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I. INTRODUCTION

The Eulerian and Lagrangian descriptions of the dynamics of a uid can be very di erent. [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF] In the Eulerian description, the system under consideration is a control volume of uid ow. In this formulation, the space-time coordinates, which reduce to (x, z, t) in a two-dimensional uid ow, are used as independent variables. In the Lagrangian approach, the system under consideration governs the motion of the uid particles; the spatial coordinates (x, z) are dependent variables and t remains the sole independent variable, as temporal systems are considered in the dynamical systems theory. The main di erence between the Eulerian and the Lagrangian descriptions is that the x-and z-coordinates have a di erent status.

The connection between Lagrangian transport and the dynamical systems theory is stressed when the ow is not only twodimensional but also incompressible. [START_REF] Wiggins | Foundations of chaotic mixing[END_REF] In this case, it is possible to express the velocity eld in terms of a scalar eld, leading to a stream function . The equations governing the motion of uid particles thus take the form of a Hamiltonian system, the stream function playing a role similar to the role of a Hamiltonian function. [START_REF] Wiggins | Foundations of chaotic mixing[END_REF][START_REF] Ottino | Mixing, chaotic advection and turbulence[END_REF][START_REF] Bohr | Dynamical Systems Approach to Turbulence[END_REF] Some dynamical properties observed in conservative systems can also be observed in incompressible two-dimensional ows and the Kolmogórov-Arnold-Moser (KAM) theory can be used to understand their dynamics. [START_REF] Wiggins | Foundations of chaotic mixing[END_REF][START_REF] Ottino | Mixing, chaotic advection and turbulence[END_REF][START_REF] Bohr | Dynamical Systems Approach to Turbulence[END_REF] Usually, the velocity eld is time-dependent and so are the equations governing the motion of uid particles. The time-dependence
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scitation.org/journal/cha of the velocity eld is generally governed by partial di erential equations, that is, by an in nite-dimensional dynamics. It may be reduced to a few modes by using a Galerkin technique. [START_REF] Bohr | Dynamical Systems Approach to Turbulence[END_REF] Rather than explicitly writing the equations governing the dynamics, these modes may be injected as a driving term in the equations governing the motion of uid particles. In other words, the dynamical system associated with the motion of uid particles is nonautonomous, for which the state space remains not explicit. [START_REF] Ménard | Analysis of a non-synchronized sinusoidally driven dynamical system[END_REF] The advantage of rewriting a nonautonomous system in an autonomous form is that the classical tools developed in the context of the nonlinear dynamical systems theory can be applied without any restriction. We will show that such autonomous writing helps clarifying concepts as Lagrangian chaos and chaotic mixing.

According to the nonlinear dynamical systems theory, the dynamics produced by a system must be ideally investigated in the state space, that is, in the space spanned by all the variables involved in the governing equations. In practical situations, all these variables are only rarely measured, and it is necessary to investigate the dynamics from a reduced set of measured variables. This was addressed in the case of geosciences [START_REF] Carrassi | Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the predictionassimilation system[END_REF] and the use of derivatives of the measured time can allow reconstruct the missing information. [START_REF] Ghil | The compatible balancing approach to initialization, and fourdimensional data assimilation[END_REF] In particular, determining an optimal set of reduced measurements is important when data assimilation must be used to recover the needed information. [START_REF] Ghil | Data Assimilation in Meteorology and Oceanography[END_REF][START_REF] Ghil | Advances in sequential estimation for atmospheric and oceanic ows[END_REF] It is possible to check that all the required information for distinguishing every state of the system is indeed contained in the measurements by means of the observability matrix, [START_REF] Hermann | Nonlinear controllability and observability[END_REF] that is, the Jacobian matrix of change of coordinates between the original state space and the space reconstructed from the derivatives of the measured variables. [START_REF] Letellier | Relation between observability and di erential embeddings for nonlinear dynamics[END_REF] There is full observability of the original space when there is no loss of information in the measurements. An observability analysis may, therefore, ensure that all the properties of the dynamics are actually "seen" by the measurements. This will help us to check whether the variables related to the Lagrangian description can provide a reliable characterization of the dynamics or not.

Two benchmark models for two-dimensional incompressible uids will be used to illustrate the importance of rewriting the systems in an autonomous form and of performing an observability analysis: the truncated solutions of the Rayleigh-Bénard (RB) convection problem [START_REF] Bergé | L'ordre dans le Chaos-Vers une Approche Déterministe de la Turbulence[END_REF] whose velocity eld evolves according to the 1963 Lorenz system, [START_REF] Lorenz | Deterministic nonperiodic ow[END_REF] and the driven double-gyre (DG) equations introduced as a kinematic model inspired in the ocean gyres. [START_REF] Yang | Chaotic transport in a double gyre ocean[END_REF][START_REF] Poje | Geometry of cross-stream mixing in a double-gyre ocean model[END_REF][START_REF] Simonnet | Homoclinic bifurcations in the quasigeostrophic double-gyre circulation[END_REF][START_REF] Matsuura | Two di erent aperiodic phases of wind-driven ocean circulation in a double-gyre, two-layer shallow-water model[END_REF] Both models are de ned in terms of a stream function. The Lorenz system belongs to the paradigm of chaos. The driven double-gyre system has a long history as a simpli ed Lagrangian transport model [START_REF] Shadden | De nition and properties of Lagrangian coherent structures from nite-time Lyapunov exponents in twodimensional aperiodic ows[END_REF] proved to produce chaotic behavior. [START_REF] Priyankara | Quantifying the role of folding in nonautonomous ows: The unsteady double-gyre[END_REF] It is among the prototype models that are customarily used for testing Lagrangian coherent structure detection techniques. [START_REF] Shadden | De nition and properties of Lagrangian coherent structures from nite-time Lyapunov exponents in twodimensional aperiodic ows[END_REF][START_REF] Lipinski | A ridge tracking algorithm and error estimate for e cient computation of Lagrangian coherent structures[END_REF][START_REF] Allshouse | Lagrangian based methods for coherent structure detection[END_REF][START_REF] Pratt | Reaction enhancement of initially distant scalars by Lagrangian coherent structures[END_REF][START_REF] Williams | Identifying nite-time coherent sets from limited quantities of Lagrangian data[END_REF] The subsequent part of this paper is organized as follows. Section II introduces the de nitions of Eulerian and Lagrangian chaos when the system is rewritten in an autonomous form. Section III is devoted to a Rayleigh-Bénard convection in the context of a truncation of a Galerkin decomposition. The driven doublegyre ow is investigated in Sec. IV where it is shown that it can be written as a four-dimensional autonomous conservative system. A symmetrized and further simpli ed driven double-gyre model is also proposed in which the symmetry between two adjacent cells is preserved. Section V gives some concluding remarks. An Appendix with a brief introduction to observability is provided.

II. EULERIAN AND LAGRANGIAN FORMALISMS AND STREAM FUNCTIONS

When a dynamical system is governed by a set of equations where the time explicitly occurs, the system is said to be nonautonomous. This means that some processes involved in the dynamics are not explicitly described and that the state space is not completely determined. Working in a space whose dimension is increased by one setting ṫ = 1 leads to some di culties for using the tools borrowed from the nonlinear dynamical systems theory-for instance, the state space is no longer bounded. It is thus strongly recommended to rewrite the system in an autonomous form to overcome them. This means that the equations describing the processes governing the driving term have to be inserted in the governing equations. [START_REF] Ménard | Analysis of a non-synchronized sinusoidally driven dynamical system[END_REF] These remarks are also valid for the nonautonomous di erential equations

ẋ = V(x, t) (1) 
governing the motion of a uid particle initially located at x(0). When the velocity eld is time-dependent, a Galerkin method can be applied and m-modes be retained for constructing an approximation. The time-dependence of the velocity eld is described by the dynamical system,

γ γ γ = f (γ γ γ ), (2) 
where γ γ γ is the vector of m-modes retained in the truncation. Let us design by V = V(t) ⊂ R m (γ γ γ ) the solution to system (2).

Let us now consider a velocity eld V = V(x, z) where x and z are the variables spanning the physical space with z the vertical axis. When the time-dependence of the velocity eld is made explicit by m Galerkin modes, the stream function = (x, γ γ γ ) fully determines the velocity eld V(x, γ γ γ ) according to

V x (x, γ γ γ ) = ∂ (x, γ γ γ ) ∂z , V z (x, γ γ γ ) = - ∂ (x, γ γ γ ) ∂x . (3) 
When the uid is incompressible, the underlying dynamics is governed by the system

         ẋ = ∂ (x E , z E , γ γ γ ) ∂z E x E =x,z E =z = V x (x, γ γ γ ), ż = - ∂ (x E , z E , γ γ γ ) ∂x E x E =x,z E =z = V z (x, γ γ γ ), (4) 
where x E and z E correspond to a given location of the physical space as commonly used in an Eulerian description. Algebraically speaking, (x, γ γ γ ) plays the role of a Hamiltonian function if x and z are considered as playing the role of conjugate variables. [START_REF] Aref | Frontiers of chaotic advection[END_REF] This analogy is purely functional (dynamical). The stream function is a constant of motion that preserves the volume in the state space (in the Liouville sense) as the energy does in a conservative system. Thus, we will show that, when the m Galerkin modes are governed by a conservative system (2), the system is actually conservative.
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The nonautonomous dynamical system (1) can be rewritten in the (m + 2)-dimensional autonomous form

γ γ γ = f (γ γ γ ), ẋ = V(x, γ γ γ ). (5) 
An integration of this system produces the trajectory in R 2 (x). The particle is selected by determining the initial condition x(0). A given evolution of the velocity eld V(x, γ γ γ ) for the particles of a given ow is determined by choosing a set of initial conditions γ γ γ (0). Notice that the Lagrangian description is provided by the whole system (5).

An Eulerian description consists in looking at uid particles through a given location x E ⊂ R 2 (x). [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF][START_REF] Lamb | Hydrodynamics[END_REF] The two components of the velocity eld are obtained according to

γ γ γ = f (γ γ γ ), V E (t) = ∇ ∧ (x E , γ γ γ ). (6) 
The Eulerian description is, therefore, independent from the spatial dynamics in R 2 (x). The Eulerian description only contains information about the dynamics governing the velocity eld V(x, γ γ γ ) without any knowledge about the geometry of the ow. The presence of a chaotic time-dependence of the velocity eld (Eulerian chaos) is not required for Lagrangian chaos to occur, as it is well-known. [START_REF] Ottino | Mixing, chaotic advection and turbulence[END_REF][START_REF] Bohr | Dynamical Systems Approach to Turbulence[END_REF][START_REF] Hénon | Sur la topologie des lignes de courant dans un cas particulier[END_REF][START_REF] Aref | Stirring by chaotic advection[END_REF] Since the spatial dynamics is driven by the subsystem (2), it is not possible to get a nonchaotic motion in R 2 (x) with a chaotic velocity time-dependence.

It is important to distinguish the notion of trajectory T ⊂ R 2 (x) made of the successive locations visited by a uid particle from the solution S(t) ⊂ R m+2 (x, γ γ γ ) of the system (5): T is a bidimensional projection of the solution S. As we will see, T can be a closed orbit even when the solution S(t) is chaotic (Table I).

Investigating the autonomous dynamical system (5), it is now possible to propose some de nitions as follows.

De nition 1. Eulerian chaos: When there is a chaotic timedependence for the velocity eld V(x, γ ), that is, when V ⊂ R m (γ ) is governed by a chaotic dynamics, then we say that there is Eulerian chaos.

Remark 1. Eulerian chaos can be obtained if and only if m ≥ 3. De nition 2. Lagrangian chaos: When the solution S ⊂ R m+2 (x, γ γ γ ) to the whole system (5) is chaotic, then there is Lagrangian chaos.

Remark 2. Due to the Poincaré-Bendixson theorem, Lagrangian chaos can be obtained if and only if m ≥ 1. Since a periodic solution is at least required for the mode dynamics (2), in practice, Lagrangian chaos can be obtained if m > 1.

TABLE I.

Different types of solution S depending on the nature of the time-dependence V of the velocity V. The cases of the Rayleigh-Bénard (RB) convection and of the driven double-gyre (DG) are also reported.

V ⊂ R m (γ γ γ ) Constant Periodic Chaotic S ⊂ R m+2 (x, γ x, γ x, γ ) Constant Periodic Chaotic Periodic Quasiperiodic Chaotic Example DG (m = 2) RB (m = 3)
Remark 3. The chaotic nature of the solutions V and S can be determined using the techniques borrowed to the nonlinear dynamical systems theory [START_REF] Kantz | Nonlinear Time Series Analysis[END_REF][START_REF] Gilmore | The Topology of Chaos[END_REF] by working in the space R m (γ γ γ ) and R m+2 (x, γ γ γ ), respectively.

De nition 3. Chaotic mixing: Let us consider a velocity eld whose asymptotic evolution is determined by the initial conditions γ γ γ (0) at time t 0 in a given Poincaré section P. Let a chaotic solution be S ⊂ R m+2 (x, γ γ γ ) and D c ⊂ R 2 (x) the domain of the Poincaré section visited by the solution S such that the volume Vol(D c ) = 0. Let N 0 ⊂ D c , a neighborhood lled at t 0 with particles of a tracer and let x x x ∈ D c , N x ⊂ D c , a neighborhood of the same volume as N 0 . Let P(N x ) be the probability of nding particles of the tracer in N x . There is chaotic mixing if ∀x x x ∈ D c ,

lim t→∞ P(N x ) ≈ Vol(N 0 ) Vol(D c ) . ( 7 
)
Remark 4. A chaotic solution S ⊂ R 5 (x, γ γ γ ) can be associated with a closed trajectory T ⊂ R 2 (x) as well as exempli ed in the vedimensional Lorenz system (see Sec. III). In that case, Vol(D c ) = 0 and there is no chaotic mixing.

Remark 5. Chaotic mixing requires Lagrangian chaos but Lagrangian chaos does not necessarily imply chaotic mixing.

III. SIMPLIFIED RAYLEIGH-BÉNARD FLOW

The classical two-dimensional Rayleigh-Bénard convection in which cells have a length along the y-axis larger than their heights along the z-axis is considered here. The velocity eld was derived in the Boussinesq approximation. [START_REF] Reys | The stability of a layer of uid heated below[END_REF][START_REF] Chandrasekhar | Hydrodynamics and Hydromagnetic Stability[END_REF] The widths and the heights of the cells are adimensionalized in such a way that 0 < x < π and 0 < z < π , respectively. There is a rotation symmetry by π between two adjacent cells, leading to a clockwise convection for one cell and a counterclockwise one for the other. The 1963 Lorenz model is a low-dimensional truncation of the partial di erential equations 
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describing the velocity eld of the Rayleigh-Bénard problem. The three variables spanning the mode space are γ 1 for the intensity of the convection motion, γ 2 for the di erence in the temperature between the left and the right sides of a convection roll, and γ 3 for the di erence from the linear pro le of temperature observed without convection. [START_REF] Letellier | Characterization of the Lorenz system, taking into account the equivariance of the vector eld[END_REF] The 1963 Lorenz model governs the time-dependence of the velocity eld V(x, γ γ γ ). The three variables γ i (i = 1, 2, 3) are related to the stream function and the temperature gradient δT as [START_REF] Massimo Falcioni | Regular and chaotic motion of uid particles in a two-dimensional uid[END_REF] = Aγ 1 sin(x) sin(z),

δT = Aγ 2 cos(x) sin(z) -γ 3 sin(2z). ( 8 
)
Using the relationships between the stream function and the velocity V, the Lagrangian form of the truncated Rayleigh-Bénard system can be written as the ve-dimensional autonomous system,

           γ1 = σ (γ 2 -γ 1 ), γ2 = Rγ 1 -γ 2 -γ 1 γ 3 , γ3 = -bγ 3 + γ 1 γ 2 , ẋ = Aγ 1 sin(x) cos(z), ż = -Aγ 1 cos(x) sin(z), (9) 
where A = √ 2; R, σ , and b are the parameters of the 1963 Lorenz system. [START_REF] Lorenz | Deterministic nonperiodic ow[END_REF] The three-dimensional mode dynamics drives the two-dimensional spatial dynamics. The state space associated with this ve-dimensional Lorenz system is spanned by the vector

= (x, z, γ 1 , γ 2 , γ 3 ) = (x, γ γ γ ) ∈ R 5 .
The Jacobian matrix of the system (9) reads as

J =      -σ σ 0 0 0 R -γ 3 -1 -γ 1 0 0 γ 2 γ 1 -b 0 0 A sin(x) cos(z) 0 0 Aγ 1 cos(x) cos(z) -Aγ 1 sin(x) sin(z) -A cos(x) sin(z) 0 0 Aγ 1 sin(x) sin(z) -Aγ 1 cos(x) cos(z)      . ( 10 
)
The trace of this Jacobian matrix is

Tr(J) = -(σ + 1 + b) + Aγ 1 cos(x) cos(z) (1 -1) =0 . (11) 
The spatial dynamics governing the trajectories of the uid particles is, therefore, conservative, while the three-dimensional mode dynamics is dissipative. The entire system should be considered as semidissipative (or semiconservative). [START_REF] Ménard | Analysis of a non-synchronized sinusoidally driven dynamical system[END_REF] If one sets x = x E for the location of an Eulerian description, one gets a time series, which is equivalent (modulo a similitude) to the mode γ 1 of the 1963 Lorenz system (according to the rst equation of [8)]: the solution V(x E , γ γ γ ) to the dynamics underlying the Eulerian description is, therefore, chaotic. When the motion of a given uid particle is investigated in the space R 2 (x, z), the trajectory T is a closed curve (Fig. 1). Nevertheless, since V is chaotic, S is necessarily chaotic too.

When a state portrait is reconstructed from the variable x using derivative coordinates, [START_REF] Packard | Geometry from a time series[END_REF][START_REF] Takens | Detecting strange attractors in turbulence[END_REF] the chaotic nature is unveiled (Fig. 2). In fact, a continuum of chaotic attractors is observed: such a property is speci c to semidissipative systems. [START_REF] Ménard | Analysis of a non-synchronized sinusoidally driven dynamical system[END_REF] A uid particle ows along a closed trajectory T, which is visited in a chaotic way: the velocity is chaotically modulated. For each closed trajectory T in the space R 2 (x), there is one chaotic attractor in R 5 (x, γ γ γ ): one may switch from one attractor to the other only by changing the initial conditions x(0) and z(0), as shown in Fig. 2. The motion of uid particles is, therefore, chaotic and there is Lagrangian chaos, but there is no chaotic mixing since D c = 0 in the Poincaré section projected in the physical space,

P L ≡ (x n , z n ) ∈ R 2 | γ 3,n = R -1, γ3,n > 0 . ( 12 
)
An introduction to observability analysis can be found in the Appendix. Let us now perform this analysis on the ve-dimensional system (9). Since the mode dynamics drives the spatial component, measuring only γ i (i = 1, 2, 3) would lead to a null observability of R 5 (x, γ γ γ ). Contrary to this, one could expect quite a good observability when the variables x and z are measured. From these measurements, two possible reconstructed spaces are spanned by where, for instance, the state vector X = x 3 z 2 = (x, ẋ, ẍ, z, ż). The Jacobian matrix J

x 3 z 2 of this coordinate transformation corresponds to the observability matrix. [START_REF] Letellier | Relation between observability and di erential embeddings for nonlinear dynamics[END_REF] A full observability of the original state space from x and z would mean that any pair of di erent states such that 1 = 2 in the original state space are distinguished in the reconstructed space, that is, X 1 = X 2 . A full observability corresponds to a full rank observability matrix or, equivalently, to Det J x 3 z 2 = 0 for any state. For instance, the Jacobian matrix has a null determinant: this means that the ve-dimensional Lorenz dynamics cannot be adequately observed in the physical subspace from the trajectory of one uid particle in R 2 (x). Note that none of the variables o ers a good observability alone of the original state space R 5 (x, γ γ γ ). Variables γ i (i = 1, 2, 3) are necessarily associated with a null observability of the state space since they do not have information about the spatial variables. As explained in the Appendix, a symbolic observability coe cient δ than 0.75 means that the observability is su ciently good for a reliable analysis. [START_REF] Sendiña Nadal | Observability coe cients for predicting the class of synchronizability from the algebraic structure of the local oscillators[END_REF] The two spatial variables have a very poor observability since their associated symbolic observability coe cients are δ x 5 = δ z 5 = 0.06, where x 5 means that the vector used to reconstruct the phase space is made of the ve Lie derivatives of x, that is, of variable x and its rst four time derivatives (see Ref. 37 for more details). It is necessary to measure at least three variables for providing a good observability: for instance, the space spanned by X = (γ 1 , γ1 , γ 3 , x, ẋ) is associated with a symbolic observability coefcient δ γ 2 1 γ 3 x 2 = 0.84. It is indeed required to measure some variables of the subspace R 3 (γ 1 , γ 2 , γ 3 ) to perform a reliable analysis of the dynamics.

J x 3 z 2 =      0 0 0 1 0 A sin(x) cos(z) 0 0 Aγ 1 cos(x) cos(z) -Aγ 1 sin(x) sin(z) A sin(x)[2Aγ 1 cos(x) -σ cos(z)] Aσ sin(x) cos(z) 0 Aσ (γ 2 -γ 1 ) cos(x) cos(z) + A 2 γ 2 1 cos(2x) -Aσ (γ 2 -γ 1 ) sin(x) sin(z) 0 0 0 0 1 -A cos(x) sin(z) 0 0 Aγ 1 sin(x) sin(z) -Aγ 1 cos(x) cos(z)     
In the Eulerian approach, a position x E = (x E , z E ) is chosen and the second equation of the system (5) is no longer meaningful. In the case of the ve-dimensional Lorenz model the Eulerian velocity is governed by the system

V x E = Aγ 1 (t) sin(x E ) cos(z E ), V z E = -Aγ 1 (t) cos(x E ) sin(z E ), (13) 
where γ 1 (t) is solution to the three-dimensional Lorenz subsystem.

There is no analytical expression for γ 1 (t) since the behavior is chaotic for the chosen parameter values. It clearly appears that the 
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Eulerian velocity is then governed by the three-dimensional Lorenz dynamics.

IV. THE DRIVEN DOUBLE-GYRE FLOW

Let us consider the driven double-gyre ow corresponding to two adjacent convection cells as in the Rayleigh-Bénard convection but in which a lateral oscillation

g(x, γ 1 ) = γ 1 (x -2) ( 14 
)
of the roll pattern is inserted. Contrary to the light perturbation inserted by Solomon and Gollub, [START_REF] Solomon | Chaotic particle transport in timedependent Rayleigh-Bénard convection[END_REF] here this is a strong perturbation that is applied. [START_REF] Shadden | De nition and properties of Lagrangian coherent structures from nite-time Lyapunov exponents in twodimensional aperiodic ows[END_REF] The stream function of the driven double-gyre system is given by

(x, z, γ 1 ) = A sin π x (1 + g(x, γ 1 ) sin(π z). (15) 
It de nes a cellular ow with boundaries free of shear stresses. Due to the quadratic term γ 1 x 2 introduced by perturbation ( 14), the natural symmetry observed between two adjacent convection cells is broken in this double-gyre system. To restore the natural symmetry associated with a Rayleigh-Bénard convection, we derived a simple fully symmetrized variant of the equations that govern the driven double-gyre ow in Sec. IV B.

Here, the perturbation corresponds to a periodic forcing applied to the velocity eld. This forcing term is responsible for the di usion of uid particles from one cell to the other. This model is a simplication of a double-gyre pattern that occurs frequently in geophysical ows. [START_REF] Shadden | De nition and properties of Lagrangian coherent structures from nite-time Lyapunov exponents in twodimensional aperiodic ows[END_REF][START_REF] Couliette | Intergyre transport in a wind-driven, quasigeostrophic double gyre: An application of lobe dynamics[END_REF][START_REF] Dijkstra | Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach[END_REF] The driving term γ 1 = η sin(ωt) is the solution to the secondorder di erential equation

γ1 + ω 2 γ 1 = 0, ( 16 
)
where the amplitude η is de ned by the initial conditions

γ 1 (0) = 0, γ 2 (0) = ωη. (17) 
This is a one degree of freedom oscillator whose energy is constant. Since a plane is for drawing a period-1 orbit, the two dimensions must be kept for the analysis.

From the stream function (x, z, γ 1 ), the governing equations are de ned according to Eq. ( 4); combined with the driving process (16), we get the four-dimensional dynamical system

         γ1 = γ 2 , γ2 = -ω 2 γ 1 , ẋ = -Aπ sin (π x [1 + γ 1 (x -2)]) cos(π z), ż = Aπ (2γ 1 [x -1] + 1) × cos (π x [1 + γ 1 (x -2)]) sin(π z), (18) 
where the driving term γ 1 is explicitly described. System (18) corresponds to the driven double-gyre rewritten in an autonomous form.

The corresponding state space is thus spanned by the four variables x, z, γ 1 , and γ 2 . Notice that the velocity of the uid particle does no longer contribute to determining its state as previously seen. The trace of the Jacobian of system ( 18) is null: the uid particles are, therefore, governed by a four-dimensional autonomous conservative system.

The time-dependence of the velocity eld is purely periodic as characterized by the di erential equation (16). The special way the perturbation function g(x, γ 1 ) is constructed is responsible for the chaotic mixing. When the perturbation is removed (η = 0), the uid particles describe closed trajectories that are visited periodically. When η > 0, the trajectories are no longer closed and correspond to chaotic motions when the uid particles visit the neighborhood of the boundary between two adjacent cells; the motion is quasiperiodic otherwise.

A. Dynamical analysis

A numerical integration of system ( 18) from appropriate initial conditions leads to the chaotic behavior shown in Fig. 3.

The ow is developed within the intervals x ∈ [0, 2] z ∈ [0, 1]. It is possible to center the ow in order to simplify the governing equations without changing the dynamics. This is obtained by applying the coordinate transformation

(x, z) → (X + 1, Z + 1 2 ), leading to        γ1 = γ 2 , γ2 = -ω 2 γ 1 , Ẋ = -Aπ sin π γ 1 X 2 + X -γ 1 sin(π Z), Ż = -Aπ (2γ 1 X + 1) cos π γ 1 X 2 + X -γ 1 cos(π Z). ( 19 
)
The trajectory is now bounded by the 2 × 1 rectangle centered around the origin of the state space R 4 (X, γ γ γ ). The singular points of system ( 19) are de ned by

γ 1 = 0, γ 2 = 0, sin(π X) sin(π Z) = 0, cos(π X) cos(π Z) = 0, (20) 
leading to

X 1 = X 1 = k, Z 1 = ± k 2 ,
and

X 2 = X 2 = ± k 2 , Z 2 = 0, (21) 
where k ∈ N. In the subspace R 2 (γ γ γ ), the eigenvalues are λ 3,4 = ±iω, thus de ning a center in the γ 1 -γ 2 plane. This is true for all the singular points. Points X 1 are of the saddle-center type since associwith the eigenvalues λ 1,2 = ±π 2 A in the X-Z plane. Points X 2 are of the center-center type since associated with the eigenvalues

λ 1,2 = ±iπ 2 A.
The state space is, therefore, bounded as drawn in Fig. 4. This four-dimensional autonomous conservative system is investigated using the Poincaré section

P ≡ (X n , Z n , γ 2,n ) ∈ R 3 | γ 1,n = 0, γ 2,n > 0 . ( 22 
)
Since the system is conservative, the behavior strongly depends on the initial conditions. As commonly in conservative systems, [START_REF] Wiggins | Introduction to Applied Nonlinear Dynamical Systems and Chaos[END_REF] there is a chaotic sea surrounding regular islands which are centered around

X A = X A = ±0.59, Z A = ∓0.38, and 
X B = B = ±0.48, Z B = ∓0.08, ( 23 
)
that is, around period-1 points (Fig. 5). In the Poincaré section, since γ 1 = 0, there is a central symmetry with respect to the origin of the state space. It is, therefore, possible to obtain the symmetric of a given island by applying the matrix

I =    -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1    , ( 24 
)
which de nes the inversion symmetry with respect to origin of the state space. [START_REF] Letellier | Covering dynamical systems: Twofold covers[END_REF] The resulting Poincaré section is shown for various initial conditions in Fig. 5. In islands A, there are only period-1 tori whose Poincaré sections are characterized by a single annular structure. Two of them are shown in Fig. 6(a). One is the symmetric of the other, at least in the Poincaré section. In islands B, it is possible to observe tori with two annular structures in the Poincaré section; the trajectory visits the second structure before returning to the rst one. Two such tori are shown in Fig. 6(b). Around islands B, there are period-3 tori FIG. 6. Examples of quasiperiodic motions produced by the driven double-gyre system (19). Same parameter values as in Fig. 5. (in green in Fig. 5): the trajectories visit the two other annular structures once before returning to the rst one [Fig. 6(c)]. Around islands B, there are also islands of period-5 tori (not shown), surrounded by the chaotic sea, with only a very tiny chaotic band separating these two types of islands.

The state space associated with the driven double-gyre system ( 19) is spanned by the state vector = (X, γ γ γ ). For assessing the observability of the state space, the symbolic observability coecients are computed from the symbolic Jacobian matrix

J sym DG =     1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0     , ( 25 
)
where 1 designates a constant element J ij of the Jacobian matrix of system ( 19) and a nonconstant element. When the reconstructed vector is made of the four Lie derivatives of X, the symbolic observability coe cient is δ X 4 = 0.17. An equal symbolic coe cient is found when the variable Z is the only measured variable. The determinant of both observability matrices O X 4 and O Z 4 is very complicated, thus con rming the poor observability of the original state space when either X or Z is the sole measured variable. An additional insight is provided when a di erential embedding is constructed by using the Lie derivatives of the measured variable. The space reconstructed from the variable X presents an inversion symmetry, thus allowing to easily distinguish the left from the right sides [Fig. 7(a)]. Such a possibility is not provided by the variable Z, which leads to a single "leaf" attractor [Fig. 7(b)]. It is known that an observability analysis is not sensitive to symmetry property. [START_REF] Letellier | Investigating nonlinear dynamics from time series: The in uence of symmetries and the choice of observables[END_REF] When a Poincaré section is de ned as

P s = (s n , ṡn , sn ) ∈ R 3 | ṡn = 0, sn > 0 , (26) 
where s = X or s = Z, then islands observed in the original state space (Fig. 5) are not detected because the regular islands are only well-identi ed in a Poincaré section taking into account the period of the driving term. This shows how sensitive to the choice of measurements are some speci c dynamical properties of Lagrangian chaos. Notice that measuring simultaneously the two variables X and Z does not improve the situation since the corresponding symbolic observability matrix

O X 2 Z 2 =     1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0     (27) 
is rank de cient: the original state space is not observable when variables X and Z are simultaneously measured. Contrary to this, the situation is signi cantly improved when the driving term γ 1 is also measured. This is, for instance, con rmed by the symbolic observability coe cients δ X 2 γ 2 1 = δ Z 2 γ 2 1 = 0.81 meaning there is a good observability of the state space. The measurement of the driving term is particularly useful for correctly de ning the Poincaré section as

P = (s n , ṡn , γ1,n ) ∈ R 3 | γ 1,n = 0, γ1,n > 0 , ( 28 
)
where s = X or s = Z. When s = X, the largest regular island is easily detected [bottom part of the Poincaré section, Fig. 8(a)]. The fact that the variable Z does not allow to discriminate easily the left and the right sides of the convection cell blurs the islands by superimposing them to the chaotic sea [Fig. 8(b)]. Consequently, when the driven double-gyre system is investigated, it is more reliable to measure the variables X and γ 1 than Z and γ 1 and de nitely better than X and Z.

We thus recover the general result obtained with the Lorenz system: Lagrangian chaos is correctly investigated when the analysis is performed in the entire state space R m+2 (X, γ γ γ ) and not only in the space R 2 (X). 

B. A simplified symmetric variant of the driven double-gyre flow

In the original driven double-gyre system (18), the symmetry is only observed in the Poincaré section since the condition γ 1 = 0 is required to cancel the term 2γ 1 X in the fourth equation of system (19): this term breaks the inversion symmetry that one could expect when ow cells are identical. It is possible to restore the symmetry by removing this term, which is not necessary for getting a doublegyre-like dynamics. Moreover, one can further simplify the system by removing the minus signs from the right hand sides of Ẋ and Ż equations, since they do not signi cantly alter the dynamics. This leads to

       γ1 = γ 2 , γ2 = -ω 2 γ 1 , Ẋ = Aπ sin π γ 1 X 2 + X -γ 1 sin(π Z), Ż = Aπ cos π γ 1 X 2 + X -γ 1 cos(π Z). ( 29 
)
This system is equivariant under an inversion symmetry with to the origin of the state space, that is, it obeys 42

G(I • ) = I • G( ), ( 30 
)
where G is the vector eld associated with the system (29). By slightly modifying the parameter value it is possible to obtain a rather similar state portrait as revealed by the Poincaré section (Fig. 9). Restoring the inversion symmetry presents the advantage of having simpler equations and a ow whose stretching-and-folding structure is better detected.

V. CONCLUSION

This work considers the role of observability in laminar bidimensional uid ows expressed as autonomous dynamical systems. General considerations are provided leading to de nitions of Lagrangian and Eulerian chaos in this perspective.

It is shown that in order to correctly determine whether the dynamics is chaotic or not, the whole corresponding state space must be used. The Eulerian description is independent from the Lagrangian. The dynamics underlying the time-dependence of the velocity eld can be investigated without any ambiguity in the space spanned by all the modes resulting from a Galerkin technique. Consequently, the tools borrowed from the nonlinear dynamical systems theory can be used to determine the nature of the dynamics underlying the velocity eld. In contrast, the characterization of the Lagrangian dynamics su ers from the customary use of governing equations written in a nonautonomous form, that is, from working in a projection of the full state space. In particular, the corresponding
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scitation.org/journal/cha state subspace associated with the m modes retained in a Galerkin technique is not explicitly de ned. Rewritten under autonomous form, the Lagrangian system is forced by the mode(s) driving the dynamics, and the state space required for investigating the motion of uid particles is the whole (m + 2)-dimensional state space. In that case, Lagrangian chaos presents the properties commonly considered in the nonlinear dynamical systems theory.

In the autonomous formulation, the Lagrangian dynamics of two-dimensional incompressible ows always presents a twodimensional subsystem that is driven by the time-dependence of the velocity eld. When this time-dependence is chaotic, the Lagrangian dynamics is necessarily chaotic. This time-dependence can be either dissipative or conservative. In the former case, the system is semidissipative (or semiconservative) and there is a continuum of attractors. In the latter case, there is neither an attractor nor a transient regime.

Using the whole state space, we showed that, indeed, a periodic mode dynamics can lead to Lagrangian chaos. When the Lagrangian dynamics is investigated in the whole state space, all the results are in agreement with the nonlinear dynamical systems theory but may contradict the literature analyzing Lagrangian chaos in physical space. We suggested considering that Lagrangian chaos corresponds to a chaotic solution in the whole state space. It is thus possible that such a chaotic solution is associated with a projection in physical space, which is a closed orbit visited in a chaotic way. In that case, there is no mixing.

The importance of adopting this frame in order to achieve a reliable characterization of the uid dynamics is illustrated with two simple models of incompressible ows. The existence of chaotic solutions with a closed-orbit projection in physical space is well exempli ed with the ve-dimensional Lorenz system. We showed that the driven double-gyre system can be rewritten as an autonomous four-dimensional conservative system. A symmetrized version of the driven double-gyre is also presented. According to the observability analysis of these ows, it appears that the dynamics underlying uid particles is poorly characterized when the trajectory in the physical space is only used. If only the spatial coordinates are measured, an embedding-using for instance delay or derivative coordinates-with a su ciently large dimension should be used for a nonambiguous characterization.
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APPENDIX: A BRIEF INTRODUCTION TO OBSERVABILITY

In control theory, there is a concept to assess the quality of information that is conveyed by some measurements. It is based on the observability matrix 10 that is de ned as the Jacobian matrix of the coordinate transformation : R d (y) → R d (Y) between the original state space R d (y) and the space R d (Y) reconstructed from the measured variables and some of the Lie derivatives. [START_REF] Letellier | Relation between observability and di erential embeddings for nonlinear dynamics[END_REF] Let us start by considering the d-dynamical system ẋi = f i (x), (A1)

where x ∈ R d the state vector and f i is the ith component of the vector eld f . The dynamical system (A1) is said to be state observable at time t if the initial state x(0) can be uniquely determined from the knowledge of m measured variables h(x) ∈ R m (m < d) and some of their derivatives in the interval [0, t], 44 thus forming a vector X ∈ R dr composed of the variables spanning the reconstructed space. Practically, the observability of system (A1) through the reconstructed vector X is assessed by computing the rank of the observability matrix

O X (x) =                  dh 1 (x) dL f h 1 (x) . . . dh 2 (x) dL f h 2 (x) . . . dh m (x) dL f h m (x) . . .                  , ( A2 
)
where d ≡ ∂ ∂x and L k f h i (x) is the kth Lie derivative of the ith component h i (x) of measurements along the vector eld f . [START_REF] Hermann | Nonlinear controllability and observability[END_REF] This observability matrix corresponds to the Jacobian matrix of the coordinate transformation X between the original state space R d and the reconstructed space R dr . 11 System (A1) is said to be state observable if and only if the observability matrix has full rank, that is, rank(O X ) = d. An equivalent way to assess the observability is to compute the determinant of the observability matrix O X and to check that it never vanishes. It was shown that the more complex the determinant, the smaller the observability. [START_REF] Letellier | Investigating nonlinear dynamics from time series: The in uence of symmetries and the choice of observables[END_REF] We would like to avoid a yes-or-no answer since a system may gradually become nonobservable when a parameter is varied. In order to do that, the degree of observability can be quanti ed by using the observability coe cient δ (x), [START_REF] Aguirre | Controllability and observability of linear systems: Some noninvariant aspects[END_REF][START_REF] Letellier | On the non-equivalence of observables in phase-space reconstructions from recorded time series[END_REF] δ (x) = λ min OO T (x, t)

λ max OO T (x, t) . ( A3 
)
The numerator of this coe cient corresponds to the smallest eigenvalue of OO T estimated at point x, while the denominator corresponds to the largest eigenvalue. It is convenient to use the mean value δ (x) along a trajectory {x} to assess the observability of a given dynamics. The coe cient δ (x) ∈ [0, 1]: 0 (1) corresponds to a non (fully) observable state space through the measurements. In spite of many trials, it was not possible to normalize these coe cients to have them equal to one in the case of full observability. This was one of the motivations for introducing the symbolic observability coe cients. [START_REF] Letellier | Symbolic observability coe cients for univariate and multivariate analysis[END_REF] These fractional observability coe cients quantify the dynamical observability. [START_REF] Aguirre | Structural, dynamical and symbolic observability: From dynamical systems to networks[END_REF] Another inconvenience of these fractional observability coefcients is that they do not allow to compare the observability of di erent systems. Moreover, they cannot be computed for systems whose dimension is too large. The symbolic observability coe cients were then introduced. [START_REF] Letellier | A symbolic network-based nonlinear theory for dynamical systems observability[END_REF][START_REF] Letellier | Symbolic observability coe cients for univariate and multivariate analysis[END_REF][START_REF] Bianco-Martinez | Symbolic computations of nonlinear observability[END_REF] They can be computed as follows.
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 12 FIG. 1. Trajectories of the fluid particles in the physical space spanned by variables x and z for a few different sets of coordinates. Parameter values: R = 28, σ = 10, b = 8 3 , and A = √ 2. Other initial conditions: γ 1 (0) = 0.1, γ 2 (0) = 0.5, and γ 3 (0) = 0.1.
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FIG. 3 .FIG. 4 .

 34 FIG. 3.Chaotic behavior produced by the driven double-gyre system(18). Parameter values: A = 0.1, and ω = π 5 . Initial conditions: x(0) = 1, z(0) = 0.5, γ 1 (0) = 0, and γ 2 (0) = 0.0628009.

FIG. 5 .

 5 FIG. 5. Poincaré section of the centered driven double-gyre system (19) for various initial conditions. A chaotic sea surrounds the symmetry-related regular islands A and the symmetry-related regular islands B. Parameter values: A = 0.1, and ω = π 5 . Other initial conditions: γ 1 (0) = 0 and γ 2 (0) = 0.0628009.
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 78 FIG. 7. Differential embedding induced by the variable X (a) and the variable Z (b). Parameter values as in Fig. 5.

FIG. 9 .

 9 FIG. 9. Poincaré section of the symmetrized driven double-gyre system (29) for various initial conditions. Parameter values: A = 0.14 and ω = π 5 .

  

  

x 3 z 2 = X 1 = x, X 2 = ẋ, X 3 = ẍ, X 4 = z, X 5 = ż,and x 2 z 3 = X 1 = x, X 2 = ẋ, X 3 = z, X 4 = ż, X 5 = z.
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First, the Jacobian matrix J is transformed into a symbolic Jacobian matrix J by replacing each constant element J ij by 1, each polynomial element J ij by 1, and each rational element J ij by 1 when the jth variable is present in the denominator or by 1 otherwise. Rational terms are distinguished from polynomial terms since they reduce the observability more signi cantly than the latter ones. [START_REF] Bianco-Martinez | Symbolic computations of nonlinear observability[END_REF] Second, for the sake of simplicity, let us consider a univariate measurement s = h(x) = x i . Thus, the rst row of Õs is just de ned by the derivative of the measurement function dh, that is, Õ1i = 1 if the ith variable is measured and 0 otherwise. The second row is directly obtained from J by copying its ith row, that is, Õ2j = Jij ∀j, being i the index of the measured variable. The kth row is obtained as follows. Each element Jij of the ith row of J is multiplied by the corresponding ith component of the vector v = ( Õ 1 , . . . , Õ d ) where = k -1 refers to the (k -1)th row of the symbolic observability matrix Õs . The rules to perform the symbolic product Jij ⊗ v i are such that [START_REF] Bianco-Martinez | Symbolic computations of nonlinear observability[END_REF] 0

Then, the resulting symbolic Jacobian matrix J is thus reduced into a row where each element Õkj = i J ij is just the sum of the elements of the jth column according to the addition law [START_REF] Bianco-Martinez | Symbolic computations of nonlinear observability[END_REF] 0 ⊕ a = a, 1 ⊕ a = a for a = 0, 1 ⊕ a = a for a = 0, 1, 1 ⊕ a = 1.

(A5)

When m variables are measured, Õs is constructed by blocks of size (d i + 1) × d, d i being the number of derivatives of s i and m i=1 d i + m = d. Each block is constructed according to the previous rules.

Third, the determinant of Õs is computed according to the symbolic product rule de ned in (A4) and expressed as products and addends of the symbolic terms 1, 1, and 1, whose number of occurrences are N 1 , N1 and N¯¯1, respectively. A special condition is required for rational systems such that if N1 = 0 and N¯¯1 = 0, then N1 = N¯¯1. The symbolic observability coe cient for the measurement s is equal to

with D = max (1, N 1 ) + N1 + N¯¯1 and 0 ≤ δ s ≤ 1, where δ s = 1 for a combination providing full observability. These coe cients are within the unit interval, 0 being associated with a null observability and one with a full observability. The observability of a system via some measurements is good when the symbolic observability coe cient is beyond 0.75. [START_REF] Sendiña Nadal | Observability coe cients for predicting the class of synchronizability from the algebraic structure of the local oscillators[END_REF] 
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