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ABSTRACT

Lagrangian transport in the dynamical systems approach has so far been investigated disregarding the connection between thewhole state space
and the concept of observability. Key issues such as the de�nitions of Lagrangian and chaotic mixing are revisited under this light, establishing
the importance of rewriting nonautonomous �ow systems derived from a stream function in autonomous form, and of not restricting the
characterization of their dynamics in subspaces. The observability of Lagrangian chaos from a reduced set of measurements is illustrated with
two canonical examples: the Lorenz system derived as a low-dimensional truncation of the Rayleigh-Bénard convection equations and the
driven double-gyre system introduced as a kinematic model of con�gurations observed in the ocean. A symmetrized version of the driven
double-gyre model is proposed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5120625

Themotion of �uid is involved in many natural situations such as
in the atmosphere, oceans, stars where the �uid is charged, many
industrial processes such as in cooler and mixing tanks, and even
in physiology with the blood circulation and ventilation. Under-
standing the motion of �uid particles is, therefore, of primary
importance.A variety ofmixing and transport problems involving
incompressible bidimensional �ows has been undertaken using
a nonlinear dynamics approach, overlooking embedology and
observability issues that are discussed for the �rst time in this
work. When a stream function is written, an analogy between
conservative �ow and bidimensional incompressible �ow can be
exhibited. Interesting features such as chaotic mixing and non-
mixing islands are commonly observed. It is shown here that
such �ows should be investigated in the state space and not only
in the physical space, which is a plane projection of the higher-
dimensional state space. The advantages of working in the whole
state space are illustrated with two paradigmatic examples.

I. INTRODUCTION

The Eulerian and Lagrangian descriptions of the dynamics of a
�uid can be very di�erent.1 In the Eulerian description, the system

under consideration is a control volume of �uid �ow. In this for-
mulation, the space-time coordinates, which reduce to (x, z, t) in a
two-dimensional �uid �ow, are used as independent variables. In
the Lagrangian approach, the system under consideration governs
the motion of the �uid particles; the spatial coordinates (x, z) are
dependent variables and t remains the sole independent variable,
as temporal systems are considered in the dynamical systems the-
ory. The main di�erence between the Eulerian and the Lagrangian
descriptions is that the x- and z-coordinates have a di�erent status.

The connection between Lagrangian transport and the dynam-
ical systems theory is stressed when the �ow is not only two-
dimensional but also incompressible.2 In this case, it is possible to
express the velocity �eld in terms of a scalar �eld, leading to a
stream function 9 . The equations governing the motion of �uid
particles thus take the formof aHamiltonian system, the stream func-
tion playing a role similar to the role of a Hamiltonian function.2–4

Some dynamical properties observed in conservative systems can
also be observed in incompressible two-dimensional �ows and the
Kolmogórov-Arnold-Moser (KAM) theory can be used to under-
stand their dynamics.2–4

Usually, the velocity �eld is time-dependent and so are the equa-
tions governing the motion of �uid particles. The time-dependence
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of the velocity �eld is generally governed by partial di�erential
equations, that is, by an in�nite-dimensional dynamics. It may be
reduced to a few modes by using a Galerkin technique.4 Rather than
explicitly writing the equations governing the dynamics, thesemodes
may be injected as a driving term in the equations governing the
motion of �uid particles. In other words, the dynamical system asso-
ciatedwith themotion of �uid particles is nonautonomous, for which
the state space remains not explicit.5 The advantage of rewriting a
nonautonomous system in an autonomous form is that the classical
tools developed in the context of the nonlinear dynamical systems
theory can be applied without any restriction.We will show that such
autonomous writing helps clarifying concepts as Lagrangian chaos
and chaotic mixing.

According to the nonlinear dynamical systems theory, the
dynamics produced by a system must be ideally investigated in the
state space, that is, in the space spanned by all the variables involved
in the governing equations. In practical situations, all these vari-
ables are only rarely measured, and it is necessary to investigate
the dynamics from a reduced set of measured variables. This was
addressed in the case of geosciences6 and the use of derivatives of
the measured time can allow reconstruct the missing information.7

In particular, determining an optimal set of reducedmeasurements is
important when data assimilationmust be used to recover the needed
information.8,9 It is possible to check that all the required informa-
tion for distinguishing every state of the system is indeed contained
in the measurements by means of the observability matrix,10 that
is, the Jacobian matrix of change of coordinates between the origi-
nal state space and the space reconstructed from the derivatives of
the measured variables.11 There is full observability of the original
space when there is no loss of information in the measurements.
An observability analysis may, therefore, ensure that all the proper-
ties of the dynamics are actually “seen” by the measurements. This
will help us to check whether the variables related to the Lagrangian
description can provide a reliable characterization of the dynamics
or not.

Two benchmark models for two-dimensional incompressible
�uids will be used to illustrate the importance of rewriting the sys-
tems in an autonomous form and of performing an observability
analysis: the truncated solutions of the Rayleigh-Bénard (RB) con-
vection problem12 whose velocity �eld evolves according to the 1963
Lorenz system,13 and the driven double-gyre (DG) equations intro-
duced as a kinematic model inspired in the ocean gyres.14–17 Both
models are de�ned in terms of a stream function. The Lorenz system
belongs to the paradigm of chaos. The driven double-gyre system has
a long history as a simpli�ed Lagrangian transport model18 proved to
produce chaotic behavior.19 It is among the prototypemodels that are
customarily used for testing Lagrangian coherent structure detection
techniques.18,20–23

The subsequent part of this paper is organized as follows.
Section II introduces the de�nitions of Eulerian and Lagrangian
chaos when the system is rewritten in an autonomous form.
Section III is devoted to a Rayleigh-Bénard convection in the context
of a truncation of a Galerkin decomposition. The driven double-
gyre �ow is investigated in Sec. IV where it is shown that it can
be written as a four-dimensional autonomous conservative system.
A symmetrized and further simpli�ed driven double-gyre model is
also proposed in which the symmetry between two adjacent cells is

preserved. Section V gives some concluding remarks. An Appendix
with a brief introduction to observability is provided.

II. EULERIAN AND LAGRANGIAN FORMALISMS AND
STREAM FUNCTIONS

When a dynamical system is governed by a set of equations
where the time explicitly occurs, the system is said to be nonau-
tonomous. This means that some processes involved in the dynamics
are not explicitly described and that the state space is not completely
determined. Working in a space whose dimension is increased by
one setting ṫ = 1 leads to some di�culties for using the tools bor-
rowed from the nonlinear dynamical systems theory—for instance,
the state space is no longer bounded. It is thus strongly recommended
to rewrite the system in an autonomous form to overcome them.
Thismeans that the equations describing the processes governing the
driving term have to be inserted in the governing equations.5 These
remarks are also valid for the nonautonomous di�erential equations

ẋ = V(x, t) (1)

governing the motion of a �uid particle initially located at x(0).
When the velocity �eld is time-dependent, a Galerkin method can
be applied andm-modes be retained for constructing an approxima-
tion. The time-dependence of the velocity �eld is described by the
dynamical system,

γ̇γγ = f (γγγ ), (2)

where γγγ is the vector of m-modes retained in the truncation. Let us
design by V = V(t) ⊂ R

m(γγγ ) the solution to system (2).
Let us now consider a velocity �eld V = V(x, z) where x and z

are the variables spanning the physical space with z the vertical axis.
When the time-dependence of the velocity �eld is made explicit bym
Galerkin modes, the stream function 9 = 9(x,γγγ ) fully determines
the velocity �eld V(x,γγγ ) according to

∣
∣
∣
∣
∣
∣
∣

Vx(x,γγγ ) =
∂9(x,γγγ )

∂z
,

Vz(x,γγγ ) = −
∂9(x,γγγ )

∂x
.

(3)

When the �uid is incompressible, the underlying dynamics is
governed by the system













ẋ =
∂9(xE, zE,γγγ )

∂zE

∣
∣
∣
∣
xE=x,zE=z

= Vx(x,γγγ ),

ż = −
∂9(xE, zE,γγγ )

∂xE

∣
∣
∣
∣
xE=x,zE=z

= Vz(x,γγγ ),

(4)

where xE and zE correspond to a given location of the physical space
as commonly used in an Eulerian description. Algebraically speak-
ing, 9(x,γγγ ) plays the role of a Hamiltonian function if x and z are
considered as playing the role of conjugate variables.24 This analogy
is purely functional (dynamical). The stream function 9 is a con-
stant of motion that preserves the volume in the state space (in the
Liouville sense) as the energy does in a conservative system. Thus,
we will show that, when the m Galerkin modes are governed by a
conservative system (2), the system is actually conservative.
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The nonautonomous dynamical system (1) can be rewritten in
the (m + 2)-dimensional autonomous form

{

γ̇γγ = f (γγγ ),
ẋ = V(x,γγγ ).

(5)

An integration of this system produces the trajectory in R
2(x). The

particle is selected by determining the initial condition x(0). A given
evolution of the velocity �eld V(x,γγγ ) for the particles of a given �ow
is determined by choosing a set of initial conditionsγγγ (0). Notice that
the Lagrangian description is provided by the whole system (5).

An Eulerian description consists in looking at �uid particles
through a given location xE ⊂ R

2(x).1,25 The two components of the
velocity �eld are obtained according to

{

γ̇γγ = f (γγγ ),
VE(t) = ∇ ∧ 999(xE,γγγ ).

(6)

The Eulerian description is, therefore, independent from the spatial
dynamics in R

2(x). The Eulerian description only contains informa-
tion about the dynamics governing the velocity �eldV(x,γγγ )without
any knowledge about the geometry of the �ow.

The presence of a chaotic time-dependence of the velocity �eld
(Eulerian chaos) is not required for Lagrangian chaos to occur, as it
is well-known.3,4,26,27 Since the spatial dynamics is driven by the sub-
system (2), it is not possible to get a nonchaotic motion inR

2(x)with
a chaotic velocity time-dependence.

It is important to distinguish the notion of trajectoryT ⊂ R
2(x)

made of the successive locations visited by a �uid particle from the
solution S(t) ⊂ R

m+2(x,γγγ ) of the system (5): T is a bidimensional
projection of the solution S. As we will see, T can be a closed orbit
even when the solution S(t) is chaotic (Table I).

Investigating the autonomous dynamical system (5), it is now
possible to propose some de�nitions as follows.

De�nition 1. Eulerian chaos: When there is a chaotic time-
dependence for the velocity �eld V(x, γ ), that is, when V ⊂ R

m(γ )

is governed by a chaotic dynamics, then we say that there is Eulerian
chaos.

Remark 1. Eulerian chaos can be obtained if and only if m ≥ 3.
De�nition 2. Lagrangian chaos:When the solutionS ⊂ R

m+2

(x,γγγ ) to the whole system (5) is chaotic, then there is Lagrangian chaos.
Remark 2. Due to the Poincaré-Bendixson theorem, Lagran-

gian chaos can be obtained if and only if m ≥ 1. Since a periodic
solution is at least required for the mode dynamics (2), in practice,
Lagrangian chaos can be obtained if m > 1.

TABLE I. Different types of solution S depending on the nature of the time-depen-

dence V of the velocity V. The cases of the Rayleigh-Bénard (RB) convection and of

the driven double-gyre (DG) are also reported.

V ⊂ R
m(γγγ ) Constant Periodic Chaotic

S ⊂ R
m+2(x, γx, γx, γ ) Constant Periodic Chaotic

Periodic Quasiperiodic
Chaotic

Example DG (m= 2) RB (m= 3)

Remark 3. The chaotic nature of the solutions V and S can be
determined using the techniques borrowed to the nonlinear dynami-
cal systems theory28,29 by working in the space R

m(γγγ ) and R
m+2(x,γγγ ),

respectively.
De�nition 3. Chaotic mixing: Let us consider a velocity �eld

whose asymptotic evolution is determined by the initial conditionsγγγ (0)
at time t0 in a given Poincaré section P. Let a chaotic solution be
S ⊂ R

m+2(x,γγγ ) and Dc ⊂ R
2(x) the domain of the Poincaré section

visited by the solution S such that the volume Vol(Dc) 6= 0. Let
N0 ⊂ Dc, a neighborhood �lled at t0 with particles of a tracer and
let xxx ∈ Dc, Nx ⊂ Dc, a neighborhood of the same volume as N0. Let
P(Nx) be the probability of �nding particles of the tracer in Nx. There
is chaotic mixing if ∀xxx ∈ Dc,

lim
t→∞

P(Nx) ≈
Vol(N0)

Vol(Dc)
. (7)

Remark 4. A chaotic solution S ⊂ R
5(x,γγγ ) can be associated

with a closed trajectory T ⊂ R
2(x) as well as exempli�ed in the �ve-

dimensional Lorenz system (see Sec. III). In that case, Vol(Dc) = 0 and
there is no chaotic mixing.

Remark 5. Chaotic mixing requires Lagrangian chaos but
Lagrangian chaos does not necessarily imply chaotic mixing.

III. SIMPLIFIED RAYLEIGH-BÉNARD FLOW

The classical two-dimensional Rayleigh-Bénard convection in
which cells have a length along the y-axis larger than their heights
along the z-axis is considered here. The velocity �eld was derived
in the Boussinesq approximation.30,31 The widths and the heights of
the cells are adimensionalized in such a way that 0 < x < π and
0 < z < π , respectively. There is a rotation symmetry by π between
two adjacent cells, leading to a clockwise convection for one cell
and a counterclockwise one for the other. The 1963 Lorenz model
is a low-dimensional truncation of the partial di�erential equations

FIG. 1. Trajectories of the fluid particles in the physical space spanned by
variables x and z for a few different sets of coordinates. Parameter values:
R = 28, σ = 10, b = 8

3
, and A =

√
2. Other initial conditions: γ1(0) = 0.1,

γ2(0) = 0.5, and γ3(0) = 0.1.
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describing the velocity �eld of the Rayleigh-Bénard problem. The
three variables spanning the mode space are γ1 for the intensity
of the convection motion, γ2 for the di�erence in the temperature
between the left and the right sides of a convection roll, and γ3 for the
di�erence from the linear pro�le of temperature observed without
convection.32 The 1963 Lorenz model governs the time-dependence
of the velocity �eld V(x,γγγ ). The three variables γi (i = 1, 2, 3) are
related to the stream function 9 and the temperature gradient
δT as33

∣
∣
∣
∣

9 = Aγ1 sin(x) sin(z),

δT = Aγ2 cos(x) sin(z) − γ3 sin(2z).
(8)

Using the relationships between the stream function 9 and the
velocity V , the Lagrangian form of the truncated Rayleigh-Bénard

system can be written as the �ve-dimensional autonomous system,














γ̇1 = σ (γ2 − γ1),

γ̇2 = Rγ1 − γ2 − γ1γ3,

γ̇3 = −bγ3 + γ1γ2,

ẋ = Aγ1 sin(x) cos(z),

ż = −Aγ1 cos(x) sin(z),

(9)

where A =
√
2; R, σ , and b are the parameters of the 1963

Lorenz system.13 The three-dimensional mode dynamics drives
the two-dimensional spatial dynamics. The state space associated
with this �ve-dimensional Lorenz system is spanned by the vector
000 = (x, z, γ1, γ2, γ3) = (x,γγγ ) ∈ R

5.
The Jacobian matrix of the system (9) reads as

J =








−σ σ 0 0 0
R − γ3 −1 −γ1 0 0

γ2 γ1 −b 0 0
A sin(x) cos(z) 0 0 Aγ1 cos(x) cos(z) −Aγ1 sin(x) sin(z)

−A cos(x) sin(z) 0 0 Aγ1 sin(x) sin(z) −Aγ1 cos(x) cos(z)







. (10)

The trace of this Jacobian matrix is

Tr(J) = −(σ + 1 + b) + Aγ1 cos(x) cos(z) (1 − 1)
︸ ︷︷ ︸

=0

. (11)

The spatial dynamics governing the trajectories of the �uid parti-
cles is, therefore, conservative, while the three-dimensional mode
dynamics is dissipative. The entire system should be considered as
semidissipative (or semiconservative).5

If one sets x = xE for the location of an Eulerian description, one
gets a time series, which is equivalent (modulo a similitude) to the
mode γ1 of the 1963 Lorenz system (according to the �rst equation
of [8)]: the solution V(xE,γγγ ) to the dynamics underlying the Eule-
rian description is, therefore, chaotic. When the motion of a given
�uid particle is investigated in the spaceR

2(x, z), the trajectoryT is a
closed curve (Fig. 1). Nevertheless, sinceV is chaotic,S is necessarily
chaotic too.

When a state portrait is reconstructed from the variable x using
derivative coordinates,34,35 the chaotic nature is unveiled (Fig. 2). In
fact, a continuum of chaotic attractors is observed: such a property
is speci�c to semidissipative systems.5 A �uid particle �ows along a
closed trajectory T, which is visited in a chaotic way: the velocity
is chaotically modulated. For each closed trajectory T in the space
R

2(x), there is one chaotic attractor inR
5(x,γγγ ): onemay switch from

one attractor to the other only by changing the initial conditions x(0)
and z(0), as shown in Fig. 2. Themotion of �uid particles is, therefore,

chaotic and there is Lagrangian chaos, but there is no chaotic mixing
since Dc = 0 in the Poincaré section projected in the physical space,

PL ≡
{

(xn, zn) ∈ R
2 | γ3,n = R − 1, γ̇3,n > 0

}

. (12)

An introduction to observability analysis can be found in the
Appendix. Let us now perform this analysis on the �ve-dimensional
system (9). Since the mode dynamics drives the spatial compo-
nent, measuring only γi (i = 1, 2, 3) would lead to a null observ-
ability of R

5(x,γγγ ). Contrary to this, one could expect quite a good
observability when the variables x and z are measured. From these
measurements, two possible reconstructed spaces are spanned by

8x3z2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

X1 = x,
X2 = ẋ,
X3 = ẍ,
X4 = z,
X5 = ż,

and 8x2z3 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

X1 = x,
X2 = ẋ,
X3 = z,
X4 = ż,
X5 = z̈.

where, for instance, the state vector X = x3z2 = (x, ẋ, ẍ, z, ż). The
Jacobian matrix J

8
x3z2

of this coordinate transformation corre-

sponds to the observability matrix.11 A full observability of the orig-
inal state space from x and z would mean that any pair of di�erent
states such that0001 6= 0002 in the original state space are distinguished
in the reconstructed space, that is, X1 6= X2. A full observability cor-
responds to a full rank observability matrix or, equivalently, to Det
J

8
x3z2

6= 0 for any state. For instance, the Jacobian matrix

J
8
x3z2

=








0 0 0 1 0
A sin(x) cos(z) 0 0 Aγ1 cos(x) cos(z) −Aγ1 sin(x) sin(z)

A sin(x)[2Aγ1 cos(x) − σ cos(z)] Aσ sin(x) cos(z) 0 Aσ(γ2 − γ1) cos(x) cos(z) + A2γ 2
1 cos(2x) −Aσ(γ2 − γ1) sin(x) sin(z)

0 0 0 0 1
−A cos(x) sin(z) 0 0 Aγ1 sin(x) sin(z) −Aγ1 cos(x) cos(z)
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FIG. 2. Trajectories of two different fluid
particles (two different sets of initial con-
ditions) in two plane projections of the
state space reconstructed from variable x
by using derivative coordinates. Parame-
ter values and other initial conditions as in
Fig. 1.

has a null determinant: this means that the �ve-dimensional Lorenz
dynamics cannot be adequately observed in the physical subspace
from the trajectory of one �uid particle in R

2(x). Note that none
of the variables o�ers a good observability alone of the original
state space R

5(x,γγγ ). Variables γi (i = 1, 2, 3) are necessarily asso-
ciated with a null observability of the state space since they do
not have information about the spatial variables. As explained in
the Appendix, a symbolic observability coe�cient δ greater than
0.75 means that the observability is su�ciently good for a reli-
able analysis.36 The two spatial variables have a very poor observ-
ability since their associated symbolic observability coe�cients are
δx5 = δz5 = 0.06, where x5 means that the vector used to recon-
struct the phase space is made of the �ve Lie derivatives of x, that
is, of variable x and its �rst four time derivatives (see Ref. 37 for
more details). It is necessary to measure at least three variables for
providing a good observability: for instance, the space spanned by

X = (γ1, γ̇1, γ3, x, ẋ) is associated with a symbolic observability coef-
�cient δγ 2

1 γ3x
2 = 0.84. It is indeed required tomeasure some variables

of the subspace R
3(γ1, γ2, γ3) to perform a reliable analysis of the

dynamics.
In the Eulerian approach, a position xE = (xE, zE) is chosen and

the second equation of the system (5) is no longer meaningful. In the
case of the �ve-dimensional Lorenz model (9), the Eulerian velocity
is governed by the system

{

VxE = Aγ1(t) sin(xE) cos(zE),
VzE = −Aγ1(t) cos(xE) sin(zE),

(13)

where γ1(t) is solution to the three-dimensional Lorenz subsystem.
There is no analytical expression for γ1(t) since the behavior is
chaotic for the chosen parameter values. It clearly appears that the
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Eulerian velocity is then governed by the three-dimensional Lorenz
dynamics.

IV. THE DRIVEN DOUBLE-GYRE FLOW

Let us consider the driven double-gyre �ow corresponding to
two adjacent convection cells as in the Rayleigh-Bénard convection
but in which a lateral oscillation

g(x, γ1) = γ1(x − 2) (14)

of the roll pattern is inserted. Contrary to the light perturbation
inserted by Solomon and Gollub,38 here this is a strong perturba-
tion that is applied.18 The stream function of the driven double-gyre
system is given by

9(x, z, γ1) = A sin
(

πx
[

(1 + g(x, γ1)
])

sin(πz). (15)

It de�nes a cellular �ow with boundaries free of shear stresses. Due
to the quadratic term γ1x

2 introduced by perturbation (14), the nat-
ural symmetry observed between two adjacent convection cells is
broken in this double-gyre system. To restore the natural symmetry
associated with a Rayleigh-Bénard convection, we derived a simple
fully symmetrized variant of the equations that govern the driven
double-gyre �ow in Sec. IV B.

Here, the perturbation corresponds to a periodic forcing applied
to the velocity �eld. This forcing term is responsible for the di�usion
of �uid particles from one cell to the other. This model is a simpli�-
cation of a double-gyre pattern that occurs frequently in geophysical
�ows.18,39,40

The driving term γ1 = η sin(ωt) is the solution to the second-
order di�erential equation

γ̈1 + ω2γ1 = 0, (16)

where the amplitude η is de�ned by the initial conditions
∣
∣
∣
∣

γ1(0) = 0,
γ2(0) = ωη.

(17)

This is a one degree of freedom oscillator whose energy is con-
stant. Since a plane is required for drawing a period-1 orbit, the two
dimensions must be kept for the analysis.

From the stream function 9(x, z, γ1), the governing equations
are de�ned according to Eq. (4); combined with the driving process
(16), we get the four-dimensional dynamical system













γ̇1 = γ2,
γ̇2 = −ω2γ1,
ẋ = −Aπ sin (πx [1 + γ1(x − 2)]) cos(πz),
ż = Aπ (2γ1 [x − 1] + 1)

× cos (πx [1 + γ1(x − 2)]) sin(πz),

(18)

where the driving term γ1 is explicitly described. System (18) corre-
sponds to the driven double-gyre rewritten in an autonomous form.
The corresponding state space is thus spanned by the four variables
x, z, γ1, and γ2. Notice that the velocity of the �uid particle does
no longer contribute to determining its state as previously seen. The
trace of the Jacobian of system (18) is null: the �uid particles are,
therefore, governed by a four-dimensional autonomous conservative
system.

The time-dependence of the velocity �eld is purely periodic
as characterized by the di�erential equation (16). The special way
the perturbation function g(x, γ1) is constructed is responsible for
the chaotic mixing. When the perturbation is removed (η = 0), the
�uid particles describe closed trajectories that are visited periodically.
When η > 0, the trajectories are no longer closed and correspond to
chaotic motions when the �uid particles visit the neighborhood of
the boundary between two adjacent cells; themotion is quasiperiodic
otherwise.

A. Dynamical analysis

A numerical integration of system (18) from appropriate initial
conditions leads to the chaotic behavior shown in Fig. 3.

The �ow is developed within the intervals x ∈ [0, 2] and
z ∈ [0, 1]. It is possible to center the �ow in order to simplify the gov-
erning equations without changing the dynamics. This is obtained
by applying the coordinate transformation (x, z) 7→ (X + 1,Z + 1

2
),

leading to










γ̇1 = γ2,
γ̇2 = −ω2γ1,
Ẋ = −Aπ sin

(

π
[

γ1X
2 + X − γ1

])

sin(πZ),

Ż = −Aπ (2γ1X + 1) cos
(

π
[

γ1X
2 + X − γ1

])

cos(πZ).

(19)

The trajectory is now bounded by the 2 × 1 rectangle centered
around the origin of the state space R

4(X,γγγ ). The singular points
of system (19) are de�ned by

∣
∣
∣
∣
∣
∣
∣

γ1 = 0,
γ2 = 0,
sin(πX) sin(πZ) = 0,
cos(πX) cos(πZ) = 0,

(20)

leading to

X1 =

∣
∣
∣
∣
∣
∣

X1 = k,

Z1 = ±
k

2
,

and X2 =

∣
∣
∣
∣
∣
∣

X2 = ±
k

2
,

Z2 = 0,
(21)

where k ∈ N. In the subspace R
2(γγγ ), the eigenvalues are λ3,4 = ±iω,

thus de�ning a center in the γ1-γ2 plane. This is true for all the
singular points. Points X1 are of the saddle-center type since associ-
ated with the eigenvalues λ1,2 = ±π 2A in the X-Z plane. Points X2

FIG. 3. Chaotic behavior produced by the driven double-gyre system (18). Param-
eter values: A = 0.1, and ω = π

5
. Initial conditions: x(0) = 1, z(0) = 0.5,

γ1(0) = 0, and γ2(0) = 0.0628009.
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FIG. 4. Locations of the eight singular points in the X -Z plane.

are of the center-center type since associated with the eigenvalues
λ1,2 = ±iπ 2A.

The state space is, therefore, bounded as drawn in Fig. 4. This
four-dimensional autonomous conservative system is investigated
using the Poincaré section

P ≡
{

(Xn,Zn, γ2,n) ∈ R
3 | γ1,n = 0, γ2,n > 0

}

. (22)

Since the system is conservative, the behavior strongly depends
on the initial conditions. As commonly observed in conservative
systems,41 there is a chaotic sea surrounding regular islands which
are centered around

XA =
∣
∣
∣
∣

XA = ±0.59,
ZA = ∓0.38,

and XB =
∣
∣
∣
∣

XB = ±0.48,
ZB = ∓0.08,

(23)

that is, around period-1 points (Fig. 5). In the Poincaré section, since
γ1 = 0, there is a central symmetry with respect to the origin of the
state space. It is, therefore, possible to obtain the symmetric of a given

FIG. 5. Poincaré section of the centered driven double-gyre system (19) for
various initial conditions. A chaotic sea surrounds the symmetry-related regular
islands A and the symmetry-related regular islands B. Parameter values:A = 0.1,
and ω = π

5
. Other initial conditions: γ1(0) = 0 and γ2(0) = 0.0628009.

island by applying the matrix

I =






−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




 , (24)

which de�nes the inversion symmetry with respect to origin of the
state space.42

The resulting Poincaré section is shown for various initial con-
ditions in Fig. 5. In islands A, there are only period-1 tori whose
Poincaré sections are characterized by a single annular structure. Two
of them are shown in Fig. 6(a). One is the symmetric of the other, at
least in the Poincaré section. In islands B, it is possible to observe tori
with two annular structures in the Poincaré section; the trajectory
visits the second structure before returning to the �rst one. Two such
tori are shown in Fig. 6(b). Around islands B, there are period-3 tori

FIG. 6. Examples of quasiperiodic motions produced by the driven double-gyre
system (19). Same parameter values as in Fig. 5.
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(in green in Fig. 5): the trajectories visit the two other annular struc-
tures once before returning to the �rst one [Fig. 6(c)]. Around islands
B, there are also islands of period-5 tori (not shown), surrounded by
the chaotic sea, with only a very tiny chaotic band separating these
two types of islands.

The state space associated with the driven double-gyre system
(19) is spanned by the state vector 000 = (X,γγγ ). For assessing the
observability of the state space, the symbolic observability coe�-
cients are computed from the symbolic Jacobian matrix

J
sym
DG =







1̄ 1̄ 1̄ 0
1̄ 1̄ 1̄ 0
0 0 0 1
0 0 1 0






, (25)

where 1 designates a constant element Jij of the Jacobianmatrix of sys-
tem (19) and 1̄ a nonconstant element. When the reconstructed vec-
tor is made of the four Lie derivatives ofX, the symbolic observability
coe�cient is δX4 = 0.17. An equal symbolic observability coe�cient
is found when the variable Z is the only measured variable. The
determinant of both observability matricesOX4 andOZ4 is very com-
plicated, thus con�rming the poor observability of the original state
space when either X or Z is the sole measured variable.

An additional insight is providedwhen a di�erential embedding
is constructed by using the Lie derivatives of the measured variable.
The space reconstructed from the variable X presents an inversion
symmetry, thus allowing to easily distinguish the left from the right
sides [Fig. 7(a)]. Such a possibility is not provided by the variable Z,
which leads to a single “leaf” attractor [Fig. 7(b)]. It is known that an
observability analysis is not sensitive to symmetry property.43

When a Poincaré section is de�ned as

Ps =
{

(sn, ṡn, s̈n) ∈ R
3 | ṡn = 0, s̈n > 0

}

, (26)

where s = X or s = Z, then islands observed in the original state
space (Fig. 5) are not detected because the regular islands are only
well-identi�ed in a Poincaré section taking into account the period of

the driving term. This shows how sensitive to the choice of measure-
ments are some speci�c dynamical properties of Lagrangian chaos.
Notice that measuring simultaneously the two variables X and Z
does not improve the situation since the corresponding symbolic
observability matrix

OX2Z2 =







1 0 0 0
1̄ 1̄ 1̄ 0
0 1 0 0
1̄ 1̄ 1̄ 0







(27)

is rank de�cient: the original state space is not observable when
variables X and Z are simultaneously measured.

Contrary to this, the situation is signi�cantly improvedwhen the
driving term γ1 is also measured. This is, for instance, con�rmed by
the symbolic observability coe�cients δX2γ 2

1
= δZ2γ 2

1
= 0.81 mean-

ing there is a good observability of the state space. The measurement
of the driving term is particularly useful for correctly de�ning the
Poincaré section as

P =
{

(sn, ṡn, γ̇1,n) ∈ R
3 | γ1,n = 0, γ̇1,n > 0

}

, (28)

where s = X or s = Z.When s = X, the largest regular island is easily
detected [bottompart of the Poincaré section, Fig. 8(a)]. The fact that
the variable Z does not allow to discriminate easily the left and the
right sides of the convection cell blurs the islands by superimposing
them to the chaotic sea [Fig. 8(b)]. Consequently, when the driven
double-gyre system is investigated, it is more reliable to measure the
variables X and γ1 than Z and γ1 and de�nitely better than X and Z.
We thus recover the general result obtained with the Lorenz system:
Lagrangian chaos is correctly investigated when the analysis is per-
formed in the entire state spaceR

m+2(X,γγγ ) and not only in the space
R

2(X).

FIG. 7. Differential embedding induced
by the variable X (a) and the variable Z

(b). Parameter values as in Fig. 5.
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FIG. 8. Poincaré section P for the
differential embedding induced by the
variable X (a) and the variable Z (b).
Parameter values as in Fig. 5.

B. A simplified symmetric variant of the driven
double-gyre flow

In the original driven double-gyre system (18), the symmetry
is only observed in the Poincaré section since the condition γ1 = 0
is required to cancel the term 2γ1X in the fourth equation of system
(19): this term breaks the inversion symmetry that one could expect
when �ow cells are identical. It is possible to restore the symmetry
by removing this term, which is not necessary for getting a double-
gyre-like dynamics. Moreover, one can further simplify the system

FIG. 9. Poincaré section of the symmetrized driven double-gyre system (29) for
various initial conditions. Parameter values: A = 0.14 and ω = π

5
.

by removing the minus signs from the right hand sides of Ẋ and Ż
equations, since they do not signi�cantly alter the dynamics. This
leads to











γ̇1 = γ2,
γ̇2 = −ω2γ1,
Ẋ = Aπ sin

(

π
[

γ1X
2 + X − γ1

])

sin(πZ),

Ż = Aπ cos
(

π
[

γ1X
2 + X − γ1

])

cos(πZ).

(29)

This system is equivariant under an inversion symmetry with
respect to the origin of the state space, that is, it obeys42

G(I · 000) = I · G(000), (30)

whereG is the vector �eld associated with the system (29). By slightly
modifying the parameter value η, it is possible to obtain a rather simi-
lar state portrait as revealed by the Poincaré section (Fig. 9). Restoring
the inversion symmetry presents the advantage of having simpler
equations and a �owwhose stretching-and-folding structure is better
detected.

V. CONCLUSION

This work considers the role of observability in laminar bidi-
mensional �uid �ows expressed as autonomous dynamical sys-
tems. General considerations are provided leading to de�nitions of
Lagrangian and Eulerian chaos in this perspective.

It is shown that in order to correctly determine whether the
dynamics is chaotic or not, the whole corresponding state space
must be used. The Eulerian description is independent from the
Lagrangian. The dynamics underlying the time-dependence of the
velocity �eld can be investigated without any ambiguity in the space
spanned by all the modes resulting from a Galerkin technique. Con-
sequently, the tools borrowed from the nonlinear dynamical sys-
tems theory can be used to determine the nature of the dynamics
underlying the velocity �eld. In contrast, the characterization of the
Lagrangian dynamics su�ers from the customary use of governing
equations written in a nonautonomous form, that is, from working
in a projection of the full state space. In particular, the corresponding
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state subspace associated with the m modes retained in a Galerkin
technique is not explicitly de�ned. Rewritten under autonomous
form, the Lagrangian system is forced by the mode(s) driving the
dynamics, and the state space required for investigating themotion of
�uid particles is the whole (m + 2)-dimensional state space. In that
case, Lagrangian chaos presents the properties commonly considered
in the nonlinear dynamical systems theory.

In the autonomous formulation, the Lagrangian dynamics
of two-dimensional incompressible �ows always presents a two-
dimensional subsystem that is driven by the time-dependence of the
velocity �eld. When this time-dependence is chaotic, the Lagrangian
dynamics is necessarily chaotic. This time-dependence can be either
dissipative or conservative. In the former case, the system is semidis-
sipative (or semiconservative) and there is a continuum of attractors.
In the latter case, there is neither an attractor nor a transient regime.
Using the whole state space, we showed that, indeed, a periodic
mode dynamics can lead to Lagrangian chaos. When the Lagrangian
dynamics is investigated in the whole state space, all the results
are in agreement with the nonlinear dynamical systems theory but
may contradict the literature analyzing Lagrangian chaos in physical
space. We suggested considering that Lagrangian chaos corresponds
to a chaotic solution in the whole state space. It is thus possible that
such a chaotic solution is associated with a projection in physical
space, which is a closed orbit visited in a chaotic way. In that case,
there is no mixing.

The importance of adopting this frame in order to achieve a
reliable characterization of the �uid dynamics is illustrated with two
simplemodels of incompressible �ows. The existence of chaotic solu-
tions with a closed-orbit projection in physical space is well exem-
pli�ed with the �ve-dimensional Lorenz system. We showed that
the driven double-gyre system can be rewritten as an autonomous
four-dimensional conservative system. A symmetrized version of the
driven double-gyre is also presented. According to the observabil-
ity analysis of these �ows, it appears that the dynamics underlying
�uid particles is poorly characterized when the trajectory in the
physical space is only used. If only the spatial coordinates are mea-
sured, an embedding—using for instance delay or derivative coor-
dinates—with a su�ciently large dimension should be used for a
nonambiguous characterization.
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APPENDIX: A BRIEF INTRODUCTION TO
OBSERVABILITY

In control theory, there is a concept to assess the quality of infor-
mation that is conveyed by some measurements. It is based on the
observability matrix10 that is de�ned as the Jacobian matrix of the
coordinate transformation 8 : R

d(y) 7→ R
d(Y) between the origi-

nal state space R
d(y) and the space R

d(Y) reconstructed from the
measured variables and some of the Lie derivatives.11

Let us start by considering the d-dynamical system

ẋi = fi(x), (A1)

where x ∈ R
d is the state vector and fi is the ith component of the vec-

tor �eld f . The dynamical system (A1) is said to be state observable
at time t if the initial state x(0) can be uniquely determined from the
knowledge ofmmeasured variables h(x) ∈ R

m (m < d) and some of
their derivatives in the interval [0, t],44 thus forming a vectorX ∈ R

dr

composed of the variables spanning the reconstructed space. Prac-
tically, the observability of system (A1) through the reconstructed
vectorX is assessed by computing the rank of the observabilitymatrix

OX(x) =




















dh1(x)
dLf h1(x)

...
dh2(x)

dLf h2(x)
...

dhm(x)
dLf hm(x)

...




















, (A2)

where d ≡ ∂

∂x
and L k

f hi(x) is the kth Lie derivative of the ith com-
ponent hi(x) of measurements along the vector �eld f .10 This observ-
ability matrix corresponds to the Jacobian matrix of the coordinate
transformation8X between the original state spaceR

d and the recon-
structed space R

dr .11 System (A1) is said to be state observable if and
only if the observability matrix has full rank, that is, rank(OX) = d.
An equivalent way to assess the observability is to compute the deter-
minant of the observability matrix OX and to check that it never
vanishes. It was shown that the more complex the determinant, the
smaller the observability.43

We would like to avoid a yes-or-no answer since a system may
gradually become nonobservable when a parameter is varied. In
order to do that, the degree of observability can be quanti�ed by using
the observability coe�cient δ′(x),45,46

δ′(x) =
∣
∣λmin

[

OOT(x, t)
]∣
∣

∣
∣λmax

[

OOT
(x, t)

]∣
∣
. (A3)

The numerator of this coe�cient corresponds to the smallest
eigenvalue of OOT estimated at point x, while the denominator cor-
responds to the largest eigenvalue. It is convenient to use the mean

value δ′(x) along a trajectory {x} to assess the observability of a given
dynamics. The coe�cient δ′(x) ∈ [0, 1]: 0 (1) corresponds to a non
(fully) observable state space through the measurements. In spite of
many trials, it was not possible to normalize these coe�cients to
have them equal to one in the case of full observability. This was
one of the motivations for introducing the symbolic observability
coe�cients.47 These fractional observability coe�cients quantify the
dynamical observability.48

Another inconvenience of these fractional observability coef-
�cients is that they do not allow to compare the observability of
di�erent systems. Moreover, they cannot be computed for systems
whose dimension is too large. The symbolic observability coe�cients
were then introduced.37,47,49 They can be computed as follows.
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First, the Jacobian matrix J is transformed into a symbolic

Jacobian matrix J̃ by replacing each constant element Jij by 1, each

polynomial element Jij by 1̄, and each rational element Jij by
¯̄1 when

the jth variable is present in the denominator or by 1̄ otherwise.
Rational terms are distinguished from polynomial terms since they
reduce the observability more signi�cantly than the latter ones.49

Second, for the sake of simplicity, let us consider a univariate

measurement s = h(x) = xi. Thus, the �rst row of Õs is just de�ned

by the derivative of the measurement function dh, that is, Õ1i = 1
if the ith variable is measured and 0 otherwise. The second row is
directly obtained from J̃ by copying its ith row, that is, Õ2j = J̃ij ∀j,
being i the index of the measured variable. The kth row is obtained

as follows. Each element J̃ij of the ith row of J̃ is multiplied by the

corresponding ith component of the vector v = (Õ`1, . . . , Õ`d)where
` = k − 1 refers to the (k − 1)th row of the symbolic observability

matrix Õs. The rules to perform the symbolic product J̃ij ⊗ vi are such
that49

∣
∣
∣
∣
∣
∣
∣
∣

0 ⊗ a = 0,
1 ⊗ a = a,

1̄ ⊗ a = a for a = 1̄, ¯̄1,
¯̄1 ⊗ a = ¯̄1 for a 6= 0.

(A4)

Then, the resulting symbolic Jacobianmatrix J̃ ′ is thus reduced into

a row where each element Õkj =
∑

i J̃
′
ij is just the sum of the elements

of the jth column according to the addition law49

∣
∣
∣
∣
∣
∣
∣
∣

0 ⊕ a = a,
1 ⊕ a = a for a 6= 0,
1̄ ⊕ a = a for a 6= 0, 1,
¯̄1 ⊕ a = ¯̄1.

(A5)

When m variables are measured, Õs is constructed by blocks of size
(di + 1) × d, di being the number of derivatives of si and

∑m
i=1 di

+ m = d. Each block is constructed according to the previous rules.

Third, the determinant of Õs is computed according to the
symbolic product rule de�ned in (A4) and expressed as products

and addends of the symbolic terms 1, 1̄, and ¯̄1, whose number of
occurrences are N1, N1̄ and N ¯̄1, respectively. A special condition is
required for rational systems such that if N1̄ = 0 and N ¯̄1 6= 0, then
N1̄ = N ¯̄1. The symbolic observability coe�cient for themeasurement
s is equal to

δs =
1

D
N1 +

1

D2
N1̄ +

1

D3
N ¯̄1, (A6)

withD = max (1,N1) + N1̄ + N ¯̄1 and 0 ≤ δs ≤ 1, where δs = 1 for a
combination providing full observability.

These coe�cients are within the unit interval, 0 being associ-
ated with a null observability and one with a full observability. The
observability of a system via some measurements is good when the
symbolic observability coe�cient is beyond 0.75.36

REFERENCES
1G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press,
2000).
2S. Wiggins and J. M. Ottino, “Foundations of chaotic mixing,” Philos. Trans. R.
Soc. London 362, 937–970 (2004).

3J. M. Ottino, “Mixing, chaotic advection and turbulence,” Annu. Rev. FluidMech.
22, 207–253 (1990).
4T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Approach
to Turbulence (Cambridge University Press, 2005).
5O. Ménard, C. Letellier, J. Maquet, L. L. Sceller, and G. Gouesbet, “Analysis of a
non-synchronized sinusoidally driven dynamical system,” Int. J. Bifurcat. Chaos
10, 1759–1772 (2000).
6A. Carrassi, M. Ghil, A. Trevisan, and F. Uboldi, “Data assimilation as a non-
linear dynamical systems problem: Stability and convergence of the prediction-
assimilation system,” Chaos 18, 023112 (2008).
7M. Ghil, “The compatible balancing approach to initialization, and four-
dimensional data assimilation,” Tellus 32, 198–206 (1980).
8M. Ghil and P. Malanotte-Rizzoli,Data Assimilation inMeteorology and Oceanog-
raphy (Elsevier, 1991), pp. 141–266.
9M. Ghil, “Advances in sequential estimation for atmospheric and oceanic �ows,”
J. Meteorolog. Soc. Japan Ser. II 75, 289–304 (1997).
10R. Hermann and A. Krener, “Nonlinear controllability and observability,” IEEE
Trans. Automat. Contr. 22, 728–740 (1977).
11C. Letellier, L. A. Aguirre, and J. Maquet, “Relation between observability
and di�erential embeddings for nonlinear dynamics,” Phys. Rev. E 71, 066213
(2005).
12P. Bergé, Y. Pomeau, and C. Vidal, L’ordre dans le Chaos—Vers une Approche
Déterministe de la Turbulence (Hermann, 1997).
13E. N. Lorenz, “Deterministic nonperiodic �ow,” J. Atmos. Sci. 20, 130–141
(1963).
14H. Yang and Z. Liu, “Chaotic transport in a double gyre ocean,” Geophys. Res.
Lett. 21, 545–548, https://doi.org/10.1029/94gl0030 (1994).
15A. C. Poje and G. Haller, “Geometry of cross-stream mixing in a double-gyre
ocean model,” J. Phys. Oceanogr. 29, 1649–1665 (1999).
16E. Simonnet, M. Ghil, and H. Dijkstra, “Homoclinic bifurcations in the quasi-
geostrophic double-gyre circulation,” J. Marine Res. 63, 931–956 (2005).
17T.Matsuura andM. Fujita, “Two di�erent aperiodic phases of wind-driven ocean
circulation in a double-gyre, two-layer shallow-water model,” J. Phys. Oceanogr.
36, 1265–1286 (2006).
18S. C. Shadden, F. Lekien, and J. E. Marsden, “De�nition and properties of
Lagrangian coherent structures from �nite-time Lyapunov exponents in two-
dimensional aperiodic �ows,” Physica D 212, 271–304 (2005).
19K.G.D. S. Priyankara, S. Balasuriya, and E. Bollt, “Quantifying the role of folding
in nonautonomous �ows: The unsteady double-gyre,” Int. J. Bifurcat. Chaos 27,
1750156 (2017).
20D. Lipinski and K. Mohseni, “A ridge tracking algorithm and error estimate
for e�cient computation of Lagrangian coherent structures,” Chaos 20, 017504
(2010).
21M. R. Allshouse and T. Peacock, “Lagrangian based methods for coherent
structure detection,” Chaos 25, 097617 (2015).
22K. R. Pratt, J. D. Meiss, and J. P. Crimaldi, “Reaction enhancement of ini-
tially distant scalars by Lagrangian coherent structures,” Phys. Fluids 27, 035106
(2015).
23M. O. Williams, I. I. Rypina, and C. W. Rowley, “Identifying �nite-time
coherent sets from limited quantities of Lagrangian data,” Chaos 25, 087408
(2015).
24H. Aref, J. R. Blake, M. Budišić, S. S. S. Cardoso, J. H. E. Cartwright, H. J.
H. Clercx, K. El Omari, U. Feudel, R. Golestanian, E. Gouillart, G. F. van Hei-
jst, T. S. Krasnopolskaya, Y. Le Guer, R. S. MacKay, V. V. Meleshko, G. Metcalfe,
I. Mezić, A. P. S. de Moura, O. Piro, M. F. M. Speetjens, R. Sturman, J.-L. Thif-
feault, and I. Tuval, “Frontiers of chaotic advection,” Rev. Mod. Phys. 89, 025007
(2017).
25H. Lamb, Hydrodynamics (Cambridge University Press, 1994).
26M. Hénon, “Sur la topologie des lignes de courant dans un cas particulier,” C. R.
Acad. Sci. 262, 312–314 (1966).
27H. Aref, “Stirring by chaotic advection,” J. Fluid Mech. 143, 1–21 (1984).
28H.Kantz and T. Schreiber,Nonlinear Time Series Analysis (Cambridge University
Press, 2010).
29R. Gilmore and M. Lefranc, The Topology of Chaos (Wiley, 2003).
30H. Je�reys, “The stability of a layer of �uid heated below,” Philos. Mag. VII 2,
833–844 (1926).

Chaos 29, 123126 (2019); doi: 10.1063/1.5120625 29, 123126-11

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1098/rsta.2003.1356
https://doi.org/10.1146/annurev.fl.22.010190.001231
https://doi.org/10.1142/S0218127400001080
https://doi.org/10.1063/1.2909862
https://doi.org/10.1111/j.2153-3490.1980.tb00947.x
https://doi.org/10.2151/jmsj1965.75.1B_289
https://doi.org/10.1109/TAC.1977.1101601
https://doi.org/10.1103/PhysRevE.71.066213
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1029/94gl0030
https://doi.org/10.1029/94gl0030
https://doi.org/10.1175/1520-0485(1999)029%3C1649:GOCSMI%3E2.0.CO;2
https://doi.org/10.1357/002224005774464210
https://doi.org/10.1175/jpo2921.1
https://doi.org/10.1016/j.physd.2005.10.007
https://doi.org/10.1142/S0218127417501565
https://doi.org/10.1063/1.3270049
https://doi.org/10.1063/1.4922968
https://doi.org/10.1063/1.4914467
https://doi.org/10.1063/1.4927424
https://doi.org/10.1103/RevModPhys.89.025007
https://doi.org/10.1017/s0022112084001233
https://doi.org/10.1080/14786442608564114


Chaos ARTICLE scitation.org/journal/cha

31S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability (Dover, New
York, 1961).
32C. Letellier, P. Dutertre, and G. Gouesbet, “Characterization of the Lorenz sys-
tem, taking into account the equivariance of the vector �eld,” Phys. Rev. E 49,
3492–3495 (1994).
33G. P. Massimo Falcioni and A. Vulpiani, “Regular and chaotic motion
of �uid particles in a two-dimensional �uid,” J. Phys. A 21, 3451–3462
(1988).
34N. H. Packard, J. P. Crutch�eld, J. D. Farmer, and R. S. Shaw, “Geometry from a
time series,” Phys. Rev. Lett. 45, 712–716 (1980).
35F. Takens, “Detecting strange attractors in turbulence,” Lect. Notes Math. 898,
366–381 (1981).
36I. Sendiña Nadal, S. Boccaletti, and C. Letellier, “Observability coe�cients for
predicting the class of synchronizability from the algebraic structure of the local
oscillators,” Phys. Rev. E 94, 042205 (2016).
37C. Letellier, I. Sendiña-Nadal, E. Bianco-Martinez, and M. S. Baptista, “A
symbolic network-based nonlinear theory for dynamical systems observability,”
Sci. Rep. 8, 3785 (2018).
38T. H. Solomon and J. P. Gollub, “Chaotic particle transport in time-
dependent Rayleigh-Bénard convection,” Phys. Rev. A 38, 6280–6286
(1988).
39C. Couliette and S. Wiggins, “Intergyre transport in a wind-driven, quasi-
geostrophic double gyre: An application of lobe dynamics,” Nonlinear Process.
Geophys. 7, 59–85 (2000).

40H. A. Dijkstra and M. Ghil, “Low-frequency variability of the large-scale
ocean circulation: A dynamical systems approach,” Rev. Geophys. 43, RG3002,
https://doi.org/10.1029/2002RG000122 (2005).
41S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos
(Springer-Verlag, New York, 2003).
42C. Letellier and R. Gilmore, “Covering dynamical systems: Twofold covers,”
Phys. Rev. E 63, 016206 (2000).
43C. Letellier and L. A. Aguirre, “Investigating nonlinear dynamics from time
series: The in�uence of symmetries and the choice of observables,” Chaos 12,
549–558 (2002).
44T. Kailath, Linear Systems, Information and System Sciences Series (Prentice-
Hall, 1980).
45L. A. Aguirre, “Controllability and observability of linear systems: Some nonin-
variant aspects,” IEEE Trans. Educ. 38, 33–39 (1995).
46C. Letellier, J. Maquet, L. L. Sceller, G. Gouesbet, and L. A. Aguirre, “On the
non-equivalence of observables in phase-space reconstructions from recorded time
series,” J. Phys. A 31, 7913–7927 (1998).
47C. Letellier and L. A. Aguirre, “Symbolic observability coe�cients for univariate
and multivariate analysis,” Phys. Rev. E 79, 066210 (2009).
48L. A. Aguirre, L. L. Portes, and C. Letellier, “Structural, dynamical and sym-
bolic observability: From dynamical systems to networks,” PLoSOne 13, e0206180
(2018).
49E. Bianco-Martinez, M. S. Baptista, and C. Letellier, “Symbolic computations of
nonlinear observability,” Phys. Rev. E 91, 062912 (2015).

Chaos 29, 123126 (2019); doi: 10.1063/1.5120625 29, 123126-12

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1103/PhysRevE.49.3492
https://doi.org/10.1088/0305-4470/21/17/014
https://doi.org/10.1103/PhysRevLett.45.712
https://doi.org/10.1007/BFb0091924
https://doi.org/10.1103/PhysRevE.94.042205
https://doi.org/10.1038/s41598-018-21967-w
https://doi.org/10.1103/PhysRevA.38.6280
https://doi.org/10.5194/npg-7-59-2000
https://doi.org/10.1029/2002RG000122
https://doi.org/10.1029/2002RG000122
https://doi.org/10.1103/PhysRevE.63.016206
https://doi.org/10.1063/1.1487570
https://doi.org/10.1109/13.350218
https://doi.org/10.1088/0305-4470/31/39/008
https://doi.org/10.1103/PhysRevE.79.066210
https://doi.org/10.1371/journal.pone.0206180
https://doi.org/10.1103/PhysRevE.91.062912

	I. INTRODUCTION
	II. EULERIAN AND LAGRANGIAN FORMALISMS AND STREAM FUNCTIONS
	III. SIMPLIFIED RAYLEIGH-BÉNARD FLOW
	IV. THE DRIVEN DOUBLE-GYRE FLOW
	A. Dynamical analysis
	B. A simplified symmetric variant of the driven double-gyre flow

	V. CONCLUSION
	ACKNOWLEDGMENTS
	A. APPENDIX: A BRIEF INTRODUCTION TO OBSERVABILITY

