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Some aspects of scaling the orbital angular momentum of light with conical diffraction

The mechanisms leading to scaling the orbital angular momentum (OAM) from a Gaussian beam with no OAM up to integers 1, 2…have been pointed out in the cascaded conical diffraction process. The study is illustrated with two different biaxial crystals: KGd(WO2)4 and Bi2ZnOB2O6 (non-degenerate cascade). Scaling the OAM is the repetition of the following basic stage: the polarization of the highest OAM state generated by a previous crystal is changed with a quarter-wave plate in order that the OAM increment through the next biaxial crystal is maximized under a projection operator. This latter is constituted from a quarter-wave plate and a linear polarizer. The image of the field at the output of a crystal is repeated through the following one with a two-lenses afocal telescope, preventing its natural spread. The OAM is visualized by interference patterns with a reference beam and by a cylindrical lens. All the experimental patterns (intensity, phase, OAM) are quite well described by a full numerical model. The role of each crystal of the cascade in the OAM increment is simply exhibited in the Fourier space.

Introduction

The propagation of a Gaussian beam along the optical axis of a biaxial crystal leads to its conical diffraction (CD) instead of the usual double-refraction, so it emerges as a hollow cylinder [START_REF] Landau | Electrodynamique des milieux continus[END_REF][START_REF] Born | Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[END_REF]. Discovered by W. Hamilton in the nineteenth century, this astonishing optical phenomenon has nowadays numerous applications [START_REF] Turpin | Conical refraction: fundamentals and applications[END_REF] such as the optical trapping of particles, the polarization multiplexing for optical communications, and the super resolution microscopy to name only the most important examples. A consistent theoretical description was obtained from plane waves decomposition of the incident beam and their recombination behind the crystal [START_REF] Belskii | Internal conical refraction of bounded light beams in biaxial crystals[END_REF][START_REF] Berry | Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike[END_REF].

A key-feature is that the beam emerges also with a modified orbital angular momentum (OAM) because around its optical axis a biaxial crystal is not azimuthally symmetric as it was calculated by Berry et al. [START_REF] Berry | Orbital and spin angular momentum in conical diffraction[END_REF]. Let us recall that the OAM results of the beam linear momentum acting offaxis with respect to its centre [START_REF] Padgett | Orbital angular momentum 25 years on[END_REF]. For example, Laguerre-Gauss modes have such 𝑙 ℏ/photon OAM related to their exp (𝑖𝑙𝜑) transverse phase variation. For an input field with a circular polarization, following Berry, the output field after CD is a superposition of a B0 component characterized by a nil OAM (charge 0 component) and a B1 component characterized by 1 ℏ/photon OAM (charge 1 component). These predictions were experimentally verified in the case of the centrosymmetric KGd(WO2)4 (KGW) crystal [START_REF] O'dwyer | Generation of continuously tunable fractional optical angular momentum using internal conical diffraction[END_REF] and the non-centrosymmetric (Pasteur medium) Bi2ZnOB2O6 (BZBO) oxy-borate crystal [START_REF] Brenier | Light propagation properties of the Bi2ZnOB2O6 acentric biaxial crystal: angular orbital momentum from conical diffraction[END_REF]. In this context the phase of the output wave appears very important and a nice study of this aspect was experimentally performed [START_REF] Peinado | Interferometric characterization of the structured polarized light beam produced by the conical refraction phenomenon[END_REF].

Going now to the topic of the present work, it was shown that cascading several biaxial crystals (oriented along one optical axis) leads to multiple rings and generally speaking interesting mode conversion. First the theory for one crystal was generalised to N cascaded crystals [START_REF] Berry | Conical diffraction from an N-crystal cascade[END_REF]. The intensity patterns of multiple rings obtained with up to three crystals were exhibited [START_REF] Turpin | Multiple rings formation in cascaded conical refraction[END_REF]. In Ref. [START_REF] Turpin | Light propagation in biaxial crystals[END_REF] an elliptical beam was launched into two cascaded crystals, reducing the intensity pattern of each circle in two lobes. Much more complex intensity patterns can be obtained inserting optical elements between the crystals. This was shown experimentally and theoretically in Ref. [START_REF] Mohammadou | Complex beam shaping by cascaded conical diffraction with intercalated polarization transforming elements[END_REF] with a /4 or a /2 plate or a linear polarizer inserted between two crystals (calculations were also performed with more than two crystals). When polarizers were used, among numerous modes, modes with 1 and 2 ħ/photon OAM (LG 0 1 , LG 1 1 and LG 0 2 Laguerre-Gauss) were exhibited in Ref. [START_REF] Peet | Biaxial crystal as a versatile mode converter[END_REF] with two cascaded crystals. The cascade can also be modified by focusing the beam inside a second crystal with a single imaging lens ("variable cascade modification") [START_REF] Jalviste | Interplay of vortex and non-vortex beam components in a variable two-crystal cascade conical refraction[END_REF]. The conical refraction is so deeply modified that the ABCD formalism is required in the theoretical description.

Generally speaking, despite that numerous intensity patterns from cascaded biaxial crystals are exhibited in the literature in very relevant papers, the OAM topic is not exhausted. In Ref. [START_REF] O'dwyer | The creation and annihilation of optical vortices using cascade conical diffraction[END_REF],

the experimental set-up with two KGW crystals allows intensity and interference patterns in the far field, but the phase of the field is not shown and no attempt is made for measuring the OAM.

In Ref. [START_REF] Jalviste | Vortex light beams in a degenerate two-crystal cascade conical refraction[END_REF], the OAM is increased up to 3 ħ/photon thanks to a Laguerre-Gauss input beam, but the phase of the fields is not calculated and compared with a reference beam.

The present work is devoted to the clarification of the mechanisms leading to scaling the OAM with CD, that is to say its increasing from 0 ħ/photon up to integer values, with basic steps which could be repeated as many as necessary. The study highlights some aspects of the scaling:

the selection of the OAM states performed with relevant operators, OAM value evidenced from the phase of the modes obtained by interference fringes with a reference or by the cylindrical lens method, the use of an afocal optics as an efficient tool to prevent the natural spread of the beam during the cascading of the basic steps. The study is illustrated with two different biaxial crystals: KGW and BZBO (non-degenerate cascade case). All the experimental patterns are quite well described by a full numerical theoretical model presented generally in section 2. The creation of the OAM from 0 is described in sub-section 3.1, experimentally and theoretically, and the OAM scaling is set in sub-section 3.2.

Theoretical background

Cascade of biaxial crystals

Let us start from the propagation through a lone biaxial crystal. The electric field 𝐄 of a monochromatic input beam at the entrance face of the crystal is a priori known in the (x, y, z) frame (Fig. 1). This field can be decomposed in plane waves from its 2D-Fourier transform

[𝐄 ̂(0, 𝑘 𝑥 , 𝑘 𝑦 )] 𝑥𝑦 , 𝑘 𝑥 , 𝑘 𝑦 being the transverse components of the wave-vector. Each plane wave inside the crystal has components on the two eigen-modes (±) of the refracted propagation direction which propagate as exp [𝑖(𝑘 𝑥 𝑥 + 𝑘 𝑦 𝑦 + 𝑘 𝑧± 𝑧)], with:

𝑘 𝑧± = √𝑘 ± 2 -(𝑘 𝑥 2 + 𝑘 𝑦 2 ) (1) 
𝑘 ± being the two eigen-values. At the exit of the crystal with thickness L the emerging field

[𝐄 ̂(𝐿, 𝑘 𝑥 , 𝑘 𝑦 )] 𝑥𝑦 is obtained from a linear operator U ̂ acting on [𝐄 ̂(0, 𝑘 𝑥 , 𝑘 𝑦 )] 𝑥𝑦 :

U ̂= 𝑒𝑥𝑝 {𝑖𝑧𝑃 [ 𝑘 𝑧+ 0 0 𝑘 𝑧- ] 𝑃 -1 } ( 2 
)
where P is the transfer matrix from the xy-frame towards the eigen-modes frame. Launching a Gaussian beam, the parabolic approximation leads to smart results for the eigen-values, the eigen-modes and the operator U ̂ [START_REF] Belskii | Internal conical refraction of bounded light beams in biaxial crystals[END_REF][START_REF] Berry | Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike[END_REF]. In the present work we operated a full numerical calculation (that is to say with the exact refractive indices and eigenmodes), detailed in Ref. [START_REF] Brenier | Light propagation properties of the Bi2ZnOB2O6 acentric biaxial crystal: angular orbital momentum from conical diffraction[END_REF][START_REF] Brenier | Lasing with conical diffraction feature in the KGd(WO4)2:Nd biaxial crystal[END_REF] and including birefringence and bi-anisotropy, of the U ̂ operator and any fields such as 𝔏 ̂ and ℜ ̂ hereafter. Of course the near field in real space is provided by the inverse Fourier transform. As it was recognized many years ago [START_REF] Berry | Orbital and spin angular momentum in conical diffraction[END_REF] waves with circular polarizations (CP) have a special role. Launching such a wave with no OAM leads to two superimposed emerging waves 𝔏 and ℜ after CD in a birefringent biaxial crystal, the one with the opposite CP having its OAM modified as ±1 ħ/photon, the one with the same CP having no OAM. The corresponding far fields 𝔏 ̂ and ℜ ̂ are constituted of concentric rings (Bessel beams), they are well studied generally from reasonable approximations applied to the refractive indices and eigenmodes: for the interested reader they are for example carefully imaged in Ref. [START_REF] Phelan | Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal[END_REF]. We chose in this paper to work in a circular basis by means of the transfer matrix:

1 √2 ( 1 -𝑖 1 

𝑖

). So we can express any field in the circular basis from its components in the linear basis:

[ 𝔏 ℜ ] = 1 √2 ( 1 -𝑖 1 𝑖 ) [ E x E y ] (3) 
where 𝔏 and ℜ means respectively LC and RC. With these notations the CD through one crystal labelled i is obtained with the operator:

U ̂𝑖(𝐿, 𝑘 𝑥 , 𝑘 𝑦 ) = [ 𝔏 ̂𝑖 (0) 𝔏 ̂𝑖 (-1) ℜ ̂𝑖 (1) ℜ ̂𝑖 (0) ] (4) 
where the superscript (c) is the charge of the CP wave.

If the crystal is rotated around one axis (x, y or z) it is necessary to add a rotation before using Eq. ( 2). Such rotations were used in Ref. [START_REF] Brenier | Revealing modes from controlling an off-optical axis conical diffraction laser[END_REF] to explain the crescent like modes generated by a CD laser but were not used in the present work.

When several crystals with different optical parameters are cascaded, because the output wave from one crystal is the input one for the following, it is straightforward to multiply the U ̂𝑖 operators corresponding to each crystal.

Moreover, for any path of length ∆𝑧 in free space after the exit face of one crystal, it is necessary to multiply the field by exp (𝑖√𝑘 0 2 -(𝑘 𝑥 2 + 𝑘 𝑦 2 )∆𝑧) , 𝑘 0 being the free-space wave-vector.

The optical elements located after one crystal number i modify the wave polarization according to their Jones matrix (expressed in the following calculation in the circular basis). These matrices have to be introduced after the U ̂i operator before the next U ̂i+1 in the product describing the cascade.

The field in real space (intensity, phase and polarization) can be obtained in any plane of interest by the inverse Fourier transform. For that operation we have used the inverse Fast Fourier Transform iFFT2 algorithm of the Matlab package.

The orbital angular momentum and its selection

We need two preliminary results for the purpose of this subsection. ), the OAM (ℏ/photon) in a circular basis is:

𝑙 𝑧 = ℛ 𝑒 ∬[𝔏 ̂ * (𝐿 ̂𝑧𝔏 ̂)+ℜ ̂ * (𝐿 ̂𝑧ℜ ̂)]𝑑𝑘 𝑥 𝑑𝑘 𝑦 ∬[|𝔏 ̂|2 +|ℜ ̂|2 ]𝑑𝑘 𝑥 𝑑𝑘 𝑦 (5) 
where ℛ 𝑒 means "real part". When the 𝐿 ̂𝑧 operator is applied to a field resulting of a cascaded scheme described by the product of U ̂𝑖 and U ̂𝑗 operators, the following typical calculation occurs:

𝐿 ̂𝑧 (𝔉 ̂𝑖 (𝑐𝑖) 𝔊 ̂𝑗 (𝑐𝑗) ) = 𝔉 ̂𝑖 (𝑐𝑖) 𝐿 ̂𝑧𝔊 ̂𝑗 (𝑐𝑗) + 𝔊 ̂𝑗 (𝑐𝑗) 𝐿 ̂𝑧𝔉 ̂𝑖 (𝑐𝑖) = (𝑐𝑖 + 𝑐𝑗)𝔉 ̂𝑖 (𝑐𝑖) 𝔊 ̂𝑗 (𝑐𝑗) (6) 
where 𝔉 and 𝔊 ̂ stand for 𝔏 ̂ or ℜ ̂. Eq. ( 6) points out the respective contribution of the i and j crystals to the increment of the OAM of the output field.

The second elementary result needed here is the Jones matrix (in the circular basis) of an optical element constituted with a quarter-wave plate with its slow axis making a +45° angle with the x-horizontal axis followed by a horizontal linear polarizer. In Fig. 1 and 2 describing the experimental set-up, two such cascaded optical elements are shown together inside a box because they are used as a whole. The Jones matrix of the box is:

𝐽 ℜ = 1 √2 [ 0 1 0 1 ] (7) 
If the polarizer inside the box is vertical, the corresponding Jones matrix is: the purpose is scaling the OAM).

𝐽 𝔏 = 1 √2 [ 1 0 -1 0 ] (8) 

Results

We illustrate in this section experimentally and theoretically the creation a light state with charge 1 and we increment it with one basic stage including a quarter-wave plate, a BZBO biaxial crystal and a J ℜ operator. A KGW (6 X 6X 3 mm 3 ) crystal, elaborated by Moltech GmbH, was used for the creation of a charge 1 OAM state of light. It was oriented along its optical axis while its x-z principal plane was kept horizontal.

The linear polarized beam from a 1064 nm YAG:Nd laser was first made left circular (LC) polarized with a quarter-wave plate QW1 at the entrance of the set-up (Fig. 1). It was focused through the KGW into a 16.5 µm waist spot a few mm behind the sample with a 5 cm focal length doublet L1. As it is well-known, in the focal plane (labelled "position 1" in Fig. 1) we can observe the ring of the CD located between two axial spikes. Simply speaking, the Poynting vectors are perpendicular to the two-wave surface inside the crystal and this surface is doubly conical in the vicinity of the optical axis axis (while it appears double outside this region). In order to have enough space to locate several optical elements, the CD phenomenon in "position 1" was reproduced exactly in amplitude, phase and structure (image without magnification but reversed) 40 cm further in "position 2" with an afocal telescope (labelled "afocal 1" in Fig. 1).

The latter one was constituted from two 10 cm focal length doublets L2 and L3 separated by twice (20 cm) their focal length.

Launching the Gaussian beam with no OAM through the BC1 crystal (KGW) leads to an output field calculated with the help of Eq. ( 4), from which the 𝐽 ℜ projector extracts a OAM=1 electric field (see sub-section 2.2). The full process can be summarized as:

[ 1 0 ]G BC1 [ 𝔏 ̂1 (0) ℜ ̂1 (1) ] G ̂ 𝐽 ℜ  ℜ ̂1 (1) √2 [ 1 1 ] G ̂ (9) 
with G ̂=exp (-

𝑤 0 2 (𝑘 𝑥 2 +𝑘 𝑦 2 )

4

).

Experimentally the 𝐽 ℜ projector, constituted with the quarter-wave plate QW2 followed by the horizontal linear polarized POL H combined inside the same box (Fig. 1), is installed inside the afocal 1. We located a few cm farther the focal plane of position 2 a Beamage Gentec CCD camera to record the intensity of the CD output beam. Rings are obtained but the light is mainly concentrated inside the first ring (Fig. 2 (a)). Fig. 2 (e) represents the calculated intensity from Eq. ( 9).

Applying the 𝐿 ̂𝑧 operator or formula (5) to the right hand side of ( 9), we can calculate that this field pattern has 1 ℏ/photon OAM as expected. The OAM is confirmed experimentally by the cylindrical lens method [START_REF] Alperin | polarizer, L: doublet lens, CYL: cylindrical lens, Ag: Ag mirror, CCD: camera. 2 Beam with 1 ℏ/photon OAM created by the KGW crystal: (a)[END_REF] based on the fact that a cylindrical lens transforms the linear momentum px or py of one photon to a proportional position x' or y' respectively in its focal plane. Inserting (Fig. 1) a cylindrical doublet (7.5 cm focal length) before the CCD and 7.5 cm distant from it, vertically (V) or horizontally (H) oriented, the obtained image is the distribution of the horizontal (Fig. 2 (b)) or vertical (Fig. 2 (c)) linear component of the momentum, respectively.

The z-component of the OAM/photon of the full beam is the average:

𝑙 𝑧 = 2𝜋ℏ 𝑓𝜆 𝐼 𝐻 -𝐼 𝑉 𝐼 𝐻 +𝐼 𝑉 (10) 
with the intensity for V orientation given by:

𝐼 𝑉 = |𝑖𝐹𝑇 1𝐷=𝑦 𝐄 ̂(𝑘 𝑥 , 𝑘 𝑦 )| 2 (11) (a) (b) (c) (d) (e) (f) (h) (g) (h)
(the corresponding formula for H orientation is integration over 1D=x). The calculated intensities 𝐼 𝑉 and 𝐼 𝐻 are represented in Fig. 2 (f) and (g) respectively and they are in agreement with Fig. 2 (b) and (c) respectively.

Another confirmation of the OAM arises from the phase distribution of the near field. In order to visualise it, a reference beam was taken from the input beam (Fig. 1) with a 50/50 beam splitter and redirected with mirrors and a second 50/50 beam splitter towards the CCD screen (the cylindrical lens was removed). The whole set-up is similar as a Mach-Zehnder interferometer, the interferences of the two beams on the CCD screen been allowed by a linear polarizer (not shown in Fig. 1) located close to the screen. On the output face of the second beam-splitter the CD and the reference beams were a few mm separated in order to create a controlled wedge fringe pattern on the CCD with the desired spatial resolution.

The resulting interferogram is shown in Fig. 2 (d). We can see the modulation of the bright ring by the alternation of dark and bright fringes. There is one bright fringe more in the upper semicircle of the ring. The meaning is that the right circular output wave includes a 2 phase variation in addition to the phase of the reference wave, confirming the OAM = 1. The calculation of the phase of the field represented in Fig. 2 (h) is in agreement with this experimental observation. The spiral -discontinuity line is meaningful and has a wellknown physical meaning: the phase-front is helicoidal and not smooth.

Scaling the OAM from one basic stage

The initial charge 1 state of light of the previous sub-section from the KGW crystal is a ring in the focal plane at position 2 (so-called the "Poggendorf rings") which we visualized on the CCD camera with 10 times magnification using a supplementary imaging lens (not shown in Fig. 1 to lighten the figure). This ring is shown in Fig. 3 (a) and its diameter was measured to be 108 µm and is calculated from Eq. ( 9) to be 101 µm (Fig. 3 (d)).

A BZBO biaxial crystal, oriented along its optical axis, was grown in Warsaw by two of us by the Kyropoulos method [START_REF] Brenier | Chirality versus dichroism: competition and role in conical diffraction displayed from the Nd:Bi2ZnOB2O6 acentric biaxial laser crystal[END_REF]. Poggendorf rings can be obtained with this BZBO crystal alone located in position 2. For this purpose the KGW crystal was temporarily removed from position 1 and another QW3 quarter-wave plate (not shown in Fig. 1) was inserted after the 𝐽 ℜ projector inside afocal 1. The angle between the QW3 slow axis and the x-horizontal axis was 𝜃 = +45° in order that the beam at the BZBO entrance has a CP. The BZBO ring diameter (Fig. 3 (b))

was measured to be 235 µm in agreement with the calculation (228 µm) of its intensity (Fig. 3 (e)). The calculation was performed with Eq. ( 9) replacing 1=KGW  2=BZBO. 12) upper sign and is represented in Fig. 3 (f).

The calculated diameters are: 336 µm (outer ring) and 134 µm (inner ring). So the experimental values are in reasonable agreement with the experimental ones. The diameters of the outer and inner rings are found to be respectively the sum and difference of the two rings of the two crystals alone. A similar result was already obtained in Ref. [START_REF] Turpin | Multiple rings formation in cascaded conical refraction[END_REF] The field after the BZBO=BC2 can be calculated continuing Eq. ( 9) through QW3 and BC2:

(a) (b) (c) (d) (e) (f) ℜ ̂1 (1) √2 [ 1 1 ] G ̂ QW3(±45) ℜ ̂1 (1) √2 [ 1 ± 1 1 ∓ 1 ] G ̂BC2 1 2 [ (1 ± 1)𝔏 ̂2 (0) ℜ ̂1 (1) + (1 ∓ 1)𝔏 ̂2 (-1) ℜ ̂1 (1) (1 ± 1)ℜ ̂2 (1) ℜ ̂1 (1) + (1 ∓ 1)ℜ ̂2 (0) ℜ ̂1 (1) ] G ̂ ( 12 
)
where we used the freedom to choose the sign of the QW3 angle 𝜃 = ±45°.

We can now select a given OAM with two supplementary 𝐽 ℜ or 𝐽 𝔏 operators, that is to say with the QW4 and Pol H/V box (H for 𝐽 ℜ and V for 𝐽 𝔏 ) as it is represented in the full experimental set-up (Fig. 4). Doing so we make the crucial observation that the QW3 plate determines the final result. The reason is that despite the QW3 plate does not change the OAM (=1) of the state to be input in the BZBO crystal, it changes its polarization: +45° LC, -45° RC, that is to say its changes the spin of the input field. Let us add that with some angle 𝜃 between the QW3 slow axis and the x-horizontal axis, the OAM value calculated from Eq. ( 5) is fractional and not maximum. With Eq. ( 8) the 𝐽 𝔏 operator applied to the result [START_REF] Turpin | Multiple rings formation in cascaded conical refraction[END_REF] in the QW3(-45°, RC input) case leads to the state

𝔏 ̂2 (-1) ℜ ̂1 (1) √2 [ 1 -1 ] G ̂ .
It is straightforward to see that this state is vertically polarized with an OAM 0 ℏ/photon using Eq. ( 6). We verified experimentally the null OAM making the interference pattern of this field with a reference one (Fig. 5 (a)). The number of bright fringes is the same along two lower and upper semi-circles around the beam centre. This is confirmed by the calculated phase of the state represented in Fig. 5 (d): no phase variation occurs along a path constituted by a full circle.

Another experimental confirmation of the null OAM arises from the cylindrical lens method.

The field intensity measured by the CCD in the focal plane of the cylindrical lens (Fig. 4) is shown in Fig. 6 (a1), (b1) and (c1), respectively, without the lens, with the lens having its axis vertical, and its axis horizontal. The corresponding calculated patterns and OAM from Eq. ( 10) are represented in Fig. 6 (a2), (b2) and (c2), respectively, and are in full agreement. 

With Eq. ( 7) the 𝐽 ℜ operator applied to the result [START_REF] Turpin | Multiple rings formation in cascaded conical refraction[END_REF] in the same QW3(-45°, RC input) case leads to the state

ℜ ̂2 (0) ℜ ̂1 (1) √2 [ 1 1 
] G ̂. This is a horizontally polarized state with an OAM 0+1=1 ℏ/photon. This is confirmed by the interference pattern with a reference beam shown in Fig. 5 (b). In the upper semi-circle there is one bright fringe more than in the lower one. The calculated phase of the field exhibits 2 phase variation along a path constituted by a full circle (Fig. 5 (e)).

The field intensity measured by the CCD in the focal plane of the cylindrical lens is shown in Fig. 6 (d1), (e1) and (f1), respectively, without the lens, with the lens having its axis vertical, and its axis horizontal. The corresponding calculated patterns and OAM from Eq. ( 11) and [START_REF] Peinado | Interferometric characterization of the structured polarized light beam produced by the conical refraction phenomenon[END_REF] are represented in Fig. 6 (d2), (e2) and (f2), respectively, and are in full agreement. With Eq. ( 7) the 𝐽 ℜ operator applied to the result [START_REF] Turpin | Multiple rings formation in cascaded conical refraction[END_REF] in the QW3(+45°, LC input) case leads to the state

ℜ ̂2 (1) ℜ ̂1 (1) √2 [ 1 1 
] G ̂. This is a horizontally polarized state with an OAM 1+1=2 ℏ/photon. This is confirmed by the interference pattern with a reference beam shown in Fig. 5 (c). In the upper semi-circle there are two bright fringes more than in the lower one. The calculated phase of the field exhibits 4 phase variation along a path constituted by a full circle (Fig. 5 (f)).

The field intensity measured by the CCD in the focal plane of the cylindrical lens is shown in Fig. 6 (g1), (h1) and (i1), respectively without the lens, with the lens having its axis vertical, and its axis horizontal. The corresponding calculated patterns and OAM from Eq. ( 10) and [START_REF] Brenier | Light propagation properties of the Bi2ZnOB2O6 acentric biaxial crystal: angular orbital momentum from conical diffraction[END_REF] are represented in Fig. 6 (g2), (h2) and (i2), respectively, and are in full agreement.

Conclusions

The scaling of the OAM by the CD phenomenon in cascaded biaxial crystals from a Gaussian beam with no OAM, is clarified thanks to the use of relevant operators 𝐽 ℜ and 𝐽 𝔏 representing both a quarter-wave plate and a linear polarizer working in the Fourier space behind the crystal U ̂𝑖(𝐿, 𝑘 𝑥 , 𝑘 𝑦 ). Scaling the OAM is the repetition of the following basic stage: the polarization of the highest OAM state generated by a previous crystal is changed with a supplementary quarter-wave plate (QW3 in Fig. 4) in order that the OAM increment through the next biaxial crystal is maximized under J ℜ or J 𝔏 projection. The image of the field at the output of a crystal is repeated through the following one with a two-lenses afocal telescope, preventing its natural spread.

Experimental results are provided by a non-degenerate cascade of two different KGW and BZBO biaxial crystals. The increasing of the OAM 012 ℏ/photon was followed by intensity patterns and interference patterns with a reference beam and by the cylindrical lens method. The experimental patterns of the near field were recorded either in the focal plane or a few cm farther. The data are well described by a full numerical calculation of the intensity and phase of the fields.

First, the evaluation

  of the z-component of the OAM of a [ 𝔏 R ̂]field in the Fourier space can be performed with Darwin result[START_REF] Darwin | Note on the theory of radiation[END_REF], restricted here to the 2D monochromatic case. Writing the OAM operator as 𝐿 ̂𝑧 = -𝑖ℏ(

Fig. 1

 1 Fig. 1 Experimental set-up allowing the OAM=1 creation. BS: beam-splitter, QW: quarterwave plate, Pol H: horizontal linear polarizer, L: doublet lens, CYL: cylindrical lens, Ag: Ag mirror, CCD: camera.

Fig 2

 2 Fig 2 Beam with 1 ℏ/photon OAM created by the KGW crystal: (a) (experimental) and (e) (theoretical): intensity; (b) (experimental) and (f) (theoretical): intensity in the focal plane of the cylindrical lens with vertical axis; (c) and (g): ): intensity in the focal plane of the cylindrical lens with horizontal axis; (d): interference pattern with a reference beam; (h): calculated phase of the beam.

Fig. 3

 3 Fig. 3 Rings in the focal plane: (a) (experimental) and (d) (theoretical): with KGW alone in position 1; (b) (experimental) and (e) (theoretical): with BZBO alone in position 2; (c) (experimental) and (f) (theoretical): with both KWG and BZBO.

Fig. 4

 4 Fig. 4 Full experimental set-up allowing the OAM scaling. The CD-field in position 1 is transported in position 2 by the afocal 1 telescope, then the field in position 2 is transported in position 3 by the afocal 2 telescope. Pol H/V: horizontal or vertical linear polarizer.

Fig. 5 (

 5 Fig. 5 (a), (b) and (c): Interference patterns of the internal ring with a reference beam: states with 0, 1 and 2 ℏ/photon OAM respectively; (d), (e) and (f): calculated phase of the beam with 0, 1 and 2 ℏ/photon OAM respectively;

Fig. 6

 6 Fig. 6 Beams obtained with both KGW and BZBO. Lines 1, 2 and 3: respectively 0, 1 and 2 ℏ/photon; 1=experimental, 2=theoretical; columns 1 and 2: beam intensity; columns 3 and 4: intensity in the focal plane of the cylindrical lens with vertical axis; columns 5 and 6: intensity in the focal plane of the cylindrical lens with horizontal axis.

  Now we can see the key-result of the present subsection. The 𝐽 ℜ and 𝐽 𝔏 operators have the crucial role of the selection of the OAM: 𝐽 ℜ projects a light state [ 𝔏 ̂(𝑐𝐿) ℜ ̂(𝑐𝑅) ] onto a state with the same charge cR as its right CP component (more, the obtained state is horizontally polarized), while 𝐽 𝔏 projects onto a state vertically polarized and with the same charge cL as the initial left CP component. In other words, the role of 𝐽 ℜ and 𝐽 𝔏 is to select a wanted charge (the highest if
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