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Abstract

A numerical study is conducted on a natural convection flow in a differentially

heated cavity of aspect ratio 4, submitted to a small-extend thermal distur-

bance localized on the hot wall. The disturbance is a sinusoidally-varying

thermal oscillation applied to the hot wall temperature on an area represen-

ting 10% of the whole hot wall. The influence of the disturbance location and

frequency is investigated with the aim of acting on the flow and consequently

maximizing heat transfers. The Rayleigh number is set at RaH = 9×107 and

the working fluid is air. Results show that the optimal disturbance location

is at the top of the hot wall. The maximal heat transfers are obtained for

two disturbance frequencies : the frequency of internal gravity waves and

a very low frequency, for which the gain is higher. The disturbance is also

responsible for the emergence of travelling waves and the resulting unsteady

behavior of the flow is enlightened.
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Nomenclature

A aspect ratio, A = H/L

f dimensionless frequency (scaled by α
√
RaH/H

2)

g gravitational acceleration, m.s−2

H cavity height (reference length), m

L cavity width, m

Nu(Z) local Nusselt number, Nu(Z) = − ∂θ
∂X (Z)

Nu overall Nusselt number, Nu =
∫ 1

0 Nu(Z) dZ

〈Nu〉 time-averaged Nusselt number, 〈Nu〉 = f ∗
∫ 1/f

0 Nu(t) dt

pm dimensionless driving pressure (scaled by ρ0
α2

H2RaH)

Pr Prandtl number, Pr = ν/α

RaH Rayleigh number based on cavity height, RaH = gβ∆TH3

να

S stratification parameter, S = ∂θ
∂Z (X = 0.125 ;Z = 0.50)

t dimensionless time (scaled by H2/(α
√
RaH))

T temperature, K

T0 mean temperature, T0 = 1
2(Th + Tc), K

U, W dimensionless velocities (scaled by α
√
RaH/H)

X, Z dimensionless coordinates (scaled by H)

Z∗ adapted elevation (scaled by H)

Greek symbols
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α thermal diffusivity, m2.s−1

β thermal expansion coefficient, K−1

δ5% dimensionless location of the boundary layer edge

∆T temperature difference between the isothermal walls, ∆T = Th − Tc, K

θ dimensionless temperature, θ = (T − T0)/∆T

λ thermal conductivity, W.m−1.K−1

ν cinematic viscosity, m2.s−1

ρ density, kg.m−3

τ dimensionless disturbance period (scaled by H2/α
√
RaH)

Subscripts and superscripts

ad advection

BV Brunt-Väisälä

c cold

cent center of the disturbance area

d disturbance

h hot

mid vertical mid-plane

ref reference value

sc stratified core

Abbreviations
DHC Differentially Heated Cavity

PSD Power Spectral Density

RB Rayleigh-Bénard
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1. Introduction

Natural convection in enclosures has been widely studied in the past

decades, firstly due to its large presence in technological applications and

secondly as a fundamental test case to study natural convection with well-

controlled boundary conditions.

In most of previous studies, boundary conditions are generally time-

independent, although for many of the corresponding applications the ther-

mal conditions are varying over time. For example, natural convection flows

induced by solar heating, such as for renewable energy production or for buil-

ding ventilation, is varying over time on a daily basis [1]. Electronic devices

can be periodically heated, as multi-core processors alternatively switching

of jobs between its cores, which generates complex natural convection flows

and heat transfers in their environment [2].

Beyond those practical examples, it is interesting to introduce a perio-

dic thermal disturbance in order to act on heat transfers. Periodic thermal

disturbances have been of interest to particular configurations of enclosures

[2, 3, 4, 5, 6, 7]. Most of the time, natural convection in enclosure is generated

by imposing two different temperatures on opposite walls, which creates a

thermal gradient and consequently buoyancy forces. In this way, the two clas-

sical configurations mainly used to study natural convection in enclosures are

the Rayleigh-Bénard (RB) configuration, where the isothermal walls are ho-

rizontal, and the Differentially Heated Cavity (DHC), where the isothermal

walls are vertical. Some authors have introduced a periodic thermal oscilla-

tion in the RB configuration and have shown modifications of the flow and

the associated heat transfers [8, 9, 10, 11, 12].
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In the current study, the DHC configuration is considered, as this configu-

ration is representative of many practical applications. The DHC configura-

tion has been the subject of great interest since the pioneer work of [13]. With

the development of numerical methods always more accurate, combined with

calculation capacities always larger, this configuration with well-controlled

boundary conditions became a classical problem for numerical simulations

due to the complex coupling between velocity and temperature occurring in

natural convection flows. This has led to the release of benchmark solutions

for square [14] and cubic [15] cavities. Due to numerical complexity, those

studies have focused on laminar steady flows. Later, some authors have de-

veloped numerical techniques to analyze the mechanisms of the transition

to the unsteady flow [16, 17, 18, 19, 20]. The transition to unsteady flow in

DHC has also been quantified experimentally [21]. Beyond this transition, the

unsteady flows in cavity progressively degenerate into fully turbulent flows

[22, 23, 24].

Once the natural convection flows in enclosures with steady boundary

conditions became better understood, some authors started to implement a

thermal oscillation into the cavity. [25] and [26] replaced the isothermal boun-

dary condition on the hot wall by a pulsating heat flux. Depending on the

Prandtl and Rayleigh numbers, a resonance phenomenon occurs when the

frequency, matches with the period of circulation of the enclosed fluid. The

resonance maximizes the fluctuations of the overall heat transfer through the

vertical mid-plane. Later, Kwak et al. [1, 27] studied a square DHC with a si-

nusoidally time-varying temperature on the whole hot wall. As [25, 26], they

observed a resonance phenomenon when the resonance frequency matches
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the fundamental frequency of the internal gravity waves. A periodic flow

reversal happened at this frequency, leading to an increase of the overall

Nusselt number. [28] also considered a square DHC with sinusoidally-varying

temperature on the whole hot wall but with an imposed frequency one or-

der of magnitude higher than the frequency of gravity waves. The maximal

gain on heat transfers was obtained when the disturbance is in tune with

the frequency of Tollmien-Schlichting waves. For their part, [29] studied the

influence of the aspect ratio of a DHC submitted to a sinusoidally-varying

temperature on the hot wall. In comparison to the mean heat transfer wi-

thout disturbance, they found that the increase of the mean heat transfer

with the disturbance is higher for shallow cavities. Finally, [30] considered

a cubic cavity submitted to a sinusoidally-varying hot wall temperature. As

for 2D studies, a resonance was observed for large Rayleigh numbers and was

determined by the amplitude and the frequency of the disturbance. 2D flows

in enclosure are thus a good approximation of 3D flows.

In all these studies, the modification of thermal boundary conditions was

applied on the entire hot wall. In an experimental work, [31] introduced a thin

pipe with a periodically time-varying temperature localized at the bottom

of the hot wall. The introduced obstacle induced a decrease of the downs-

tream heat transfers, and the temperature oscillation of the pipe amplified

the fluctuations of the unsteady flow. Recently, a localized time variation of

the imposed temperature on a part of the hot wall has been studied by [32].

The disturbance area on which the temperature is varying was located at the

beginning of the vertical boundary layer. The time-averaged temperature ap-

plied with thermal disturbance was either lower or higher than the hot wall
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temperature. Depending on the considered case, a sinusoidal component was

added with a frequency equal to the first frequency of the unsteady flow. An

increase or a decrease of the overall heat transfer was obtained, depending

on the time-averaged temperature of the disturbance.

For the current study, a localized disturbance is also set on the hot wall of

a DHC. However, the time-averaged temperature of the disturbance is here

equal to the temperature of the hot wall to avoid a heat transfer modification

due to a lower or higher time-averaged disturbance temperature. The spatial

extend of the disturbance is small to involve only a small modification of

the DHC boundary conditions : the size of the disturbance is set at 10% of

the whole length of the vertical wall. The influence of the location and the

frequency of the disturbance is analyzed in terms of heat transfer modifica-

tions. Then the frequencies maximizing the overall heat transfer are studied

in detail as well as the obtained unsteady flow.

2. Mathematical model

The considered DHC is a rectangular (2D) cavity with an aspect ratio

A = H
L

= 4, where H and L are the height and width of the cavity, respec-

tively, with isothermal vertical walls at a temperature Th for the hot wall

and Tc for the cold wall (∆T = Th − Tc > 0) and adiabatic horizontal walls

(see Fig. 1). The flow is idealized as two-dimensional which does not affect

the transition to unsteady regime [33] or the heat transfer. No-slip boundary

condition U = W = 0 is applied on all walls, where U and W are horizontal

and vertical velocity components, respectively. The working fluid is air whose

thermophysical properties, except for the density, are assumed constant and
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are evaluated at the mean temperature T0 = 1
2
(Th + Tc) = 20 °C : Prandtl

number Pr = 0.711, conductivity λ = 0.0257 W.m−1.K−1 and heat capacity

Cp = 1005 J.kg−1.K−1. The Boussinesq approximation is used, i.e. the den-

sity is varying only in the buoyancy term of the vertical momentum equation

and is linearized against temperature :

ρ(T ) = ρ0 [1− β(T − T0)] (1)

where ρ(T ) is the fluid density, ρ0 = 1.207 kg.m−3 and β = 3.41× 10−3 K−1

is the thermal expansion coefficient. The Rayleigh number is based on the

cavity height :

RaH =
gβ∆TH3

να
(2)

The lengths, velocities, times and pressures are scaled by H, α
H

√
RaH , H2

α
√
RaH

and ρ0
α2

H2RaH , respectively. The dimensionless temperature is defined as θ =

T−T0
∆T

. Under those assumptions, the non-dimensional governing equations for

mass, momentum and energy conservation are :

∇.V = 0 (3)
∂V

∂t
+ (V.∇)V = −∇pm + Pr θ ez +

Pr√
RaH

∇2V (4)

∂θ

∂t
+ (V.∇) θ =

1√
RaH

∇2θ (5)

where ez is the upward oriented unit vector of the Z axis. The local heat

transfer on isothermal walls is characterized by the Nusselt number at the

elevation Z : Nu(Z) = − ∂θ
∂X

(Z). Nu is the space-averaged Nusselt num-

ber over an entire wall and 〈Nu〉 is the time-averaged Nusselt number. The
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relative amplitude and relative percentage gain are then defined as :

ANu =
max(Nu(t))−min(Nu(t))

〈Nu〉
(6)

%GNu = 100
〈Nu〉 − 〈Nu0〉
〈Nu0〉

(7)

where 〈Nu0〉 corresponds to the overall Nusselt number without disturbance

(reference case). Moreover, the overall Nusselt number on the vertical mid-

plane, 〈Numid〉, is defined as (see for instance [26]) :

〈Numid〉 =

∫ 1

0

(
〈− ∂θ

∂X
+
√
RaHPrUθ〉

)
X=0.125

dZ (8)

A small extent thermal disturbance is introduced on the hot wall of the

cavity (see Fig. 1). On the disturbance area, a sinusoidal oscillation is added

to the constant hot wall temperature :

θd(t) = θh + sin(2πfdt) (9)

where fd is the imposed disturbance frequency. The disturbance area is lo-

cated between elevations Z1 and Z2 such as Z2 − Z1 = 0.10. Therefore the

disturbance is localized only over 10% of the whole hot wall to introduce

a limited change of the boundary conditions. The center of the disturbance

area is Zcent = 1
2
(Z1 + Z2).

3. Numerical methods

All the computations have been performed using the CFD software

Code_Saturne [34]. The discretization of the Navier-Stokes and energy equa-

tions is based on a co-located finite-volume approach on a cartesian mesh.
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A conservative second-order scheme in space is applied to the momen-

tum and energy equations. The temporal discretization is achieved with a

second-order Crank-Nicholson scheme. The time step is chosen to keep the

Courant–Friedrichs–Lewy number lower than one in all cells. A prediction-

correction algorithm, similar to SIMPLEC, is used for pressure-velocity cou-

pling. The mesh is non-uniform with a cell distribution in the two directions

given by the density function d(m) = cosh(4m − 2), m ∈ [0; 1], in order to

refine the mesh near the walls. 130×260 control volumes are chosen following

a mesh convergence study. More details and validation tests can be found in

[32].

4. Results and discussion

For a vertical differentially heated cavity of aspect ratio 4, the first de-

veloping unsteadiness are boundary layer instabilities. Indeed, contrary to

smaller aspect ratio cavities where the first developing unsteadiness emerge

from the loss of stability at the base of the detached flow region [19], the first

emerging oscillations for this aspect ratio are Tollmien-Schlichting waves tra-

velling inside the boundary layers [20]. The strategy considered in this paper

is to trigger locally flow fluctuations. That is why all the results presented

hereafter are obtained for RaH = 9.0×107, corresponding to a Rayleigh num-

ber slightly lower than the Rayleigh number at which the transition from a

steady to an unsteady flow occurs, at RaH,crit = 1.032 × 108 in 2D numeri-

cal studies [20]. Thus no fluctuations are initially present in the undisturbed

flow. The influence of two parameters of the disturbance is first studied : the

disturbance frequency, fd, and the disturbance elevation, Zcent.
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4.1. Influence of the disturbance elevation

In order to study the influence of the disturbance elevation, the distur-

bance frequency is first set. Several authors have shown that the thermally

stratified core of a DHC can sustain internal gravity waves, whose frequen-

cies are lower or equal to the Brunt-Väisälä frequency, fBV [20, 35]. fBV is

the frequency of gravity waves in an infinite stratified medium, and acts as a

cut-off frequency for gravity waves in confined space. Following the previous

observations of Kwak et al. [27] for a square cavity submitted to a thermal

oscillation on the entire hot wall, fd is first set at the fundamental frequency

of the internal gravity waves. The frequencies of internal gravity waves modes

are given by Thorpe et al. [36] :

f(n, p) =
fBV√

1 + ( n
pAsc

)2
(10)

where n and p are the numbers of half-wavelengths in the Z- and X-directions,

respectively, and Asc is the aspect-ratio of the stratified core. For the fun-

damental mode, n = p = 1 and for this Rayleigh number and this cavity

aspect ratio, the stratified core is such as Asc > 5. In these conditions, the

fundamental frequency f(1, 1) is close to fBV , hence the disturbance fre-

quency is for the moment the Brunt-Väisälä frequency. With our reference

time, fBV = 1
2π

√
SPr, where S is the stratification parameter.

The influence of the disturbance elevation is studied on the whole hot wall. As

the main goal of the disturbance is to enhance heat transfers, the maximum of

the overall Nusselt number is the criterion to assess the best disturbance ele-

vation. For this purpose, the percentage gain on the overall Nusselt number,

%GNu, versus the disturbance elevation, Zcent, is plotted in Fig. 2. The error
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bars correspond to the uncertainties on the calculation of the time-averaged

values Nu. Starting from the bottom of the wall, %GNu first decreases and

becomes even slightly negative. Above the mid-height of the wall, %GNu be-

comes again positive and progressively increases up to the top of the wall.

The maximal gain is 2.7% for Zcent = 0.95, i.e. for a disturbance area bet-

ween Z = 0.90 and the top wall. Thus this elevation is the most relevant to

increase heat transfer, at the chosen frequency. Consequently, this elevation

is chosen to study the influence of the disturbance frequency.

4.2. Influence of the disturbance frequency

Henceforth, the disturbance elevation is set at Zcent = 0.95 and the in-

fluence of the disturbance frequency is now studied. The impact of the dis-

turbance on the overall heat transfer will be first studied for three particular

frequencies : a very low frequency fd = 0.007fBV , the fundamental frequency

of internal gravity waves fd = fBV and a higher frequency fd = 5fBV . For

this purpose and as a first step, the temporal evolution of the overall Nusselt

numbers at the cold and hot walls, Nuc(t) and Nuh(t), are plotted in Fig. 3

for these disturbance frequencies.

- For fd = 0.007fBV (Fig. 3a) : Nuc(t), Nuh(t) and the disturbance tem-

perature θd(t) are in phase. The reference velocity is vref = α
H

√
RaH and

the reference time is tref = H
vref

(see section 2). The time for a particle to

make one turn around the cavity, called here advection time, is about 2H+2L
vref

.

Consequently the scaled advection time is tad = 2(1+1/A) = 2.5. This advec-

tion time must be compared to the disturbance period 1/fd ≈ 103. As that

time is much larger than the advection time, the flow is then quasi-steady

against the disturbance. In other words, the thermal fluctuation created by
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the disturbance is quickly advected to the cold wall so that the two overall

Nusselt numbers remain in phase. In addition, the amplitudes of Nuc(t) and

Nuh(t) are very close.

- For fd = fBV (Fig. 3b) : Nuc(t) and Nuh(t) are no longer in phase. In-

deed, the disturbance period 1/fd ≈ 7 is much closer to tad which induces

the observed dephasing. The amplitude of Nuh(t) increases, whereas that of

Nuc(t) decreases in the same proportions.

- For fd = 5fBV (Fig. 3c) : the amplitude of Nuh(t) increases again, whereas

no more variation is noticeable on Nuc(t) which suggests that the fluctua-

tions of the disturbance do not reach the opposite wall. In addition, it can

be noticed that the temporal evolution of Nuh(t) is here sinusoidal, unlike

at the previous frequencies. Actually, Nuh(t) is here modified only by the

temperature oscillation from disturbance area.

The temporal evolution of the overall Nusselt number was studied for

three specific frequencies. In the current paragraph, the reduced amplitudes

of the overall Nusselt number, ANu, are investigated over the whole frequency

domain considered from fd = 0.007fBV to fd = 5fBV . This study is depicted

in Fig. 4 for both hot and cold walls and the frequency is given relatively

to fBV . First of all, all the displayed values are obtained for cases with a

disturbance, for which fd > 0 ; indeed the case fd = 0 would correspond

to the reference case, which is steady and consequently ANu,0 = 0. Three

frequency domains can be distinguished on this figure. As previously shown

in Fig. 3, for the lowest frequency fd = 0.007fBV , the magnitudes for the hot

and cold walls are very close. For fd ≤ 0.38fBV , ANu progressively increases

with the frequency for the hot wall and decreases for the cold wall. From
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fd = 0.38fBV up to fd = fBV , ANu is quite constant for both walls whatever

the value of fd. For fd higher than fBV , the reduced amplitude for the hot

wall increases continuously up to the maximal tested frequency fd = 5fBV .

For the cold wall, ANu starts to decrease symmetrically compared to the

evolution for the hot wall and finally tends towards zero for fd > 3fBV .

Thus, the phase and the amplitude of the overall Nusselt numbers are

sensitive to the disturbance frequency. The influence of this parameter on

the overall Nusselt numbers will be investigated here. For this purpose, 〈Nu〉

versus the relative frequency fd/fBV is plotted in Fig. 5(a). The correspon-

ding percentage gain relatively to the reference case is plotted in Fig. 5(b)

where the frequency is in logarithmic scale. The three frequency domains

previously defined are also noticeable here, with an additional fourth fre-

quency domain for highest frequencies. Indeed, for fd ≥ 4fBV , 〈Nu〉 is quite

constant and close to the value in the reference case (%GNu is close to 0,

as seen on Fig. 5(b)). When fd decreases up to fBV , 〈Nu〉 increases. For

fd = fBV , 〈Nu〉 and %GNu reach a local maximum value. Thus, a resonance

phenomenon arises at the fundamental frequency of internal gravity waves.

The same observation was done by [27] for an overall disturbance in a square

cavity. This result shows that the resonance occurs also for a small-extend

disturbance in a DHC of aspect ratio 4. From fd = fBV , 〈Nu〉 and %GNu

decrease with the decrease of the frequency up to fd = 0.38fBV , and then

increase again. The values at very low frequencies exceed the values obtained

at the resonant frequency fd = fBV . Moreover, those values seem to saturate

when fd tends towards zero. To our knowledge, these larger values for very

low frequencies have not been previously observed in the literature.
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For the resonant frequency fd = fBV and the lowest studied frequency

fd = 0.007fBV , denoted thereafter by fd � fBV , the gain on overall Nusselt

number reach local maxima equal to 2.74% and 3.88%, respectively. Therefore

a focus is done henceforth on those two particular frequencies. It can be noted

that if Ra is reduced to 5.0×107 or increased to 1.5×108, the gains on Nusselt

numbers for fd = fBV (2.58% and 2.78%) and for fd � fBV (3.69% and

3.92%) are very close to the values obtained at the tested Rayleigh number

9.0 × 107. Moreover, the optimal disturbance elevation for fd = fBV has

been found throughout the study of the influence of Zcent for this frequency

(see Fig. 2). In order to check if this elevation is also optimal for the low

frequency, Table 1 gathers the gains of 〈Nu〉 for several values of Zcent. As

shown, the optimal elevation for the low frequency is also at the top of the

hot wall (Zcent = 0.95). Consequently, this elevation is still selected for the

study at the two frequencies of maximal gains.

4.3. Study at the frequencies of maximal gains

As previously explained, the overall heat transfers are maximal for fd �

fBV and fd = fBV . In order to see how those heat transfer increases are

distributed along vertical walls for both frequencies, local Nusselt numbers

along the adapted elevation Z∗ are plotted in Fig. 6. The adapted elevation

Z∗ corresponds to Z on the hot wall and to 1−Z on the cold wall. This takes

advantage of the centrosymmetry property of the flow in the reference case,

resulting in an overlap of 〈Nuh,ref (Z)〉 and 〈Nuc,ref (1− Z)〉. However, with

the disturbance introduced on the hot wall, the flow is no more centrosym-

metric. It can be seen on Fig. 6(a) that 〈Nuh(Z)〉 is strongly modified in the

disturbance area (0.9 < Z < 1). For 0.90 ≤ Z ≤ 0.96 (Area 2 ), 〈Nuh(Z)〉
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is larger than the corresponding value in the reference case : the local Nus-

selt number, first, increases considerably at the beginning of the disturbance

area and then decreases almost linearly downstream. For Z > 0.96 (Area

1 ), 〈Nuh(Z)〉 keeps decreasing, becomes even negative and finally reaches

〈Nuh(Z = 1)〉 = −5. The increase on Area 2 is larger than the decrease on

Area 1, and as the obtained profile along the rest of the wall is very close to

the one of the reference case, that leads to the increase of the overall heat

transfer previously mentioned. On the cold wall, the modification of local

Nusselt number is limited to Z > 0.90 (Z∗ < 0.10, Area 3 ). This area is

located in front of the disturbance area and corresponds to the part of the

cold wall reached by the impinging flow coming from the hot wall. The sur-

face of Area 3 is equal to the difference between the surfaces of Area 2 and

Area 1 to ensure energy conservation. On Fig. 6(b), it can be noticed that

the reduction of 〈Nuh(Z)〉 at the top of the hot wall is less pronounced for

fd � fBV than for fd = fBV (Area 4 ). Moreover, for the same Z∗ locations,

an increase of 〈Nuc(Z∗)〉 is observed on the cold wall (Area 5). Thus, the

increase for fd = fBV noticed on the Area 3 has extended up to Z = 0.80

(Z∗ = 0.20) for the disturbance at the low frequency. Those local increases

on Area 4 and Area 5 cause the higher heat transfer at the low frequency

compared to the one at the Brunt-Väsäilä frequency.

Those modifications on local heat transfers are related to modifications

of the temperature distribution inside the cavity. For this purpose, time-

averaged temperature fields for the reference case and for the two considered

frequencies are given in Fig. 7. In the reference case, the temperature field

is centrosymetric about the center of the cavity. However, for both frequen-
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cies, a region where the time-averaged temperature, 〈θ〉, is higher than 0.5

can be seen at the top of the cavity. That means that the temperature in

this region, averaged over a period of disturbance, is higher than the hot wall

temperature θh, even while the time-averaged temperature of the disturbance

is equal to θh. This has been also observed by [1] in a square cavity submitted

to a disturbance applied on the entire wall. The temperature deviation with

respect to the reference case expresses the non-linear effects introduced by

the disturbance. Indeed, the overheating below the top wall causes simul-

taneously the negative value of 〈Nuh(Z)〉 for Z > 0.96 and the increase of

〈Nuf (Z)〉 at the upper part of the cold wall depicted in Fig. 6.

The relative gains obtained on time-averaged heat transfers have been

analyzed in terms of local heat transfer modifications and time-averaged

temperature fields. As the introduced disturbance is time-varying, a tem-

poral variation of the temperature of the flow is expected, which causes the

temporal evolution of the overall Nusselt numbers previously discussed. In

order to determine which frequencies appear in this unsteady flows, Power

Spectral Densities (PSD) of temperature signals recorded at the center of

the cavity (X = 0.125 ;Z = 0.50) and at the end of the cold boundary layer

(X = 0.21 ;Z = 0.10) for both disturbance frequencies are plotted in Fig. 8.

211 = 2048 and 219 = 524288 measurement points are recorded for fd = fBV

and fd � fBV , respectively, allowing to obtain sufficient frequency resolu-

tions. In order to improve the quality of the signal, the displayed spectra

are obtained by averaging 2 spectra for Fig. 8(a,b,c), and 32 spectra for Fig.

8(d).

For fd = fBV , at the two considered locations (Fig. 8(a,b)), the fundamental
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frequency is the disturbance frequency, and numerous harmonics are observed

in the PSD (only the first seven harmonics are displayed). Those harmonics

show that the initial thermal fluctuation created by the disturbance is stron-

gly modified by the flow. In addition, as seen on Fig. 8(b), the fluctuations

generated at the disturbance area are spread by the main flow and the stra-

tified core is excited by gravity waves, as seen on Fig. 8(a). This leads the

resonance phenomenon observed on Fig. 5, as the stratified core resonates at

the internal gravity wave frequency.

For fd � fBV at the center of the cavity (Fig. 8(c)), the PSD is much more

complex and displays a lot of peaks concentrated in two spectral domains.

The first spectral domain is for f lower than fBV or close to it. The corres-

ponding frequencies are associated to internal gravity waves (Eq. 10). Thus,

as for fd = fBV , the internal gravity waves are excited by the introduction

of the low-frequency disturbance. The second spectral domain appears for

f ∈ [0.35 ; 0.60], where peaks are gathered in six main sets. Each set corres-

ponds to one of the six unsteady modes successively emerging in a differen-

tially heated cavity with the current aspect ratio [20]. Those modes are asso-

ciated to Tollmien-Schlichting waves travelling along the vertical boundary

layers when such a flow becomes unsteady. Consequently, they are amplified

inside the boundary layers, as seen at the end of the cold boundary layer on

Fig. 8(d). At that location, the amplitudes of Tollmien-Schlichting waves are

higher than the amplitudes of internal gravity waves : Tollmien-Schlichting

waves are here predominant. The mechanisms of the transition to unsteady

flow seems to be also triggered by the low-frequency disturbance. Indeed, the

emergence of Tollmien-Schlichting waves is here facilitated since the conside-
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red Rayleigh number is close to the critical Rayleigh number beyond which

Tollmien-Schlichting waves appear.

Those frequencies detected inside the cavity are related to a time evolution

of the flow. In order to visualize this evolution, temperature fluctuations for

four snapshots over a period of disturbance, τ , are displayed in Fig. 9. The

temperature fluctuations are given by θ′ = θ − 〈θ〉. A particular focus is

made on the lower half of the cavity as the waves are more developed in this

area.

The edge of the cold boundary layer is also displayed from Z = 0.5 to

Z = 0.2 (below Z = 0.2 the boundary layer can not be defined). The location

of the edge is given by δ5% such as, for a given Z :

W (X = δ5%(Z)) = 0.05 min[W (X)]

For fd � fBV on Fig. 9 (bottom), a large structure with positive and negative

temperature fluctuations can be seen in the top part of the displayed fields at

t = t0 + τ/4 and t = t0 + 3τ/4, respectively. Those temperature fluctuations

are in phase with the thermal disturbance signal. It can be noted that for

the two studied frequencies small lobes of local temperature fluctuations are

spread inside the cold boundary layer and in the vicinity of the bottom

wall. For fd = fBV (Fig. 9 top), the lobes are present during the whole

disturbance cycle. They are related to the propagation of the disturbance,

in accordance with the spectrum on Fig. 8 (b), as the main frequency is the

disturbance frequency. For fd � fBV , the lobes are observed only between

t = t0 + 3τ/4 and t = t0 + τ . At this frequency, the thermal lobes are related
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to Tollmien-Schlichting waves, as seen in the spectral analysis on Fig. 8 (d),

which are travelling inside the cold boundary layer. These travelling waves are

usually formed when RaH is higher than the critical Rayleigh number of the

transition to unsteady flow [20]. Thus, the disturbance at the low disturbance

frequency triggers the development of Tollmien-Schlichting waves during a

part of the disturbance cycle.

5. Conclusions

A natural convection flow in a two-dimensional differentially heated cavity

of aspect ratio 4 is submitted to a small-extend thermal disturbance localized

on the hot wall. On the disturbance area, which represents 10% of the entire

wall, a periodic component is added on the imposed hot wall temperature.

The influence of the location and frequency of the disturbance is studied

mainly in terms of heat transfer modifications. The aim of the disturbance is

to maximize the overall heat transfer without change on the time-averaged

temperature on the walls.

Firstly, the following conclusions may be drawn :

— the best location to maximize the heat transfers is located at the very

top of the hot wall.

— the increase of the disturbance frequency induces an increase of the

amplitude of the instantaneous heat transfer for the hot wall and a

decreases towards zero for the cold wall.

— the maximal increases of the time-averaged heat transfer are obtained

for two frequencies : for the fundamental frequency of internal gravity

waves, previously denoted in the literature for an overall disturbance
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in a square cavity, and for a very low frequency, inducing a higher

heat transfer increase equal to 3.88%.

— those heat transfer increases are induced by the persistence of an over-

temperature region beneath the top wall, increasing heat transfers at

the top of the cold wall, and strongly modifying heat transfers at the

top of the hot wall.

Secondly, as the thermal disturbance is time-dependant, it induces a tem-

poral evolution of the flow. A detailled analysis of emerging frequencies and

temperature fluctuations reveals that :

— the disturbance produces travelling waves advected by the main flow,

observed in the cold boundary layer and near the bottom wall.

— a spectral analysis reveals that for the disturbance at the frequency of

internal gravity waves, only the fundamental frequency of those waves

and the corresponding harmonics are detected in the flow. However,

for the very low frequency, Tollmien-Schlichting waves are detected

in addition to gravity waves ; Tollmien-Schlichting waves are usually

observed in the unsteady regime beyond the current Rayleigh number.

Consequently the disturbance at this frequency triggers the unsteady

flow regime.

Those results show the capability of a well-positioned small-extend distur-

bance, which requires only a local modification of the enclosure, to enhance

the overall heat transfer. Moreover, an oscillation at very low frequency can

involve a complex unsteady behavior of the flow. It could be interesting, for
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future studies, to investigate the influence of such disturbance on cavities of

other aspect ratios and to change the Prandtl number of the working fluid.
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Figure 1: Scheme of the differentially heated cavity with a disturbance area located

between Z1 and Z2.
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Figure 2: Gain on average Nusselt number, %GNu, versus the elevation of the disturbance,

Zcent, for fd = fBV .
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(a) (b)

(c)

Figure 3: Temporal evolution of instantaneous Nusselt numbers on the cold and hot walls

for different disturbance frequencies ; the instantaneous temperature of the disturbance,

θd(t), is overprinted.
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Figure 4: Temporal amplitude of the instantaneous Nusselt number, ANu, versus the

reduced disturbance frequency, fd/fBV , for the hot and cold walls.
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(a) (b)

Figure 5: (a) Time-averaged overall Nusselt number, 〈Nu〉, versus the disturbance fre-

quency ; the Nusselt number without disturbance is represented by a point on the vertical

axis ; (b) gain (percentage) on time-averaged overall Nusselt number, %GNu, versus the

disturbance frequency.

Zcent 0.25 0.55 0.85 0.90 0.95

%GNu 0.18 0.50 1.40 2.28 3.88

Table 1: Gains (percentage) on overall Nusselt numbers, %GNu, for several locations of

the center of the disturbance area, Zcent, for fp/fBV � 1.
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(a)

(b)

Figure 6: Time-averaged local Nusselt number, 〈Nu(Z∗)〉, versus adapted elevation Z∗ :

Z∗ = Z on the hot wall, Z∗ = 1− Z on the cold wall ; (a) without disturbance (reference

case) and for fd = fBV ; (b) for fd = fBV and for fd � fBV .
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Figure 7: Time-averaged temperature field for the reference case and for the two frequen-

cies of maximal heat transfer, ∆θ = 0.1 ; the disturbance area is displayed (top left of the

cavity).
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(a) fd = fBV (X = 0.125 ; Z = 0.50) (b) fd = fBV (X = 0.21 ; Z = 0.10)

(c) fd � fBV (X = 0.125 ; Z = 0.50) (d) fd � fBV (X = 0.21 ; Z = 0.10)

Figure 8: Power Spectral Density on instantaneous temperature for fd = fBV and fd �

fBV , at (X = 0.125 ; Z = 0.50) and (X = 0.21 ; Z = 0.10) ; for each case the measurement

location is inserted.
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t0 + τ/4 t0 + τ/2 t0 + 3τ/4 t0 + τ

Figure 9: Fluctuation of temperature, θ′ = θ − 〈θ〉, in the lower half of the cavity for

four instants equally distributed in a period τ ; (top) fd = fBV (bottom) fd � fBV ; the

edge of the cold boundary layer, δ5%, is overprinted. For each snapshot the instantaneous

temperature of the disturbance during its cycle is plotted.
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