU(n, 1) S(U(n) × U(1)) {α/2, α} 2n -2 1 n 2 n -1 Sp(n, 1) Sp(n) {α/2, α} 4n -4 3 n + 1 2 2n -1 F 4
Spin(9) {α/2, α} 8 7

11 2

7 Suppose s even: The formula above goes in tanh(πλ), which has first order poles at λ ∈ i Z + 1 2 however the singular points of this function are the imaginary numbers of the form i Z + 1 2 . Since s is even, the B j + ρ -j are in Z + 1 2 . Hence the zeros of the polynomial part of pσ(λα) λ are the element

{±i(B j + ρ -j) | j = 1, . . . , m α } . ( 37 
)
Thus the Plancherel density has simples poles in the complement of this set in i(Z + 1 2 ).

Suppose s odd: The formula above goes in coth(πλ), with simple poles at λ ∈ iZ. Since s is odd, the B j + ρ -j are in Z. Thus the poles of the Plancherel density are simple and located in the complementary of the set (37) in iZ.

-i(B 1 + ρ -1) • -i(B 2 + ρ -2) • • -i(B 3 + ρ -3) • -i(B m α -2 + ρ -m α + 2) • -i(B m α -1 + ρ -m α + 1) • -i(B m α + ρ -m α ) • • • • poles Figure 1. Example of poles with B 2 = B 3 + 1 for SO(2n, 1) Let B max = max(|B 1 + ρ -1|, |B m α + ρ -m α |) . ( 38 
)
All the values of the form -i(B max + k), with k ∈ N, are poles of the Plancherel density. Let us view R σ as the D (X)-valued holomorphic function on (ζ σ ) > 0 defined in (32). We want determine the meromorphic continuation of this function through the real axis. For this we are shifting the contour of integration in the direction of the negative imaginary axis as in Figure 2 below. Due to Corollary 2.1, the convolution product is rapidly decreasing in λ. Then we just need to upper bound the expression (ζ σ -λ|α|) -1 pσ(λα) λ by a polynomial in |λ|, to make the two integrals along the vertical segments between -R and -R -i(ρ 1 + N + 1/2) and between R and R -i(ρ 1 + N + 1/2) tend to 0 when R goes to infinity. For | (λ)| near to infinity and

(ζ σ ) > 0, we have |(ζ σ -λ|α|) -1 | < (ζ σ ) -1 and pσ(λα) λ < (1 + |λ|) deg(pα)+1
, where p α is the polynomial part of p σ . So the shift is allowed for all N ∈ N.

-i(B 1 + ρ -1) • -i(B 2 + ρ -2) • • -i(B 3 + ρ -3) • -i(B m α -2 + ρ -m α + 2) • -i(B m α -1 + ρ -m α + 1) • -i(B m α + ρ -m α )) • • • • R • -R • -i(ρ 1 + N + 1 4 )
• poles 

(R σ (ζ σ )f ) (x) = 1 |α| R-i(N+1/4) 1 ζ σ -λ|α| ϕ σ,λα τ * f (x) p σ (λα) λ dλ + 2iπ |α| k∈Nσ λ k >-i(N +1/4) 1 ζ σ -λ k |α| ϕ σ,λ k α τ * f (x) Res λ=λ k p σ (λα) λ ( 39 
)
The right-hand side of this formula yields a meromorphic continuation of the resolvant of the Laplace operator on (ζ) > -(N + 1/4). The singular values of the Plancherel density induce then poles of the meromorphic continuation of the resolvent of the Laplace operator. If we resume the notation in the expression (4):

z = -ζ 2 σ -ρ, ρ + µ σ + ρ M , µ σ + ρ M .
This proves Theorem 1.

Residue representations

We consider C ∞ (G, τ ) as a G-module by left-translations. One can see that for each σ ∈ M (τ ) and for each k ∈ N σ , the residues at λ k in the meromorphic continuation (39) span a G-invariant

subspace of C ∞ (G, τ ) if f ∈ C ∞ c (G, τ )
. This is exactly the image of the G-intertwining map :

R σ k : C ∞ c (G, τ ) -→ C ∞ (G, τ ) f -→ ϕ σ,λ k τ * f . ( 40 
)
We denote this space by

E σ k := {ϕ σ,λ k τ * f | f ∈ C ∞ c (G, τ )} . ( 41 
)
We want to identify these representations in terms of Langlands parameters, decide which of them are unitarizable and compute their wave front sets. The idea is to decompose R σ k as follows: Recall the notation (π σ λ k , H σ λ k α ) for the principal series representation corresponding to σ and λ k α. For all l = 1, . . . , m(σ, τ | M ), we denote by P l the projection of H σ λ k α on its l-th K-isotypic component, which we identify with (τ, H τ ). We get the following decomposition of the residue operator R σ k as a composition of two G-intertwining map:

R σ k : C ∞ c (G, τ ) → H σ λ k α → C ∞ (G, τ ) f → T l (f ) → l P l π σ λ k α ( • -1 ) T l (f ) ( 42 
)
where

T l is the map from C ∞ c (G, τ ) to H σ λ k α defined by T l (f ) = G π σ λ k (g) P * l f (g) dg . ( 43 
)
Here * denotes the Hermitian adjoint. Hence, P * l maps H τ into the principal series and is K-equivariant.

Lemma 4.1 T l is an intertwining operator between the left regular representation on C ∞

c (G, τ ) and the principal series representation (π σ λ k , H σ λ k α ). Moreover, for each l the range of the map T l is the closed subspace of H σ λ k α spanned by the left translates of P * l H τ . We will denote this space by

π σ λ k (G)P * l H τ .
Proof. First of all, by definition,

T l C ∞ c (G, τ ) is contained in π σ λ k (G)P * l H τ .
Fix an element g 0 of G and a vector v 0 in H τ . Let δ g 0 ∈ C c (G) * be the (scalar) Dirac delta at g 0 and set δ g 0 ,v 0 = δ g 0 v 0 . Consider the operator on C ∞ c (G, τ ) defined by as the distribution f → G K τ (k)δ g 0 ,v 0 (gk)dk f (g)dg. Since P * l is a K-intertwining operator between τ and π λ k , calculations show that

T l K τ (k)δ g 0 ,v 0 ( • k) dk = π σ λ k (g 0 )P * l v 0 .
Since the Dirac delta can be approximated by smooth compactly supported functions, each element of π σ λ k (G) P * l H τ can be written as limit of elements of T l C ∞ c (G, τ ) . This proves the lemma.

Remark

The map from

H σ λ k α to C ∞ c (G, τ ) defined by φ → P l π σ λ k ( • -1 )φ is a G-intertwining operator between (π σ λ k , H σ λ k α
) and the left regular representation on C ∞ c (G, τ ). It is known as the Poisson transform (see [START_REF] Olbrich | Die poisson-transformation für homogene vektorbündel[END_REF][START_REF] Yang | Poisson transforms on vector bundles[END_REF]).

The idea how to identify E σ k is to compute the range of the map T l , for each l, using Lemma 4.1. Knowing the composition series of H σ λ k α , we can identify this range in this principal series and then project back with the Poisson transform, the second part of the map in (42). The main issue is that,even in rank-one the structure of the principal series representations is very complicated in general. See [START_REF] Collingwood | Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules[END_REF]. In this paper we will consider only the case when σ is the trivial representation of M . In this case the composition series is more transparent and the result have a pleasant uniform form. For example, τ occurs in π σ λ k with multiplicity one. So, from now on, we fix an irreducible representation τ ∈ K which contains the trivial representation of M . We study only the residue representations which arise from σ = triv M and we will denote it E k := E triv M k . Similarly, we set R k := R triv k et write T and P instead of T l and P l respectively. The map in (42) becomes:

R k : C ∞ c (G, τ ) → H triv λ k α → C ∞ (G, τ ) f → T (f ) → P π triv λ k α ( • -1 ) T (f ) ( 44 
)
where P is the projection onto the τ -isotypic component. The structure of the spherical principal series representations (π λ , H λ ) := (π triv λ , H triv λ ) of our groups G has been studied by different authors (see e.g. [HT93, JW77, Joh76, Mol99]) for every G we are studying. Our main reference will be the paper of Howe and Tan [START_REF] Howe | Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations[END_REF] which provides an explicit description of the subquotients of this principal series representation. We will treat the residue representations case by case. For each case, we compute the Langlands parameters of E k , k ∈ N σ . Then to have more information about the size of the infinite-dimensional ones, we compute the wave front set of the representations. For semisimple Lie groups, this object is a closed union of nilpotent orbits of g (see [How81, Proposition 2.4]). Its computation needs some additional results about Gelfand-Kirillov dimension [Vog78, Theorem 1.2] and on nilpotent orbits in semisimple Lie algebras [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF].

4.1. Case of SO(2n, 1). Let G = SO(2n, 1). The K-types of the spherical principal series representations are parametrized by m ∈ N and known as the space of spherical harmonics on R 2n of homogeneous degree m, denoted by H m (R 2n ). Their highest weight of the form m 1 with respect to the fundamental weights described in section A.1. A representation τ containing the trivial representations of M is of this form. From now on, let τ act on the harmonic polynomials on R 2n of fixed homogeneous degree N :

H τ H N (R 2n ) .
As σ is trivial the poles of the Plancherel density p triv M are the [START_REF] Howe | Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations[END_REF] is the following:

λ k = -i(ρ α + k) = -i(n + k - 1/2) with k ∈ N. The composition series of H λ k α described in
H λ k α 1 k m=0 P * m H m (R 2n ) ⊕ 2 m>k P * m H m (R 2n ) ( 45 
)
where P m is the projection of

H λ k α onto the K-isotypic component isomorphic to H m (R 2n ).
The action of G cannot send a K-type from the second summand to the first one.

Langlands parameters of E k . In Figure 3 below, each bullet corresponds to one K-type of the representation H λ k α , the abscissa of the bullet being the coefficient appearing in the highest weight of the K-type. The figure describes the two cases N ≥ k and N < k. The barrier at k + 1 and the arrows mean that the action of g cannot send a K-type which is on the right of k + 1 to a K-type which on the left of k + 1. The second map in (42) (the Poisson transform) is an intertwining operator. So its kernel is either 0 or the entire representation. Choosing a nonzero h ∈ H N (R 2n ) nonzero, the function P τ N π λ k α ( • -1 )j -2n-k+1 h has value h at e G . So the kernel of the Poisson transform is not the entire space, thus it is 0. Consequently E k is 2 in (45).

0 triv K • • • • • • • • • k + 1 • • • • • N • • • • • • • Image of T triv K • • • • • • • • • k + 1 • • • • • • • • • • • • Image of T N 0

Kernel of the Poisson transform

Suppose that N ≤ k: Here the image of T is the entire representation H λ k α because the action of g can cross the barrier at k + 1. The kernel of the second intertwining map in (44) is 2 in (45) by the same argument as before. It follows that E k is the subquotient isomorphic to 1 in (45).

The unitarity is given in [HT93, Diagram 3.15]. To identify the representations we determined, we compute their Langlands parameters. They are collected in Table 1.

Case Minimal K-type δ values of ν N > k + 1 H k+1 (R 2n ) H k+1 (R 2n-1 ) ± n -3 2 α N ≤ k triv K triv M iλ k Table 1. Langlands parameters of E k when G = SO(2n, 1)
The entries of Table 1 are computed as follows. Let µ l be the highest weight of H l (R 2n ). A minimal K-type minimizes the Vogan norm of the highest weight in E k :

µ l V = µ l + 2ρ K , µ l + 2ρ K
where ρ K is the half sum of positive roots in S k C + (see Appendix A.1 for the definition). One can check that µ l V is minimal when l is minimal. This yields the first column of the table. Finally, to find δ, one can use [START_REF] Baldoni | Branching theorems for semisimple lie groups of real rank one[END_REF]Theorem 3.4]. The M -types in H l (R 2n ) have highest weight

µ δ (a) = a 1
where a ∈ [[0, k+1]]. The only one which has the same minimal K-type is µ δ (0) , for 1 µ δ (k + 1) , for 2 .

To find ν one has to compare the infinitesimal character of of Ind G M AN (triv ⊗ e iλ k α ⊗ triv) and Ind G M AN (δ ⊗ e iν ⊗ triv). They have to agree up to the action of the Weyl group of (g C , k C ).

Theorem 2, 1., follows from these computations.

Case of SU(n, 1)

. Let now G = SU(n, 1). The structure of the spherical principal series is described for U(n, 1) in [START_REF] Howe | Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations[END_REF] but Molchanov find the same result for SU(n, 1) in [START_REF] Molchanov | Representations of pseudo-unitary groups associated with a cone[END_REF].

Choose a basis {z 1 , . . . , z n , z n+1 } of C n+1 as complex vector space and {z 1 , . . . , z n , z n+1 , z 1 , . . . , z n , z n+1 } the corresponding basis of R 2n+2 . The K-types of the spherical principal series representations are the spaces

H m 1 ,m 2 (C n ) ⊗ H l (C)
where H m 1 ,m 2 (C n ) are the spherical harmonics on C 2n of homogeneous degree m 1 and m 2 in the variables z 1 , . . . , z n+1 and z 1 , . . . , z n , z n+1 respectively. Moreover, the space H l (C) is defined for all integer l by:

H l (C) = H l,0 (C) if l ≥ 0 H 0,-l (C) if l ≤ 0
Their highest weights are of the form m 1 1 -m 2 n -l n+1 with respect to the fundamental weights described in section A.2. From now on, let

H τ H M 1 ,M 2 (C n ) ⊗ H L (C) . ( 46 
)
so the highest weight of τ is

µ τ = M 1 1 -M 2 n -L n+1 ( 47 
)
for fixed nonnegative integers M 1 , M 2 , a fixed integer L. From now on we call this representation τ M 1 ,M 2 ,L . As σ is trivial, the poles of the Plancherel density are the

λ k = ±i( n 2 + k)
where k is a non-negative integer. Hence

H λ k α l∈Z m 1 ,m 2 ≥0 m 1 -m 2 +l=0 P * H m 1 ,m 2 (C n ) ⊗ H l (C) (48) 
where

P := P m 1 ,m 2 ,l is the projection of H λ k α onto the K-isotypic component isomorphic to H m 1 ,m 2 (C n ) ⊗ H l (C).
One can see that the conditions in the sum in (48) imply that the pair (m 1 + m 2 , l) determines the triple (m 1 , m 2 , l) and since m 1 and m 2 are nonnegative, -l ≤ m 1 + m 2 ≤ l for all l ∈ Z.

• τ M 1 ,M 2 ,L Kernel of the Poisson transform Image of T 1 m l • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -2k -2 2k + 2 2 m l • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -2k -2 2k + 2 • 3 m l • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -2k -2 2k + 2 • 4 m l • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -2k -2 2k + 2 • Figure 4. K-types in H λ k α and decomposition series for k = 1
Langlands parameters of E k . In Figure 4, each bullet corresponds to one K-type of H λ k α , the coordinates of the point being the pair (m

1 + m 2 , l) for the K-type H m 1 ,m 2 (C n ) ⊗ H l (C).
[HT93, Lemma 4.4] ensures us that the action of G cannot send a K-type to another constituent if it doesn't follow the sense of the arrows. Thus the space is separated in four constituents. We denote these constituents North -East -South -West depending on their position. The figure describe the four cases when the K-type τ M 1 ,M 2 ,L is in each constituent and is represented by the bullet (M 1 + M 2 , L). The reader should recall Lemma 4.1 and (44).

Case 1 :

M 1 + M 2 ≥ 2k + 2 and |L| ≤ -2k -2 + M 1 + M 2
Since the action of G on the K-types cannot cross the barriers from the side out, the image of T is the entire East-component

m 1 ,m 2 ≥0, m 1 +m 2 ≥2k+2 l∈Z, |l|≤-2k-2+m 1 +m 2 m 1 -m 2 +l=0 P * H m 1 ,m 2 (C n ) ⊗ H l (C) .
The Poisson transform is an intertwining operator. Hence its kernel, contained in an irreducible representation, is either 0 or the entire representation. Choosing a nonzero h ∈ H N (R 2n ), the function

P τ M 1 ,M 2 ,L π λ k α ( • -1 )P * (h) has value h at e G . Thus E k is equivalent as a representation to the image T . Case 2 : L ≥ | -2k -1 + M 1 + M 2 | + 1
From the North-constituent, the action of G can cross the barrier l = -2k -2 + m but not the barrier l = 2k + 2 -m. Thus the image of T is composed of two North and East-components:

m 1 ,m 2 ≥0 l∈Z, l>2k+2-m 1 -m 2 m 1 -m 2 +l=0 P * H m 1 ,m 2 (C n ) ⊗ H l (C) .
Following the proof in the previous case, one can conclude that the image of the Poisson transform is nonzero and that the North-constituent, where τ M 1 ,M 2 ,L is, is not in the kernel of this map. Because of the barrier l = -2k -2 + m the action of G cannot bring a K-type from the East-constituent into the North-constituent. Thus the Eastconstituent is the kernel of the Poisson transform and E k is equivalent to the subquotient of the North-East constituents modulo the East-constituent.

Case 3 : L ≤ | -2k -1 + M 1 + M 2 | -1
This case is completely symmetric to the previous one. The figure explains the result.

Case 4 :

M 1 + M 2 ∈ [0, 2k + 2[ and L < |2k + 2 -M 1 + M 2 | τ M 1 ,M 2 ,L is in the finite-dimensional West-constituent.
From there, the action of G can send a K-type onto any other K-type in H λ k α . Thus the image of T is the entire spherical principal series representation. As in the previous cases, one can prove that the image of the Poisson transform is nonzero and that the West-constituent, where τ M 1 ,M 2 ,L is, is not in the kernel of this map. Because of the two barriers, the action of G cannot bring a K-type from the others constituents into the West-constituent. This means that the kernel of the Poisson transform is the quotient

H λ k α m 1 ,m 2 ≥0 l∈Z, |l|≥+2k+2-m 1 -m 2 m 1 -m 2 +l=0 j -k-n H m 1 ,m 2 (C n ) ⊗ H l (C)
The four representations E k we have found above are irreducible subquotients of H λ k α . Their unitarity is given in [START_REF] Howe | Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations[END_REF]Diagram 3.15]. We list their Langlands parameter in Table 2.

Since the multiplicity of τ in H δ ν is 1 (see for instance [START_REF] Koornwinder | A note on the multiplicity free reduction of certain orthogonal and unitary groups[END_REF]) for these two first cases, the residue representation can be identified as the unique irreducible subquotient of H δ ν containing τ . 4.3. Case of Sp(n, 1). Let G = Sp(n, 1). We recall that K = Sp(1) × Sp(n). Up to equivalence there a unique representation of Sp(1) = SU(2) of dimension j + 1 for all nonnegative integer j. Denote this representation by θ j , acting on the space V j 1 . Denote by V m 1 ,m 2 p the irreducible representation of Sp(p) with highest weight (m 1 , m 2 , 0, . . . , 0) where m 1 ≥ m 2 ≥ 0 (see [Ž73, Theorem 6 page 327]). As σ is trivial, the poles are the points λ k = ±i(n + 1 2 + k) with k ∈ N. The spherical principal series representation decomposes over K as follows:

H P * V m 1 ,m 2 p ⊗ V l 1 ( 49 
)
where

P := P m 1 ,m 2 ,l is the projector in H λ k α on the K-isotopic component isomorphic to V m 1 ,m 2 p ⊗ V l
1 and the sum is over the following set :

m 1 ≥ m 2 ≥ 0, l ≥ 0, m 1 + m 2 ≥ l, m 1 + m 2 + l ∈ 2Z . ( 50 
)
These conditions imply that a fixed pair (m, l)

= (m 1 + m 2 , l) represents a fiber of K-types V m 1 ,m 2 p ⊗ V l 1 , one for each value of m 1 -m 2 . The highest weight of V m 1 ,m 2 p ⊗ V l
1 can be computed as m 1 1 + m 2 2 + |l| n+1 with respect to the sets of roots in (A.3). Let τ be V a 1 ,a 2 p ⊗ V an+1

1

. From now on we call this representation τ a 1 ,a 2 ,a n+1 .

Langlands parameters of E k .

To understand the composition series of the representation E k , we have now to know how p acts on its K-types. This action is given in [HT93, Lemma 5.3]. The diagram 5.18 in that paper give us the different cases. One can prove that the action of g can bring one K-type in each fiber to every other in the same fiber. Then we can follow the method used for G = SO(2n, 1) or SU(n, 1) putting the K-types of H λ k α in the same two-dimensional space corresponding to the points of coordinates (m 1 + m 2 , l). Notice that here each point in Figure 5 corresponds then to a fiber of K-types. We refer to [HT93, Lemma 5.4] for more details. Figure 5 illustrates the computation of the residue representation E k . Two barriers cross the set of K-types. These separate the space H λ k α in three constituent. The figure shows the three cases where the K-type τ a 1 ,a 2 ,a n+1 is in each constituent. The arguments are the same as in the complex case. Naming the constituent North, West ant East according to their position, one gets the following equivalences:

E k                East-constituent if a n+1 ≤ -2k -4 + a 1 + a 2 North-East-constituents East-constituent if a n+1 ≥ | -2k -2 + a 1 + a 2 | H λ k α North-East-constituents if a n+1 ≥ 2k + 2 -a 1 -a 2 (51) • τ a 1 ,a 2 ,a n+1 Kernel of the Poisson transform Image of T m l • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2k + 4 2k + 2 m l • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2k + 4 2k + 2 • m l • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2k + 4 2k + 2 • Figure 5. K-types in H λ k α and decomposition series for k = 1
The three representations E k we have found above are irreducible subquotients of H λ k α . Their unitarity is given in [HT93, Diagram 3.15]. We find the following results using Proposition 3.1 in [START_REF] Baldoni | The unitary dual of Sp(n, 1), n ≥ 2[END_REF]:

Case Minimal K-type δ values of ν 1 (k + 2) 1 + (k + 2) 2 (k + 2)e 3 + (k + 2)e 4 ± n -3 2 α 2 (k + 1) 1 + (k + 1) n+1 (k + 1)e 3 + k+1 2 (e 1 -e 2 ) if k ≤ 2n -4 ∅ if k > 2n -4 ± k 2 + n α if k ≤ 2n -4 3 triv K triv M iλ k Table 3. Langlands parameters of E k when G = Sp(n, 1)
We indicate how to compute the entries of this table. In case 2 , for k > 2n -4, one cannot find a representation δ following the conditions of the Langlands parameters. We conclude that E k is in the discrete series in these cases. Their Blattner parameter is the highest weight of the minimal K-type, which is (k + 1) 1 + (k + 1) n+1 . The Harish-Chandra parameter of the discrete series is

(k + n) 1 + (k + 3 -n) n+1 + n j=2 2(n -i + 1) i .

Remark

One can verify that Theorem 1 in [START_REF] Parthasarathy | Classification of discrete series by minimal K-type[END_REF] gives the same conclusion as ours: there are discrete series representations in case 2 for k > 2n -4. 4.4. Case of F 4 . The paper of Johnson [START_REF] Johnson | Composition series and intertwining operators for the spherical principal series[END_REF] gives the results we need in this case. Let G be the exceptional Lie group F 4 . We recall that here K = Spin(9) and M = Spin(7). As σ is trivial, the poles of the meromorphically extended resolvent are the points

λ k = ±i( 11 2 + k) with k ∈ N.
The K-types of H λ k α are the V p,q with p ≥ q ≥ 0 and p + q ∈ 2Z (see [Joh76, Theorem 3.1]), with highest weight

µ p,q = p 2 1 + q 2 2 + q 2 3 + q 2 4
with respect to the sets of roots in Appendix (A.3). Let τ be V a,b , for a ≥ b ≥ 0 and a + b ∈ 2Z.

In the following, we call this representation τ a,b . We can follow the method of the cases G = SO(2n, 1) or SU(n, 1), putting the K-types of H λ k α in the same two-dimensional space corresponding to the points of coordinates (p, q). Figure 6 illustrates the computations of E k . There are again two barriers. They separate the space H λ k α in three constituents. The figure describes the three cases where the K-type τ p,q is in different constituents. The arguments are the same as in the complex case. Naming the constituent North, West ant East according to their position, one gets the following equivalences:

E k                East-constituent if a n+1 ≤ -2k -4 + a 1 + a 2 North-East-constituents East-constituent if a n+1 ≥ | -2k -2 + a 1 + a 2 | H λ k α North-East-constituents if a n+1 ≥ 2k + 2 -a 1 -a 2 (52) • τ a,b Kernel of the Poisson transform Image of T p q • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2k + 8 2k + 2 p q • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2k + 8 2k + 2 • p q • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2k + 8 2k + 2 • Figure 6. K-types in H λ k α
and decomposition series for k = 0 The three representations E k we have found above are irreducible subquotients of H λ k α . We find the following results using [BS79, Theorem 3.4]:

Case Minimal K-type δ values of ν 1 (k + 4) 1 (k+4) 4 (3 1 + 2 + 3 + 4 ) ± 1 2 (k + 1) α 2 3k+5 2 2 1 + k-1 2 2 ( 2 + 3 + 4 ) (k+4) 4 (3 1 + 2 + 3 + 4 ) 1 2 (k + 10) α 3 triv K triv M iλ k Table 4. Langlands parameters of E k when G = F 4
In the table • denotes the integer part and • is the upper integer part. Here the method is exactly the same as when G = Spin(2n, 1). One has just to take care of the embedding of M in K which is not standard (see [BS79, section 6]). We used [CHH + 12] to know how the (complex) Weyl group acts on the infinitesimal characters of the principal series.

Wave front set of the residue representations

In this section, we continue to assume that (τ, H τ ) contains the trivial representation of M . The residue representations E k are those listed in Theorem 2 and defined in section 4. The purpose of this part is to compute the wave front set WF(E k ) of these representations. For this, we need some results on the Gelfand-Kirillov dimension [START_REF] Vogan | Gelfand-Kirillov dimension for Harish-Chandra modules[END_REF] and on the nilpotent orbits in semisimple Lie algebras [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]. Proposition 2.4 in [START_REF] Howe | Wave front sets of representations of Lie groups[END_REF] tells us that the wave front set of E k is equal to a closed union of nilpotent orbits of g. To know which occurs, we use the Gelfand-Kirillov dimension of E k , computed by [Vog78, Theorem 1.2] in terms of K-types. This dimension is the half of the dimension of the wave front set see as a nilpotent orbit (see [START_REF] Vogan | Gelfand-Kirillov dimension for Harish-Chandra modules[END_REF][START_REF] Rossmann | Picard-Lefschetz theory and characters of a semisimple Lie group[END_REF][START_REF] Barbasch | The local structure of characters[END_REF]). Combining this information with the list of nilpotent orbits in semisimple Lie algebra and their dimensions in [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF], we get the results. 5.1. Generalities. The definition of the wave front set of a representation can be found in [START_REF] Howe | Wave front sets of representations of Lie groups[END_REF]page 118]. The wave front sets are closed conical sets in T * G. For Lie groups, they can be seen as invariant sets of g * under the coadjoint action Ad * of G. For semisimple Lie groups, g and g * can be identified by the Killing form. Then Ad * invariant subsets of g * can be seen as Ad invariant subsets of g. More precisely, the wave front set of a representation can be identified with the closure of a union of nilpotent orbits under the adjoint action in g (see [START_REF] Howe | Wave front sets of representations of Lie groups[END_REF]Proposition 2.4]). It will be denoted by WF(π). 5.2. Case of SO(2n, 1). In this section, we prove the results about wave front set stated in Theorem 2 for G = SO(2n, 1). First we compute the Gelfand-Kirillov dimension of the Harish-Chandra module of E k defined in section 4.

Lemma 5.1

The Gelfand-Kirillov dimension of the residue representation

E k is    cl0 if N ≤ k 2n -1 if N > k
Proof. First of all, if N ≤ k, the residue representation is finite-dimensional, so the Gelfand-Kirillov dimension is 0. For the case N > k, the residue representation is infinite-dimensional. One can compute the eigenvalue of each K-type τ m in H λ k α for the Casimir operator Ω k of k (using for example [Hal15, Proposition 10.6]):

τ m (Ω k ) = (m + n -1) 2 -(n -1) 2 Id (53)
Knowing that the dimension of the space of harmonic polynomials of homogeneous degree m is

d m = m+2n-1 2n-1 -m+2n-3
2n-1

(see [Ž73] for example), we compute the sum N E k (t) of the dimensions d m of τ m until its eigenvalue exceed a fixed real number t 2 . This sum depends on t as follows:

N E k (t) = Nt m=k+1 d m = N t + 2n -1 2n -1 + N t + 2n -2 2n -1 - k + 2n -2 2n -1 - k + 2n -1 2n -1 (54) 
where N t + n -1 = t and if t goes to infinity, we have :

N E k (t) ∞ ∼ (N t + 2n -1)! N t ! ∞ ∼ t 2n-1 (55) 
Hence the Gelfand-Kirillov dimension is equal to 2n -1 (see [Vog78, Theorem 1.2]).

Lemma 5.2 Let g = m ⊕ a ⊕ g α ⊕ g -α (56) 
be the restricted root space decomposition of g. Then there are 2 nilpotent orbits in g, namely the zero orbit and the orbit generated by any non-zero element of g α .

Proof. The non-zero elements of g α are conjugated by the elements of M A. Moreover, g -α = θ(g α ) = Ad(k θ )(g α ) for a suitable element k θ ∈ K. Then all nilpotent elements in the restricted root spaces above are conjugate, except 0 which forms an orbit alone. This can also be found using Theorem 9.3.4 in [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]. The two only possible Young diagrams for so(2n, 1) are : We are now able to prove the results about the wave front set of E k in Theorem 2 for G = SO(2n, 1).

Wave front set of E k . We have just two cases. When N ≤ k, E k is finite-dimensional so the wave front set is the zero orbit. If N > k, as E k is infinite-dimensional, only the nilpotent orbit generated by g α can correspond.

This can be checked using the formula for the dimension of nilpotent orbits in g C , the com- plexification of g ([CM93, Corollary 6.1.4]). In fact if N > k, the Gelfand-Kirillov dimension is 2n -1 because of Lemma 5.1. The dimension of the wave front set is then 4n -2. Because of the corollary cited above, we have:

4n -2 = dim WF(E k ) = (2n + 1) 2 - 1 2 s 2 i - 1 2 odd r i ( 57 
)
where

s i = |{j | d j ≥ i}| and r i = |{j | d j = i}| in a partition [d 1 , . . . , d k ] of 2n + 1.
Thus, only one complex nilpotent orbit has this dimension: the one matching to the partition [3, 1, 1, . . . , 1] of 2n + 1. This corresponds indeed to the Young diagram of the (real) nilpotent orbit generated by g α .

5.3. Case of SU(n, 1). In this section, we prove the results about wave front set in Theorem 2 for G = SU(n, 1). First of all, we compute the Gelfand-Kirillov dimension of the Harish-Chandra module of E k defined in section 4.

Recall that there are 4 possibilities for the residue representation (see 4.2). We label each case as in Figure 7. The Gelfand-Kirillov dimension of the residue representation E k is

           2n -1 in case 1 n in case 2 n in case 3 0 in case 4 .
Proof. In case 4 , the representation E k is finite-dimensional. The Gelfand-Kirillov dimension is then 0. For the three other cases, we need some computations.

First of all, one can compute the eigenvalue of each K-type τ m,l in H λ k α for the Casimir operator Ω k of k (using for example [Hal15, Proposition 10.6]). Recall from 4.2 that

τ m,l H m-l 2 , m+l 2 (C n ) × H l (C) (58) 
with highest weight µ m,l = m-l 2 1 -m+l 2 n + l n+1 . Then one finds:

τ m,l (Ω k ) = 1 2 (m + n -1) 2 -(n -1) 2 + 3l 2 Id (59)
The dimension of the space of τ m,l follows for example from the Weyl dimension formula [Kna02, Theorem 5.84]:

d m,l = m-l 2 + n -1 n -1 m+l 2 + n -1 n -1 - m-l 2 + n -2 n -1 m+l 2 + n -2 n -1 Let δ(m, l, N ) := m-l 2 +N -1 n-1 m+l 2 +N -1 n-1 . So d m,l = δ(m, l, n) -δ(m, l, n -1) . ( 60 
)
We compute the sum N E k (t) of the dimensions d m of τ m until the eigenvalue (59) exceeds a fixed real number t 2 . This sum depends on t and we want to know what is the equivalent power of t to use [Vog78, Theorem 1.2]. First one can see, that for a fixed l, the sum between two values m min and m max of m is telescopic:

mmax m=m min d m,l = δ(m max , l, n) -δ(m min , l, n -1) (61) 
The inequality given by the eigenvalue of the Casimir operator (59) limits the area of points of K-types by an ellipsis. The goal is to know the behaviour in t of the sum over th K-types inside the ellipsis when this t-ellipsis is going to infinity.

Case 1 : The sum (61) is telescopic on every (gray) line for a fixed l, so it is just the difference δ(m max , l, n) -δ(m min , l, n -1) where m min and m max are respectively the abscissa of the first (circled) and the last (squared) point on the line. Let l max be the maximal lcoordinate of the K-types that are indexed by the points in this area. This number is roughly equal to the coordinate of the intersection between the ellipsis and the line "limiting" the representation. Computing the intersection, we have l max (t) is asymptotic at infinity to t 2 . As m max (l, t) is roughly on the ellipsis, we also have that m max (l, t) is asymptotic at infinity to t 2 -3l 2 on the line with ordinate l. We can forget the term δ(m min , l, n -1) because it is a constant in t so it will bring strictly lower powers of t than δ(m max , l, n) in the sum. We get then (the symbol ∞ ∼ means that both sides have the same highest power of t)

t 2 = 1 2 (m + n -1) 2 -(n -1) 2 + 3l 2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • N E k (t) ∞ ∼ lmax (t) l=-lmax (t) δ(m max (l, t), l, n) ∞ ∼ |l|≤t/2 n-1 j=1 (mmax (l,t)+n-1-j) 2 4 -l 2 4 (n -1)!
And replacing m max :

N E k (t) ∞ ∼ 0≤l≤t/2 (t 2 -4l 2 ) n-1 ∞ ∼ t 2n-1
The Gelfand-Kirillov dimension follows from Theorem 1.2 in [START_REF] Vogan | Gelfand-Kirillov dimension for Harish-Chandra modules[END_REF].

For the cases 2 and 3 (which are symmetric), the reasoning is exactly the same and give

N E k ∞ ∼ t n .
The following Lemma gives us the different nilpotent orbits in the nilradical of g.

Lemma 5.4

There are four nilpotent orbits in SU(n, 1):

(1) the trivial orbit,

(2) the one generated by g α/2 , of dimension 4n -2,

(3) the one generated by

n 1 = i    1 0 -1 0 0 0 1 0 -1   , of dimension 2n,
(4) the one generated by

n 2 = i    1 0 -1 0 0 0 1 0 -1   , of dimension 2n.
Here the 0 in the center of the matrix is the (n -1) × (n -1) zero matrix.

Proof. Using Theorem 9. 

+

The first one corresponds to the zero orbit. The second one is the only one which is nilpotent of degree 2. It corresponds to the orbit generated by any element of g α/2 . In fact, the proof of the fact that g α/2 and g -α/2 are in the same orbit is exactly the same as the one in Lemma 5.2. The two last ones are nilpotent of degree 1. Computations show that n 1 and n 2 (defined in the Lemma) cannot be conjugated by an element of K. In particular, K cannot change the last number on the last line and the last column. The conjugation by A is a multiplication by a positive factor and the conjugation by N doesn't affect n 1 or n 2 . So n 1 and n 2 are each representative of one nilpotent orbit of degree 1. The dimensions are given by Corollary 6.1.4 in [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]. Recall that the partition of the complex nilpotent orbit coming from a real nilpotent orbit is given by the boxes of the corresponding Young diagram.

We are now able to prove the results about the wave front set of E k in Theorem 2 for SU(n, 1).

Wave front set of E k . The two lemmas above conclude the cases 1 and 4 . Now we have to know which the cases 2 and 3 correspond to the nilpotent orbit generated by n 1 or the one generated by n 2 . They have the same dimension, so we need to have more information about the wave front set. We will use the projection over K to figure it out. In fact, [How81, Proposition 2.3] ensures us that

WF(E k | K ) = Ad * (K) -AC(supp E k ) (62)
where AC the asymptotic cone and supp ρ is the set of highest weights of E k . Proposition 2.5 gives us:

WF(E k | K ) = q(WF E k ) ( 63 
)
where q is the projection from g * onto k * . We write E 2 k or E 3 k if E k is respectively in case 2 or in case 3 (see figure 7). We have:

-AC(supp E 2 k ) -µ 1,1 = n -n+1 and -AC(supp E 3 k ) µ 1,-1 = -1 + n+1 Moreover, q • B : n 1 → (2n + 2)(-1 + n+1 ) n 2 → (2n + 2)( 1 -n+1 )
This gives the result, as K sends by the coadjoint action n -n+1 to 1 -n+1 .

5.4. Case of Sp(n, 1). In this section, we prove the results about wave front set in Theorem 2 for G = Sp(n, 1). First of all, we compute the Gelfand-Kirillov dimension of the Harish-Chandra module of E k defined in section 4. Recall that there are 3 possibilities of residue representation (see 4.3). We label each case as in Figure 8. The proofs are very similar to the complex case. So we will be less specific. 

τ m,l (Ω k ) = 1 2 (m + 2n -1) 2 -(2n -1) 2 + 3(l + 1) 2 -1 Id (64)
The dimension of the space of τ m,l follows for example from the Weyl dimension formula [Kna02, Theorem 5.84]:

d m,l = (l + 1) 2 2n -1 m-l 2 + 2n -2 2n -2 m+l 2 + 2n -1 2n -2 - m-l 2 + 2n -3 2n -2 m+l 2 + 2n -2 2n -2 Setting δ(m, l, N ) := m-l 2 +N 2n-2 m+l 2 +N +1 2n-2
we have

d m,l = (l + 1) 2 2n -1 δ(m, l, 2n -2) -δ(m, l, 2n -1) (65) 
As before, for a fixed l, the sum of d m,l between the values m min and m max of m is telescopic:

mmax m=m min d m,l = (l + 1) 2 2n -1 δ(m max , l, n) -δ(m min , l, n -1) (66) 
The inequality given by the eigenvalue of the Casimir operator 59 limits the area of points of K-types by an ellipsis. The goal is to know the behaviour in t of the sum over the K-types delimited by this ellipsis when this ellipsis is going to infinity. The method to compute the N E k (t) out of [Vog78, Theorem 1.2] is exactly the same as the SU(n, 1) case and left to the reader.

The following lemma gives us the different nilpotent orbits in the nilradical of g.

Lemma 5.6

There are three nilpotent orbits in sp(n, 1):

(1) the trivial orbit, (2) the orbit generated by g α/2 , of dimension 8n -2, (3) the orbit generated by g α , of dimension 4n + 2.

Proof. Using Theorem 9.3.5 in [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF], one finds that there are three possible Young diagrams corresponding to the nilpotent orbits for sp(n, 

+

The first one corresponds to the zero orbit. The second is the only one which is nilpotent of degree 2. It corresponds to the orbit generated by any element of g α/2 . The last one is the only one nilpotent of degree 1. So it is generated by any element of g α . The dimensions are given by Corollary 6.1.4 in [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]. Also here we have to recall that the partition of the complex nilpotent orbit coming from a real nilpotent orbit is given by the boxes of the corresponding Young diagram.

The combination of the two lemmas is sufficient to conclude the results about wave front set of E k in Theorem 2 for Sp(n, 1).

5.5. Case of F 4 . In this section, we prove the results about wave front set in Theorem 2 for G = F 4 . We first compute the Gelfand-Kirillov dimension of the Harish-Chandra module of E k defined in section 4. Recall that there are three possible residue representations (see 4.4) which we label as in Figure 9. The proofs are very similar to the complex case. Recall that to determine the resolvent of the Laplacian, we use the inversion formula (17) for vector-valued Helgason-Fourier transform. The resonances arise from the singularities of the Plancherel measure. To find them, we need an explicit formula for the Plancherel density p σ . Even if such an explicit formula is not known for an arbitrary group G, in the rank-one case, several authors have computed it ([Oka65], [START_REF] Miatello | On the plancherel measure for linear lie groups of rank one[END_REF]; see also [War72, Epilogue, pp. 414 ff.]). Our reference in the following is Miatello's article [START_REF] Miatello | On the plancherel measure for linear lie groups of rank one[END_REF]. The formula depends on the group G and on the highest weight of σ. According to this formula, p σ is the product of two factors. The first one is a polynomial function in λ, denoted q σ . The second factor is either a hyperbolic tangent or a hyperbolic cotangent (or 1 if G = Spin(2n + 1, 1)). We denote it by φ σ . The goal of this section is to explain how one can compute p σ with σ ∈ M (τ ), where τ ∈ K is arbitrarily fixed.

For this, we are going to use the branching rules given by Baldoni Silva in [START_REF] Baldoni | Branching theorems for semisimple lie groups of real rank one[END_REF]. Remark 1.3 in [START_REF] Miatello | On the plancherel measure for linear lie groups of rank one[END_REF] ensures us that the Plancherel formula of one of the four groups listed in the table in the introduction gives us the Plancherel formula for every group of real rank one. As we do not care about the constants in our computations in this paper, p σ is given up to a constant.

A.1. Case of Spin(n, 1). Here G/K is the real hyperbolic space. Recall that K is Spin(n) and M is Spin(n -1). In this case, the parity of n plays a role in the Plancherel measure. In fact, when n is odd, φ σ (λ) = 1. So it is non-singular and there are no resonances. In the following we therefore disregard the case of Spin(2n + 1, 1) and suppose that G = Spin(2n, 1). Let us recall some Lie algebraic structure. Our reference is [BS79, Section 3]. The Lie algebra of G is g = so(2n, 1). Its complexification is g C = so(2n + 1, C). We have also Lie

(K) C = k C = so(2n, C) and Lie(M ) C = m C = so(2n -1, C).
We choose the following Cartan subalgebra of g C is:

h C = H ∈ so(2n + 1, C) | H = diag 0 ih 1 -ih 1 0 , 0 ih 2 -ih 2 0 , . . . , 0 ih n -ih n 0 , 0
Let { j } j=1,...,n be the elementary weights defined by j (H) = h j . We denote S, S + and S 0 respectively the set of roots, positive roots and simple roots of (g C , h C ). For the set of roots of k C or m C we let the Lie algebra in index.

S = ± i ± j | i = j ∪ ± k | k ∈ {1, . . . , n} ; S 0 = α i = i -i+1 | i ∈ {1, . . . , n-1} ∪ α n = n S k C = ± i ± j | i = j ; S m C = ± i ± j | i = j ∪ ± k | k ∈ {1, . . . , n -1} S 0 k C = i -i+1 | i ∈ {1, . . . , n -1} ; S 0 m C = i -i+1 | i ∈ {1, . . . , n -2} ∪ n-1
Notice that, unlike [BS79, Theorem 3.4], we keep the same notation for the j 's and their projections on m C . As in [BS79, Lemma 3.2], the fixed (τ, H τ ) ∈ K has highest weight of the form:

µ τ = n j=1 a j j
where a 1 ≥ . . . ≥ a n-1 ≥ | a n | ≥ 0, a i -a j ∈ Z and 2a j ∈ Z for all i, j = 1, . . . , n.

Let σ ∈ M (τ ). According to [BS79, Theorem 3.4], the highest weight µ σ of a representation σ ∈ M (τ ) has the form:

µ σ = n-1 i=1 b j j
where for all i, j = 1, . . . , n -1 we have a

j -b i ∈ Z and a 1 ≥ b 1 ≥ a 2 ≥ . . . ≥ a n-1 ≥ b n-1 ≥ | a n | ≥ 0. Furthermore, m(σ, τ | M ) = 1 for every σ ∈ M (τ ).
For σ ∈ M (τ ), the Plancherel density is given in [Mia79, pp. 256-257]:

p σ (λ) = tanh(πλ α ) , if b j ∈ Z coth(πλ α ) , if b j ∈ 1 2 + Z λ α n-1 j=1 λ 2 α + (ρ + b j -j) 2 (69) 
We recall that λ α is the complex number associated to λ ∈ a * C by (9).

Remark

The above formula agrees with the Plancherel density for the real hyperbolic space for τ = triv K (and the, σ = triv M ). See e.g. [START_REF] Hilgert | Resonances and residue operators for symmetric spaces of rank one[END_REF]. It also gives the different irreducible continuous constituents of the Plancherel density for the p-forms on the real hyperbolic space, as computed in [START_REF] Pedon | Analyse harmonique des formes différentielles sur l'espace hyperbolique réel[END_REF].

A.2. Case of SU(n, 1). Here G/K is the complex hyperbolic space. Recall that K is S(U(n) × U(1)) and M is S(U(1) × U(n -1) × U(1)). Our notations follows [BS79, Section 4]. The Lie algebra of G is g = su(n, 1). Its complexification is g C = sl(n + 1, C). We have also

Lie(K) C = k C = sl(n, C) and Lie(M ) C = m C = sl(n -1, C).
The elliptic Cartan subalgebra h C of g C consists of the diagonal matrices in sl(n + 1, C).

Let { j } j=1,...,n be the elementary weights defined by j (H) = h j where H = diag(h 1 , h 2 , . . . , h n+1 ) described the elements of h C . We denote S, S + and S 0 respectively the set of roots, positive roots and simple roots of (g C , h C ). For the set of roots of k C or m C we let the Lie algebra in index.

S = ± ( i -j ) | 1 ≤ i < j ≤ n + 1 ; S 0 = α i = i -i+1 | 1 ≤ i ≤ n S k C = ± ( i -j ) | 1 ≤ i < j ≤ n S m C = ± ( i -j ) | 2 ≤ i < j ≤ n S 0 k C = α i = i -i+1 | 1 ≤ i ≤ n -1 S 0 m C = α i = i -i+1 | 2 ≤ i ≤ n -1
As in [BS79, Lemma 4.2], the fixed (τ, H τ ) ∈ K has highest weight of the form

µ τ = n+1 j=1 a j j
where a 1 ≥ . . . ≥ a n-1 ≥ a n and a i ∈ Z for all i = 1, . . . , n + 1. . The fact that we are working with zero trace matrices implies that n+1 j=1 j = 0. Thus we can relate to Miatello's form for the weights. We get the same formula as in [START_REF] Miatello | On the plancherel measure for linear lie groups of rank one[END_REF]p. 258]: Let t denote the set of diagonal matrices in g. So t C is the elliptic Cartan subalgebra of g C . Let hbe a maximal abelian algebra of m. Then h := h -+ a is a Cartan subalgebra of g, and h C is a Cartan subalgebra of g C .

µ σ =
Let { j } j=1,...,n be the elementary weights defined by j (H) = h j , where H = diag(h 1 , h 2 , . . . , h n+1 ) ∈ t C . We denote S, S + and S 0 respectively the set of roots, positive roots and simple roots of (g C , h C ). For the set of roots of k C or m C we let the Lie algebra in index.

S = ± i ± j | 1 ≤ i < j ≤ n + 1 ∪ ± 2 i | 1 ≤ i ≤ n + 1 ; S 0 = i -i+1 | 1 ≤ i ≤ n ∪ 2 n+1 ; S k C = ± i ± j | 1 ≤ i < j ≤ n ∪ ± 2 i | 1 ≤ i ≤ n ; S 0 k C = i -i+1 | 1 ≤ i ≤ n -1 ∪ 2 n ; S m C = ± ( i -j ) | 1 ≤ i < j ≤ n -1 ∪ ± 2 i | 1 ≤ i ≤ n -1 ; S 0 m C = i -i+1 | 1 ≤ i ≤ n -2 ∪ 2 n-1
The fixed (τ, H τ ) ∈ K has highest weight of the form:

µ τ = n+1 j=1 a j j
where a 1 ≥ . . . ≥ a n-1 ≥ a n ≥ 0, a n+1 ≥ 0 and a i ∈ Z for all i = 1, . . . , n + 1. See [BS79, Lemma 5.2]. Theorem 5.5 in [START_REF] Baldoni | Branching theorems for semisimple lie groups of real rank one[END_REF] gives us the form of the highest weight µ σ of σ ∈ M (τ ) as follows:

µ σ = b 0 ( 1 + n+1 ) + n j=2 b j j ( 71 
)
where we have:

(1) a j ≥ b j+1 , for all j = 1, . . . , n -1 (2) b j ≥ a j+1 , for all j = 2, . . . , n -1 (3) b 0 = a n+1 +b 1 -2j 2 , for some j = 0, . . . , min(a n+1 , b 1 ) and b 1 satisfies b 1 ∈ Z + and n j=1 (a j -b j ) ∈ 2Z. We want to use the Plancherel formula given by Miatello [START_REF] Miatello | On the plancherel measure for linear lie groups of rank one[END_REF]. But the Cartan subalgebra h C used in this paper is not the same as the Cartan algebra t C used by Baldoni-Silva for the branching rules. So we have to use a Cayley transform to find the highest weight of σ relative to h C . This computation was already done in [BSK80]. Namely (see [Hel01, p155-156]) one know that for each β ∈ S we can select a root vector X β such that B(X a , X -a ) = 2 β,β and θX β = -X β . Choose β = 1 -n+1 . Then if we denote by e 1 , . . . , e n+1 the fundamental weights of the root system ∆(g C , h C ), we have :

e 1 = 1 • Adu -1 β , e 2 = -n+1 • Adu -1
β , e i =i-1 • Adu -1 β , for all i = 3, . . . n + 1 where u β = exp(π/4)(X β -X -β ).

So µ σ is written in the root system ∆(g C , h C ) as: 

p σ (λ) = tanh(πλ α ) , if b 0 ∈ Z coth(πλ α ) , if b 0 ∈ Z + 1 2 λ α λ 2 α + (b 0 + 1 2 ) 2 n+1 j=3 λ 2 α + (b j-1 -b 0 + n -j + 3 2 ) 2 λ 2 α + (b j-1 -b 0 + n -j + 5 2 ) 2 (72)
We recall that λ α is the complex number associated to λ ∈ a * C by (9).

A.4. Case of F 4 . Here, G = F 4 . We recall g = f -20

4

, K is Spin(9) and its Lie algebra is k = so(9). Let t ⊂ k be the compact Cartan subalgebra for both g and k. The branching rules for the fixed τ are determined in [START_REF] Baldoni | Branching theorems for semisimple lie groups of real rank one[END_REF]Paragraph 6]. For a maximal abelian subspace a of p its centralizer in k is m = so(7). The problem is that this Lie algebra m is not contained in the standard way in k. So, we cannot use twice the branching rules for SO(n) directly. Let K 1 = Spin(8) a subgroup of K contained in the standard way. We denote by k 1 its Lie algebra.

Let { j } j=1,...,n be the elementary weights in ∆(g C , t C ). We denote S, S + and S 0 respectively the set of roots, positive roots and simple roots of (g C , h C ). For the set of roots of k C or m C we let the Lie algebra in index.

S = ± i ± j | 1 ≤ i < j ≤ 4 ∪ ± i | 1 ≤ i ≤ 4 ∪ 1 2 (± 1 ± 2 ± 3 ± 4 ) S 0 = α 1 = 2 -3 , α 2 = 3 -4 , α 3 = 4 , α 4 = 1 2 ( 1 -2 -3 -4 ) S k C = ± i ± j | 1 ≤ i < j ≤ 4 ∪ ± i | 1 ≤ i ≤ 4 S (k 1 ) C = ± ( i ± j ) | 1 ≤ i < j ≤ 4
S 0 k C = α 1 , α 2 , α 3 , α 2 + 2α 3 + 2α 4 = 1 -2 S 0 (k 1 ) C = 1 -2 , 2 -3 , 3 -4 , 3 + 4 Let H α 4 be the unique element of a such that α 4 = B(H α 4 , • ). Choose the root vectors X α 4 and X -α 4 such that [X α 4 , X -α 4 ] = H α 4 and X α 4 + X -α 4 ∈ p. Define a to be the one-dimensional space spanned by X α 4 + X -α 4 . Let h = h -⊕ a where h -is a Cartan subalgebra of m. Then the Cayley transform Ad exp π 4 (X α 4 -X -α 4 ) maps t C onto h C . The set of roots ∆(g C , h C ) is the following root system on m

Φ m = ± ( i -j ) | 1 ≤ i < j ≤ n -1 ∪ ± 2 i | 1 ≤ i ≤ n -1 Φ 0 m = α 1 , α 2 , α 2 + 2α 3 + α 4 = 1 2
( 1 -2 + 3 + 4 ) As said before, m is not contained in the standard way in k 1 . Let φ be the automorphism of k 1 which keeps the roots and such that φ(M ) is contained in the standard way in φ(K 1 ). This automorphism is given by

φ( 1 -2 ) = 3 -4 , φ( 3 -4 ) = 1 -2 φ( 2 -3 ) = 2 -3 , φ( 3 + 4 ) = 3 + 4
The fixed K-type τ has highest weight of the form:

µ τ = a 1 1 + a 2 2 + a 3 3 + a 4 4
where a 1 ≥ . . . ≥ a 4 ≥ 0, 2a i ∈ Z and a i -a j ∈ Z for all i, j = 1, . . . , 4.

Because of the branching rules of Spin(n), the representations of K 1 which are contained in the restriction of τ to K 1 have the following highest weights:

c 1 1 + c 2 2 + c 3 3 + c 4 4
where a 1 ≥ c 1 . . . ≥ a 4 ≥ | c 4 | , 2c i ∈ Z and a i -c j ∈ Z for all i, j = 1, . . . , 4.

We have now to apply φ to this highest weight to use the branching rules of so(n). We get a highest weight of the form

d 1 1 + d 2 2 + d 3 3 + d 4 4 := 1 2 (c 1 + c 2 + c 3 -c4) 1 + 1 2 (c 1 + c 2 -c 3 + c4) 2 + 1 2 (c 1 -c 2 + c 3 + c4) 3 + 1 2 (-c 1 + c 2 + c 3 + c4) 4
A representation of φ(M ) is of the form σ • φ where σ ∈ M . The φ(M )-types which appear in the restriction of K 1 -type (d 1 , d 2 , d 3 , d 4 ) to φ(M ) have highest weight of the form:

µ σ•φ = b 1 1 + b 2 2 + b 3 3
where d 1 ≥ b 1 . . . ≥ b 3 ≥ |d 4 |, 2c i ∈ Z and a i -c j ∈ Z for all i, j = 1, . . . , 4. Applying φ, one gets

µ σ = b 1 α 2 + (b 1 + b 2 )α 1 + 1 2 (b 1 + b 2 + b 3 )(α 2 + 2α 3 + α 4 )
The Cartan subalgebra used in [START_REF] Miatello | On the plancherel measure for linear lie groups of rank one[END_REF] is neither t nor h because the maximal abelian subalgebra of p is not the same a here. Define the map Ψ :

α 1 → α 2 α 2 → α 1 α 2 + 2α 3 + α 4 → α 3 α 3 → -(α 2 + 2α 3 + α 4 )
This map Ψ sends α 4 on -1 , so a onto the maximal abelian subspace used in [START_REF] Miatello | On the plancherel measure for linear lie groups of rank one[END_REF]. The Cartan subalgebra Ψ(h) is that used in that paper. Applying Ψ we get

µ σ•Ψ = b 1 1 + b 2 2 + b 3 3
and 1 becomes the real root, i.e. 1 | Ψ(a) = -α • Ψ where α is the longest restricted root. Now we can apply the Plancherel formula from [START_REF] Miatello | On the plancherel measure for linear lie groups of rank one[END_REF] and get

p σ (λ) = tanh(πλ α ) , if b i ∈ Z coth(πλ α ) , if b i ∈ Z + 1 2 λ α λ 2 α + ( b 3 + 1 2 ) 2 λ 2 α + ( b 2 + 3 2 ) 2 λ 2 α + ( b 1 + 5 2 ) 2 λ 2 α + (b 1 -b 2 -b 3 + 1 2 ) 2 λ 2 α + (b 1 -b 2 + b 3 + 3 2 ) 2 λ 2 α + (b 1 + b 2 -b 3 + 7 2 ) 2 λ 2 α + (b 1 + b 2 + b 3 + 9 2 ) 2 (73)
We recall that λ α is the complex number associated to λ ∈ a * C by (9).
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[ Cam97b ,

 Cam97b Proposition 2.2] and [RS18, Proposition 3.1]. In the rank one case, this algebra is always commutative when G is Spin(n, 1) or SU(n, 1). See for instance [Cam97b, Theorem 2.3]. The structure of D(E τ ) can be found in [Olb94, Section 2.2].
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  Let σ ∈ M (τ ). By[START_REF] Baldoni | Branching theorems for semisimple lie groups of real rank one[END_REF] Theorem 4.4]. The highest weight µ σ of σ ∈ M (τ ) has the formµ σ = b 0 ( 1 + n+1 ) + n j=2 b j jwhere for all j, we have bj ∈ Z, a 1 ≥ b 2 ≥ a 2 ≥ . . . ≥ a n-1 ≥ b n ≥ a n and b 0 = n+1 j=1 a j -n j=2 b j 2
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  j -b n ) j + (b n -b 0 ) n j=2Miatello gives this following Plancherel density:p σ (λ) = tanh(πλ α ) , if 2b 0 + n is odd coth(πλ α ) , if 2b 0 + n is even λ λ α is the complex number associated to λ ∈ a *C by (9).A.3. Case of Sp(n, 1). Here G/K is the quaternionic hyperbolic space. In this case, K is Sp(n) × Sp(1) and M is Sp(1) × Sp(n -1) × Sp(1). Let us recall some Lie algebraic structure. The Lie algebra of G is g = sp(n, 1). Its complexification is g C = sp(n + 1, C). We have also Lie(K) C = k C = sp(n, C) and Lie(M ) C = m C = sp(n -1, C).

  µ σ = b 0 (e 1 -e 2 ) + n+1 j=3 b j-1 e jand[START_REF] Miatello | On the plancherel measure for linear lie groups of rank one[END_REF] gives the following Plancherel density:

  If t 1 + t 2 < 2k + 2 -t 1 -t 2 ,then E k is the representation with Langlands parameter M A, triv, iλ k α . It is finite-dimensional and non unitary (if k = 0).(4) If G = F 4 , then τ has a highest weight of the form (a/2, b/2, b/2, b/2), where a and b are positive integers such that a ≥ b and a -b is even. • If b ≤ a -2k -8 , then E k is the representation with Langlands parameter

	n+1 is • If t n+1 ≤ t 1 + t 2 -2k -4 , then E k is the representation with Langlands parameter even. M A, δ, ± n -3 2 α with τ as a lowest K-type, where the highest weight of δ is (k + 2, k + 2, 0, . . . , 0). This representation is non-unitary. Its wave front set is the nilpotent orbit generated by g α/2 . • If t n+1 ≥ |t 1 + t 2 -2k -2| the residue representation is unitary. Its wave front set is the nilpotent orbit generated by g α . -If k ≤ 2n -4, then E k is the representation with Langlands parameter M A, δ, ± n -k 2 α with lowest K-type (k + 1, 0, . . . , 0, k + 1), where the highest weight of δ is (k + 1, 0, . . . , 0, k+1 2 ). -If k ≥ 2n -3, then E k is the discrete series representation with Blattner parameter µ k = (k + 1, 0, . . . , 0, k + 1). 2 (k + 1) α , where the highest of δ is k+4 4 (3, 1, 1, 1). This representation is non-unitary. Its wave front set is the nilpotent orbit generated by g α/2 . • If b > a -2k -8 and b ≥ 2k + 2 -a, then E k is the representation with Lang-lands parameter M A, δ, 1 2 (k + 10) α , where the highest of δ is k+1 4 (3, 1, 1, 1). This representation is unitary. Its wave front set is the nilpotent orbit generated by g α . • If b < 2k + 2, then E k is the representation with Langlands parameter • M A, δ, 1 M A, triv, iλ k α . It is finite-dimensional and non unitary (if k = 0).

1), then τ has a highest weight of the form (t 1 , t 2 , 0, . . . , 0, t n+1 ), where t 1 , t 2 and t n+1 are positive integers such that t 1 ≥ t 2 , t n+1 ≤ t 1 + t 2 and t 1 + t 2 + t

Case

Minimal K-type δ values of ν 1 (k + 1, 0, . . . , 0, -(k + 1), 0) (k + 1), 0, . . . , 0,

, 0, . . . , 0, -(k + 1), k+n 2 ) if k + 1 > n -1 0, 0, . . . , 0, -(k + 1), (k + 1)/2 ± k 2 + n 2 -1 2 α 3 ((k + 1), 0, . . . , 0, k + 1) if k + 1 ≤ n -1 ((k + 1), 0, . . . , 0,

To compute the entries of Table 2, let µ m 1 ,m 2 ,l be the highest weight of

The minimal K-type is obtained after minimising the Vogan norm of their highest weight in E k :

where ρ k is the half sum of positive roots in

To find δ, one can use [START_REF] Baldoni | Branching theorems for semisimple lie groups of real rank one[END_REF]Theorem 4.4]. We show the reasoning in case 1 . The minimal K-type τ min has highest weight (k + 1) 1 -(k + 1) n Suppose n > 2: The branching rules imply that

Suppose n = 2: The difference with the case n > 2 is that there is no integer between 1 and n. Here

where -(k + 1) ≤ a ≤ k + 1. One can prove that µ = a 1 -a 3 is always the highest weight of a K-type in Ind K M (δ) with a smaller Vogan norm than τ min . So we get then discrete series representation. The Blattner parameter of the discrete series is the highest weight µ τ min of its minimal K-type τ min . Its Harish-Chandra parameter is

To find ν, one has to compare the infinitesimal characters of Ind G M AN (triv ⊗ e iλ k α ⊗ triv) and of Ind G M AN (δ ⊗ e iν ⊗ triv). They have to coincide up to the action of the Weyl group of (g C , k C ).

For Case 1 , one gets respectively the infinitesimal characters

The (complex) Weyl group permutes the ± i 's, so ν = ± n 2 -1 α. The theorem follows from similar computations in other cases.

Proof. As in the complex case, one can compute the eigenvalue on each K-type τ p,q in H λ k α for the Casimir operator Ω k of k (using for example [Hal15, Proposition 10.6]). Recall from 4.4 that τ p,q has highest weight µ p,q = p 2 1 + q 2 ( 2 + 3 + 4 ). Then one finds:

The dimension of the space of τ p,q follows from the Weyl dimension formula [Kna02, Theorem 5.84]:

where δ(p, q) := ( p+q

. For a fixed q, the sum of d p,q between 2 values p min and p max of p is telescopic:

The inequality given by the eigenvalue of the Casimir operator (67) bounds a region of K-types by an ellipsis. As in the previous case, we need to know the behaviour in t of the sum limited by this ellipsis when the ellipsis goes to infinity. The method to compute the N E k (t) of the [Vog78, Theorem 1.2] is exactly the same as the SU(n, 1) case and is left to the reader.

The following lemma gives us the different nilpotent orbits in the nilradical of g.

Lemma 5.8

There are three nilpotent orbits in g:

(1) the trivial orbit, (2) the orbit generated by g α/2 , of dimension 30, (3) the orbit generated by g α , of dimension 22.

Proof. The table on page 151 in [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF] ensures us that there are three possible Dynkin diagrams corresponding to the nilpotent orbits. Relating these diagrams to the table on page 128 allows us to find the dimensions associated to these (real) nilpotent orbit. Now we want to relate the orbits generated respectively by g α and g α/2 and the two nilpotent orbits of g. First choose an element X α/2 in g α/2 such that B X α/2 , θ(X α/2 ) = 0. Lemma 3.2 in [Hel01, Chapter IX] proves that for all X α ∈ g α ,

This proves that g α = [g α/2 , g α/2 ] . The Jacobi identity allows us to conclude that Z(g α/2 ) ⊂ Z(g α ). This proves that the (nilpotent) orbit generated by g α has lower dimension than that of g α/2 . The combination of the two lemmas above proves the results for F 4 about wave front set of E k in Theorem 2.