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The dynamics of an oscillating shear layer when confined is enriched by retarded actions
whose physical modeling is not trivial. We present a nonlinear delayed saturation feedback
model, which allows us to correctly reproduce the complex shear layer spectra observed
experimentally in open cavity flows in the incompressible limit. The model describes the
evolution of the amplitude of the shear layer instabilities and considers two hydrodynamic
feedback mechanisms directly related to the confinement introduced by the walls. One is
associated with reflections of instability waves on the vertical cavity walls and the other to
intracavity recirculation flow. These feedback mechanisms provide retarded actions with
time lags that are used in the delay differential equation and allow the computation of the
model parameters on physical grounds. The frequency components of six experimental
cases in different flow regimes are well recovered by the dynamical model. The results
show that the model with a single feedback mechanism produces monoperiodic oscillations
of the amplitude, while the interplay of two purely hydrodynamic feedback mechanisms
allow quasiperiodicity to develop.

DOI: 10.1103/PhysRevFluids.5.024401

I. INTRODUCTION

Open cavity flow is a prominent example of impinging shear flows, which have been subject to
numerous theoretical [1–3], experimental [4–6], and numerical [7,8] studies over the past decades.
Impinging shear flows are known to exhibit self-sustained oscillations and it is widely agreed upon
in the literature [9] that some kind of feedback mechanism organizes the flow globally and hence is
responsible for the appearance of well-defined peaks in the power spectra of the fluctuating velocity
components. Reference [9] further noted that this enhanced organization is not locally confined to
the region of the downstream cavity edge, but extends along the entire length of the shear layer,
thereby reinforcing the concept of disturbance feedback.

In compressible flow over open cavities the feedback is commonly assumed to be of acoustic
nature. The impinging shear layer creates sound waves that travel upstream, interact with the
incoming shear layer, and thus close the feedback loop. This is known as the flow acoustic [10]
mechanism. In the incompressible limit the wavelength of the sound wave is much greater than the
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cavity length and other mechanisms are likely to cause the delayed feedback. Experimentally it is
observed that, depending on the Reynolds number, a single frequency peak or two nonharmonic
frequency peaks stand out in the shear layer spectrum [5,8,11,12]. Despite the fact that this last
phenomenon has been known for a long time, the underlying mechanism, responsible for the two
nonharmonic modes in low-Mach-number open cavity flow, remains unclear.

Reference [13] argued for a feedback mechanism in terms of nonlinear interaction between two
shear layer modes, while Ref. [3] proposed to consider a compatibility condition based on the
reflection of hydrodynamic instability waves from the vertical walls of the cavity. The condition
is based on a more general theory of instabilities in finite domains, developed in [14], which
states that after successive reflections of the instability waves on the downstream and upstream
walls, the local amplitude of a given wave cannot increase in time. This leads to a quantization
mechanism of the frequency band and hence explains the amplification of nonharmonic modes.
Which modes are selected from the discrete set of frequencies however could not be determined
by their analysis. Reference [15] very recently showed that in the squared cavity two successive
bifurcations lead to two limit cycles with different frequencies and different numbers of structures
which propagate along the top of the cavity and circulate in its interior. In contrast, Ref. [16]
accredits the quasiperiodicity of a two-dimensional open cavity flow to the shear layer and discuss
it with respect to the spectrum of the linearized Navier-Stokes operator.

Roughly a quarter century prior to that work, Ref. [17] analyzed the fluctuations of the
reattachment length of a confined jet. They described a retarded hydrodynamic action, where
the feedback mechanism occurs as a consequence of perturbation introduced by vortex packages
that are advected upstream in the recirculation region. This hypothesis was backed in [18] and
more recently in [12], which suggested that this mechanism is also present in cavity flows where
the impinging shear layer feeds vorticity into the intracavity region. When oscillations are high
enough, this mechanism is discontinuous and vorticity is injected in parcels. These vortex packages
are transported by the intracavity flow, which, depending on the cavity aspect ratio, may adopt
different flow configurations. One of them is a large downstream vortex that may be accompanied
by an upstream vortex. Reference [19] showed for this last flow configuration and by means of
two-dimensional numerical simulations that the vortex packages can circle in a carousel-like manner
inside the downstream large vortex and explained the quasiperiodic flow regime commonly observed
in many incompressible open cavity flows. This carousel flow configuration has been observed also
experimentally in different works such as [20–22].

In this paper we combine the physical arguments of the reflected instability waves in [3] and the
carousel model first introduced in [19] with the nonlinear delayed feedback model proposed in [17].
This approach yields a model for incompressible open cavity flows that, as we will show, correctly
reproduces the experimentally measured power spectra in [21].

The paper is organized as follows. In Sec. II the flow structure, the flow regimes, and the
underlying timescales of the carousel mechanism are described. In Sec. III we introduce the dynamic
model, its parameters, and the involved timescales. The results are presented and discussed in
Sec. IV. In Sec. V a summary is given and conclusions are drawn.

II. FLOW DESCRIPTION

We consider a single open cavity flow, schematically depicted in Fig. 1. The cavity has a length
of L = 0.1 m and depth of H with a cavity aspect ratio � = L/H = 2, kept constant throughout
this study. The incoming laminar boundary layer is characterized by the freestream velocity U∞
and the momentum thickness �0. The control parameter, which is varied to obtain different flow
regimes, is the Reynolds number ReL = U∞L/ν, defined in terms of the freestream velocity U∞, the
cavity length L, and the kinematic viscosity ν of the fluid. Following [3], the effective momentum
thickness �eff is defined as the momentum thickness at the streamwise position for which a best
fit (in the least-squares sense) between the experimental and the analytical hyperbolic tangent
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FIG. 1. Sketch of open cavity flow. Flow is from left to right, as indicated by the arrows. See the text for
details.

profile is obtained. The spectral results are represented in terms of the Strouhal number, defined as
StL = f L/U∞, where f is the measured frequency.

A. Timescales

The incoming boundary layer separates at the cavity’s leading edge and forms a shear layer that
spans the cavity and impinges on the downstream cavity edge. Above a critical Reynolds number
the shear layer starts to oscillate periodically at a frequency fshl = 1/Tshl, where Tshl is the shear
layer timescale.

The oscillation is associated with hydrodynamic instability waves that propagate along the cavity
length. Reference [3] discussed in detail the possibility and consequences of the reflection of these
waves at the cavity edges. The analysis of the reflections leads to a set of discrete frequencies
satisfying a compatibility condition, which explains the amplification of nonharmonic frequencies
in open cavity flow. The analysis is based on a downstream traveling Kelvin-Helmholtz-like k+ wave
and on an upstream traveling k− wave, both obtained from a spatiotemporal linear stability analysis.
Figure 1 shows the mechanism schematically. The k− wave perturbs the shear layer upstream in
a delayed feedback with a retardation determined by the celerity of this wave. Thus the upstream
traveling k− wave provides another timescale τ− that will be used in our dynamical model and
discussed in detail in Sec. III C.

Upon impingement on the downstream cavity wall, the fluctuating shear layer regularly injects
small vortex packages into the recirculation region, where they circumvent in a carousel-like manner
and may return to and interact with the incoming shear layer, as described in detail in [19]. As was
found therein, this delayed feedback mechanism is responsible for the complex composition of
the shear layer spectra, commonly found in incompressible open cavity flow [5,6,8,23]. Figure 1
schematically depicts the carousel mechanism in the recirculation region of open cavity flows.
Experimental flow visualizations of open cavity flows and other impinging shear flows that confirm
the carousel mechanism can be found in various works in the literature [5,8,17,22].

The circular movement in the carousel is associated with a period and in consequence a
characteristic time. The turnover time of the circular motion of the recirculation region may be
estimated with Tto = πH/Vcr, where Vcr is the carousel speed. As found in [19], the carousel speed
and hence the turnover time is a function of the Reynolds number and a good approximation is
Vcr = 0.2U∞.

Viscous dissipation governs the duration of the vortex packages. Their lifetime can be estimated
by Tlt ∼ η2/ν, where η is the radius of the small injected vortices and ν the kinematic viscosity of
the fluid. The lifetime of the small vortices Tlt and the turnover time of the recirculation region Tto
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determine if the small vortex packages may return to the shear region and perturb the shear layer,
producing in this way a delayed feedback mechanism.

B. Flow regimes

As the control parameter (here the Reynolds number, even though L/�0 is also commonly used
in the literature) varies, different flow regimes are observed experimentally in incompressible open
cavity flow [6,8,21]. At low Reynolds numbers a steady regime occurs in which the weakness of
the shear layer oscillation leads to the lack of injected vortex packages and hence to the absence
of the carousel mechanism. A periodic regime, where a single frequency peak dominates the power
spectrum, is reached when the shear layer starts to oscillate and as a consequence injects small
vortex packages into the cavity. In this case either (i) the carousel feedback mechanism is too weak
to take effect (Tlt < Tto) or (ii) the carousel mechanism is strong enough (Tlt � Tto) but synchronized
with the shear layer. The periodic regime can hence be understood as the result of (i) the absence of
coupling or (ii) the synchronized coupling between the linear instability and the nonlinear delayed
feedback. A quasiperiodic regime is found when for Tlt � Tto the carousel becomes desynchronized
with the shear layer. Hence, the quasiperiodic regime can be understood as the result of the
desynchronized coupling between the linear instability and the nonlinear delayed feedback [19].
Note that large modifications of the aspect ratio of the cavity may lead to flow configurations that
do not agree well with the scenario we describe.

III. MODEL

A. Motivation for the model

To analyze the origin of the complex spectra of a shear layer of a cavity flow it is convenient to
recall that at a given point a free shear layer oscillates with a constant amplitude. The complexity
we observe in the cavity is related to the existence of a free shear layer interacting with walls in its
proximity and with the intracavitary flow. This interaction introduces perturbations to the flow that
extend to the region of the onset of the shear layer instability and generate a time delay.

The dynamic model we propose includes the mechanism of interaction of the shear layer with
the carousel. The shear layer dynamics, however, is not only affected by this retarded action. Also
the finiteness of the system and the consequential reflection of waves have to be included.

Thus the dynamical system considered here is composed of two interacting oscillators: the
oscillating shear layer with reflecting walls and the vortex carousel, as schematically depicted in
Fig. 1. Each system has a distinct time lag: τ1 is the reflecting wave time delay and τ2 is the
carousel’s time delay. If only one oscillator is considered it is not possible to generate spectra with
nonharmonic peaks.

Reference [17] analyzed a confined jet and denoted by A(t ) the amplitude of the shear layer
instability at one point of its development in the cavity. We propose here to indicate with A(t ) the
amplitude of the shear layer instability at a point close to the impingement edge. Following [17], we
propose to describe its time evolution in the form

dA(t )

dt
= rA(t ) −

∫ ∞

0
[μ|A(t − t ′)|2 f1(t ′) + κ|A(t − t ′)|2 f2(t ′)]dt ′A(t ). (1)

The parameter r represents the usual instability growth rate, while μ and κ stand for the sensitivities
to the respective timescales τ1 and τ2. The parameter μ is associated with the shear layer, while κ

is associated with the vortex carousel. In both convolution products, the memory functions f1,2(t ′)
modulate the time-delayed actions of the nonlinear term |A(t − t ′)|2. The form of both memory
functions can be elaborated on physical grounds. For instance, their maxima must be respectively
found at t ′ = τ1 and t ′ = τ2 as they correspond to the mean return times of active saturating wave
packets convected upstream to the cavity leading corner. These wave packets are spatially extended
and may be active during a finite time σ1,2, spreading around the mean return times τ1,2. The
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most natural shape for f1,2(t ′) could therefore be a Gaussian function, which naturally expresses
spreading of variance σ1,2 and locality around the mean return times τ1,2. As pointed out in [17], the
spatial nature of the flow is included in the formulation of the instability dynamics via the spatial
meaning of τ1,2 and σ1,2. In the same spirit of [17], the problem can be further simplified by only
considering the infinitely localized time-delayed action of the wave packets, when the spreading
timescales are considered small compared to the cavity length σ1,2 � τ1,2. In such a case, f1,2(t ′)
reduce to the Dirac δ functions f1,2(t ′) = δ(τ1,2) and Eq. (1) is rewritten

dA(t )

dt
= rA(t ) − [μA(t − τ1)2 + κA(t − τ2)2]A(t ). (2)

In the forthcoming part of the paper, we shall make use of this simplified form (2) of the model
equation.

An alternative approach was proposed in [24], which considered two open flows: the wake of a
cylinder and an open cavity flow. For the wake flow and when the Reynolds number is slightly above
the critical Reynolds number (threshold of the vortex shedding), the authors derived from Navier-
Stokes equation a scalar Stuart-Landau amplitude equation with three complex parameters. They
showed that these parameters converge numerically to constant values when estimated considering
large downstream domains (at least 50 diameters). Based on the wake flow analysis, the authors
proposed to apply a similar equation to describe the dynamics of open cavity flows. In the present
work we prefer to pose the amplitude equation considering a bounded domain and the physics
associated with the feedback mechanisms imposed by the walls. These are expressed in Eq. (2) by
the time-delay constants.

B. Linear stability analysis of the amplitude equation

Reference [17] studied the time-delayed equation (2) with κ = 0 (single feedback mechanism).
In that case the trivial solution A0 = 0 is found to be exponentially divergent, while the fixed point
at A0 = √

r/μ is unstable when rτ1 > π/4. In this condition a small increment of A(t ) produces a
monoperiodic oscillation of the value of the amplitude whose frequency is determined by nonlinear
effects. Reference [17] found that the period of the oscillations, when rτ1 � π/4, is a function of r
and τ1 in the form

TA � τ1

(
2 + (1 − β )2

1 − β2
exp[2(1 − β2)rτ1]

)
, (3)

with β � 0.45. Considering this value, the period of the oscillations is TA � 3.4τ1. In terms of our
problem, the solution at the fixed point A0 corresponds to a condition in which the peak amplitudes
of the fluctuations of the shear layer are not constant but oscillate in time around a constant value
equal to

√
r/μ with a period of oscillation equal to TA.

When Eq. (2) contains two delay times, the system exhibits three fixed points, namely, A01 = 0
and A02,3 = ±√

r
μ+κ

. The state of the system cannot be stable as soon as r > 0, since the evolution
equation of a small increment δA(t ) around A01 = 0 is, to leading order in δA(t ),

d

dt
δA(t ) = rδA(t ), (4)

which is for r > 0 exponentially divergent. The other fixed points A02,3 are unstable under special
restrictions. For a small perturbation around A02,3 we obtain, from Eq. (2), to leading order in δA(t ),

d

dt
δA(t ) = −2r[μδA(t − τ1) + κδA(t − τ2)]

μ + κ
. (5)

For κ = 0 we recover the results for a single delay time as considered in [17]. Applying the
normal mode ansatz, we seek solutions in the form δA(t ) = δ(A0est ), where s = ωr + iωi is in
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general a complex number. From Eq. (5) we obtain

ωr = − 2r

μ + κ

[
μ cos(ωiτ1)e−ωrτ1 + κ cos(ωiτ2)e−ωrτ2

]
,

ωi = 2r

μ + κ

[
μ sin(ωiτ1)e−ωrτ1 + κ sin(ωiτ2)e−ωrτ2

]
. (6)

Considering these equations, we can easily obtain the following set of conditions for which the
system becomes unstable (ωr > 0):

rτ1 � π

4
, rτ2 � π

4
. (7)

The solution at the fixed points A02,3 corresponds to a situation in which small increments of the
amplitude A(t ) produce oscillations of the value of the amplitude that are not monoperiodic.

C. Time delay for the shear layer

Reference [3] showed, by means of a spatiotemporal linear stability analysis, that two branches
of modes are involved in the selection mechanism of the self-sustained shear layer oscillations, de-
pending on whether the wave travels forward (the so-called k+ branch) from x = 0 to x = L or back-
ward (the k− branch). The k+ (forward) branch is associated with Kelvin-Helmholtz-like modes,
mainly shaped in the shear layer, whose celerity c+ is the shear layer mean velocity Ū � U∞/2.
The k− (backward) branch has unusual features, since the normal modes are shaped in both the
outer and the inner flow, and the celerity c− increases with the mode frequency from values of
the order of c+ at the lowest (cutoff) frequency up to the sound celerity at large frequencies. The
distance between the two cavity walls selects a discrete set of allowed frequencies and imposes a
condition on �k = �(k+ − k−) that must be an integer multiple of π/L, according to the Ref. [14]
condition.

Given the large differences between these celerities (see Figs. 11 and 12 in [3]), we observe that
the wave propagating downstream has associated with it a characteristic forward time τ+ ≡ L/c+
much larger than the one of the wave propagating upstream with a backward time τ− ≡ L/c−. In the
semiempirical [10] model, the backward wave is acoustic and propagates at the speed of sound cs

and hence τ− = L/cs. In the incompressible limit, the acoustic waves have τ− ≡ 0 and the backward
feedback is instantaneous.

Considering that the feedback is produced by the reflection of perturbations on the downstream
wall, we have at our disposal three possible reference time delays, based on the Kelvin-Helmholtz
instability with τ+, based on the total feedback loop with τ+ + τ− > τ+, or based on the backward
traveling wave alone with τ−. Only the latter time delay τ− appears to be consistent with the model.
We will return to this point in the discussion in Sec. IV.

D. Time delay for the inner flow

In this section we show how the delayed action of the small vortex structures in the recirculation
region is included in the model. This problem is quite similar to the confined jet flow problem with
which the nonlinear saturated delayed model was tested in [17]. In that case the feedback on the
incoming shear layer was produced by single turbulent packets, shed at the reattachment point of
the wall and convected upstream by the backflow of the recirculation bubble. In our case, in contrast,
the position of vortex shedding is fixed (downstream cavity edge) and the considered flow regimes
are not turbulent. Therefore, the flow in the recirculation region is much more organized and an
arrangement of a set of vortices can be established.

As mentioned in Sec. II, this feedback mechanism may produce significant effects only when
the lifetime Tlt is long enough to allow these structures to return to the proximity of the shear layer.
If the time Tlt is very short compared to the turnover time of the recirculation region Tto, then the
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TABLE I. Model parameter values for all cases LH20–LH25. Theoretically computed values are given in
parentheses.

Case ReL U∞ �eff r μ κ α 1/τ1 1/τ2

LH20 15 000 2.250 1.296 95.6 (56) 720.4 251.6 0.35 96.9 (99) 11.1 (11)
LH21 14 530 2.180 1.325 85.8 (66) 101.5 37.1 0.37 93.1 (94) 10.8 (11)
LH22 12 650 1.898 1.425 80.0 (53) 61.3 29.0 0.47 85.8 (79) 8.9 (10)
LH23 11 430 1.715 1.525 73.3 (51) 559.6 183.9 0.33 73.2 (70) 8.0 (9)
LH24 9190 1.379 1.675 48.5 (37) 51.2 20.0 0.39 57.9 (54) 6.0 (7)
LH25 6610 0.992 1.975 38.0 (20) 138.5 79.2 0.57 42.1 (38) 4.03 (5)

parameter κ has to be set equal to zero in Eq. (2). In this case no quasiperiodic dynamics can be
obtained for any set of parameters.

Let us now analyze the case when Tlt is long enough to produce a feedback mechanism (κ 
= 0).
The time delay τ2 is calculated based on the carousel feedback mechanism introduced in [19]
according to τ2 = 2π/ωT nv , where nv is the number of recirculating vortices and ωT = Vcr/(H/2).
The carousel speed is approximated by Vcr ≈ 0.2U∞, as proposed in [17] and confirmed in [19]. The
number of recirculating vortices depends on the lifetime of the vortex, on the angular velocity of the
carousel, and on the frequency of feeding of vortex packages from the shear layer (or equivalently
the frequency of oscillation of the shear layer).

E. Instability growth rate and sensitivity parameters

The temporal instability growth rate r may be obtained from a spatiotemporal linear stability
analysis, whose details can be consulted in [3]. The sensitivity parameters μ and κ are calculated
from the temporal growth rate r and an initial estimated value Ag of the symmetrical fixed points
A02,3 , according to

μ = 1

1 + α

r

A2
g

, κ = α

1 + α

r

A2
g

, (8)

as follows from the linear stability calculations in Sec. III B. The initial estimation of Ag is taken
as the rms of the experimental time series. The parameter α = κ/μ defines the influence of the
interplay of the two feedback mechanisms. If α is too small, no feedback occurs, while if α is very
high, the feedback becomes too strong. As reported in [19], this may destroy the carousel and chaotic
behavior follows. Reasonable working values for α were found in the range 0.3 � α � 0.6. It may
be of interest in some cases to improve the estimation of the values of α and Ag and time constants.
An optimization algorithm was therefore applied and is presented in the following section.

F. Parameter estimation based on minimization of a norm

The parameter set {r, μ, κ, τ1, τ2} is now estimated by means of an optimization algorithm,
which minimizes the L2-norm of the difference between the logarithmic power spectra from the
delayed feedback model and the power spectra calculated from experimental time series of the
normal velocity component measured by laser Doppler velocimetry (LDV):

‖ln[Â(StL )] − ln[v̂(StL )]‖2. (9)

In order to put the emphasis on main shear layer peaks, the Strouhal numbers are restricted to
0.3 < StL < 5, according to the time series considered. The values calculated in the preceding
section, given in parentheses in Table I, are used as initial conditions for the minimization algorithm.
When the time series are long enough to satisfy the frequency resolution requirement and yield a
converged statistics, a good estimator of the power spectrum is given by Welch’s method. Recalling
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that the norm has to be computed at each iteration of the minimization, we have used instead an
estimator based on the Yule-Walker autoregressive method, which allows a fast and good estimation
of the power spectral density even computed on short time series.

The convergence to a good minimum is obtained by taking into account the constraints imposed
by the fixed point relationship (8) between the parameters r, μ, and κ . We consider solutions with
values of r close to those provided by the instability analysis. The four parameters α, Ag, τ1, and
τ2 are given at the end of the minimization process. The search for the minimum of the norm is
accomplished using a MATLAB function based on the Nelder-Mead simplex direct search, while
Eq. (2) is solved using the MATLAB function dde23 for delay differential equations with constant
delays.

IV. RESULTS AND DISCUSSION

A. Results of parameter estimation

Based on the physical arguments outlined in Sec. III, the model parameters were calculated for
six cases whose spatiotemporal linear stability properties were investigated in the same geometry
in [3]. The optimization algorithm from Sec. III F was subsequently applied to estimate α and refine
the remaining three parameters r, τ1, and τ2.

The theoretical predictions, together with the values adopted by the optimization algorithm
(cf. Sec. III F), are summarized in Table I. They are in good agreement and are, except for the
growth rate r, only slightly adjusted by the optimization algorithm. The theoretically predicted
growth rates from the inviscid spatiotemporal stability analysis [3] are in all cases within the same
order of magnitude, but up to 90% lower than the optimized values.

In all cases the values of the adapted parameters comply with the condition obtained from the
linear stability analysis in Sec. III B, according to which the system becomes unstable for rτ1 > π/4
and rτ2 > π/4, respectively. Exemplary for the case LH21, the calculations of the parameters are
detailed in the Appendix.

B. Comparison to experimental data

We will now compare the results obtained from the nonlinear delayed feedback model with
experimental data from [5,6]. Figures 2(a)–2(f) show the experimentally measured time series of
the streamwise velocity component v(t ) from [5,6]. Figures 2(g)–2(l) depict the time series of the
instantaneous amplitude of the shear layer instability A(t ), obtained from the nonlinear delayed
feedback model. Figures 2(m)–2(r) compare the power spectra, computed from both time series,
using Welch’s method. The proposed model successfully reproduces the amplified frequencies of
the different experimental cases, as can be seen from Figs. 2(m)–2(r). The dominant frequency
peaks of both the quasiperiodic cases (LH20–LH23 and LH25) and the periodic case (LH24) are
correctly reproduced by the cavity model. At first glance the model’s result of the case LH25 seems
to amplify too many peaks. A closer look at the experimental spectrum in Fig. 2(r) however shows
that most of the predicted peaks are actually present in the experimental data. While some peaks
only slightly emerge from the background, a few others are probably lost within the background
level.

The main difference between the experimental spectra and the analytic spectra is concerned with
the hierarchy of the different harmonics. In particular, the model tends to amplify the subharmonic
f2/2 of the nonharmonic peak somewhat stronger, while experimentally the peak at f2 is more
amplified. This is in agreement with the two-dimensional numerical simulations in [19], where
the same behavior was observed. On these grounds it may be assumed that a physical process,
most likely related to spanwise dynamics and therefore not included in our model, is responsible
for shifting the energy from f2/2 to f2. Unsurprisingly, the background levels are very different
because the dynamics of the model is much simpler and less noisy than the actual three-dimensional
cavity flow dynamics. Also, the low-frequency content, which, as shown in [25], results from a
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FIG. 2. Results for all cases in Table I. (a)–(f) Time series of LDV velocity measurements in the real flow.
(g)–(l) Time series from the nonlinear delayed feedback model. (m)–(r) Comparison of experimental power
spectra (black curve), computed from the time series in (a)–(f), and power spectra from the delayed feedback
model (gray curve), computed from the time series in (g)–(l), for all cases in Table I. Horizontally dashed lines
in (g)–(l) indicate the value of the stable fixed point.
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nonlinear interaction between the shear layer and the spanwise dynamics, is not present in the
model’s power spectrum. The two-dimensional flow we consider does not allow for the development
of spanwise inner-flow structures, whose characteristic timescales are slow compared to the shear
layer oscillations. The resulting low-frequency components modulate the dominant frequencies and
significantly enlarge the otherwise thin peaks associated with the shear layer oscillations. These
inner-flow structures develop at Reynolds numbers much smaller than the onset of the shear layer
oscillations. As a consequence, experimental spectra of activated three-dimensional cavity flow
always exhibit broad peaks in the power spectrum.

As mentioned in Sec. III C, the value of τ− provides the appropriate reference time for the
time delay τ1. This means, therefore, that τ1 characterizes the upstream traveling hydrodynamic
instability wave k− and hence the feedback of the reflected shear layer instability. It is the
hydrodynamic equivalent of the acoustic wave from the Rossiter mechanism. This is a different
viewpoint on the cavity problem, made possible by the spatiotemporal linear stability analysis
in a finite domain by [3]. The second delay time τ2 is motivated by the hydrodynamic feedback
of the recirculating vortices (carousel feedback mechanism) first proposed in [19]. This second
delayed feedback was found to be indispensable for quasiperiodic motion to be obtained from
the nonlinear delayed feedback model. On the other hand, a periodic flow regime can still be
observed even if the carousel feedback is present (κ 
= 0 or for that matter α 
= 0). The case LH24
exemplifies such a scenario. The dynamics of the shear layer and the carousel synchronize and
using the terminology of [19], the ratio of the characteristic timescales of both phenomena yield
Tto/Tshl = p/q, with p, q ∈ N. Note that in the present model we only consider the characteristic
feedback delay times and therefore there is no reason to take Tshl for τ1. Additional evidence that in
the periodic case LH24 the carousel is not absent but only locked in with the shear layer is that for
the lower-Reynolds-number case LH25 a quasiperiodic motion is recovered. The value of α, i.e., the
parameter, which governs the influence of the carousel mechanism, however, is of the same order
of magnitude (0.3 < α < 0.6) in all cases, which supports the hypothesis that for the periodic case
the carousel mechanism is active but locked in with the shear layer.

C. Rossiter’s mechanism revisited

As mentioned in the Introduction, in compressible flows over cavities the commonly accepted
feedback mechanism is of acoustic type, as proposed by Rossiter in [10]. That semiempirical
model assumes a feedback loop between the vortex shedding and the acoustic radiation which is
created upon impingement of the vortices on the downstream cavity edge. The acoustic radiation
travels upstream and initiates the vortex shedding at the leading edge of the cavity, thus closing
the feedback loop. Rossiter’s mechanism, however, is not uncontroversial in the literature and in
recent years the importance of the acoustic feedback at very high Mach numbers (supersonic flows)
as well as very low Mach numbers (incompressible limit) has been debated. Reference [26] tried
to improve Rossiter’s original formula by adding additional terms, while Ref. [27] investigated
high-Mach-number cavity flows and found that, by breaking the acoustic feedback loop, the good
agreement between the measured and the predicted frequencies at high-Mach-number speeds is
largely coincidental and does not reflect the correct modeling of the flow physics. On the other hand,
approaching the incompressible limit, Ref. [28] tried to link the Rossiter mechanism to the results
of a global instability analysis. Those results, however, showed only limited success in reproducing
experimental data. At such low Mach numbers the acoustic wavelength is much greater than the
cavity length and while nonharmonic cavity oscillations prevail, it is unlikely that the flow acoustic
feedback continues being responsible for them. This hypothesis is backed in [29] and more recently
in [21], both of which conducted cavity flow experiments in water and thus confirmed the existence
of cavity edge tones in an essentially incompressible medium.

However, even in the incompressible limit we observe a highly organized flow with well-defined
frequency peaks, which leads us to assume that some kind of feedback mechanism must still
be active. Considering the encouraging results of the present work, together with the findings of
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previous works such as [3,5,8,17,19], we suggest the feedback in incompressible open cavity flow
to be of purely hydrodynamic nature. The equivalent of Rossiter’s upstream traveling sound wave
are the reflected instability wave k−, which is characterized in our model by the delay time τ1, and
the vortex carousel, characterized in our model by the delay time τ2.

V. CONCLUSION

We proposed a mathematical model to account for the different flow regimes commonly observed
in incompressible cavity flows. The nonlinear delayed feedback model proposed in [17] was
reformulated using a double instead of a single feedback mechanism. Two time delays were
introduced, one for the shear layer associated with the reflection of hydrodynamic instability waves
and one for the inner flow associated with the carousel mechanism, in accordance with previous
experimental and theoretical studies. We considered experimental data of open cavity flows in a
wide range of Reynolds numbers of the incompressible limit, corresponding to six experiments
performed in [5,6], and obtained the parameters of the model for each case. Periodic as well as
quasiperiodic regimes were retrieved, leading to power spectra whose dominant frequency peaks are
in good agreement with experimental data in all flow regimes. The results confirm the interaction
and importance of both the carousel feedback mechanism and the reflection of instability waves in
impinging shear flows in the incompressible limit, neither of which were included in Rossiter’s flow
acoustic feedback mechanism.

The nonlinear double delayed feedback model we proposed offers both a coherent explanation
of the phenomenon and a mathematical tool to study its dynamics, and hence further improves our
understanding of open cavity flows in particular and of impinging shear flows in general.
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APPENDIX: EXEMPLARY CALCULATION OF MODEL PARAMETERS

The main focus of this article is on the physics involved in the feedback mechanisms and not in
finding the more adequate methodology of model parameter estimation. We will just show here, for
some exemplary case (LH21), how parameters can be estimated from experimental or numerical
flow data with a less refined approach. We illustrate these aspects, taking into account results
from [3]. Note that article nondimensionalized the governing equations with the mean velocity
U = 0.5U∞ and the effective momentum thickness �eff . The power spectrum shows a dominant
frequency at f1 = 23.6 Hz for which the temporal growth rate

r = −ω̂iU/�eff = 66 (A1)

is calculated from the value of ω̂i = −0.08 (cf. Fig. 9 in [3]), U = 1.09 m/s, and �eff = 1.325 mm.
Note that the negative sign arises from the Cauchy-Riemann relations, which lead to the [30]
transformation.

As mentioned in Sec. III C, the backward traveling k− wave must be considered to determine the
time delay τ1. There are two possible options for calculating τ1. The first option is to calculate it
according to

τ1 = L/c−U = 1
109 , (A2)

where L = 0.1 m is the cavity length and c− ≈ 10 is the nondimensional celerity of the upstream
traveling k− wave (cf. Fig. 12 in [3]). The second option is to calculate τ1 with the help of Eq. (3)
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as proposed by [17]. The period of the dominant oscillation is then approximated by T ≈ 4τ1 as
discussed in Sec. III C. With the expected dominant frequency peak at f1 = 1/T , this yields

τ1 ≈ 1/4 f1 = 1
94 . (A3)

Both methods of calculating τ1 agree within 10%–20%, depending on the case, hence confirming
the correct choice of the reference time τ = τ− we made in Sec. III C. In Table I the value of τ1

according to the second method is given. As outlined in Sec. III D, the time delay τ2 is calculated
based on the carousel feedback mechanism. We obtain

τ2 = 2π/ωT nv = 1
11 , (A4)

where nv = 4 is the number of recirculating vortices and ωT = Vcr/(H/2) = 0.2U∞4/L defines
the carousel rotation speed as given in [19]. Using the calculated values as the starting point, the
remaining parameters were obtained from the optimization algorithm, described in Sec. III F.
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