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A penalty approach to the innite horizon LQR optimal control problem for the linearized Boussinesq system

In this paper, we consider the innite time horizon LQR optimal control problem for the linearized Boussinesq system. The goal is to justify the approximation by penalization of the free divergence condition in this context. We establish convergence results for optimal controls, optimal solutions and Riccati operators when the penalization parameter goes to zero. These results are obtained under two dierent assumptions. The rst one treats the linearization arround a suciently small stationary state and an arbitrary control operator (possibly of nite rank), while the second one does no longer require the smallness of the stationary state but requires to consider controls distributed in a subdomain and depending on the space variable.

Introduction

The optimal control of the Boussinesq system and of its linearization around a stationary state are matters of great interest in various applications elds, such as designing and exploiting energy ecient buildings, (see, for instance, [START_REF] Borggaard | Control, estimation and optimization of energy ecient buildings[END_REF], [START_REF] Vaidya | Actuator and sensor placement in linear advection PDE with building system application[END_REF] and [START_REF] Burns | Feedback stabilization of a thermal uid system with mixed boundary control[END_REF], [START_REF] Ramaswamy | Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions[END_REF]). A diculty which has to be handled in solving this type of problems is that, due to the free divergence condition for the velocity eld and to the presence of the pressure, the governing equations cannot be written as a well-posed control system in the sense of Salomon-Weiss (as described, for instance, in Curtain and Weiss [START_REF] Curtain | Well posedness of triples of operators (in the sense of linear systems theory)[END_REF]), but merely as an innite dimensional descriptor system (see, for instance, Reis [START_REF] Reis | Controllability and observability of innite-dimensional descriptor systems[END_REF]). This feature implies several diculties when simulating or tackling the associated optimal control problems, namely in developing ecient methods to solve the Riccati equations appearing in LQR problems. More precisely, after semidiscretization with respect to the space variable, the original problem becomes a LQR problem for a nite dimensional dierential algebraic system, which, although projection based ecient numerical methods have been recently developed in the literature, see (for instance, [START_REF] Benner | Ecient solution of large-scale algebraic riccati equations associated with index-2 daes via the inexact low-rank newton-adi method[END_REF][START_REF] Raymond | Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions[END_REF][START_REF] Heinkenschloss | Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations[END_REF]), is in general very dicult from the computational viewpoint.

In this paper we study the innite horizon LQR problem for a system described by the linearized Boussinesq equations with a bounded control operator, by adopting a dierent methodology, based on the penalization of the free divergence condition. Within this approach, denoting the velocity eld of the uid by v and the pressure eld by p, the free divergence condition div v = 0 is replaced by div v + εp = 0. As described in the next section, this procedure yields a standard well-posed linear system (governed by a PDE of parabolic type with distributed control). For simulation purposes this approach has been widely used for Stokes, Navier-Stokes or Boussinesq type system. We refer to Temam [START_REF] Temam | Une méthode d'approximation de la solution des équations de Navier-Stokes[END_REF] for the rst analysis of the method (for the Navier-Stokes equations) and to Hebeker et al. [START_REF] Hebeker | The penalty method applied to the instationary Stokes equations[END_REF] and Shen [START_REF]On error estimates of some higher order projection and penalty-projection methods[END_REF][START_REF] Shen | On error estimates of projection methods for NavierStokes equations: rst-order schemes[END_REF] for error estimates in the case of non stationary Stokes and Navier-Stokes systems. From an optimal control perspective, the penalty method has been applied in Badra, Buchot and Thevenet [START_REF] Badra | Méthode de pénalisation pour le contrôle frontière des équations de Navier-Stokes[END_REF] for the nite horizon LQR problem where the authors prove convergence results for the penalized Oseen system with boundary control.

To give a more precise view on the questions in the present work, consider the Boussinesq system in a bounded domain Ω ⊂ R d , with d ∈ {2, 3}, whose boundary is denoted by Γ := ∂Ω.

It can be written as

           ∂ t v -ν∆v + (v • ∇)v + ∇p = ye d + f + P B ũ in (0, ∞) × Ω, ∂ t y -α∆y + v • ∇y = g + B d+1 u d+1
in (0, ∞) × Ω, div v = 0 in (0, ∞) × Ω, v = 0, y = 0 on (0, ∞) × Γ, v(0, •) = v 0 , y(0, •) = y 0 in Ω.

(1.1)

In the above equations, v is the velocity eld of the uid, p is the pressure eld, while y stands for the temperature eld. Moreover, ν > 0 is the viscosity parameter, α > 0 is the heat conductivity in the uid. The terms f : Ω → R d and g : Ω → R describe the inuence of eld forces and possible internal heat sources. The operator P : L 2 (Ω) d → V 0 (Ω), with (denoting by n the unit normal to ∂Ω oriented towards the exterior of Ω)

V 0 (Ω) = {v ∈ L 2 (Ω) d ; div v = 0, v • n = 0 on ∂Ω} (1.2)
is the Leray projector (see, for instance Sohr [29, Section II.2.5]). The (bounded) control operator B := ( B, B d+1 ) will be required to satisfy various assumptions, which will be described below, whereas u := (ũ, u d+1 ) is an input function, taking its values in an Hilbert space U , called the space of controls.

In this work we consider the linearization of the system (1.1) around a stationary solution (v s , p s , y s ). More precisely, (v s , p s , y s ) is supposed to satisfy the equations

       -ν∆v s + (v s • ∇)v s + ∇p s = y s e d + f in Ω, -α∆y s + v s • ∇y s = g in Ω, div v s = 0
in Ω, v s = 0, y s = 0 on Γ, (1.3) where the source terms f and g coincide with those in (1.1). It is not dicult to see that the linearization of (1.1) around a stationary state satisfying (1.3) is

           ∂ t v -ν∆v + (v • ∇)v s + (v s • ∇)v + ∇p = ye d + P B ũ in (0, ∞) × Ω, ∂ t y -α∆y + v s • ∇y + v • ∇y s = B d+1 u d+1 in (0, ∞) × Ω, div v = 0 in (0, ∞) × Ω, v = 0, y = 0 on (0, ∞) × Γ, v(0, •) = v 0 , y(0, •) = y 0 in Ω.
(1.4)

The goal of this article is to study the approximation of an innite horizon LQR optimal control problem for (1.4) by the corresponding optimal control problem for the penalized system

           ∂ t v ε -ν∆v ε + (v ε • ∇)v s + (v s • ∇)v ε + ∇p ε = y ε e d + B ũ in (0, ∞) × Ω, ∂ t y ε -α∆y ε + v s • ∇y ε + v ε • ∇y s = B d+1 u d+1 in (0, ∞) × Ω, div v ε + εp ε = 0 in (0, ∞) × Ω, v ε = 0, y ε = 0 on (0, ∞) × Γ, v ε (0, •) = v 0 , y ε (0, •) = y 0 in Ω, (1.5) 
where ε > 0 is a penalization parameter. Note that the Leray projector P does not appear in (1.5) because the velocity eld is not divergence free. By eliminating the pressure in (1.5), we can reformulate the above equations as the following parabolic system:

       ∂ t v ε -ν∆v ε + (v ε • ∇)v s + (v s • ∇)v ε -1 ε ∇div v ε = y ε e d + B ũ in (0, ∞) × Ω, ∂ t y ε -α∆y ε + v s • ∇y ε + v ε • ∇y s = B d+1 u d+1 , in (0, ∞) × Ω, v ε = 0, y ε = 0 on (0, ∞) × Γ, v ε (0, •) = v 0 , y ε (0, •) = y 0 in Ω. (1.6) For v 0 y 0 ∈ H := V 0 (Ω) × L 2 (Ω) and u ∈ L 2 ([0, ∞); U ), we introduce the quadratic cost functional J u; v 0 y 0 = +∞ 0 u(t) 2 U + v(t, •) y(t, •) 2 H
dt, with v, p, y subject to (1.4).

(1.7)

Under suitable assumptions, to be described later, the functional J admits a unique minimum 

for u = u opt ∈ L 2 ([0, ∞); U ).
v opt y opt ∈ C([0, ∞); H). Similarly, for v 0 y 0 ∈ X := L 2 (Ω) d+1 and u ∈ L 2 ([0, ∞); U ), we introduce the cost quadratic functional J ε u; v 0 y 0 = +∞ 0 u(t) 2 U + v ε (t, •) y ε (t, •) 2 X dt, with v ε y ε subject to (1.6). (1.8)
Under suitable assumptions, the functional J ε admits a unique minimum for u = u opt,ε ∈

L 2 ([0, ∞); U ), with the corresponding state trajectory v opt,ε y opt,ε ∈ C([0, ∞); X).
The main results of this work assert that, under appropriate assumptions, for every

v 0 y 0 ∈ H we have lim ε→0 u opt,ε = u opt and lim ε→0 v opt,ε y opt,ε = v opt y opt , (1.9) 
in the sense which will be made precise in Theorem 3.1 and Theorem 3.2 below.

Control problems with an approximation by penalization of the free divergence condition have been studied in dierent ways. From a controllability point of view, the null-controllability of the Stokes system, respectively Navier-Stokes, is established in [START_REF] Imanuvilov | Carleman estimates for parabolic equations with nonhomogeneous boundary conditions[END_REF], respectively in [START_REF] Badra | Global Carleman inequalities for Stokes and penalized Stokes equations[END_REF], with as many controls as equations. More recently, [START_REF] Bárcena-Petisco | Null controllability of a penalized stokes problem in dimension two with one scalar control[END_REF] proves the null-controllability of the Stokes system in 2D with only one control, this result having been extended in [START_REF] Bárcena-Petisco | Local null controllability of the penalized Boussinesq system with a reduced number of controls[END_REF] for the (nonlinear)

Boussinesq system in 2D and 3D for cylindrical geometries. For LQR optimal control problems, up to our knowledge, the only article in the literature seems to be [START_REF] Badra | Méthode de pénalisation pour le contrôle frontière des équations de Navier-Stokes[END_REF] where the authors prove results in the spirit of (1.9) for the Oseen system, with boundary control, and for a nite time horizon.

The main novelty brought in by this work consists in obtaining convergence results for innite time horizon LQR problems. An essential ingredient to accomplish this goal is a version of the strategy proposed in Banks and Kunisch [START_REF] Banks | The linear regulator problem for parabolic systems[END_REF] for Galerkin approximations, see also Banks and

Ito [START_REF] Banks | Approximation in LQR problems for innite-dimensional systems with unbounded input operators[END_REF]. More precisely, the method essentially consists in the three main steps described below.

1. A question which is common to the various situations we consider is proving that the Riccati operator associated to (1.8) is bounded, uniformly with respect to ε and that the optimal trajectories decay exponentially, uniformly with respect to ε. This will be shown to hold under two dierent assumptions.

The rst one considers an arbitrary bounded control operator B (possibly of nite rank) and assumes a smallness condition for the stationary state. This is rst done for the case of a vanishing stationary state and then by a perturbation argument.

The second situation considered in this work treats the case of a control distributed in a subdomain O ⊂ Ω. In this case the control space is innite dimensional, which enables us to derive uniform null-controllability results for (1.4) and (1.6). This task is accomplished by combining Carleman estimates for the penalized Stokes system due to [START_REF] Badra | Global Carleman inequalities for Stokes and penalized Stokes equations[END_REF] and Carleman estimates for the heat equation due to [START_REF] Fursikov | Controllability of evolution equations[END_REF].

2. Secondly, we prove (1.9) for nite time horizon problems. In order to do this, we rst establish convergence results for solutions of (1.6) to solutions of (1.4), in the limit ε → 0 and in compact time intervals. This is obtained through an adaptation of the Trotter-Kato theorem and the use of Lax-Phillips semigroups. Then, using the well-known formulas for optimal controls and optimal trajectories, given for instance in [START_REF] Gibson | The Riccati integral equations for optimal control problems on Hilbert spaces[END_REF], we can pass to the limit to deduce (1.9).

3. Finally, by using the uniform bounds and decays that are established in the rst point of the strategy, we can approximate the innite time horizon problem in the interval [0, ∞) by nite time horizon problems in intervals [-s, 0] with s > 0. By gathering this approximation and the fact that (1.9) holds in [-s, 0], we obtain the expected convergence results (1.9) for the innite time horizon problem.

The paper is organized as follows. In Section 2, we introduce a functional analytic framework to establish the well-posedness of the control systems (1.4) and (1.6) and we recall some basic facts about LQR problems in innite horizon. In Section 3 we state the main results of the paper, which basically formalize (1.9) under appropriate assumptions. Section 4 mainly relies on convergence results (in the limit ε → 0 + ) and uniform bounds (in ε > 0) for semigroups associated to penalized problems. In Section 5, we prove uniform stabilizability results and null-controllability results for penalized systems. With all these preliminary results at hand, Section 6 is dedicated to the proof of the main results of the paper. Finally, Section 7 contains some nal comments and open questions.

2 Semigroup formulation and background on LQR problems

For the remaining part of this work we assume that the stationary solution

  v s p s y s   of (1.3) veries v s y s ∈ W 1,∞ (Ω) d+1 , p s ∈ L ∞ (Ω).
(2.1)

2.1

Well-posedness of the controlled systems

We introduce below a semigroup formulation of (1.4) and (1.6). To this aim we introduce the spaces

V 1 (Ω) = {v ∈ H 1 0 (Ω) d ; div v = 0}, (2.2) 
D(A 0 ) = H 2 (Ω) d+1 ∩ [V 1 (Ω) × H 1 0 (Ω)].
(2.3)

Recalling that H = V 0 (Ω) × L 2 (Ω) (with V 0 (Ω) introduced in (1.
2)), we consider the operator A 0 : D(A 0 ) → H dened by

A 0 ϕ ζ = νP ∆ϕ -(v s • ∇)ϕ -(ϕ • ∇)v s + ζe d α∆ζ -(v s • ∇ζ) -(ϕ • ∇y s ) ((ϕ, ζ) ∈ D(A 0 )) , (2.4) 
where P is the Leray projector. Equivalently, A 0 can be dened by duality, by setting:

-A 0 ϕ ζ , ψ η H = ν Ω ∇ϕ : ∇ψ dx + Ω [(v s • ∇)ϕ -(ϕ • ∇)v s ] • ψ dx + Ω ζψ d dx + α Ω ∇ζ • ∇η dx + Ω [(v s • ∇)ζ + ϕ • ∇y s ] • η dx ϕ ζ , ψ η ∈ D(A 0 ) . (2.5)
We will need the result below, for which we sketch the proof, for the sake of completeness, with no claim of originality.

Proposition 2.1. The operator A 0 dened above generates an analytic semigroup on H, denoted by T 0 = T 0 t t 0 . Proof. By integration by parts and Young's inequalities, it is not dicult to see that there exists a positive constant c depending on v s y s W 1,∞ (Ω) d+1 such that for every

ϕ ψ ∈ D(A 0 ), -A 0 ϕ ζ , ϕ ζ H ν ∇ϕ 2 L 2 (Ω) d + α ∇ζ 2 L 2 (Ω) -c (ϕ, ζ) 2 X ,
where we recall the notation X = L 2 (Ω)

d+1
. Thus the corresponding sesquilinear form associated to -A 0 + cI (this form is simply dened by the right hand side of (2.5)) is coercive on H. We also readily check that this form is densely dened, closed and continuous on H. For every ε > 0, consider the operator A ε :

D(A ε ) → X dened by D(A ε ) = H 2 (Ω) ∩ H 1 0 (Ω) d+1 , (2.6) 
A ε ϕ ζ = ν∆ϕ -(v s • ∇)ϕ -(ϕ • ∇)v s + 1 ε ∇(div ϕ) + ζe d α∆ζ -(v s • ∇ζ) -(ϕ • ∇y s ) ϕ ζ ∈ D(A ε ) .
(2.7)

Alternatively, A ε can be dened by

A ε ϕ ζ , ψ η X = -ν Ω ∇ϕ : ∇ψ dx - Ω [(v s • ∇)ϕ + (ϕ • ∇)v s ] • ψ dx - 1 ε Ω (div ϕ)(div ψ) dx + Ω ζψ d dx -α Ω ∇ζ • ∇η dx - Ω [v s • ∇ζ + ϕ • ∇y s ] • η dx ϕ ζ , ψ η ∈ D(A ε ) . (2.8)
We have the following result.

Proposition 2.2. For every ε > 0 the operator A ε dened above generates an analytic semigroup

on X = L 2 (Ω) d+1 , denoted by T ε = (T ε t ) t 0 . Moreover, there exist M 1 and ω ∈ R such that T ε t L(X;X) M e ωt (ε > 0, t 0).
(2.9)

Proof. By integration by parts and Young's inequalities, it is not dicult to see that there exists a positive constant c depending on (v s , y s ) W 1,∞ (Ω) d+1 (independent of ε > 0), such that for every

ϕ ψ ∈ D(A ε ), -A ε ϕ ζ , ϕ ζ X ν ∇ϕ 2 L 2 (Ω) d + 1 ε div ϕ 2 L 2 (Ω) d + α ∇ζ 2 L 2 (Ω) -c (ϕ, ζ) 2 X . (2.10)
Thus the sesquilinear form associated to -A ε + cI is coercive on X. We also readily check that this form is densely dened, closed and continuous on X. M e ωt (ε > 0, t 0).

Since the constant c is independent of ε we can apply [22, Section 3.2, Corollary 2.2], to obtain that for every ε > 0 the operator A ε generates an analytic semigroup on X and that we have (2.9).

Let us introduce the projector P H ∈ L(X; H) dened by

P H v y = P v y v y ∈ X ,
where P is the Leray projector. Let U be an Hilbert space (the space of controls). We introduce the control operators B ∈ L(U ; X) and B 0 := P H B ∈ L(U ; H).

(2.11)

We have the following well-posedness result for controlled systems.

Proposition 2.3. For every v 0

y 0 ∈ H, u ∈ L 2 ([0, ∞); U ), the Cauchy problem v ẏ = A 0 v y + B 0 u, v(0) y(0) = v 0 y 0 , (2.12) 
admits an unique mild solution v y dened by

v(t) y(t) = T 0 t v 0 y 0 + t 0 T 0 t-σ B 0 u(σ) dσ (t 0). (2.13)
Similarly, for every

v 0 y 0 ∈ X, u ∈ L 2 ([0, ∞); U ), the Cauchy problem v ẏ = A ε v y + Bu, v(0) y(0) = v 0 y 0 , (2.14) 
admits an unique mild solution (v, y), dened by

v(t) y(t) = T ε t v 0 y 0 + t 0 T ε t-σ Bu(σ) dσ (t 0). (2.15)
Proof. The proof readily follows from Proposition 2.1 and Proposition 2.2 and standard semigroup theoretic results (see, for instance, [32, Proposition 4.2.5]).

Some background on LQR optimal control problems

We recall below some basic facts on LQR problems in an innite dimensional context.

Let A be a generator of a strongly continuous semigroup on an Hilbert space X , I X be the identity operator on X , B ∈ L(U; X ) be a (bounded) control operator where U is some Hilbert space corresponding to the spaces of controls.

We recall below the well-known notion of stabilizability. Denition 2.4. We say that the pair (A, B) is stabilizable if there exists K ∈ L(X , U) such that A -BK generates an exponentially stable semigroup F K t t 0 on X , i.e. there exist M > 0 and ω > 0 such that F K t L(X ;X )

M e -ωt (t 0).

For x 0 ∈ X , we introduce the cost functional, for every u ∈ L 2 ([0, ∞); U),

J (u; x 0 ) = +∞ 0 u(t) 2 U + x(t) 2 X dt, with ẋ(t) = Ax(t) + Bu(t), x(0) = x 0 .
(2.16)

We have the following well-known result, see, for instance, [5, Theorem 2.1] and [15, Theorem 4.2].

Theorem 2.5. Assume that the pair (A, B) is stabilizable. Then the algebraic Riccati equation

A * P + PA -PBB * P + I X = 0, (2.17) 
has a unique nonnegative self-adjoint solution P ∈ L(X ; X ), A -BB * P generates an exponentially stable semigroup F = (F t ) t 0 on X and for every x 0 ∈ X , the optimal solution that minimizes the functional (2.16) is given by

u opt (t) = -B * PF t x 0 (t ∈ [0, ∞)).
(2.18)

Moreover, we have that for every x 0 ∈ X ,

min u∈L 2 ([0,+∞);U ) J (u; x 0 ) = Px 0 , x 0 . (2.19)
We recall that P ∈ L(X ; X ) is a solution to the algebraic Riccati equation (2.17) if P maps D(A) to D(A * ) and (2.17) is satised when the left hand side is applied to an arbitrary x ∈ D(A).

Main results

In this section we continue to use the notation introduced in Section 2 for the spaces H, X, U and for the operators (A ε ) ε 0 , B 0 and B (we recall, in particular, from (2.11) that B 0 = P H B).

Moreover, we introduce some new notation and we state the main results of the paper.

Assume that (A 0 , B 0 ), with A 0 dened in (2.4) and B 0 dened in (2.11), is stabilizable. By Theorem 2.5, let us denote by Π 0 ∈ L(H) the unique nonnegative self-adjoint solution of

A * 0 Π 0 + Π 0 A 0 -Π 0 B 0 B * 0 Π 0 + I H = 0. (3.1)
In (3.1), I H denotes the identity operator on H. The feedback semigroup, i.e. generated by

A 0 -B 0 B * 0 Π 0 is denoted by F 0 t t 0
, whereas the optimal control associated to an initial data

v 0 y 0 ∈ H is given by u opt,0 (t) = -B * 0 Π 0 F 0 t v 0 y 0 .
In the same way, assume that (A ε , B) is stabilizable with A ε dened in (2.7) and B dened in (2.11). Then let us denote by Π ε ∈ L(X) the unique nonnegative self-adjoint solution of

A * ε Π ε + Π ε A ε -Π ε BB * Π ε + I X = 0. (3.2)
In (3.2), I X denotes the identity operator on X. The closed loop semigroup, i.e. generated by A ε -BB * Π ε , is denoted by (F ε t ) t 0 and the optimal control, associated to an initial data v

0 y 0 ∈ X is given by u opt,ε (t) = -B * Π ε F ε t v 0 y 0 .
The main results of the article focus on asymptotic properties of Π ε , (F ε t ) t 0 and u opt,ε in the limit ε → 0.

The rst main result of the paper treats the case of a stationary state v s y s suciently small, with an arbitrary control space U and an arbitrary bounded control operator (possibly of nite rank). Theorem 3.1. There exists δ > 0 such that if

v s y s W 1,∞ (Ω) d+1 δ, (3.3) 
then A 0 is exponentially stable and A ε is uniformly (with respect to ε) exponentially stable. Moreover, there exist M > 0 and ω > 0, independent of ε such that the solution

Π ε L(X;X) M (ε 0), (3.4) 
F ε t L(X;X) M e -ωt (ε, t 0), (3.5) 
In addition, for every

v 0 y 0 ∈ H, lim ε→0+ Π ε v 0 y 0 -Π 0 v 0 y 0 H = 0 (t 0) , (3.6) lim ε→0+ F ε t v 0 y 0 -F 0 t v 0 y 0 H = 0 (t 0) , (3.7) lim ε→0+ u opt,ε (t) → u opt,0 (t) U = 0 (t 0) , (3.8) 
and the last two convergences are uniform with respect to t on compact intervals.

Our second main result does no longer require the smallness of (v s , y s ), considering a particular class of control operators.

Theorem 3.2. Assume that U = X and let B ∈ L(U, X) be dened by

Bu = u1 O (u ∈ U ), (3.9) 
where O is an open subset of Ω and 1 O is the characteristic function of O. Then (A 0 , B) is exponentially stabilizable and there exists ε 0 > 0 such that (A ε , B) is uniformly, with respect to ε ∈ (0, ε 0 ), exponentially stabilizable. The uniform bounds (3.4) and (3.5) still hold true for ε ∈ (0, ε 0 ). Moreover, the corresponding Riccati operators, closed loop generators and optimal LQR controls still satisfy (3.6), (3.7) and (3.8). [START_REF] Banks | Approximation in LQR problems for innite-dimensional systems with unbounded input operators[END_REF] Preliminary results on the (penalized) Boussinesq semigroup

In this section and the following ones we continue to use the notation

H := V 0 (Ω) × L 2 (Ω) and X = L 2 (Ω) d+1
for the state space of the system described by the Boussinesq equations and their penalized version, respectively. We recall that the operator A 0 : D(A 0 ) → H has been dened in (2.4), whereas for every ε > 0 the operator A ε has been dened in (2.7). As in the previous sections, the analytic semigroup on H generated by A 0 is denoted by T 0 , whereas, for every ε > 0, T ε stands for the analytic semigroup on X generated by A ε .

Convergence results for the semigroups describing the free dynamics

In this subsection we prove that when ε → 0+ the family of semigroups (T ε ) ε 0 strongly converges to T 0 (and the same for adjoint semigroups). The proof relies on an adaptation of the Trotter-Kato's theorem, described below.

We begin by noticing that the adjoint A * 0 of A 0 is dened by D(A * 0 ) = D(A 0 ) and

A * 0 ϕ ζ = ν∆ϕ + (∇ϕ) tr v s + (∇ϕ)v s -ζ∇y s α∆ζ + (v s • ∇ζ) + ϕ d ϕ ζ ∈ D(A * 0 ) . (4.1)
In the same way, for every ε >

0 the adjoint A * ε of A ε is dened by D(A * ε ) = D(A ε ) and A * ε ϕ ζ = ν∆ϕ + (∇ϕ) tr v s + (∇ϕ)v s -ζ∇y s + 1 ε ∇(div ϕ) α∆ζ + (v s • ∇ζ) + ϕ d ϕ ζ ∈ D(A * ε ) . (4.2) 
In (4.1), (4.2), the notation (∇ϕ) tr means the transpose of the matrix ∇ϕ.

We rst prove the convergence of the resolvents of A ε (respectively A * ε ) towards the resolvents of A 0 (respectively A * 0 ). Proposition 4.1. There exists λ 0 > 0 such that for every λ ∈ C with Re λ λ 0 , we have

lim ε→0 [λI -A ε ] -1 f g -[λI -A 0 ] -1 P H f g X = 0 f g ∈ X , (4.3) lim ε→0 [λI -A * ε ] -1 f g -[λI -A * 0 ] -1 P H f g X = 0 f g ∈ X .
(4.4)

Proof. We only prove (4.3), since the proof of (4.4) is fully similar.

Let

f g ∈ X and λ 0 > c > 0, (4.5) 
where the constant c is the one appearing in (2.10). Then, for λ ∈ C with Re λ λ 0 , by setting

ϕ ε ζ ε = (λI -A ε ) -1 f g ,
and by using (2.8) we have

λ Ω ϕ ε • ψ dx + ν Ω ∇ϕ ε : ∇ψ dx + Ω [(v s • ∇)ϕ ε + (ϕ ε • ∇)v s ] • ψ dx + 1 ε Ω (div ϕ ε )(div ψ) dx - Ω ζ ε ψ d dx + λ Ω ζ ε η dxα Ω ∇ζ ε • ∇η dx + Ω [v s • ∇ζ ε + ϕ ε • ∇y s ] • η dx = Ω f • ψ dx + Ω gη dx ψ η ∈ D(A ε ) . (4.6) 
Taking

ψ η = ϕ ε ζ ε in (4.6
) and using (2.10) we obtain

∇ϕ ε 2 L 2 (Ω) d + 1 ε div ϕ ε 2 L 2 (Ω) d + ∇ζ ε 2 L 2 (Ω) c f g 2 X (ε > 0),
where c > 0 is some positive constant. From this and the Poincaré inequality it follows that there exists (another) c > 0 with

ϕ ε 2 H 1 0 (Ω) d + 1 ε div ϕ ε 2 L 2 (Ω) d + ζ ε 2 H 1 0 (Ω) c f g 2 X (ε > 0).
The above estimate implies that there exists

ϕ ζ ∈ H 1 0 (Ω) d+1 such that ϕ ε ζ ε → ϕ ζ as ε → 0 in H 1 0 (Ω) d+1 weakly, ϕ ε ζ ε → ϕ ζ as ε → 0 in L 2 (Ω) d+1 strongly, div ϕ = 0.
We can thus pass to the limit in (4.6) to obtain that

λ Ω ϕ • ψ dx + ν Ω ∇ϕ : ∇ψ dx + Ω [(v s • ∇)ϕ + (ϕ • ∇)v s ] • ψ dx - Ω ζψ d dx + λ Ω ζη dx + α Ω ∇ζ • ∇η dx + Ω [v s • ∇ζ + ϕ • ∇y s ] • η dx = Ω f • ψ dx + Ω gη dx, ψ η ∈ D(A 0 ) , (4.7) 
then using

Ω f • ψ dx + Ω gη dx = Ω P H f g • ψ η dx ψ η ∈ D(A 0 ) , (4.8) 
we deduce (4.3) from (4.7).

Note that, arguing as in Proposition 2.1 and in Proposition 2.2, the operator A * 0 generates an analytic semigroup on H, denoted by (T 0 ) * = (T 0 t ) * t 0 and for every ε > 0 the operator A * ε generates an analytic semigroup on X, denoted by (T ε ) * = ((T ε t ) * ) t 0 . Moreover, there exist M 1 and ω ∈ R such that

(T ε t ) * L(X;X)
M e ωt (ε > 0, t 0).

(4.9)

An important consequence of Proposition 4.1 is the following result: Proposition 4.2. For every v 0 y 0 ∈ H, we have

lim ε→0 T ε t v 0 y 0 -T 0 t v 0 y 0 X = 0 (t 0) , (4.10) lim ε→0 (T ε t ) * v 0 y 0 -(T 0 t ) * v 0 y 0 X = 0 (t 0) , (4.11) 
uniformly with respect to t on compact intervals.

Proof. We only prove (4.10). The proof of (4.11) follows the same scheme, using (4.4) instead of (4.3).

We follow [22, Section 3.4, Theorem 4.2]. We take λ λ 0 where λ 0 is dened in Proposition 4.1 and we note

R ε λ = [λI -A ε ] -1 , R 0 λ = [λI -A 0 ] -1 .
By using that the resolvent commutes with the associated semigroup, see [22, Section 1.2, Theorem 2.4, c)], we have 

(T ε t -T 0 t )R 0 λ z 0 X T ε t (R 0 λ -R ε λ )z 0 X + R ε λ (T ε t -T 0 t )z 0 X + (R ε λ -R 0 λ )T 0 t z 0 X =: D ε 1 z 0 + D ε 2 z 0 + D ε 3 z 0 (ε > 0, t ∈ [0, T ], z 0 ∈ H) .
R ε λ (T ε t -T 0 t )R 0 λ z 0 = - t 0 T ε t-s (R 0 λ -R ε λ )T 0 s z 0 ds (ε > 0, t ∈ [0, T ], z 0 ∈ H) . (4.12) 
From (4.12), we have

R ε λ (T ε t -T 0 t )R 0 λ z 0 X t 0 T ε t-s (R 0 λ -R ε λ )T 0 s z 0 X ds t 0 M e ωT (R 0 λ -R ε λ )T 0 s z 0 X ds (ε > 0, t ∈ [0, T ], z 0 ∈ H) .
The integrand in the right hand side of the above estimate is bounded by an independent function of s and tends to 0 as ε → 0 by using (4.3). So, by Lebesgue's convergence theorem, we have

R ε λ (T ε t -T 0 t )R 0 λ z 0 X → 0 as ε → 0 (t ∈ [0, T ], z 0 ∈ H) ,
and the limit is uniform in [0, T ].

So we have that D ε 2 R 0 λ z 0 → 0 as ε → 0 uniformly in [0, T ] for every z 0 ∈ H. Moreover, we know that every z 0 ∈ D(A 0 ) can be written as z 0 = R 0 λ z 1 with z 1 ∈ H so we deduce that D ε 2 z 0 → 0 as ε → 0 uniformly in [0, T ] for every z 0 ∈ D(A 0 ). Then, we have actually proved that 

(T ε t -T 0 t )R 0 λ z 0 X → 0 as ε → 0 (t ∈ [0, T ], z 0 ∈ D(A 0 )) , so we deduce that (T ε t -T 0 t )z 0 X → 0 as ε → 0 (t ∈ [0, T ], z 0 ∈ D(A 2 0 ) . ( 4 

Lax-Phillips semigroups

In this section we recall, following Staans and Weiss [START_REF] Staffans | Transfer functions of regular linear systems part ii: the system operator and the LaxPhillips semigroup[END_REF], the concept of Lax-Phillips semigroups associated to a control system which is then used, combined with the Trotter-Kato theorem, to prove the convergence of the penalized Boussinesq control systems towards the usual one.

Let A : D(A) → X be the generator of a strongly continuous semigroup F = (F t ) t 0 . We denote by ω F the growth bound of F and we x ω > ω F . Let B ∈ L(U, X ) be a bounded control operator. We denote

U ω = L 2 ω ([0, ∞); U) := e ω L 2 ([0, ∞); U), (4.14) 
where

(e ω v)(t) = e ωt v(t) and e ω v L 2 ω = v L 2 .
For later use, we also introduce the notation

W m,2 ω ([0, ∞); U) := e ω W m,2 ([0, ∞); U), with e ω v W m,2 ω = v W m,2 . Let V = D(A) × U ω .
It is known (see Grabowski and Callier [START_REF] Grabowski | Admissible observation operators. Semigroup criteria of admissibility[END_REF] for the rst derivation of this result and Staans and Weiss [START_REF] Staffans | Transfer functions of regular linear systems part ii: the system operator and the LaxPhillips semigroup[END_REF] for a presentation of these results in a much more general context), that the operator

C : D(A) → X × U ω dened by D(C) = D(A) × W 1,2 ω ((0, ∞); U), (4.15) 
C = A Bδ 0 0 d dξ , (4.16) 
generates a C 0 -semigroup Ξ on X × U ω . More precisely, we have

Ξ t = F t Φ t 0 S * t (t 0),
where (Φ t ) t 0 are the output maps dened by

Φ t u = t 0 F t-σ Bu(σ) dσ (t 0, u ∈ U ω ),
and S * t is the left shift by t on L 2 loc ([0, ∞); U ), i.e.,

S * t u(τ ) = u(τ + t) (t, τ > 0, u ∈ L 2 loc ([0, ∞); U )).
Remark 4.3. Note that, as mentioned in [START_REF] Staffans | Transfer functions of regular linear systems part ii: the system operator and the LaxPhillips semigroup[END_REF], the growth bound of Ξ equals to ω. 

(λI -C) -1 z u = (λI -A) -1 (B ∞ 0 e -λη u(η) dη + z) ξ → - ∞ ξ e λ(ξ-η) u(η) dη (λ ∈ C ω , z ∈ X , u ∈ U ω ). (4.17) Proof. Given λ ∈ C ω , the equation (λI -C) z 0 u 0 = z u , (4.18) 
writes

(λI -A)z 0 + Bu 0 (0) = z, (4.19) 
λu 0 -du 0 dξ = u.

(4.20)

Denoting u -ω = e -ω u and u 0,-ω = e -ω u 0 , we note that u -ω ∈ L 2 ([0, ∞); U) and that u 0 ∈ W 1,2 ω ([0, ∞); U) if and only if u 0,-ω ∈ W 1,2 ([0, ∞); U). Moreover, equation (4.20) can be rephrased in terms of u -ω and u 0,-ω as

du 0,-ω dξ (ξ) = (λ -ω)u 0,-ω (ξ) + u -ω (ξ) (Re λ > ω, ξ ∈ (0, ∞)).
In the following, we use some basic facts about Laplace transformation, see for instance [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]Section 12.4]. By applying the Laplace transform to all the terms in the above equation we obtain s u 0,-ω (s) -u 0,-ω (0) = (λ -ω) u 0,-ω (s) + u -ω (s) (Re s > 0, Re λ > ω). Choosing u 0,-ω (0) = -u -ω (λ -ω) we obtain

u 0,-ω (s) = u -ω (s) -u -ω (λ -ω) s -(λ -ω) (Re s > 0, Re λ > ω). (4.22) 
Since, by the Paley-Wiener theorem, see [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]Theorem 12.4.2], we have that u -ω lies in the Hardy space H 2 (C 0 ; U), the above formula implies that u 0,-ω ∈ H 2 (C 0 ; U). Applying again the Paley-Wiener theorem it follows that u 0,-ω is the unique solution of (4.21) with u 0,-ω ∈ L 2 ([0, ∞); U).

Moreover, applying the inverse Laplace transform to (4.22), we obtain that Finally, putting together (4.23) and (4.24) we obtain the conclusion (4.17).

u 0,-ω (ξ) = -e (λ-ω)ξ ∞ ξ e (ω-λ)η ũ(η) dη (Re λ > ω, ξ ∈ (0, ∞)), so that u 0 (ξ) = - ∞ ξ e λ(ξ-η) u(η) dη (Re λ > ω, ξ ∈ (0, ∞)).
Let us now retrieve our (penalized) Boussinesq context, with the notation r the operators A ε and semigroups T ε recalled at the beginning of this section. We know from Proposition 2.1 and Proposition 2.2 that there exist M 1 and ω ∈ R such that the corresponding semigroups satisfy T 0 t L(X;X)

M e ωt and T ε t L(X;X) M e ωt , (ε > 0, t 0). For ω > ω, we consider the space U ω introduced in (4.14) taking U = U . We can introduce the Lax-Phillips semigroup Ξ 0 = (Ξ 0 t ) t 0 on H × U ω , associated to the pair (A 0 , B 0 = P H B) and, for every ε > 0, the Lax-Phillips semigroup Ξ ε = (Ξ ε t ) t 0 on X × U ω , associated to the pair (A ε , B).

The main result in this section is given just below and it will be used several times in the remaining part of this work. Proposition 4.5. With the above notation, we have

lim ε→0+ Ξ ε t z u -Ξ 0 t z u X×U = 0 t 0, z u ∈ H × U ω , (4.26) lim ε→0+ (Ξ ε t ) * z u -(Ξ 0 t ) * z u X×U = 0 t 0, z u ∈ H × U ω , (4.27) 
Moreover, the convergence above is uniform for t in compact intervals.

Proof. We only prove (4.26). The generator of Ξ 0 is the operator C 0 :

D(C 0 ) → H × U ω dened by D(C 0 ) = D(A 0 ) × W 1,2 ω ((0, ∞); U ), (4.28) 
C 0 = A 0 B 0 δ 0 0 d dξ . (4.29)
Similarly, for every ε > 0, the generator of Ξ ε is the operator

C ε : D(C ε ) → X × U dened by D(C ε ) = D(A ε ) × W 1,2 ω ((0, ∞); U ), (4.30) 
C ε = A ε Bδ 0 0 d dξ . (4.31) 
By Proposition 4.4, we have for every λ ∈ C ω ,

(λI -C 0 ) -1 z u = (λI -A 0 ) -1 (B 0 ∞ 0 e -λη u(η) dη + z) ξ → - ∞ ξ e λ(ξ-η) u(η) dη z u ∈ H × U ω , (4.32) (λI -C ε ) -1 z u = (λI -A ε ) -1 (B ∞ 0 e -λη u(η) dη + z) ξ → - ∞ ξ e λ(ξ-η) u(η) dη z u ∈ X × U ω . (4.33)
By combining Proposition 4.1, recalling that B 0 = P H B and taking z ∈ H, it follows that Remark 4.6. Note that for every ω > 0, L 2 ([0, ∞); U ) is contained in U ω so one can apply in particular Proposition 4.5 for controls u ∈ L 2 ([0, ∞); U ).

lim ε→0+ (λI -C ε ) -1 z u -(λI -C 0 ) -1 z u X×U = 0 z u ∈ H × U ω .

Uniform constants in Datko's theorem

The goal of this subsection is to provide a version of a well-known theorem of Datko, in which we make explicit the fact that the exponential decay rate of the semigroup depends only on the constants involved in assumptions (4.35) and (4.36) below.

Proposition 4.7. Let A be a generator of a strongly continuous semigroup (F t ) t 0 on an Hilbert space X . Assume that there exists a positive constant C > 0 such that

F t L(X;X) Ce Ct (t 0), (4.35) 
and

∞ 0 F t h 2 X dt C h 2 X (h ∈ X ). (4.36)
Then there exist M > 0 and ω > 0, depending only on C, such that

F t L(X ;X ) M e -ωt (t 0). (4.37)
Proof. We closely follow the methodology used, for instance, in Tucsnak and Weiss [32, Section 6.1], in proving Datko's theorem.

First, from (4.35), we have that for every τ > 0 there exists m τ 1 (depending also on C) 

such that F t L(X;X) m τ for all t ∈ [0, τ ]. Then F τ h 2 = 1 τ τ 0 F τ -t F t h 2 dt m 2 τ τ τ 0 F t h 2 dt (τ > 0, h ∈ X ).
c 2 0 h 2 k∈N kτ (k-1)τ F t h 2 X dt κ 2 τ k∈N F kτ h 2 (τ > 0, h ∈ X ), (4.39) 
where k τ = √ τ mτ . In particular, we see from the above that F kτ L(X ;X ) c 0 κτ for every τ > 0 and every k ∈ N (and this holds also for k = 0). Hence, for every τ > 0, every n ∈ N and every h ∈ X ,

F nτ h 2 = 1 n n k=1 F (n-k)τ F kτ h 2 c 2 0 nκ 2 τ n k=1 F kτ h 2 .
By (4.39) we get that 

F nτ h 2 c 2 0 nκ 2 τ • c 2 0 κ 2 τ h 2 (τ > 0, n ∈ N, h ∈ X ), so that F nτ L(X ;X ) c 2 0 √ nκ 2 τ (τ > 0, n ∈ N). Denoting n τ = 4c 4 0 κ 4 τ + 1 it follows that inf n∈N 1 nτ log F nτ L(X ;X ) 1 n τ τ log F nτ τ L(X ;X ) -log 2 n τ τ (τ > 0).
ω 0 (F) = inf t∈(0,∞) 1 t log F t L(X ;X ) inf n∈N 1 nτ log F nτ L(X ;X ) -log 2 n τ τ (τ > 0),
which ends the proof.

Uniform stabilizability and null-controllability results

In the rst part of this section we show that, assuming a smallness assumption on the stationary state v s y s (see Proposition 5.1 below), the semigroups T ε generated by the operators A ε dened in (2.7) are uniformly (with respect to ε) exponentially stable. This will be a basic ingredient of the proof of Theorem 3.1. In the second part of this section we derive the corresponding ingredient of the proof of Theorem 3.2, which is is a uniform (again with respect to ε) nullcontrollability result for the pair (A ε , B), where B is the operator dened in (3.9).

Small stationary states and arbitrary control operator

In this subsection we show that if the stationary state around which we linearized the problem is small (in an appropriate sense) the the semigroups (T ε ) ε>0 are uniformly exponentially stable.

More precisely, we have:

Proposition 5.1. There exists δ > 0 such that if (3.3) holds then A ε generates a uniformly stable semigroup on X, i.e. there exists M 1 and ω > 0 independent of ε such that

T ε t L(X;X)
M e -ωt (ε > 0, t 0).

(5.1)

Proof. We split the proof into three steps.

Step 1. For every ε > 0, consider the operator A ε :

D( A ε ) = D(A ε ) → X dened by Ãε ϕ ζ = ν∆ϕ + 1 ε ∇(div ϕ) + ζe d α∆ζ ϕ ζ ∈ D( A ε ) .
In other words, looking to (2.7), we have

Ãε ϕ ζ = A ε ϕ ζ + (v s • ∇)ϕ + (ϕ • ∇)v s (v s • ∇ζ) + (ϕ • ∇y s ) ϕ ζ ∈ D( A ε ) . (5.2)
To show that the resolvent set of A ε contains the half plane C -β := {z ∈ C ; Re z > -β} for some β > 0, we note that the resolvent equation for A ε , that is

(sI -A ε ) ϕ ζ = f g ∈ X, (5.3) 
can, according to (2.8) and (5.2), be equivalently written as

s Ω ϕ • ψ dx + ν Ω ∇ϕ : ∇ψ dx + 1 ε Ω div ϕ • div ψ dx = Ω ζ • ψ d dx + Ω f • ψ dx (5.4) s Ω ζη dx + α Ω ∇ζ • ∇η dx = Ω gη dx, (5.5) 
for every ψ η ∈ D(A ε ). Note that the second equation is decoupled from the rst. By Lax-Milgram's lemma and Poincaré's inequality, there exists β 1 > 0 such that for every s ∈ C -β 1 , (5.5) admits a unique solution ζ = (sI -α∆) -1 g. Inserting this information in (5.4), we see that by Lax-Milgram's lemma and Poincaré's inequality, there exists β 2 > 0 such that for every s ∈ C -β 2 , (5.4) admits a unique solution ϕ = sI -ν∆ -

1 ε ∇(div ) -1 (ζ d + f ). This proves that indeed the resolvent set of A ε contains C -β for β = min(β 1 , β 2 ) > 0.
Step 2. We remark that there exists σ ∈ (0, β) such that σI + A ε generates an exponentially stable analytic semigroup. Indeed, this is a direct application of [START_REF] Pazy | Semigroups of linear operators and applications to partial dierential equations[END_REF]Theorem 4.3 page 118],

using Step 1 and Proposition 2.2.

Step 3. We show that the operator E, with domain

D(E) = H 1 0 (Ω) d+1 , dened by E ϕ ζ , ψ η X = - Ω [(v s • ∇)ϕ - Ω [v s • ∇ζ + ϕ • ∇y s ] • η dx ϕ ζ , ψ η ∈ D(E) ,
is (σI + A ε )-bounded in the usual sense, recalled below. To this aim, let ϕ, ψ ∈ D(E). We know from Step 1, that

ϕ ψ = (-σI -A ε ) -1 f g
for some f g ∈ X and there exists a constant

C > 0 such that ϕ ψ H 1 0 (Ω) d+1 C f g X .
(5.6)

Assuming that (3.3) holds, we have by using (5.6) that

E ϕ ψ X δ ϕ ψ H 1 0 (Ω) d+1 Cδ f g X Cδ (-σI -A 0 ε ) ϕ ψ X .
Taking δ > 0 suciently small, and using [22, Corollary 2.3, page 81] we obtain that A 0 ε + σI + E = A ε + σI generates a bounded analytic semigroup on X, so A ε generates a uniform stable semigroup on X (note that σ is independent of ε > 0). This concludes the proof.

5.2

Possibly large stationary sates and controls distributed in a subdomain

In the general case of a stationary state

v s y s ∈ W 1,∞ (Ω) d+1
, with no smallness assumption, we cannot ensure that the operator A ε generates a stable semigroup, so we will use the control operator B dened in (3.9) to stabilize this semigroup, uniformly with respect to (small enough) ε.

The main contribution in this subsection is the following uniform (with respect to ε) null controllability result.

Proposition 5.2. Let (A ε ) ε>0 and B be the operators introduced in (2.6), (2.7) and (3.9), respectively. Then for every T > 0 there exist ε 0 > 0 and C > 0 such that for every ε ∈ (0, ε 0 ), the pair (A ε , B) is null controllable in time T with control cost independent of ε ∈ (0, ε 0 ). In other terms, for every

v 0 y 0 ∈ X, one can nd a control u ε = ũε u d+1,ε ∈ L 2 ((0, T ) × O) d+1 satisfying u ε L 2 ((0,T )×O) d+1 C v 0 y 0 X , (5.7) 
and such that the solution of (2.14) satises

v ε (T, •) = 0, y ε (T, •) = 0.
Remark 5.3. Using the standard duality between null controllability and nite state observability (see, for instance, [32, Theorem 11.2.1]), Proposition 5.2 is a direct consequence of the following result:

Proposition 5.4. With the notation in Proposition 5.2, for every T > 0 there exist ε 0 > 0 and κ > 0 such that for every ε ∈ (0, ε 0 ),

κ 2 T 0 B * (T ε t ) * η 2 U dt T ε * T η 2 X (η ∈ X), (5.8) 
where, for every ε > 0, T ε * is the analytic semigroup on X generated by A * ε .

The remaining part of this subsection is essentially devoted to the proof of Proposition 5.4.

Remark 5.5. Recalling that the adjoint A * ε is dened in (4.2) and noticing that B * ∈ L(X; U ) is given by

B * ϕ ζ = ϕ1 O ζ1 O ϕ ζ ∈ X , (5.9) 
we see that the observability estimate (5.8) can be rephrased in PDE terms as follows: for every

Φ 0 Θ 0 ∈ X, the solution of            ∂ t Φ -ν∆Φ -(∇Φ) tr v s -(∇Φ)v s + Θ∇y s + ∇Ψ = 0 in (0, T ) × Ω, ∂ t Θ -α∆Θ -v s • ∇Θ = Φ d in (0, T ) × Ω, div Φ + εΨ = 0 in (0, T ) × Ω, Φ = 0, Θ = 0 on (0, T ) × Γ, Φ(0, •) = Φ 0 , Θ(0, •) = Ψ 0 in Ω, (5.10) satises Φ 
Θ (T, •) 2 X κ 2 Φ Θ 2 L 2 ((0,T )×O) d+1 , (5.11) 
where κ is the constant in (5.8).

To prove (5.11), we will use Carleman estimates in the spirit of [START_REF] Badra | Global Carleman inequalities for Stokes and penalized Stokes equations[END_REF]. We have to introduce the classical weights of Carleman inequalities.

Let O 0 ⊂⊂ O and let η ∈ C 2 (Ω) such that    η(x) > 0 (x ∈ Ω), η(x) = 0 (x ∈ ∂Ω), |∇η(x)| > 0 (x ∈ Ω \ O 0 ).
The existence of such a function is due to Imanuvilov, see [START_REF] Coron | Control and nonlinearity[END_REF]Lemma 2.68] for a proof. Then,

we introduce l ∈ C ∞ ([0, T ]) such that    l(t) = t (t ∈ (0, T /4)), l(t) ∈ [T /4, T /2] (t ∈ (T /4, 3T /4)), l(t) = T -t (t ∈ (3T /4, T )).
Finally, for k 2 and λ > 1, we dene

α(t, x) = e 2λ η ∞ -e λη(x) l(t) k , ξ(t, x) = e λ(η(x)+ η ∞ ) l(t) k ((t, x) ∈ [0, T ] × Ω).
(5.12)

Setting Q T = (0, T ) × Ω, we also introduce the notation

I(λ, s, Θ) = s 3 λ 4 Q T e -2sα ξ 3 |Θ| 2 dtdx + sλ 2 Q T e -2sα ξ|∇Θ| 2 dtdx.
(5.13)

We are the now in a position to recall the standard Carleman estimate for the heat equation with homogeneous Dirichlet boundary conditions, see [START_REF] Fernández-Cara | Global carleman inequalities for parabolic systems and applications to controllability[END_REF].

Proposition 5.6. There exists λ 0 > 0 such that for all λ λ 0 , there exist two constants c 0 (λ) and s 0 (λ) such that for all s s 0 (λ), for every

Θ 0 ∈ L 2 (Ω), g ∈ L 2 (Q T ) the solution Θ to    ∂ t Θ -α∆Θ = g in (0, T ) × Ω, Θ = 0 on (0, T ) × Γ, Θ(0, •) = Θ 0 in Ω, satises I(λ, s, Θ) c 0 (λ) Q T e -2sα |g| 2 dtdx + s 3 λ 4 T 0 O e -2sα ξ 3 |Θ| 2 dtdx . (5.14) 
One of the main ingredient of the proof of (5.11) is a uniform Carleman estimate for the penalized Stokes system

       ∂ t Φ -ν∆Φ + ∇Ψ = f in (0, T ) × Ω, div Φ + εΨ = 0 in (0, T ) × Ω, Φ = 0 on (0, T ) × Γ, Φ(0, •) = Φ 0 in Ω, (5.15) 
with

f = f 0 + f 1 + n j=1 ((∇f 1,j )z 1,j + (∇f 2,j ) tr z 2,j ), n ∈ N, (5.16) 
where for i = 1, 2 and j = 1, . . . , n,

f i ∈ L 2 (Q T ) d , ∇ × f 1 ∈ L 2 (Q T ) 2d-3 , f i,j ∈ L 2 (0, T ; (H 1 (Ω) d )), z i,j ∈ L ∞ (0, T ; (W 1,∞ (Ω) d ),
are given functions. In the equations above notation ∇ × f 1 is used for the curl of f 1 . To state this Carleman estimate we introduce the integral quantities:

I 0 (λ, s, Φ) = s 3 λ 4 Q T e -2sα ξ 3 |Φ| 2 dtdx + sλ 2 Q T e -2sα ξ|∇Φ| 2 dtdx + s 2 λ 2 Q T e -2sα ξ 2 |∇ × Φ| 2 dtdx + Q T e -2sα |∇(∇ × Φ)| 2 dtdx,
and

I 1 (λ, s, f ) = s Q T e -2sα ξ|f 0 | 2 dtdx + s 1/2 Q T e -2sα ξ|f 1 | 2 dtdx + s -1 λ -2 Q T e -2sα ξ -1 |∇ × f 1 | 2 dtdx + n j=1 2 i=1 Q T e -2sα (s 1/2 ξ|∇f i,j | 2 + sξ|∇ × f i,j | 2 ) dtdx.
We have the following Carleman estimate, proved in [1, Theorem 2.2].

Proposition 5.7. Let ε 0 > 0 and assume that k 4. Then exists λ 0 > 0 such that for all λ λ 0 , there exists two constants c 0 (λ) and s 0 (λ) such that for every s s 0 (λ) and all ε ∈ (0, ε 0 ), for every Φ 0 ∈ L 2 (Ω) d and f as in (5.16), the solution Φ to (5.15) satises

I 0 (λ, s, Φ) c 0 (λ) I 1 (λ, s, f ) + s 4 λ 4 T 0 O
e -2sα ξ 3 |Φ| 2 dtdx .

(5.17)

Note that the constants c 0 (λ) and s 0 (λ) depend on z i,j L ∞ (0,T ;W 1,∞ (Ω) d ) .

Putting together the two Carleman estimates above, i.e. in Proposition 5.6 and Proposition 5.7 we obtain the following result:

Proposition 5.8. Let ε 0 > 0 and assume that k 4. Then exists λ 0 > 0 such that for all λ λ 0 , there exists two constants c 0 (λ) and s 0 (λ) such that for every s s 0 (λ) and all ε ∈ (0, ε 0 ), for every Φ 0 Θ 0 ∈ X, the solution (Φ, Θ) to (5.10) satises

I 0 (λ, s, Φ) + I(λ, s, Θ) c 0 (λ) s 4 λ 4 T 0 O e -2sα ξ 3 |Φ| 2 dtdx + s 3 λ 4 T 0 O
e -2sα ξ 3 |Θ| 2 dtdx , (5.18) with the constants c 0 (λ) and s 0 (λ) possibly depending on v s y s W 1,∞ (Ω) d+1 .

Proof. In the following proof, the positive constants C can vary from line to line and possibly depend on λ, v s y s W 1,∞ (Ω) d+1 but do not depend on ε.

First, by Proposition 5.7, we apply the Carleman estimate for the Stokes penalized system satised by Φ with f as in (5.16) and

n = 1, f 0 = -Θ∇y s , f 1 = 0, f 1,1 = f 2,1 = Φ, z 1,1 = z 2,1 = v s ,
we obtain 

I 0 (λ, s, Φ) C s Q T e -2sα ξ|f 0 | 2 dtdx + n j=1 2 i=1 Q T e -2sα (s 1/2 ξ|∇y| 2 + sξ|∇ × y| 2 ) dtdx + s 4 λ 4 T 0 O e -2sα
I(λ, s, Θ) C Q T e -2sα (|∇Θ| 2 + |Φ| 2 ) dtdx + s 3 λ 4 T 0 O e -2sα ξ 3 |Θ| 2 dtdx .
(5.21)

We can absorb the rst right hand side term in (5.21) taking s suciently large to obtain

I(λ, s, Θ) C Q T e -2sα |Φ| 2 dtdx + s 3 λ 4 T 0 O
e -2sα ξ 3 |Θ| 2 dtdx . Remark 5.9. The above proof can be adapted, by slightly changing the weights, to obtain that (5.18) This actually leads to a null-controllability result as in Proposition 5.2 with a control of the form (7.1).

We are now in a position to prove the main result in this section.

Proof of Proposition 5.4. According to Remarks 5.3 and 5.5 it suces to prove (5.11). The basic tool is the Carleman estimate (5.18) above. Let λ and s be suciently large such that (5.18) holds. We rst remark that there exists c 1 , c 2 > 0 such that s 3 λ 4 e -2sα ξ 3 c 1 (t ∈ (T /4, 3T /4), x ∈ Ω).

(5.23)

s 4 λ 4 e -2sα ξ 3 + s 3 λ 4 e -2sα ξ 3 c 2 (t ∈ (0, T ), x ∈ ω).

(5.24)

Using (5.18), (5.23) and ( 5.24) we have that

3T /4 T /4 Ω |Φ| 2 + |Θ| 2 dtdx c 3 T 0 O |Φ| 2 + |Θ| 2 dtdx, (5.25) 
for some constant c 3 > 0. By using (4.9), i.e. the semigroups ((T ε ) * ) ε>0 have a growth bound independent of ε > 0, it follows that there exists c 4 > 0 such that Φ Θ (T, •) Remark 5.10. For obtaining the null-controllability result of Proposition 5.2 for the pair (A 0 , B 0 ), one can follow exactly the same steps that we have done, using [START_REF] Fernández-Cara | Global carleman inequalities for parabolic systems and applications to controllability[END_REF]Lemma 3.1] for Carleman estimates for the Stokes system.

Proof of the main results

The goal of this section is to prove Theorem 3.1 and Theorem 3.2.

We rst use Proposition 5.1 to prove (3.4) and (3.5) for Theorem 3.1.

Proof of (3.4) and (3.5) for Theorem 3.1. We have from Theorem 2.5 and Proposition 5.1 that

Π ε v 0 y 0 , v 0 y 0 J 0; v 0 y 0 +∞ 0 T ε t v 0 y 0 2 X dt C v 0 y 0 2 X ε > 0, v 0 y 0 ∈ X , which implies (3.4). Moreover, +∞ 0 F ε t v 0 y 0 2 X dt J 0; v 0 y 0 +∞ 0 T ε t v 0 y 0 2 X dt C v 0 y 0 2 X ε > 0, v 0 y 0 ∈ X ,
which implies (3.5) by using Proposition 4.7.

with Π s (ξ) ∈ L(X ) a self-adjoint operator for every ξ ∈ [s, t f ].

We have the following classical result, see, for instance, [5, Theorem A.1]: Theorem 6.1. Assume that the unique nonnegative selfadjoint solution Π of the Riccati equation (2.17) exists. Let Π s be the unique Riccati operator function associated with the problem (R, t f = 0). If lim t→∞ F t x 0 = 0 for all x 0 ∈ X , where F := (F t ) t 0 is the closed loop semigroup, i.e., the one generated by F -BB * Π, then we have

lim s→-∞ Π s (s)x 0 = Πx 0 (x 0 ∈ X ). (6.3) 
If moreover G Π (in the sense of symmetric operators) and there exist positive constants M and β such that

F t M e -βt (t 0), (6.4) then Π Π s (s) Π + M 2 e 2βs G (s < 0). (6.5) 
By coming back to our situation, calling (R ε , t f = 0) the nite horizon regulator problem associated to (A ε , B), and (R 0 , t f = 0) the nite horizon regulator problem associated to (A 0 , B 0 ), we can show the following result, which is an adaptation of [15, Theorem 5.1] to our context. Theorem 6.2. For every s < 0, for every v 0 y 0 ∈ H, we have

lim ε→0 u opt,ε (t) -u opt (t) U = 0, (6.6) 
lim ε→0 v opt,ε (t) y opt,ε (t) - v opt (t) y opt (t) X = 0, (6.7) 
lim ε→0 Π s,ε (t) v 0 y 0 -Π s (t) v 0 y 0 X = 0, (6.8) 
uniformly in t ∈ [s, 0]. Here, u opt,ε , u opt , v opt,ε y opt,ε , v opt y opt denote optimal controls and trajectories of the problems (R ε , 0) associated to (A ε , B) and (R 0 , 0) associated to (A 0 , B) respectively.

Proof. Take s < 0, τ s and v 0 y 0 ∈ H. First, we remark that we just have to prove (6.6).

Indeed, assuming that we have (6.6), the optimal trajectory of the penalized problem is given by

S ε t-τ v 0 y 0 := v opt,ε (t) y opt,ε (t) = T ε t-τ v 0 y 0 - t τ T ε t-η Bu opt,ε (η) dη (ε > 0, τ t 0). (6.9) 
By Proposition 4.2, we have

lim ε→0 T ε t-τ v 0 y 0 -T 0 t-τ v 0 y 0 X = 0 uniformly in t ∈ [τ, 0]. (6.10)
For the second term in the right hand side of (6.9), we write

t τ T ε t-η Bu opt,ε (η) dη - t τ T 0 t-η B 0 u opt (η) dη = t τ T ε t-η Bu opt,ε (η) dη - t τ T ε t-η Bu opt (η) dη + t τ T ε t-η Bu opt (η) dη - t τ T 0 t-η Bu opt (η) dη (ε > 0, τ t 0).
By using (6.6) and the growth bound of T ε given in (2.9), we get that the rst right hand side term of the above formula goes to 0 as ε → 0, uniformly in t ∈ [τ, 0]. Next, by using the convergence of Lax-Phillips semigroup, given in Proposition 4.5, we obtain that the second right hand side term of the above formula also goes to 0 as ε → 0, uniformly in t ∈ [τ, 0]. This yields

lim ε→0 t τ T ε t-η Bu opt,ε (η) dη - t τ T 0 t-η B 0 u opt (η) dη X = 0 uniformly in t ∈ [τ, 0]. (6.11)
By gathering (6.10) and (6.11), we obtain (6.7).

Moreover, we have by [START_REF] Gibson | The Riccati integral equations for optimal control problems on Hilbert spaces[END_REF]Equation (3.25)],

Π s,ε (t)

v 0 y 0 = (T ε t f -t ) * GS ε t f -t v 0 y 0 + t f t (T ε η-t ) * S ε η-t v 0 y 0 dη, (ε > 0, τ t 0),
so we can readily pass to the limit as ε → 0, in the above formula, using Proposition 4.2 (and the adapted version for the adjoint semigroup) and (6.7). This leads to (6.8).

According to [START_REF] Gibson | The Riccati integral equations for optimal control problems on Hilbert spaces[END_REF]Equation (3.14)], we have

u opt,ε (t) = -( Qε s ) -1 Bε * s v 0 y 0 (t) (ε > 0, τ t 0), (6.12) 
where Qε s and Bε Proof of (3.6), (3.7) and (3.8). We rst prove (3.6). We take G = M I d where M corresponds to the uniform bound for the Riccati operator Π ε in (3.4). We apply Theorem 6.1 to each problem (R ε , 0) on X and by using the uniform bound for the feedback semigroup, stated in (3.5), we conclude that for s < 0, we have

Π ε Π s,ε (s) Π ε + M 2 e 2ωs M . (6.13) 
Let us x v 0 y 0 ∈ H \ {0} and N ∈ N * . From (6.13), we know that there exists C 0 > 0 such that

Π ζ,ε (ζ) -Π ε L(X;X) 1 4N v 0 y 0 X (ε > 0, ζ < -C 0 ). (6.14) 
Using the fact that (A 0 , B 0 ) is stabilizable, we have that (6.3) holds for Π (here Π actually denotes Π 0 to avoid confusion with Π s or Π ζ ). From Theorem 6.1 applied to the problem (R 0 , 0) on H, we then know that there exists C 1 > 0 such that

Π ζ (ζ) -Π L(X;X) 1 4N (v 0 , y 0 ) X (ζ < -C 1 ).
(6.15)

T ε t-η (-BB * Π ε F ε η ) v 0 y 0 dη - t 0 T 0 t-η (-B 0 B * 0 Π 0 F 0 η )
v 0 y 0 dη (ε > 0, t 0). (6.17)

The quantity dened by the terms in the rst line of the right hand side of (6.17) tends to 0 as ε → 0, uniformly on compact intervals in time. For the remaining terms in the right hand side we write t 0

T ε t-η (-BB * Π ε F ε η ) -T 0 t-η (-B 0 B * 0 Π 0 F 0 η ) v 0 y 0 dη = t 0 T ε t-η (-BB * Π ε F ε η ) -T ε t-η (-BB * Π ε F 0 η ) + T ε t-η (-BB * Π ε F 0 η ) -T ε t-η (-BB * Π 0 F 0 η ) + T ε t-η (-BB * 0 Π 0 F 0 η ) -T 0 t-η (-B 0 B * 0 Π 0 F 0 η )
v 0 y 0 dη (ε > 0, t 0). (6.18) Consequently, from (6.17), (6.18) and the uniform bound (2.9), we obtain that taking T > 0, there exists a constant C > 0 such that for every ε > 0 and t ∈ [0, T ],

F ε t v 0 y 0 -F 0 t v 0 y 0 X T ε t v 0 y 0 -T 0 t v 0 y 0 X + C t 0 Π ε F 0 η v 0 y 0 -Π 0 η F 0 η v 0 y 0 X dη + t 0 T ε t-η (-BB * 0 Π 0 F 0 η ) v 0 y 0 -T 0 t-η (-B 0 B * 0 Π 0 F 0 η ) v 0 y 0 X dη+C t 0 F ε η v 0 y 0 -F 0 η v 0 y 0 X dη.
Hence, by using Gronwall's inequality, we obtain that there exists a positive constant C > 0 such that for every ε > 0, t ∈ [0, T ],

F ε t v 0 y 0 -F 0 t v 0 y 0 X C sup t∈[0,T ] T ε t v 0 y 0 -T 0 t v 0 y 0 X + T 0 Π ε F 0 η v 0 y 0 -Π 0 η F 0 η v 0 y 0 X dη + T 0 sup t∈[0,T ] T ε t-η (-BB * 0 Π 0 F 0 η ) v 0 y 0 -T 0 t-η (-B 0 B * 0 Π 0 F 0 η )
v 0 y 0 X dη exp(CT ).

By using Proposition 4.2, the convergence of the Riccati operators i.e. (3.6) and Proposition 4.5

we see that the three terms in right hand side of the above formula converge to 0 as ε → 0.

Then, we immediately deduce (3.7).

Finally, we obtain the convergence of the optimal controls (3.8), using the denition of optimal controls in function of the closed-loop semigroup, i.e. (2.18), and the convergence of the closed-loop semigroup, i.e. (3.7).

Concluding remarks

In this paper we prove that the penalization of the free divergence condition allows the approximation innite horizon LQR problem for the linearized Boussinesq system by the corresponding problems for a sequence of parabolic systems, for which standard theory and available computational techniques fully apply. The main open question left by this work is the study of the action of the obtained controllers when inserted in the nonlinear Boussinesq system. As in the case of the Navier-Stokes equation (see, for instance, [START_REF] Raymond | Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations[END_REF]), we expect local stabilization results, the diculty being that we need estimates for the nonlinear problem which are independent of ε.

We end this paper by formulating some comments and some open questions related to our main results in Theorem 3.1 and Theorem 3.2.

• In Theorem 3.2, we can actually replace (3.9) by

Bu =        u 1 . . . u d-1 0 u d+1        1 O (u ∈ U ), (7.1)
that is to say, a control operator that acts only on the rst (d -1) velocity components and on the temperature, see Remark 5.9 above.

• In the spirit of [START_REF] Banks | Approximation in LQR problems for innite-dimensional systems with unbounded input operators[END_REF]Theorem 4.8], assuming that (3.4) and (3.5) hold true, we may wonder if we have the following convergence in norm operator lim ε→0+ Π ε -Π 0 L(H;X) = 0.

• For numerical purposes, it would be relevant to obtain error estimates for the convergences (3.6), (3.7) and (3.8), in the spirit of [START_REF] Kroller | Convergence rates for the feedback operators arising in the linear quadratic regulator problem governed by parabolic equations[END_REF].

• A natural generalization, concerning both Theorem 3.1 and Theorem 3.2, could consist in adding an observation operator in the quadratic functionals dened in (1.7) and (1.8).

We think that, at least in the case of bounded observation operators, our approach can be adapted to this situation, in the spirit of what has been done in [START_REF] Banks | Approximation in LQR problems for innite-dimensional systems with unbounded input operators[END_REF] for Galerkin type approximations.

• For proving Theorem 3.1 and Theorem 3.2, the approach that we follow crucially uses the fact that B and B 0 are bounded control operators. It would be relevant to extend these results for unbounded control operators in order to treat boundary control operators, see [START_REF] Badra | Méthode de pénalisation pour le contrôle frontière des équations de Navier-Stokes[END_REF] for nite time horizon problem in the context of the Oseen system.

• Another important issue, namely when one aims getting closer to applications, is to show that if (3.3) or (3.9) holds then the semigroup generated by A -B 0 B * 0 Π ε is uniformly exponentially stable for ε suciently small.

• In the spirit of [START_REF] Badra | Stabilization of parabolic nonlinear systems with nite dimensional feedback or dynamical controllers: application to the Navier-Stokes system[END_REF], it would also be interesting to obtain local exponential stabilization with a nite number of controls, uniformly with respect to ε, for the (nonlinear) Boussinesq system (1.1), replacing div v = 0 by div v + εp = 0.

By using ( 4 . 1 )

 41 and [22, Section 1.3, Corollary 3.8], we have T ε t M e ωt for 0 t T . It follows from (4.3) that D ε 1 z 0 → 0 as ε → 0, uniformly on [0, T ]. Also, since t ∈ [0, T ] → T 0 t z 0 is continuous because T 0 is a strongly continuous semigroup, we deduce that the set T 0 t z 0 ; t ∈ [0, T ] is compact in H and therefore D ε 3 z 0 → 0 as ε → 0 uniformly on [0, T ]. For the term D ε 2 z 0 , we use the fact, proved in [22, Section 3.4, Lemma 4.1], that

Proposition 4 . 4 .

 44 Let C be the operator dened in (4.15) and (4.16). Then its resolvent set ρ(C) contains the half plane C ω = {λ ∈ C | Re λ > ω}, and we have

(4. 23 )

 23 Going back to(4.19), it follows that z 0 = (λI -A) -1 (-u 0 (0) + z) (Re λ > ω).

( 4 .

 4 34) Then the conclusion (4.26) follows from (4.34) and (4.25) by a slight variation of the Trotter-Kato theorem, in the spirit of the proof of Proposition 4.2.

( 4 .

 4 38)By combining (4.38) and (4.36) it follows that

(5. 22 )

 22 We sum(5.20) and(5.22) to obtainI 0 (λ, s, Φ) + I(λ, s, Θ) C s Q T e -2sα ξ|Θ| 2 dtdx + Q T e -2sα |Φ| 2 dtdx + s 4 λ 4 T 0 O e -2sα ξ 3 |Φ| 2 dtdx + s 3 λ 4 T 0 O e -2sα ξ 3 |Θ| 2 dtdx ,and taking again s suciently large, we can absorb the rst and second right hand side terms of the above inequality to deduce (5.18).

  [START_REF] Raymond | Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions[END_REF] and(5.26) we deduce the expected observability estimate(5.11).

s

  are (linear) bounded operators dened in[15, Equations (3.10),(3.11)]. By following line by line[START_REF] Gibson | The Riccati integral equations for optimal control problems on Hilbert spaces[END_REF] Equations (5.8)-(5.11)], using Proposition 4.2, we obtain the expected convergence (6.6).We are now in a position to prove (3.6), (3.7) and (3.8) for both Theorem 3.1 and Theorem 3.2, recalling that we already know that (A 0 , B 0 ) is stabilizable and that we have already checked(3.4) and (3.5).

  T ] and since D(A 2 0 ) is dense in H, see [22, Theorem 1.2.7], we have that (4.13) holds for every z 0 ∈ H and uniformly for t ∈ [0, T ], which concludes the proof.

		.13)
	Moreover the above convergence is uniform on [0, T ]. By using that T ε t -T 0 t	is uniformly
	bounded on [0,	

  ξ 3 |Φ| 2 dtdx . (5.19) Taking s suciently large, according to the denition of I 0 , we can absorb the second right hand We now use the Carleman estimate for the heat equation in Proposition 5.6 satised by Θ with g = v s • ∇Θ + Φ d stated, we obtain

	side term in (5.19) to obtain			
		T		
	I 0 (λ, s, Φ) C s	e -2sα ξ|Θ| 2 dtdx + s 4 λ 4	e -2sα ξ 3 |Φ| 2 dtdx .	(5.20)
	Q T	0	O	

  holds without the term in the right hand side that containing Φ d . Indeed, by remarking that Φ d = -∂ t Θ -α∆Θ -v s • ∇Θ, one can estimate the local term in Φ d by a local term in Θ and global terms in Θ. Moreover, these global terms can be absorbed by the left hand side of (5.18), see, for instance, [7, Proof of Proposition 2.8] for the employment of such a technique.
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We secondly use Proposition 5.2 to prove assertions (3.4) and (3.5) in Theorem 3.2.

Proof of (3.4) and (3.5) in Theorem 3.2. From Proposition 5.2, by xing some T > 0, we know that there exists ε 0 > 0 such that for every ε ∈ (0, ε 0 ) and every v 0 y 0 ∈ X, one can nd a control u ε ∈ L 2 ((0, T ) × O) d+1 satisfying (5.7) and such that the associated solution of (2.14) satises v ε (T, •) = 0 and y ε (T, •) = 0. By extending the control u ε by 0 on (T, +∞) × O, we obtain that v ε (t, •) = 0 and y ε (t, •) = 0 for every t T . Moreover, using (2.9), (2.15) and (5.7), we obtain that there exists a constant C > 0 independent of ε such that

We can thus combine Theorem 2.5, (5.7) and (6.1) to obtain

The above estimate implies (3.4) for ε ∈ (0, ε 0 ). Moreover, we have

which can be combined with Proposition 4.7 to yield (3.5) for ε ∈ (0, ε 0 ).

For the sake of simplicity, we omit below, while using (3.4) and (3.5), the condition ε ∈ (0, ε 0 ), which will be often replaced ε ∈ (0, ε 0 ) (as in Theorem 3.2).

In order to complete the proofs of Theorem 3.1 and Theorem 3.2 we still need to check the convergence results stated in (3.6), (3.7) and (3.8). This will be done by rst proving that similar convergence properties hold for the corresponding nite horizon LQR problems, in the spirit of [START_REF] Banks | The linear regulator problem for parabolic systems[END_REF]Appendix]. To this aim, we rst recall some general results concerning this type of approximation.

Let A be a generator of a strongly continuous semigroup (T t ) t 0 on a Hilbert space X , let B ∈ L(U; X ) be the (bounded) control operator where the input space U is also a Hilbert space. Consider regulator problems on the nite intervals [s, t f ] with -∞ < s < t f , with a weighting symmetric bounded positive operator G 0 for the nal state x(t f ). The nite interval problems are given by

In the above context it is known that a unique nonnegative selfadoint Riccati operator function Π s can be associated with (R, t f ), see, for instance, [START_REF] Gibson | The Riccati integral equations for optimal control problems on Hilbert spaces[END_REF]Theorem 3.2]. More precisely, Π s satises the integral Riccati equation

Therefore, from the triangle inequality, we deduce that for ζ < -max(C 0 , C 1 ),

We know from Theorem 6.2 that the second term in right hand side term of the above equation goes to 0 as ε → 0, so there exists ε such that for every ε ∈ (0, ε ), we obtain

which, recalling that N ∈ N * is arbitrary, concludes the proof of (3.6).

We next prove the convergence of the feedback operators, i.e. (3.7). To this aim we rst note that for every v 0 y 0 ∈ H we have