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Introduction

Let K be a number field of degree n ≥ 2 and A be its ring of integers. Denote by A n (resp. K n ) be the set of elements of A ( resp. K) which are primitive over Q, that is those elements which generate K over Q. For any primitive polynomial g(x) ∈ Z[x], we define the integer i(g) by i(g) = gcd x∈Z g(x).

Let γ be an algebraic number. When we refer to the minimal polynomial of γ over Z, we mean the unique polynomial g(x) = a n x n + . . . + a 1 x + a 0 ∈ Z[x], irreducible such that a n > 0 and g(γ) = 0. The leading coefficient a n will be denoted by c(γ). We set i(γ) = i(g).

In [START_REF] Gunji | On a class of ideals in an algebraic number field[END_REF], Gunji and McQuillan defined the integer i(K) by i(K) = lcm θ ∈A n i(θ ).

MacCluer [START_REF] Maccluer | Common divisors of values of polynomials[END_REF] proved that a given prime p divides i(K) if and only if the number of prime ideals of A lying over p is at least equal to p. In [START_REF] Gunji | On a class of ideals in an algebraic number field[END_REF] or [START_REF] Ayad | Common Divisors of Values of Polynomials and Common Factors of Indices in a Number Field[END_REF], it is proved that there exists θ ∈ A n such that i(K) = i(θ ).

The smallest positive integer d such that dγ is an algebraic integer is called the denominator of γ and will be denoted by d(γ).

Arno et al proved in [START_REF] Arno | On denominators of algebraic numbers and integer Polynomials[END_REF] that the density of the set of the algebraic numbers γ such that c(γ) = d(γ) is equal to 1/ζ (3) = 0.8319 • • • . In [START_REF] Ayad | Denominators of Algebraic Numbers in a Number Field[END_REF], for a fixed number field K, the set T p (k) = t ≥ 1, there exists γ ∈ K, ν p (d(γ)) = k and ν p (c(γ)) = t is connected to the splitting of the prime p in K.

In this paper, among other results, we study the possible values of ν p (d) when p | i(γ). After recalling some lemmas in section 2, it is proved in Theorem 3.1 that if θ ≡ 0(mod pA) and p|i(θ /p k ), for some positive integer k, then the p-adic valuation of the leading coefficient of the minimal polynomial of θ /p k belongs to the set {k, k + 1, . . . , (np)k}. Furthermore any element of this set may occur. Section 4 shows that given θ ∈ A n such that θ ≡ 0 ( mod pA ), it is possible to find explicitly the values of k ∈ N, if any, such that p|i(θ /p k ). Fix θ ∈ A n such that θ ≡ 0( mod pA) and define the set V p (θ ) = {k ∈ N ; p|i(θ /p k ) }. On the one hand it is shown that |V p (θ )| for θ ∈ A n is bounded by some constant depending on n and p. On the other hand the values of k are bounded by a constant depending on p and ν p (N K/Q (θ )), where ν p (a) denotes the p-adic valuation of a. Section 5 deals with this last bound. It is shown that, even if we fix the field K, the values of k may be greater than any given positive constant. In this section, we give examples of Galois number fields K of degree 4 (resp. 3) for which the set of the values of k, when θ runs in A n is {0} ( resp. N). Throughout this paper we denote by N the set of nonnegative integers. The paper ends with remarks and open questions.

Indices and denominators of algebraic numbers

Let K be a number field of degree n, A its ring of integers, γ ∈ K n and let g(x) = a n x n + • • • + a 1 x + a 0 ∈ Z[x] be the unique primitive polynomial of degree n such that a n > 0 and g(γ) = 0. This polynomial will be called the minimal polynomial of γ over Z. The leading coefficient a n will be denoted c(γ).

Let I(γ) = {m ∈ Z, mγ ∈ A}, then I(γ) is a nonzero ideal of Z, hence a principal ideal generated by some positive integer denoted by d(γ). The integer d(γ) is called the denominator of γ. Since c(γ

) ∈ I(γ), then d(γ) | c(γ). Write γ = θ d(γ)
, where θ ∈ A n , then θ is unique and we call it the numerator of γ. Let f (x) be the minimal polynomial of θ over Q, then g

(x) = f (d(γ)x)/cont( f (d(γ)x),
where the abbreviation cont(h(x)) denotes the content of the polynomial h(x).

From [START_REF] Arno | On denominators of algebraic numbers and integer Polynomials[END_REF] we have the following result: Lemma 2.1. For any prime p, we have

ν p (d(γ)) = max 0, n-1 max j=0 ν p (a n ) -ν p (a j ) n -j . ( 1 
)
For any θ ∈ A n , let F θ (x) its minimal polynomial over Q. Following [START_REF] Gunji | On a class of ideals in an algebraic number field[END_REF], we define the integers

i(θ ) = gcd x∈Z F θ (x) and i(K) = lcm θ ∈A n i(θ ). (2) 
For the integers i(θ ) and i(K) we have the following results: i) C. R. MacCluer proved in [START_REF] Maccluer | Common divisors of values of polynomials[END_REF] that for a given prime number p, p divides i(K) if and only if the number of prime ideals of A lying over p is at least equal to p. ii) In [START_REF] Gunji | On a class of ideals in an algebraic number field[END_REF] and [START_REF] Ayad | Common Divisors of Values of Polynomials and Common Factors of Indices in a Number Field[END_REF], it is proved that there exists θ ∈ A n such that i(K) = i(θ ), and that

i(K) = lcm θ ∈A i(θ ).
We extend the definition of i(θ ) and i(K) to algebraic numbers as follows. Given any γ ∈ K n , we define i(γ) := gcd x∈Z F γ (x) and î(K) = lcm γ∈K n i(γ).

We quote from [START_REF] Ayad | Common Divisors of Values of Polynomials and Common Factors of Indices in a Number Field[END_REF] the following result. Then, we have the identity i(g) = gcd n j=0 j!b j .

Corollary 2.1. The integers i(γ), i(K) and î(K) divide n!.

Remark 2.2. Clearly, from the definitions of i(K) and î(K), we see that i(K) divides î(K).

Study of the denominators of some algebraic numbers

We prove the following lemma, which is useful for the rest of this paper:

Lemma 3.1. Let p be a prime number, γ be an algebraic number and d(γ) be its denominator. Write d(γ) in the form d(γ) = p k • q, where gcd(p, q) = 1 and let µ = qγ. Then we have d(µ) = p k , ν p (c(µ)) = ν p (c(γ)) and ν p (i(γ)) = ν p (i(µ)).

Proof : Let n be the degree of γ and let g(x) be the minimal polynomial of γ over Z, then the minimal polynomial of µ over Z is given by h(x) = q n-1 g( x q ) and that d(µ) = p k . Suppose that p u |i(γ) for some positive integer u and let x 0 ∈ Z. Since gcd(p, q) = 1, there exists y 0 ∈ Z such that the congruence qy 0 ≡ x 0 ( mod p u ) holds. In particular g(y 0 ) ≡ 0( mod p u ), so that we have h(x 0 ) ≡ q n-1 g(y 0 ) ≡ 0( mod p u ).

Since h(qy 0 ) = q n-1 g(y 0 ) ≡ 0 (mod p u ), it follows that p u | h(x 0 ) and since x 0 was chosen arbitrarily, p u | i(µ). Conversely, suppose that p u |i(µ) and let x 0 ∈ Z, then h(qx 0 ) ≡ 0( mod p u ), hence g(x 0 ) = 1 q n-1 h(qx 0 ) ≡ 0( mod p u ).

The proof of the equality ν p (c(µ)) = ν p (c(γ)) is straightforward. 2

We state the main result of this section. Proof : Set d = p k q with k ≥ 0 and gcd(p, q) = 1. First, we suppose k = 0 and let µ = qγ, then µ ∈ A n and p|i(µ) by Lemma 3.1, hence p|i(K). Suppose now that k ≥ 1. By Lemma 3.1, we can assume that q = 1 and d = p k . Therefore the minimal polynomial of γ over Z has the form

g(x) = p t x n + b n-1 x n -1 + . . . + b 1 x 1 + b 0 , with k ≤ t ≤ nk.
Since p|n!, then p ≤ n. If p = n, since p| j!b j for all j = 0, . . . , n -1, then we conclude that p|b 0 , b 1 , . . . , b n-1 . Therefore g(x) is reducible in Z[x], which is a contradiction, hence p < n. In this case, since p|b 0 , b 1 , . . . , b p-1 , then we may write g(x) in the form

g(x) = x(x -1) • • • (x -(p -1)) p t x n-p + ãn-p-1 x n-p-1 + . . . + ã1 x + ã0 +p c p-1 x p-1 + . . . + c 1 x + c 0
where all the coefficients ãi , c j are integral. Since g(x) is irreducible in Z[x], there exists j ∈ {0, . . . , np -1} such that p | ã j . Denote by j o the greatest of these integers. Let θ ∈ A n be the unique element such that γ = θ p k . Then we have

θ (θ -p k ) • • • (θ -(p -1)p k ) p t θ n-p + p k ãn-p-1 θ n-p-1 + . . . + p k(n-p-j o ) ã j 0 θ j 0 + . . . + p k(n-p-1) ã1 θ + p k(n-p) ã0 +p • p k(n-(p-1)) c p-1 θ p-1 + c p-2 p k θ p-2 + . . . + c 0 p k(p-1) = 0.
Write this equation in the form:

p t θ n + u n-1 θ n-1 + . . . + u p θ p + . . . + u 1 θ + u 0 = 0.
Since θ is integral, it follows in particular that p t |u j for j = p, . . . , n -1. We can set

θ (θ -p k ) • • • (θ -(p -1)p k ) = θ p + σ 1 θ p-1 + . . . + σ p-1 θ . Then                  σ 1 = -(p k + . . . + p k (p -1)) = p k p(p-1) 2 σ 2 = p 2k ∑ i = j i, j∈{1,...,p-1} i j . . . σ p-1 = (-1) p-1 p k(p-1) (p -1)!.
We have

(x p + σ 1 x p-1 + . . . + σ p-1 x) p t x n-p + . . . + p k(n-p-j 0 ) ã j 0 x j 0 + . . . + ã0 p k(n-p) + pp k(n-(p-1)) c p-1 x p-1 + . . . + c 1 x = p t x n + u n-1 x n-1 + . . . + u p x p + . . . + u 1 x + u 0 , hence            u n-1 = p k ãn-p-1 + p t σ 1 u n-2 = p 2k ãn-p-2 + p k ãn-p-1 σ 1 + p t σ 2 . . . u j 0 +p = ã j 0 p k(n-p-j 0 ) + ã j 0 +1 p k(n-p-( j 0 +1) σ 1 + . . . + ã j 0 +m p k(n-p-( j 0 +m) σ m + . . . + p t σ n-( j 0 +p)
The first equation implies that p t |p k ãn-p-1 . Then the second implies that p t |p 2k ãn-p-2 .

Iterating the process, the last equation gives p t | ã j 0 p k(n-p-j 0 ) . Since p | ã j 0 , then

t ≤ k(n -p -j 0 ) ≤ k(n -p).
Theorem 3.2. Let p be a prime number, n and k be positive integers, p < n. Then for any integer t, such that k ≤ t ≤ (np)k, there exist infinitely many algebraic numbers γ ∈ C of degree n such that p|i(γ), ν p (c(γ)) = t and ν p (d(γ)) = k.

Proof : Dividing t by k, we have two possibilities:

t = (n -i)k + α with 0 < α < k and p < i ≤ n -1 (3) t = (n -i)k with p ≤ i ≤ n -1 (4) • First case: t = (n -i)k + α with 0 < α < k and p < i ≤ n -1. Then, we have t > (n -i)α + α = α(n -i + 1), hence α < t n -(i + 1)
.

On the other hand, choose integers a 0 , . . . , a n such that

           gcd(a 0 , . . . , a n ) = 1, ν p (a j ) = t, for j > i ν p (a i ) = α, ( note that α = 0) ν p (a i-1 ) = 0 ν p (a j ) = 1, for j < i -1.
(

) 5 
Consider the polynomials

f (x) = n ∑ j=0 a j x j = n ∑ j=0 ã j x j and g(x) = ãn x n + q e n-1 ãn-1 x n-1 + . . . + q e 1 ã1 x + q ã0 := n ∑ j=0 b j x j ,
where q is a prime number such that q ≡ 1 (mod p), q | ã0 and the exponents e j are arbitrary fixed positive integers. Clearly g(x) is irreducible in Z[x] by Eisenstein's Theorem. Let γ be a root of g(x). Since p ≤ i -1, then by Lemma 2.2, we conclude that p|i( f ) and since g(x) ≡ f (x) (mod p) for any x ∈ Z, then p|i(γ). We look at the p-adic valuations of the ã j . Recall that ãn = c(γ) and ã0 = a 0 , hence ν p ( ãn ) = t and ν p ( ã0 ) = 1. We claim that

   ν p ( ã j ) ≥ t, for j > i ν p ( ãi ) = α, ν p ( ãi-1 ) = 0. (6) 
For any j ≥ 1 we have ã j = a j + n ∑ l= j+1 a l c l , where c l ∈ Z for any l.

If j > i then ν p (a j ) = ν p (a j+1 ) = . . . = ν p (a l ) = t, hence ν p ( ã j ) ≥ t.

For j = i we have ν p (a j ) = α < t and ν p (a l ) = t for l = i + 1, . . . , n, hence ν p ( ãi ) = α.

For j = i -1 we have ν p (a i-1 ) = 0 and ν p (a l ) ≥ α for l = i, . . . , n,, hence ν p ( ãi-1 ) = 0.

Thus we obtain the desired claim.

To compute the p-adic valuation of the denominator of γ, we use Lemma 2.1. For j > i, we have

ν p (b n ) -ν p (b j ) n -j = ν p ( ãn ) -ν p ( ã j ) n -j = t -t j n -j ≤ 0, because t j ≥ t.
For j = i, we have

ν p (b n ) -ν p (b i ) n -i = ν p ( ãn ) -ν p ( ãi ) n -i = t -α n -i = k.
For j < i we have

ν p (b n ) -ν p (b j ) n -j = ν p ( ãn ) -ν p ( ã j ) n -j = t -t j n -j ≤ t n -(i -1) ≤ (n -i)k + α n -(i -1) < (n -i)k + k n -(i -1) = k, hence ν p (d(γ)) = k. • Second case: t = (n -i)k with p ≤ i ≤ n -1.
Choose integers a 0 , . . . , a n such that gcd(a 0 , . . . , a n ) = 1 and

       ν p (a j ) ≥ t, for j > i, ν p (a i ) = 0, ν p (a j ) = 1, for j < i, ν p (a n ) = t. (7) 
Consider the polynomials

f (x) = n ∑ j=0 a j x j = n ∑ j=0 ã j x j and g(x) = ãn x n + q e n-1 ãn-1 x n-1 + . . . + q e 1 ã1 x + q ã0 := n ∑ j=0 b j x j ,
where q and the e j have the same meaning as in the preceding case. Clearly g(x) is irreducible in Z[x] by Eisenstein's Theorem. Let γ be a root of g(x). Since p ≤ i, then by Lemma 2.2, we conclude that p|i( f ) and since g(x) ≡ f (x) (mod p) for any x ∈ Z, then p|i(γ). We look at the p-adic valuations of the ã j . We have ãn = a n hence ν p ( ãn ) = t. For

j > i, we have ã j = a j + n ∑ l= j+1
a l c l where c l ∈ Z and we have ν p (a j ) ≥ t and ν p (a l ) ≥ t for l ≥ j + 1, hence ν p ( ãi ) ≥ t.

For j = i, we have ν p (a i ) = 0 and ν p (a l ) = t, l ≥ j + 1, hence ν p ( ãi ) = 0. For j < i, we have ν p ( ã j ) ≥ 0. For j < i, we have ν p ( ã j ) ≥ 0. We compute the p-adic valuation of the denominator of γ by using Lemma 2.1.

For j > i, we have

ν p (b n ) -ν p (b j ) n -j = ν p ( ãn ) -ν p ( ã j ) n -j = t -t j n -j ≤ 0, because t j ≥ t.
For j = i, we have

ν p (b n ) -ν p (b i ) n -i = ν p ( ãn ) -ν p ( ãi ) n -i = t n -i = k.
For j < i we have

ν p (b n ) -ν p (b j ) n -j = ν p ( ãn ) -ν p ( ã j ) n -j < t -t j n -i ≤ t n -i = k, hence ν p (d(γ)) = k.
Since we can choose q and the e j in an infinite number of ways, then the number of γ's is infinite. 2

4.

Upper bounds for the enumeration of the denominators of some algebraic numbers Proposition 4.1. Let θ ∈ A n , and f (x) = x n +a n-1 x n-1 +. . .+a 1 x+a 0 its minimal polynomial over Q. Suppose that θ ≡ 0( mod pA). Construct the Newton polygon of f (x) by plotting in the (x, y) plan the points A i whose coordinates are (i, ν p (a i )) for all i ∈ {0, . . . , n} such that a i = 0. Suppose that there exists k ≥ 1 such that p|i(θ /p k ). Then there exists two integers m, M such that 1 ≤ m < M ≤ n -1 and the line joining the points A m and A M has the following equation

y + kx -u = 0, where kM ≤ u < ν p (a 0 ) and u = ν p (cont( f (p k x))).
Moreover all the points A i such that i < m or i > M belong to the domain of all points (x, y) such that y + kxu > 0. If m < i < M, then we have ν p (a i ) + kiu ≥ 0.

Proof : The minimal polynomial over Z of θ /p k is given by

f (p k x)/p u = p nk-u x n + p (n-1)k-u a n-1 x n-1 + . . . + p k-u a 1 x + p -u a 0 := g(x)
,

where u = ν p (cont( f (p k x))). Let I = {i : 1 ≤ i ≤ n -1, a i = 0 and ik + ν p (a i ) -u = 0}.
Since θ /p k is not integral then nku > 0. Since g(0) ≡ 0( mod p), then ν p (a 0 )u > 0.

Adding these two facts to the property that g(x) is primitive implies that I = / 0. Furthermore g(1) ≡ 0(modp), hence |I| ≥ 2. Let m = inf (I) and M = max (I). Clearly the equation of the line joining the points A m and A M is given by: y + kxu = 0. Moreover a point (i, ν p (a i )) of the Newton polygon belongs to this line if and only if i ∈ I. The definition of m and M implies the properties of the points A i and of u. 2 Remark 4.1. Proposition 4.1 shows that -k is the slope of some line joining two points A m and A M . Moreover all the others points belong to the same side of the line ( or on the line). Therefore, if we fix a prime p and an algebraic integer θ such that θ = 0 (mod pA), it is possible to find explicitly all the values of k such that p|i(θ /p k ). This proposition shows also that the set of such nonnegative integers k is finite (may be empty).

Example 4.1. Let t ≥ 2 be an integer, f (x) = x 3 + x 2 + 2 t x + 2 t+1 and θ t be a root of f (x). It is seen that f (x) is irreducible over Q: if not, it has a root a/b in Q with a, b ∈ Z and gcd(a, b) = 1. Substitution then yields a 3 + a 2 b + 2 t ab 2 + 2 t+1 b 3 = 0 , implying b | a 3 . Thus, b = ±1, and we then obtain a | 2 t+1 . Letting a = 2 i , we obtain 2 3i + 2 t+i = 2 2i + 2 t+1 , implying that t + i ≤ t + 1 so i = 1 which is impossible.

For any nonnegative integer, let γ t,k = θ t /2 k . We show that V 2 (θ t ) = {0,t}. Clearly, 2 | i(θ t ), hence 0 ∈ V 2 (θ t ). The Newton diagram for p = 2 has the following shape:

A 1 A 0 A 2 A 3
The possible edges of the convex hull which may give rise to values of k ∈

V 2 (θ t ), k ≥ 1, are [A 0 A 1 ] and [A 1 A 2 ]
. Their slopes are equal to -t -1 and t respectively. Thus, k = t + 1 or k = t.

If k = t + 1, the minimal polynomial of γ t,k over Z is given by g(x) = 2 t+2 x 3 + 2x 2 + x + 1. This shows that 2 |i(g(x)), hence t + 1 ∈ V 2 (θ t ).

If k = t, the minimal polynomial of γ t,k over Z is given by h(x) = 2x 3 + x 2 + x + 2. This shows that 2 | i(h(x)), hence t ∈ V 2 (θ t ). Thus, V 2 (θ t ) = {0,t}.

We state now our main result on the upper bounds for the enumeration of the denominators of algebraic numbers γ such that p|i(γ). Theorem 4.1. Let θ be a root of f (x) ∈ Z[x], monic irreducible, p a prime number such that θ ≡ 0( modpA) and let a 0 = f (0). We set

V p (θ ) = k ≥ 0; p|i(θ /p k ) .
Suppose that V p (θ ) = / 0 then we have

|V p (θ )| ≤ n -1 p -1 , (8) 
∑ k∈V p (θ ) k < ν p (a 0 ) p . (9)
For the proof of this theorem, we need the following lemma. which contradicts the definition of M j+1 and completes the proof of the claim. We now come back to the proof of Theorem 4.1. Completion of proof of Theorem 4.1: We use the first and the third points of the claim. We have

n ≥ M 1 > M 2 > . . . > M z-1 > M z ≥ p > 1.
Using the claim, we obtain

n -p ≥ M 1 -M z = (M 1 -M 2 ) + . . . + (M z-1 -M z ) ≥ (p -1)(z -1) hence z ≤ n -p p -1 + 1 = n -1 p -1 .
Therefore ( 8) is proved. We prove the inequality (9) of Theorem 4.1. We have b

(1)

0 = a 0 p -u 1 , b ( j+1) 0 = b ( j)
0 p -u j+1 for j = 1, . . . , z -1 and since g z (0) ≡ 0( mod p), then ν p (b (z) 0 ) > 0. Hence u 1 + u 2 + . . . + u z < ν p (a 0 ). On the other hand, using the first and the second parts of the claim, we obtain

u 1 + u 2 + . . . + u z ≥ k 1 M 1 + (k 2 -k 1 )M 2 + . . . + (k z -k z-1 )M z ≥ k 1 zp + (k 2 -k 1 )(z -1)p + . . . + (k z -k z-1 )p = p (k 1 z + k 2 z -k 1 z -k 2 + k 1 + k 3 z -k 2 z -2k 3 + 2k 2 + . . . + k z -k z-1 ) = p((k 1 + k 2 + . . . + k z ).
Therefore, we have

ν p (a 0 ) > z ∑ j=1 u j ≥ p z ∑ j=1 k j , hence z ∑ j=1 k j < ν p (a 0 )/p. Remark 4.2. Theorem 4.1, shows that if ν p (a 0 ) ≤ p, then V p (θ ) = {0} or V p (θ ) = / 0.
The following result shows that the bound (8) in Theorem 4.1 is the best possible. More precisely, we have Proposition 4.2. Let p and q be distinct prime numbers such that q ≡ 1 (mod p), θ be a root of

f (x) = x n + N ∑ i=1 a i x n-i(p-1) + qp λ ,
where N = (n -1)/(p -1) , a i = (-1) i qp (p-1)i(i-1)/2 , for i = 1, ..., N and

λ > 2n(N -1) -(p -1) (N -1) 2 + N -1 2 . Then |V p (θ )| = n -1 p -1 .
Proof : Clearly, by Eisenstein's criterion, f (x) is irreducible over Q. The coefficient of x n-(p-1) is coprime to p, hence θ ≡ 0( mod pA). By Theorem 4.1, we have

|V p (θ )| ≤ n -1 p -1 .
We show that the integers 0, 1, . . . , n-1 p-1 -1 belong to V p (θ ) and this will complete the proof of Proposition 4.2. Since f (x) ≡ x nqx n-(p-1) (mod pZ[x]) and q ≡ 1 (mod p), then f (x) ≡ x n-(p-1) (x p -1) (mod pZ[x]). Thus, p | i( f ) and 0 ∈ V p (θ ). Set a 0 = 1 and fix k ∈ 1, . . . , n-1 p-1 -1 . We have

f (p k x) = p nk x n + N ∑ i=1 a i p nk-i(p-1)k x n-i(p-1) + qp λ .
We claim, omitting the proofs that

ν p (a k p nk-k(p-1)k ) = ν p (a k+1 p nk-k(p-1)(k+1) ) = 2nk -(p -1)(k 2 + k) 2 and ν p (a i p nk-i(p-1)k ) > 2nk -(p -1)(k 2 + k) 2 if i = k, k + 1.
Moreover, since the function

x → ψ(x) = 2nx -(p -1)(x 2 + x) is increasing in [0, N -1] and since λ > 2n(N-1)-(p-1)(N-1) 2 +N-1 2 , then λ > 2nk-(p-1)(k 2 +k) 2 . It follows that cont( f (p k x)) = 2nk-(p-1)(k 2 +k) 2
and the minimal polynomial over Z of γ k = θ p k is given by

g k (x) = f (p k x)p -(2nk-(p-1)k 2 +k)/2 .
From the above it is seen that

g k (x) ≡ (-1) k x n-k(p-1) +(-1) k+1 x n-(k+1)(p-1) ( mod p) ≡ (-1) k x n-(k+1)(p-1) (x p-1 -1)( mod p), hence p|i(γ k ), thus k ∈ V p (θ ). 2
Corollary 4.1. Let p be a prime number, and θ be a root of

f (x) = x n + a n-1 x n-1 + . . . + a 0 ∈ Z[x],
irreducible over Q. Suppose that there exists i ∈ {0, . . . , min(p, n) -1} such that ν p (a i ) = 0. Then θ ≡ 0( mod pA) and V p (θ ) = / 0 or V p (θ ) = {0}. Moreover if p > n, then V p (θ ) = / 0.

Proof : Let α be an algebraic integer and g(x) = x n + b n-1 x n-1 + . . . + b 0 be its minimal polynomial over Q. It is easy to prove that α ≡ 0(modp) if and only if ν p (b i ) ≥ ni for i = 0, . . . , n -1. Our assumption then implies that θ ≡ 0(modpA). Suppose that V p (θ ) = / 0 and let k ∈ V p (θ ). Assume that k ≥ 1 and let γ = θ /p k and u = cont( f (p k x)). Then the minimal polynomial of γ over Z is given by

g(x) = f (p k x)p -u = p nk-u x n + p (n-1)k-u a n-1 x n-1 + . . . + p -u a 0 .
As in Theorem 4.1, let

I = { j ∈ {1, . . . , n -1}; ν p (a j ) + k j -u = 0}, m = inf (I), M = sup (I). Suppose first that m ≤ i. We have ik -u = ν p (a i ) + ik -u ≥ 0. Since M -m ≥ p -1, then M > i which implies ν p (a M ) + Mk -u ≥ Mk -u > ik -u ≥ 0, a contradiction. We deduce that m > i and then ν p (a m )) + km -u ≥ km -u > ki -u = ν p (a i ) + ki -u ≥ 0, a contradiction again. Therefore V p (θ ) = {0}. 2

A new invariant of number fields and a generalisation of MacCluer's Theorem

Let p be a fixed prime integer. We have shown that for any algebraic integer θ such that θ ≡ 0( mod pA), p|i(θ /p k ) for some k ≥ 1, then k < ν p (N )/Q (θ ))/p. Does there exist some constant c > 0 such that if θ ∈ Q, θ ≡ 0( mod pA) and p|i(θ /p k ) then k < c? Even if we fix the degree n of θ and suppose that the constant c depends on n, the answer is negative as it is shown by the following result.

Proposition 5.1. Let n, N be positive integers and p be a prime number such that p < n. Then there exists an integer k > N and an algebraic integer θ of degree n such that θ ≡ 0( mod pA) and p|i(θ /p k ).

Proof : Let F be a number field of degree n -1 such that p|i(F). In particular, we can take F such that p completely splits in F, so that p | i(F) by MacCluer's Theorem. Such a field F exists by Tchebotarev's theorem [START_REF] Neukirch | Algebraic Number Theory[END_REF]. Let α be a primitive element of F/Q. Suppose that α is integral and p|i(α). Let F α (x) be the minimal polynomial of α over Q. Let q be a prime number such that q = p and q |N F/Q (α). Let t be an integer such that t > nN and let g(x) = p t x n + qF α (x). Then Eisenstein's criterion shows that g(x) is irreducible over Q. Obviously g(x) is primitive, hence it is irreducible in Z[x]. Let γ be a root of g(x), then clearly p|i(γ) and d(γ) = p k for some positive integer k such that k ≤ t ≤ nk, hence k ≥ t/n > N. The algebraic integer θ = p k γ satisfies all the conditions of the proposition and the proof is complete. 2

Let K be a number field of degree n over Q and A be its ring of integers. We define the integer ν p (K) as follows.

Definition 5.1. Let V p (K) = k ≥ 0, there exists θ ∈ A n , θ ≡ 0( mod pA), and p|i(θ /p k ) , and we define

v p (K) =    -∞ if V p (K) = / 0, ∞ if V p (K) is infinite, max(V p (K)) if V p (K) is finite.
Remark 5.1. By Theorem 3.1, we have v p (K) = -∞ if and only if p |i(K). So there is no need to give examples illustrating this fact. Theorem 3.1 again shows that if the degree of the number field K is a prime p then v p (K) = 0 if p|i(K) and v p (K) = -∞ if p |i(K).

In the following we compute explicitly v 2 (K) for some number fields of degree 3 or 4 over Q. Proposition 5.2 (Galois field of degree 4). Let K/Q be a Galois number field of degree 4 in which the prime 2 splits into a product of two prime ideals having their residual degree equal to 2. Then we have v 2 (K) = 0.

Proof : By MacCluer's theorem, 2|i(K), hence 0 ∈ V p (K). Let p and p be the conjugate prime ideals of A lying over 2 and having their residual degree equal to 2. Suppose that 2|i(θ /2 k ) for some k ≥ 1 and θ ∈ A n such that θ ≡ 0(mod 2A). Since N K/Q (θ ) ≡ 0 (mod 2), then we may suppose that p e ||θ and p |θ for some e ≥ 1. We suppose that the conjugates θ 1 = θ , θ 2 , θ 3 , θ 4 of θ satisfy the following conditions:

p e ||θ 1 , p e ||θ 3 , p |θ 1 θ 3 , p e ||θ 2 , p e ||θ 4 , p |θ 2 θ 4 . Let f (x) = x 4 + a 3 x 3 + a 2 x 2 + a 1 x + a 0 ∈ Z[x] be the minimal polynomial of θ over Q. Let g(x) ∈ Z[x] be the minimal polynomial of γ = θ /2 k over Z, then g(x) = f (2 k x).2 -u = 2 4k-u x 4 + 2 3k-u a 3 x 3 + 2 2k-u a 2 x 2 + 2 k-u a 1 x + 2 -u a 0 ,
where u is the content of f (2 k x). Using the elementary symmetric functions of the θ j and our assumption on their p-adic and p -adic valuations, we get

ν 2 (a 0 ) = 2e, ν 2 (a 1 ) ≥ e and ν 2 (a 2 ) = 0. If k ≥ e, then ν 2 (2 4k-u ) ≥ 4e -u, ν 2 (2 3k-u a 3 ) ≥ 3e -u, ν 2 (2 2k-u a 2 ) = 2k -u ≥ 2e -u, ν 2 (2 k-u a 1 ) ≥ 2e -u, ν 2 (2 -u a 0 ) = 2e -u.
Since these five 2-adic valuations must be nonnegative, then u ≤ 2e. Furthermore one (at least) of these valuations must be 0, hence u = 2e. In this case, g(0) ≡ 0(mod 2) which is a contradiction to 2|i(γ).

If k < e, then ν 2 (2 4k-u ) = 4k -u, ν 2 (2 3k-u a 3 ) ≥ 3k -u, ν 2 (2 2k-u a 2 ) = 2k -u, ν 2 (2 k-u a 1 ) > 2k -u, ν 2 (2 -u a 0 ) > 2k -u.
Using similar arguments as in the preceding case, we obtain u = 2k. We conclude that all the coefficients of g(x) have their 2-adic valuations positive except the coefficient of x 2 which has a 2-adic valuation equal to 0. In this case also we reach a contradiction since g(1) ≡ 0(( mod )2). It follows that V 2 (K) = {0} and v 2 (K) = 0. 2 For the proof of the next proposition, we will need the following lemma. Lemma 5.1 (Engstrom). Let K be a number field, A be its ring of integers and p be a prime integer. Let p 1 , . . . , p s be distint prime ideals of A lying over p and let Φ 1 (x), . . . , Φ s (x) be monic irreducible polynomials over F p not necessarily distincts of degree d 1 , . . . , d s respectively, where d i divides the residual degree of p i . Let h 1 , . . . , h s be positive integers. Then there exists a primitive element θ ∈ A such that p h i i ||Φ i (θ ) for i = 1, . . . , s Proof : see [START_REF] Engstrom | On the common index divisors of an algebraic field[END_REF]. 2 Proposition 5.3 (Cubic Galois). Let K/Q be a Galois number field of degree 3 in which the prime 2 splits completely. Then V 2 (K) = N.

Proof : Let k and e be positive integers such that e > k. Let p 1 , p 2 and p 3 be the prime ideals of A lying over 2. By Lemma 5.1 there exists θ ∈ A n such that Therefore cont( f (2 2k x)) = 2 2k and the minimal polynomial of θ /2 k is given by g(x) = f (2 k x).2 -2k .

Clearly we have g(0) ≡ g(1) ≡ 0(mod2) hence 2|i(θ /p k ). Since the prime 2 splits completely in K, then 0 ∈ V 2 (K). Therefore V 2 (K) = N and v 2 (K) = ∞. 2 Remark 5.2. Our result in the sequel can be viewed as a generalization of MacCluer's theorem which establishes a relation between the number of prime ideals of A lying over p and the property of p to be a divisor of i(K).

Fix a prime number p and define, for any primitive element θ ∈ A of K, the integer j p (θ ) as follows.

Definition 5.2. Let F θ (x) be the minimal polynomial of θ over Q. Let j p (θ ) be the largest integer y, if it exists, 1 ≤ y ≤ p such that F θ (1) ≡ F θ (2) ≡ . . . ≡ F θ (y) ≡ 0(modp). If not set j p (θ ) = 0. We define also j p (K) = max θ ∈A n j p (θ ). Proof : Suppose first that r ≤ p and let p 1 , . . . , p r be the distinct prime ideals of A lying over p. By Lemma 5.1 there exists θ ∈ A n such that θ ≡ i( mod p) for i = 1, . . . , r. It follows that the minimal polynomial F θ (x) of θ satisfies the condition F θ (x) ≡ (x -1)(x -2) . . . (xr)g(x)(modp) hence j p (θ ) ≥ r which implies that j p (K) ≥ r. On the other hand, let θ ∈ A n such that j p (K) = j p (θ ) := t ,

Lemma 2 . 2 . 1 x 1 +

 2211 Let g(x) ∈ Z[x]. Write g(x) in the form g(x) = b n x n + . . . + b b 0 , where b 0 , . . . b n ∈ Z, x 0 = 1 and x j := x(x -1) . . . (x -( j -1)), for j ≥ 1.

Theorem 3 . 1 .

 31 Let K be a number field of degree n over Q, γ ∈ K n , c = c(γ) , d = d(γ) and p be a prime number. If k = ν p (d) ≥ 1, then p < n and k ≤ ν p (c) ≤ (np)k.

Lemma 4 . 1 .

 41 Let p be a prime number and g(x) = a M x M + . . . + a m x m , M > m > 0 such that p |a M . If p|i(g), then Mm ≥ p -1.

p e 1 p e 2 ||θ 2 , p k 3 ||θ 2 , p 1 |θ 2 , p e 3 ||θ 3 , p k 1 |||θ 3 , p 2 |θ 3 .

 1233 ||θ , p k 2 ||θ and p 3 |θ .Assume that the conjugates of θ , θ 1 = θ , θ 2 , θ 3 are labelled in order to satisfy the following conditions: Let f (x) = x 3 + a 2 x 2 + a 1 x + a 0 ∈ Z[x] be the minimal polynomial of θ over Q. Expressing a 0 , a 1 and a 2 in terms of θ 1 , θ 2 , θ 3 , we getν 2 (a 0 ) = e + k, ν 2 (a 1 ) = k and ν 2 (a 2 ) = 0. We have f (2 k x) = 2 3k x 3 + 2 2k a 2 x 2 + 2 k a 1 x + a 0 . Set b 3 = 2 3k , b 2 = 2 2k a 2 , b 1 = 2 k a 1 , b 0 = a 0 . Using the 2-adic valuation of a 0 , a 1 , a 2 we obtain ν 2 (b 1 ) = ν 2 (b 2 ) = 2k, ν 2 (b 0 ) = e + k > 2k, ν 2 (b 3 ) = 3k > 2k.

Theorem 5 . 1 .

 51 Let r be the number of prime ideals of A lying over p. Then j p (K) = inf(r, p).Moreoverp|i(K) ⇐⇒ j p (K) = p.
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Proof : Suppose that p | i(g), then clearly p|i(xg 1 ), where g 1 (x) = a M x M-m + . . . + a m . Write xg 1 in the form

then by Lemma 2.2 p|(Mm + 1)!a M , hence p|(Mm + 1)!. Therefore p ≤ Mm + 1. 2 Proof of Theorem 4.1. Suppose that the complete list of elements of V p (θ ) is given by k 1 < k 2 < . . . < k z . We have k 1 = 0 if and only if p|i(θ ). Set f (x) = x n + a n-1 x n-1 + . . . + a 1 x + a 0 . For each j = 1, . . . , z, let g j (x) be the minimal polynomial of θ /p k j over Z.

and g j+1 (x) = g j (p k j+1 -k j x)p -u j+1 for j = 1, . . . , z -1 and u 1 , . . . , u z are positive integers. For any j = 1, . . . , z, let

, then it follows that I j = / 0. Let m j = inf (I j ) and M j = sup (I j ). Since g j (1) ≡ 0( mod p) then |I j | ≥ 2 and m j < M j . Clearly m j ≥ 1 and M j ≤ n -1. We claim that:

. M jm j ≥ p -1 for j = 1, . . . , z.

.

The first claim follows from Lemma 4.1. If k 1 = 0, then from (10) we have

From the definition of M 1 and the definition of the interval I 1 , it follows that

M 1 ) = 0. Therefore, if k 1 ≥ 1, equation (10) and the above equality imply that

hence u j ≥ (k jk j-1 )M j , which proves the second part of the claim. For the last part of the claim it is sufficient to prove that m j ≥ M j+1 for j = 1, . . . , z -1. For, suppose that m j < M j+1 for some j ∈ {1, . . . , z -1}. We have 0 = ν p (b

We deduce that (k j+1k j )m j ≥ u j+1 and then (k j+1k j )M j+1 > u j+1 . It follows that

hence, by Hensel's Lemma, we deduce that F θ (x) has at least t irreducible factors over Z p , the ring of p-adic integers. Again by Theorem 5.1 of chapt. 2 of [START_REF] Janusz | Algebraic Number Fields[END_REF], we have t ≤ r. We conclude that j p (K) = r = inf(p, r). Suppose now that r > p. By Lemma 5.1, let θ ∈ A n such that θ ≡ i( mod p) for i = 1, . . . , p. Then

therefore we have j p (θ ) ≥ p which implies j p (K) ≥ p. From the definition we have j p (K) ≤ p, hence j p (K) = p = inf(r, p). We now prove the last statement of the proposition. We have

If [K : Q] = 3, then i(K) and î(K) ∈ {1, 2, 3, 6}. Moreover, Theorem 3.1 shows that 3 | î(K) if and only if 3 | i(K).

Suppose that there exists γ = θ /2 k with k ≥ 1, k ≤ t ≤ 3k and θ ≡ 0 (mod p) such that 2 | i(γ). Let g(x) = 2 t x 3 + b 2 x 2 + b 1 x + b 0 be the minimal polynomial of γ over Z. Since g(0) ≡ 0 (mod 2), then b 0 ≡ 0 (mod 2). Since g(1) ≡ 0 (mod 2), then b 1 + b 2 ≡ 0 (mod 2), thus b 1 = b 2 (mod 2). Moreover, since g(x) is primitive, then b 1 ≡ b 2 ≡ 1 (mod 2). By Theorem 3.1, t ≤ k. Since k ≤ t, then k = t. The minimal polynomial of θ is then given by

Let K be a number field of degree n and let γ ∈ K n \ A n . Set γ = θ /d, where d is an integer at least equal to 2 such that θ ≡ 0 (mod p) for any prime divisor p of d. It is proved in Lemma 3.1 that if d = p k q with gcd(p, q) = 1 and k ≥ 1, then p | i(γ) if and only if p | i(θ /p k ). We ask that following: Is it true that if p | i(θ /p k ) with k ≥ 1 and θ ≡ 0 (mod p), then p | i(K)? Do we have î(K) = i(K)?

Recall that ν p (K) is the greatest element of the set V p (K), when this set is finite. Do we have {0, 1, . . . , ν p (K)} = V p (K)? The example given in section 4 shows that V p (θ t ) = {0,t} = {0, 1, . . . ,t}. We may ask a similar question when V p (K) is infinite. Do we have V p (K) = N?