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Abstract 

A coated inclusion-based homogenization scheme is developed for three-phase viscoelastic 

composites in the Laplace-Carson domain. The interphase between inclusion and matrix is 

considered as a coating in a composite-like inclusion and shows altered viscoelastic behavior 

compared to the matrix. The strain concentration equations between the viscoelastic inclusion 

and the viscoelastic coating are derived with two different models: the double inclusion 

(denoted DI) model, and the reconsidered double inclusion (RDI) model. Then, the 

homogenization scheme is based on a modified Mori-Tanaka scheme for three-phase 

viscoelastic composites, which is validated with the exact analytical formulation in the case of 

spherical composite inclusions and isotropic behaviors for all constituents. The comparison of 

the proposed coated inclusion-based homogenization scheme based on the RDI model with 

the exact analytical solution shows a significant improvement compared to the one based on 

the DI model in the prediction of effective properties for composites with interphases. Finally, 

considering experimental dynamic mechanical analyses (DMA) in the frequency domain for a 

carbon-black filled styrene butadiene rubber from the literature, the effective viscoelastic 

behavior is estimated with a good accuracy in terms of the storage and loss moduli for 

different volume fractions of composite inclusions.  

Keywords: Linear viscoelasticity; Homogenization; Coated Inclusion; Interphase; Polymer-

Matrix Composites  
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1 Introduction 

The realistic prediction of the mechanical behavior in multi-phase composites by 

micromechanical approaches is essential for a holistic understanding of the fundamental 

underlying mechanical properties and expedient FE simulations. In literature, it has been 

discussed that composites consisting of a stiff inclusion phase embedded in a soft polymer 

matrix show the presence of a third phase (Kim et al., 2001). This interphase is defined as the 

region between the matrix and an inclusion and shows modified material properties with 

respect to the matrix phase (Schöneich et al., 2015). Still, it has to be considered that the 

interphase is linked to the viscous behavior of the polymer matrix material (Thomason and 

van Rooyen, 1990).  

In the last decades, the elastic behavior of composites containing three or more phases (with 

different material properties) was studied with various micromechanical models. The 

analytical micromechanical approach of multi-coated inclusions was first given by Hervé and 

Zaoui (Hervé and Zaoui, 1993; Hervé and Zaoui, 1995). Starting from the “Composite Sphere 

Assemblage” model from Hashin (1962) and the effective moduli derived by Christensen and 

Lo’s Generalized Self-Consistent scheme (Christensen and Lo, 1979), Hervé and Zaoui 

(Hervé and Zaoui, 1993) described multi coated spherical inclusions embedded in a matrix 

phase, which is surrounded by the homogeneous equivalent medium. The formulated exact 

solutions for the bulk and the shear moduli of the composite were obtained in case of isotropic 

materials and were restricted to spherical inclusions (Hervé and Zaoui, 1993) and to 

cylindrical inclusions (Hervé and Zaoui, 1995). Besides analytical solutions, the mean-field 

homogenization approach based on the Mori-Tanaka model (Mori and Tanaka, 1973) is 

frequently applied to calculate the effective moduli of the composite. For example, 

Benveniste et al. (Benveniste et al., 1989) started to predict the stress fields due to various 

boundary conditions applied on coated ellipsoidal fibers embedded in a matrix phase. 

Thereby, a modified Mori-Tanaka scheme was applied and the coating was considered as a 

separate phase with assigned mechanical properties. The double-inclusion model (DI model) 

introduced by Hori and Nemat-Nasser (Hori and Nemat-Nasser, 1993) is based on a coated 

inclusion of arbitrary ellipsoidal shape which is embedded in a homogeneous anisotropic 

reference medium. In case of remote homogeneous stresses or strains, the average fields in the 

inclusion and the coating can be analytically estimated. The DI model and its further 

enhancement to the multi-coated inclusion model (MI model) predict the same effective 

composite behavior as the Mori-Tanaka approach (Nemat-Nasser and Hori, 1993). 
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Furthermore, some connections of the DI model with the Mori-Tanaka’s approach 

(Benveniste, 1987; Mori and Tanaka, 1973; Weng, 1984, 1990) and with the Ponte 

Castañeda-Willis approach (Ponte Castañeda and Willis, 1995) were provided by Hu and 

Weng (2000).  

Micromechanical approaches considering interphases were also solved with the so-called 

“Hill’s interfacial operators” (Hill, 1983; Laws, 1975; Walpole, 1978) together with the 

Green’s function technique. These solutions were presented in various studies (Cherkaoui et 

al., 1994, 1995) and were later extended to multi-coated inclusion-reinforced elastic 

composites by Lipinski et al. (2006) and to multi-coated inclusion-reinforced elastic 

composites with eigenstrains like thermal strains by Berbenni and Cherkaoui (2010). 

Aboutajeddine and Neale (Aboutajeddine and Neale, 2005) also proposed a reformulated DI 

model in two steps. First, these authors considered a composite inclusion constituted of the 

inclusion and the coating embedded in an infinite reference medium. In the first step, the 

strain concentration problem simplifies to a classic Eshelby problem, which is exactly solved 

using the Eshelby tensor (Eshelby, 1957) of the composite inclusion. Second, the mechanical 

interaction between the inclusion and the coating, which is difficult to estimate, is simplified 

by considering the inclusion embedded in an infinite reference medium with the mechanical 

properties of the coating (Aboutajeddine and Neale, 2005). However, this promising 

extension of the original double-inclusion model was only performed for two-phase elastic 

composites. Recently, Dinzart et al. (2016) extended the model of Aboutajeddine and Neale 

(2005) for the development of a “n+1 phase” Self-Consistent model of multi-phase elastic 

composites based on a revisited formulation of the multi-coated inclusion problem. It was 

shown that the effective bulk moduli correspond exactly to the analytical results. This last 

approach appears to be an improvement of the MI model initiated by Hori and Nemat-Nasser 

(Nemat-Nasser and Hori, 1993) for different contrasts, volume fractions and aspect ratios of 

the coated inclusions. 

All aforementioned approaches do not include the viscoelastic properties of the interphase 

coming from the modified matrix phase in the case of a linear viscoelastic generalized 

Maxwell model (Hashin, 1991; Diani et al., 2013; Diani and Gilormini, 2014). Compared to 

the diversity of existing multi-phase approaches, the viscoelastic behavior of three-phase 

composite materials containing an interphase was rarely investigated. Hashin (1991) 

described the influence of a viscoelastic interphase in a unidirectional fiber composite 

containing continuous cylindrical fibers. Thus, the composite exhibits transversal isotropic 
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effective behavior. Hashin worked out, that the viscoelastic properties of the interphase 

mainly influence the shear loading cases. Li and Weng (1996) studied the influence of 

viscoelastic interphases on the creep and stress-strain behavior of fiber-reinforced polymer 

matrix composites using the “Composite Cylinder Assemblage” model of Hashin and Rosen 

(1964). They showed that the effective creep and stress-strain behavior were stringly 

dependent on interphase. Recently, Schöneich et al. (2015) developed a promising 

experimental method for the characterization of the interphase in short glass fiber composites 

with high mechanical contrast between the matrix and the fibers. A summary of the interphase 

thickness observed by different experimental methods was given by Fisher and Brinson 

(Fisher and Brinson, 2001). In their work, Fisher and Brinson extended the aforementioned 

approach of Benveniste et al. (1989) to study the viscoelastic interphase properties in 

composites with unidirectional cylindrical fibers. Moreover, a comparison with the original 

Mori-Tanaka method was performed, where no significant difference between the proposed 

solutions could be found. However, supplementary two-dimensional finite element results 

pointed out, that the interphase should be taken into account and deserved further 

investigations. Additional work concerning particle-reinforced composites with the 

viscoelastic interphase was performed by Wei und Huang (Wei and Huang, 2004). They 

investigated the relaxation and damping characteristics of an elastic brittle composite with a 

viscoelastic interphase. Friebel et al. (2006) reported a two-step homogenization procedure 

where coated inclusions as described by the Hori and Nemat-Nasser’s DI approach (Hori and 

Nemat-Nasser, 1999) were firstly homogenized, and second, the DI approach or a classic 

Mori-Tanaka scheme were applied to obtain the effective behavior of the composite. This 

two-level approach was seen to be consistent with the approach by Aboutajeddine and Neale 

(2005) in the particular case of coated homothetic inclusions.  

Within the described framework of multi-phase mean-field homogenization approaches 

considering viscoelastic interphases, this work adopts the advantages of a two-level scheme 

leading to better predictions than the classic DI model. Therefore, the reconsidered double-

inclusion scheme by Aboutajeddine and Neale (Aboutajeddine and Neale, 2005) is extended 

to study the effective linear viscoelastic behavior of three-phase composites. The considered 

composite is described by general ellipsoidal inclusions with anisotropic behavior, surrounded 

by viscoelastic interphases forming coated inclusions embedded in a viscoelastic matrix. 

Furthermore, an extended Mori-Tanaka scheme for three-phase composites with coated 

inclusions is considered as homogenization scheme. In the following section 2, the strain 
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concentration equations between the viscoelastic inclusion and the viscoelastic coating are 

derived with two different approximations: the double inclusion (denoted DI) model, and the 

reconsidered double inclusion (RDI) model. These strain concentration equations are 

incorporated in a homogenization scheme based on a modified Mori-Tanaka scheme for 

three-phase viscoelastic composites. In section 3, the proposed coated inclusion-based 

homogenization schemes based on the DI and RDI models are discussed in comparison with 

the exact solution derived by Hervé and Zaoui (Hervé and Zaoui, 1990) for both spherical 

inclusions and coated inclusions. Finally, considering experimental DMA data in the 

frequency domain for a carbon-black filled styrene butadiene rubber from Diani et al. (2013), 

the effective viscoelastic behavior is estimated with a good accuracy with the RDI model in 

terms of the storage and loss moduli for different volume fractions of composite coated 

inclusions embedded in the matrix phase (unfilled rubber).  

2 Micromechanical model 

2.1 Constitutive equations 

For the development of a micromechanical model including linear viscoelasticity, the 

constitutive equation for linear viscoelastic materials, also denoted as Stieltjes integral 

equation is recalled in Eq. (1) (Christensen, 1969). For brevity, the tensorial notation is used 

for the subsequently stated equations. In the following, the appearing tensors are denoted in 

bold type. With the Boltzmann principle for non-ageing linear viscoelastic behavior, the 

following local constitutive law is introduced: 

𝝈 𝒓, 𝑡 = 𝑪 𝒓, 𝑡 − 𝑡! :
𝑑𝜺 𝒓, 𝑡!

𝑑𝑡!
!

!!
𝑑𝑡! 

(1) 

Thereby, 𝝈 and 𝜺 are the stress and strain second order tensors, 𝑪 is the viscoelastic relaxation 

fourth order tensor. Based on various studies of viscoelastic material modeling  (Hashin, 

1965; Mandel, 1966), the Laplace-Carson (LC) transformation utilizing the correspondence 

principle is introduced. The general form of the transformation is given by the following 

expression, where 𝑝 represents the complex variable:  

ℒ𝐶 𝑓 𝑝 = 𝑓 𝑝 = 𝑝 𝑓 𝑡 𝑒!!"𝑑𝑡
!

!
 (2) 

This transformation is applied to Eq. (1) leading to the symbolic linear elastic constitutive 

equation: 
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𝝈 𝒓,𝑝 = 𝑪 𝒓,𝑝 : 𝜺 𝒓,𝑝  
(3) 

Thus, the subsequently developed equations are presented in the transformed domain. 

Thereby, the notation 𝑓 represents the LC transformation of 𝑓 as illustrated in Eq. (3). 

 

Considering a viscoelastic heterogeneous medium  𝑉 with the boundary 𝜕𝑉, the field 

equations in the transformed LC domain are elaborated. The stress equilibrium condition for 

the stress tensor 𝝈 without body forces or inertia effects is defined as: 

𝒅𝒊𝒗𝝈 = 0    (4) 

The strain field 𝜺 is obtained from the symmetric part of the displacement gradient: 

𝜺 =
1
2 𝛁𝒖+ (𝛁𝒖)𝒕  (5) 

where 𝒖 represents the displacement field in the transformed domain. As boundary 

conditions, a uniform strain field 𝜺𝟎 is imposed on ∂V: 

𝒖 = 𝜺𝟎 ∙ 𝒓  on ∂V (6) 

From Eqs. (3), (4) and (5) and using the major symmetry of 𝑪 (𝐶!"#$ = 𝐶!"#$ = 𝐶!"#$ = 𝐶!"#$), 

the following equilibrium equation is obtained: 

𝒅𝒊𝒗 𝑪: 𝛁𝒖 = 0 (7) 

2.2 Linear viscoelastic Lippmann-Schwinger equation 

With the definition of the reference homogeneous viscoelastic moduli 𝑪𝟎 of the infinite 

reference medium, the local viscoelastic relaxation tensor 𝑪 is expressed as a function of 

spatial fluctuations 𝜹𝑪 and 𝑪𝟎: 

𝑪(𝒓) = 𝑪𝟎 + 𝜹𝑪(𝒓) (8) 

Eqs. (7) and (8) lead to the following Navier-type equation: 

𝒅𝒊𝒗 𝑪𝟎: 𝛁𝒖 + 𝜹𝑪: 𝛁𝒖 = 0 (9) 
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Introducing the linear viscoelastic Green tensor 𝑮𝟎 associated with the homogeneous 

reference medium (HRM) with viscoelastic moduli 𝑪𝟎 defined by: 

𝐶!"#$!  𝐺!",!"! 𝒓− 𝒓! + 𝛿!"𝛿 𝒓− 𝒓! = 0 (10) 

with 𝐺!"! 𝒓− 𝒓! = 0 on 𝜕𝑉, 𝛿 𝒓− 𝒓!  represents the three-dimensional Dirac delta function 

and 𝛿!" is the Kronecker delta. 

From Eqs. (9) and (10), the integral equation of the Lippmann-Schwinger type in the 

transformed domain can be classically derived as in (Dederichs and Zeller, 1973; Kröner, 

1977): 

𝜺(𝒓) = 𝜺𝟎 − 𝚪𝟎 𝒓− 𝒓! :𝜹𝑪(𝒓!):
!

𝜺(𝒓!) 𝑑𝑉′ (11) 

In Eq. (11), the fourth-order tensor 𝚪𝟎 represents the modified Green tensor of the reference 

medium 𝑪𝟎 associated with the boundary conditions and is defined by (Kröner, 1977; Kröner, 

1990: 

Γ!"#$! 𝒓− 𝒓! = −
1
2 𝐺!",!"! 𝒓− 𝒓! + 𝐺!",!"! 𝒓− 𝒓!  (12) 

In the next section, the integral equation (Eq. (11)) is used to estimate the average strains in a 

coated inclusion embedded in the infinite homogeneous reference medium. 

2.3 Coated inclusion problem and strain concentration equations 

The viscoelastic coated inclusion problem is described in Figure 1. The composite coated 

inclusion denoted “𝐷𝐼” with volume 𝑉!" is constituted of an inclusion I with volume 𝑉! and 

Figure 1: Composite coated inclusion embedded in a 
homogeneous reference medium (HRM) 

Inclusion 

𝑪!𝟎 𝑪!𝑰,𝑽𝑰 𝑪!𝑪,𝑽𝑪 

𝜺!𝟎 

Coating 

Reference 
medium 
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symbolic elastic moduli 𝑪𝑰, and a coating C with volume 𝑉!  and symbolic elastic moduli 𝑪𝑪. 

The coated inclusion is embedded in an infinite homogeneous reference medium (HRM) of 

symbolic elastic moduli 𝑪𝟎 and subjected to a homogeneous symbolic strain at infinity 𝜺𝟎.  

Using Figure 1, the spatial fluctuation of symbolic elastic moduli 𝜹𝑪 defined in Eq. (8) reads: 

𝜹𝑪(𝒓) = 𝜟𝑪𝑰 𝟎 𝜙!(𝒓)+  𝜟𝑪𝑪 𝟎 𝜙!(𝒓) (13)   

where 𝚫𝑪𝑰 𝟎 = 𝑪𝑰 − 𝑪𝟎 and 𝚫𝑪𝑪/𝟎 = 𝑪𝑪 − 𝑪𝟎. The characteristic function 𝜙! 𝒓  with 

𝑖 = 𝐼,𝐶 is defined as: 

𝜙! 𝒓 =  1, 𝑟 ∈ 𝑉!
 0, 𝑟 ∉ 𝑉!   

  (14) 

Using Eq. (13) together with Eq. (11) leads to: 

 

𝜺 𝒓 = 𝜺𝟎 − 𝚪𝟎 𝒓− 𝒓! :𝚫𝑪𝑰 𝟎:
!!

𝜺 𝒓! 𝑑𝑉′ 

− 𝚪𝟎 𝒓− 𝒓! :𝚫𝑪𝑪 𝟎:
!!

𝜺 𝒓! 𝑑𝑉′ 
(15) 

 

In order to determine the average strains over the inclusion, the coating and the coated 

inclusion, the overbar sign is introduced to denote the average value of a given mechanical 

field. Therefore, the average of 𝜺𝜶 over the volume 𝑉! is defined as: 

𝜺𝜶 =
1
𝑉! 𝜺 𝒓

!!
𝑑𝑉!    (16) 

where 𝛼 = 𝐼,𝐶,𝐷𝐼 in the following. Using Eq. (16) together with Eq. (15), the average strain in 

the double inclusion 𝜺𝑫𝑰 is obtained after simple manipulations: 

 

𝜺𝑫𝑰 = 𝜺𝟎 −
𝑉!

𝑉!" 𝑻𝟎
𝑫𝑰:𝚫𝑪𝑰 𝟎: 𝜺𝑰 −

𝑉!

𝑉!" 𝑻𝟎
𝑫𝑰:𝚫𝑪𝑪 𝟎: 𝜺𝑪 (17) 

where the fourth order tensor 𝑻𝟎𝑫𝑰 𝑪𝟎 = 𝚪𝟎 𝒓− 𝒓! 𝑑𝑉!!"  is uniform if 𝒓 ∈ 𝑉!"and 

𝒓! ∈ 𝑉! ,𝑉! ⊂ 𝑉!" for ellipsoidal-shaped coated inclusion DI with volume 𝑉!" (Eshelby, 

1957). Thereby, the tensor 𝑻𝟎𝑫𝑰 depends on the viscoelastic modulus 𝑪𝟎 of the HRM medium 
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as well as the outer ellipsoidal geometry of the inclusion with volume 𝑉!" (Mura, 1987; 

Nemat-Nasser and Hori, 1993).  

Furthermore, 𝜺𝑫𝑰 is a function of the average strain over the inclusion 𝜺𝑰 and the average 

strain over the coating  𝜺𝑪 from simple volume averaging as follows: 

𝜺𝑫𝑰 =
𝑉!

𝑉!"  𝜺𝑰 +
𝑉!

𝑉!"  𝜺𝑪 (18) 

Second, the average symbolic strain over the inclusion 𝑉! denoted 𝜺𝑰 can be obtained from 

the application of Eqs. (15) and (16) and after a straightforward simplification using the 

Eshelby (1957)’s property for ellipsoidal-shaped inclusion 𝐼 as follows : 

 

𝜺𝑰 = 𝜺𝟎 − 𝑻𝟎𝑰 :𝚫𝑪𝑰 𝟎: 𝜺𝑰 − !
!!

𝚪𝟎 𝒓− 𝒓! :𝚫𝑪𝑪 𝟎:!!!! 𝜺 𝒓! 𝑑𝑉′𝑑𝑉 (19) 

 

where the fourth order tensor 𝑻𝟎𝑰 𝑪𝟎 = 𝚪𝟎 𝒓− 𝒓! 𝑑𝑉′!!  is uniform if 𝒓 ∈ 𝑉!and 𝒓! ∈ 𝑉! 

for ellipsoidal-shaped inclusion with volume 𝑉! (Eshelby, 1957). Let us recall that the tensor 

𝑻𝟎𝜶  (𝛼 = 𝐼,𝐷𝐼) is linked to the Eshelby tensor 𝑺𝜶 by the relation: 𝑻𝟎𝜶 = 𝑺𝜶: 𝑪𝟎 !𝟏
 in the 

transformed domain. 

Eqs. (17), (18) and (19) form a set of three exact equations for both ellipsoidal inclusion and 

coated inclusion to derive the average symbolic strains 𝜺𝑪 and 𝜺𝑰 in the coating and in the 

inclusion, respectively. Therefore, the symbolic strain concentration tensors 𝑨𝑰𝑪 and 𝑨𝑰𝟎 can 

be determined as follows:  

𝜺𝑰 = 𝑨𝑰𝑪: 𝜺𝑪 (20) 

𝜺𝑰 = 𝑨𝑰𝟎: 𝜺𝟎 

First, it is straightforward to find the relationship between 𝑨𝑰𝟎 and 𝑨𝑰𝑪 using Eq. (17) together 

with Eq. (18) and eliminating 𝜺𝑫𝑰: 

𝑨𝑰𝟎 = !!

!!"
𝑰+ 𝑻𝟎

𝑫𝑰:𝚫𝑪𝑰 𝟎 + !!

!!"
𝑰+ 𝑻𝟎

𝑫𝑰:𝚫𝑪𝑪 𝟎 :  𝑨𝑰𝑪
!𝟏 !𝟏

 (21) 

However, the difficulty to determine 𝑨𝑰𝑪 (and then 𝑨𝑰𝟎) lies in an accurate enough estimate of 

the double volume integral term in Eq. (19). Therefore, two different models are developed in 

the following to derive these strain concentration tensors.  
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1. Double-inclusion (DI) model: 

The average strain relation in the inclusion 𝐼 can be estimated with the original approach 

introduced by Hori and Nemat-Nasser (1993). Following this approach, the second double 

volume integral term of Eq. (19) is decomposed in two parts. This leads to the following 

equation for 𝜺𝑰: 

 

𝜺𝑰 = 𝜺𝟎 − 𝑻𝟎𝑰 :𝚫𝑪𝑰 𝟎: 𝜺𝑰 −
1
𝑉! 𝚪𝟎 𝒓− 𝒓! :𝚫𝑪𝑪 𝟎:

!!!!
𝜺𝑪𝑑𝑉!𝑑𝑉 

−
1
𝑉! 𝚪𝟎 𝒓− 𝒓! :𝚫𝑪𝑪 𝟎:

!!!!
𝜺 𝒓! − 𝜺𝑪 𝑑𝑉!𝑑𝑉  

(22) 

 

As it is approximated by Hori and Nemat-Nasser (Hori and Nemat-Nasser, 1993), the last 

term of Eq. (22) involving 𝜺 𝒓! − 𝜺𝑪  if 𝒓! ∈ 𝑉!can be omitted. In the present case of a 

composite inclusion containing the inclusion and the coating, the integral expression over 𝑉!" 

is described by the sum of integrals over 𝑉!  and 𝑉!. Subsequently, the previous Eq. (22) is 

rewritten as: 

 

𝜺𝑰 = 𝜺𝟎 − 𝑻𝟎𝑰 :𝚫𝑪𝑰 𝟎: 𝜺𝑰 

−
1
𝑉! 𝚪𝟎 𝒓− 𝒓! :𝚫𝑪𝑪 𝟎:

!!"
𝜺𝑪𝑑𝑉!𝑑𝑉 +

1
𝑉! 𝚪𝟎 𝒓− 𝒓! :𝚫𝑪𝑪 𝟎:

!!!!
𝜺𝑪𝑑𝑉!𝑑𝑉 

!!
 

(23) 

 

Using the Eshelby (1957)’s result for ellipsoidal inclusion and coated inclusion, the first 

double volume integral term in Eq. (23) is simplified with the uniform tensor 𝑻𝟎𝑫𝑰 because 

𝑟 ∈ 𝑉! ⊂ 𝑉!", 𝑟! ∈ 𝑉!" and the second double volume integral term in Eq. (23) is simplified 

with the uniform tensor 𝑻𝟎𝑰  because 𝑟 and 𝑟′ ∈ 𝑉!. Introducing the uniform tensor ∆𝑻𝟎𝑰 =

𝑻𝟎𝑫𝑰 − 𝑻𝟎𝑰 , Eq. (23) is further recast as: 

𝜺𝑰 = 𝜺𝟎 − 𝑻𝟎𝑰 : 𝚫𝑪𝑰 𝟎: 𝜺𝑰 − ∆𝑻𝟎𝑰 : 𝚫𝑪𝑪 𝟎: 𝜺𝑪 (24) 
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Then, the strain concentration tensor 𝑨𝑰𝑪 is obtained by eliminating 𝜺𝟎 in Eq. (24) together 

with Eqs. (17) and (18) to find the relationship between 𝜺𝑰 and 𝜺𝑪. After a few algebraic 

manipulations, the strain concentration tensor for the DI model denoted 𝑨𝑪𝑰,𝟏yields: 

𝑨𝑰𝑪,𝟏 = 𝑰+ 𝑻𝟎𝑰 ∶ 𝚫𝑪𝑰 𝟎 −
𝑉!

𝑉!" 𝑰+ 𝑻𝟎𝑫𝑰: 𝚫𝑪𝑰 𝟎
!!

 

: 
𝑉!

𝑉!" 𝑰+ 𝑻𝟎𝑫𝑰: 𝚫𝑪𝑪 𝟎 − ∆𝑻𝟎𝑰 ∶ 𝚫𝑪𝑪 𝟎  

(25) 

Therefore, the strain concentration tensor 𝑨𝑰𝟎 for the DI model, denoted 𝑨𝑰𝟎,𝟏, follows from 

Eq. (21) together with Eq. (25). 

 

2. Reconsidered double-inclusion (RDI) model: 

Starting from the average symbolic strain in the inclusion 𝜺𝑰 derived in Eq. (19), a 

reconsidered double-inclusion model (RDI) originally introduced by Aboutajeddine and 

Neale (2005) for two-phase elastic composites within a self-consistent scheme is now 

extended to the case of the viscoelastic coated inclusion problem.  

First of all, the difference between Eq. (17) and Eq. (19) yields:  

𝜺𝑫𝑰 − 𝜺𝑰 = 𝑻𝟎𝑰 −
𝑉!

𝑉!" 𝑻𝟎
𝑫𝑰 :𝚫𝑪𝑰 𝟎: 𝜺𝑰 −

𝑉!

𝑉!" 𝑻𝟎
𝑫𝑰:𝚫𝑪𝑪 𝟎: 𝜺𝑪 

+ !
!!

𝚪𝟎 𝒓− 𝒓! :𝚫𝑪𝑪 𝟎:!!!! 𝜺 𝒓! 𝑑𝑉′𝑑𝑉 (26) 

In order to eliminate the double volume integral term in Eq. (26), a natural choice as 

performed by Aboutajeddine and Neale (2005), is to set 𝑪𝟎 = 𝑪𝑪. Thus, the coating 𝐶 is 

chosen as the reference medium so that Eq. (26) is simplified to: 

𝜺𝑫𝑰 − 𝜺𝑰 = 𝑻𝑪𝑰 −
!!

!!"
𝑻𝑪𝑫𝑰 :𝚫𝑪𝑰 𝑪: 𝜺𝑰 (27) 

Replacing 𝜺𝑫𝑰 in Eq. (27) by its definition given in Eq. (18), the relationship between 𝜺𝑰 and 

𝜺𝑪 is found and the strain concentration tensor 𝑨𝑰𝑪 (see Eq. (20)) for the RDI model denoted 

𝑨𝑰𝑪,𝟐yields: 

𝑨𝑰𝑪,𝟐 = 𝑰+ 𝑻𝑪𝑪 ∶ 𝚫𝑪𝑰 𝑪 !𝟏  (28) 
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where the tensor 𝑻𝑪𝑪 is defined as: 

𝑻𝑪𝑪 = 𝑻𝑪𝑫𝑰 −
!!"

!!
𝑻𝑪𝑫𝑰 − 𝑻𝑪𝑰  (29) 

 

Furthermore, the strain concentration tensor 𝑨𝑰 for the RDI model, denoted 𝑨𝑰,𝟐, follows from 

Eq. (21) together with Eqs. (28) and (29). In the next section, the derived strain concentration 

equations are incorporated in a homogenization scheme based on an extended Mori-Tanaka 

scheme for three-phase viscoelastic composites with coated inclusions. 

 

2.4 Homogenization  

The corresponding representative volume element (RVE) is constituted of coated inclusions 

embedded in a matrix phase M. Thereby, the phase volume fractions in the three-phase 

composite are defined as 𝑓! = 𝑉! 𝑉 where 𝛼 = 𝐼,𝐶,𝑀 and 𝑉 is the total volume of the RVE 

with 𝑓! + 𝑓! + 𝑓! = 1. The homogenization procedure consists in the determination of the 

effective viscoelastic moduli tensor 𝑪𝒆𝒇𝒇, which relies the macroscopic symbolic stress 𝚺 to 

the macroscopic applied symbolic strain 𝚬: 

𝚺 = 𝑪𝒆𝒇𝒇:𝚬 (30) 

The strain concentration tensors link the average strains of the inclusions, coatings and matrix 

to the macroscopic applied strain by: 

𝜺𝜶 = 𝑨𝜶: 𝚬  𝑤𝑖𝑡ℎ  𝛼 = 𝐼,𝐶,𝑀  (31) 

Using Eq. (31) and the constitutive equation (Eq. (3)) for each phase yields: 

𝝈𝜶 = 𝑪𝜶: 𝜺𝜶 = 𝑪𝜶:𝑨𝜶: 𝚬  𝑤𝑖𝑡ℎ  𝛼 = 𝐼,𝐶,𝑀 (32) 

The overall symbolic stress and strain tensors are respectively given by: 

𝚺 = 𝑓!𝝈𝑴 + 𝑓!𝝈𝑰 + 𝑓!𝝈𝑪 (33) 

𝚬 = 𝑓!𝜺𝑴 + 𝑓!𝜺𝑰 + 𝑓!𝜺𝑪 (34) 
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Using the definition of volume fractions and Eqs. (31) and (34) lead to: 

𝑓!𝑨𝑴 = 𝑰− 𝑓!𝑨𝑪 − 𝑓!𝑨𝑰 (35) 

Finally, the expression of the symbolic effective viscoelastic moduli tensor 𝑪𝒆𝒇𝒇 is obtained 

from Eqs. (30-35) as follows: 

𝑪𝒆𝒇𝒇 = 𝑪𝑴 + 𝑓!(𝑪𝑰 − 𝑪𝑴):𝑨𝑰 +  𝑓!(𝑪𝑪 − 𝑪𝑴):𝑨𝑪   (36) 

 

 

Thus, the evaluation of the involved strain concentration tensors 𝑨𝑰 and 𝑨𝑪 represents the 

basis for the description of the effective properties in case of the two different coated 

inclusion homogenization schemes based on the DI or RDI models derived in section 2.3. 

Here, an extended Mori-Tanaka scheme for three-phase viscoelastic composites is adopted 

considering a low concentration of coated inclusions in the composite. Therefore, the average 

symbolic strain in the matrix 𝜺𝑴 is equal to the reference symbolic strain 𝜺𝟎. Thus, the matrix 

phase 𝑀 is chosen as the reference medium and 𝜺𝟎 = 𝜺𝑴 and 𝑪𝟎 = 𝑪𝑴 are replaced in Eqs. 

(20) and (21). These equations are reconsidered in the context of the RVE with the 

introduction of the volume fractions 𝑓!, 𝑓! , 𝑓!" = 1− 𝑓!. Thus, Eq. (20) leads to: 

 

 

𝜺𝑪 = 𝑨𝑪: 𝚬 = 𝑨𝑰𝑪 !𝟏: 𝜺𝑰 (37) 

𝜺𝑰 = 𝑨𝑰: 𝚬 = 𝑨𝑰𝑴: 𝜺𝑴 

where from Eq. (21): 

𝑨𝑰𝑴 = 𝑓𝐼

1−𝑓𝑀
𝑰+ 𝑻𝟎

𝑫𝑰:𝚫𝑪𝑰 𝟎 + 𝑓𝐶

1−𝑓𝑀
𝑰+ 𝑻𝟎

𝑫𝑰:𝚫𝑪𝑪 𝟎 :  𝑨𝑰𝑪
!𝟏 !𝟏

 (38) 

 

The symbolic strain concentration tensor 𝑨𝑰 for the inclusion phase as defined in Eq. (31) is 

obtained from Eqs. (35), (37) and (38) and yields: 
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𝑨𝑰,𝟏,𝟐 =
𝑓!

1− 𝑓! 𝑰+ 𝑓!𝑻𝑴𝑫𝑰: 𝚫𝑪𝑰 𝑴 +
𝑓!

1− 𝑓! 𝑰+ 𝑓!𝑻𝑴𝑫𝑰: 𝚫𝑪𝑪 𝑴 : 𝑨𝑰𝑪,𝟏,𝟐 !𝟏
!!

 (39) 

where the strain concentration tensors 𝑨𝑰𝑪,𝟏,𝟐 were derived in section 2.3 for both DI and RDI 

models, respectively. Here, both 𝑨𝑰𝑪,𝟏,𝟐 are rewritten in the framework of the extended Mori-

Tanaka homogenization scheme by introducing the matrix phase as reference medium and 

phase volume fractions. In the case of the DI model, from Eq. (25), 𝑨𝑰𝑪,𝟏 yields: 

𝑨𝑰𝑪,𝟏 = 𝑰+ 𝑻𝑴𝑰 ∶ 𝚫𝑪𝑰 𝑴 − !!

!!!!
𝑰+ 𝑻𝑴𝑫𝑰: 𝚫𝑪𝑰 𝑴

!!
	 (40) 

:
𝑓!

1− 𝑓! 𝑰+ 𝑻𝑴𝑫𝑰: 𝚫𝑪𝑪 𝑴 − ∆𝑻𝑴𝑰 ∶ 𝚫𝑪𝑪 𝑴  

and in the case of the RDI model, from Eqs. (28), (29), 𝑨𝑰𝑪,𝟐 yields: 

𝑨𝑰𝑪,𝟐 = 𝑰+ 𝑻𝑪𝑪 ∶ 𝚫𝑪𝑰 𝑪 !𝟏 

 

(19) 

w 

where: 

𝑻𝑪𝑪 = 𝑻𝑪𝑫𝑰 −
!!!!

!!
𝑻𝑪𝑫𝑰 − 𝑻𝑪𝑰  (42) 

Finally, in order to determine the viscoelastic moduli 𝑪𝒆𝒇𝒇, the strain concentration tensor of 

the coating phase 𝑨𝑪 is given by for both DI and RDI models as follows: 

𝑨𝑪,𝟏,𝟐 = 𝑨𝑰𝑪,𝟏,𝟐 !𝟏:𝑨𝑰,𝟏,𝟐 (43) 

In the following section, the extended Mori-Tanaka homogenization scheme based on both DI 

and RDI models are compared with the homogenization scheme using exact solutions derived 

by Hervé and Zaoui (1990) in the case of isotropic properties with coated spherical inclusions 

embedded in a matrix material. 

3 Validation and application  

3.1 Validation of the RDI model for isotropic viscoelastic properties and spherical 

coated inclusions 

In the following, the composite is constituted of three isotropic phases, where the matrix 

phase, inclusion and coating phases are supposed to be linear isotropic viscoelastic. Both 
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inclusions and coated inclusions are homothetic and form spherical composite inclusions 

embedded in the matrix phase. Therefore, the effective viscoelastic moduli of the composite 

are isotropic and 𝑪𝒆𝒇𝒇 can be decomposed into the spherical and the deviatoric parts described 

by the effective bulk and shear modulus 𝑘!"" and 𝜇!"" as follows: 

𝑪𝒆𝒇𝒇 = 3𝑘!""𝑱+ 2𝜇!""𝑲 (44) 

where 𝑱 and 𝑲 are orthogonal projection tensors (Walpole, 1981) defined as 

𝐽!"#$ =
!
!
𝛿!"𝛿!"   𝑎𝑛𝑑  𝐾!"#$ =

!
!
𝛿!"𝛿!" + 𝛿!"𝛿!" −

!
!
𝛿!"𝛿!" . 

 

As a consequence of the homogenized effective behavior in Eq. (36), the effective shear and 

bulk moduli are described as: 

𝑘!"" = 𝑘! + 𝑓!(𝑘! − 𝑘!)𝐴!,! +  𝑓!(𝑘! − 𝑘!)𝐴!,! (45) 

𝜇!"" = 𝜇! + 𝑓!(𝜇! − 𝜇!)𝐴!,! +  𝑓!(𝜇! − 𝜇!)𝐴!,! (46) 

In Eqs. (45) and (46), the 𝐴!,! and 𝐴!,! strain concentration factors with 𝛼 = 𝐼,𝐶 represent 

the spherical and deviatoric parts of the relationships described in Eq. (39) and (43) 

respectively for the phases 𝐼 and 𝐶. Thereby, all strain concentration tensors contain the 

tensor 𝑻𝜶𝑰,𝑫𝑰 𝑪𝜶  where 𝛼 = 𝑀,𝐶. In case of spherical shapes for the inclusions and the coated 

inclusions, this tensor is formulated as (Eshelby, 1957; Mura, 1987): 

𝑻𝜶
𝑰,𝑫𝑰 𝑪𝜶 =

𝑱
3𝑘! + 4𝜇!

+
3(𝑘! + 2𝜇!)𝑲
5𝜇!(3𝑘! + 4𝜇!)

 (47) 

Therefore, the effective behavior can be obtained from the developed strain concentration 

equations of section 2.4 together with Eqs. (45)-(47), for both DI and RDI models. 

For comparison and validation of the proposed models, an extended Mori-Tanaka 

homogenization scheme based on the analytical exact solutions obtained by Hervé and Zaoui 

(1990) for the spherical coated inclusion problem with isotropic elastic constituents is applied. 

Here, the exact formulation of Hervé and Zaoui (1990) is adapted to include the interphase 

properties as well as linear viscoelasticity. The corresponding extension of the analytic 

expressions is presented in Appendix A.1. Nevertheless, this exact formulation is only 

restricted to the case of spherical coated inclusions. 
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Figure 2: Symbolic normalized effective bulk modulus 𝐾!!""(Eq. (48)) as a function of the LC 
complex variable p for coated inclusion volume fraction of 0.25 and 0.5 obtained from the 
extended Mori-Tanaka homogenization scheme based on coated inclusions using the exact 
solution from Hervé and Zaoui (1990) (solid lines), the DI model (dotted lines), the RDI model 
(solid lines with diamonds). 
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In the following, Figures 2 and 3 represent the symbolic normalized effective bulk modulus 

𝐾!"" and shear modulus 𝐺!"", respectively as function of the complex LC variable p for two 

different coated inclusion volume fractions. These symbolic normalized effective moduli are 

defined as (see also Hashin, 1991; Dinzart and Sabar, 2014;): 

𝐾!"" =
𝑝 𝑘!""

𝑘!   𝑤𝑖𝑡ℎ  𝑘! = 𝑘! 𝑝 +
𝑘!

𝑘!!
  (48) 

𝐺!"" =
𝑝 𝜇!""

𝜇!   𝑤𝑖𝑡ℎ  𝜇! = 𝜇! 𝑝 +
𝜇!

𝜂!   (49) 
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Figure 3: Symbolic normalized effective shear modulus 𝐺!!""(Eq. (49)) as a function of the LC 
complex variable p for coated inclusion volume fraction of 0.25 and 0.5 obtained from the 
extended Mori-Tanaka homogenization scheme based on coated inclusions using the exact 
solutions from Hervé and Zaoui (1990) (solid lines), the DI model (dotted lines), the RDI 
model (solid lines with diamonds). 
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Figure 4: Normalized effective bulk modulus as a function of the coated inclusion volume fraction 
obtained from the extended Mori-Tanaka homogenization scheme based on coated inclusions using the 
exact solutions from Hervé and Zaoui (1990) (solid lines), the DI model (dotted lines), the RDI model 
(solid lines with diamonds). 
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The ratios of the elastic and viscous parts are set with regard to the matrix phase 𝑀 to 
!!

!!!
= !!

!!
= !

!"
𝑠!! . Additionally, normalized material properties are further applied for the 

other phases and set identically to a recent study for a four-phase self-consistent approach 

(Dinzart et al., 2016). Thereby, the micromechanical models are evaluated for a defined 

contrast between the different phases. Here, the bulk and the shear moduli contrasts between 

the interphase and the matrix phase are set to !
!

!!
= 25 and !

!

!!
= 25 to study the models 

capabilities for high moduli contrasts. The inclusion properties are defined by !
!

!!
= 6 and 

!!

!!
= 6. The volume fractions of the inclusion and the coating are related by 𝑓! = 0.7𝑓!, 

which corresponds to a relative thickness of the coating with respect to the inclusion radius 𝑎 

defined as  ∆!
!
= 0.2.  

Subsequently to the evaluation of the symbolic normalized effective properties for a fixed 

coated inclusion volume fraction, the direct effective behavior is investigated. Therefore, the 

coated inclusion volume fractions 𝑓!" = 𝑓! + 𝑓!  are varied in a range between 0 and 0.5 for 

𝑝 → ∞. The corresponding results for the effective bulk and shear moduli are shown in 

Figures 4 and 5, respectively. 
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Figure 5: Normalized effective shear modulus as a function of the coated inclusion volume fraction 
obtained from the extended Mori-Tanaka homogenization scheme based on coated inclusions using the 
exact solutions from Hervé and Zaoui (1990) (solid lines), the DI model (dotted lines), the RDI model 
(solid lines with diamonds). 
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As an important result, the effective bulk modulus obtained by the homogenization scheme 

based on the RDI model exactly coincides analytically with the exact solution (see appendix 

A.1). This result is confirmed by the perfect agreement between the RDI model and the exact 

solution observed in Figures 2 and 4. In contrast, the DI model shows an increasing deviation 

from the exact solution especially at higher coated inclusion volume fractions. The results in 

Figure 3 and 5 indicate that effective shear moduli predicted by both models are not identical 

to the exact reference model. However, the RDI model provides an improved prediction with 

respect to the DI model concerning the convergence to the exact solution. Up to a coated 

inclusion volume fraction of 0.3, the prediction of the RDI model corresponds to the exact 

solution. For higher volume fractions, this homogenization scheme provides a slightly stiffer 

effective shear modulus than the one based on the exact solution from Hervé and Zaoui 

(1990). This is due to the fact that the extended Mori-Tanaka homogenization scheme is 

pushed in the present case over its established limits.	

In summary, the comparison of effective bulk and shear properties validates the proposed 

homogenization Mori-Tanaka scheme for low concentration of coated inclusions in the case 

of the proposed RDI model for three-phase viscoelastic composites with interphase. In the 

following, only the RDI model is considered to predict the experimental DMA data in the 

frequency domain for a carbon-black filled styrene butadiene rubber extracted from Diani et 

al. (2013).  
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3.2 Application to the viscoelastic properties of a carbon-black filled styrene butadiene 

rubber and comparison with experimental DMA data 

Subsequent to the validation of the homogenization scheme in last section 3.1, the extended 

Mori-Tanaka scheme based on the RDI model is now confronted to experimental data in the 

case of a carbon-black filled styrene butadiene rubber reported in Diani et al. (2013). As a 

first approximation, this heterogeneous material can be realistically represented by a three-

phase composite with spherical coated inclusions embedded in the bulk unfilled rubber. The 

carbon-black fillers represent the inclusions with purely elastic behavior, and there exists a 

filler-matrix interphase corresponding to a rubber-layer bounded to the filler (Diani et al., 

2013). Therefore, the material characterization of a carbon-black filled styrene butadiene 

rubber studied by Diani et al. (2013) is considered. The authors provide the necessary material 

parameters to describe a spherical stiff inclusion phase, surrounded by an interphase, which 

shows altered properties of the soft matrix. The relevant material parameters are summarized 

in Table 1.  

 

 First parameter Second parameter 
Matrix 

(viscoelastic) 

Young’s modulus: 

Generalized Maxwell model parameters 

Bulk modulus: 

3500 MPa 

Inclusion 

(elastic) 

Young’s modulus: 

70000 MPa 

Poisson’s ratio: 

Quasi incompressible  

(present case 0.499) 

Coating 

(viscoelastic) 

Young’s modulus: 

obtained from the matrix parameters (see Eq. 

(51))  

Bulk modulus: 

3500 MPa 

Table 1: Material parameters for the three homogeneous isotropic phases by (Diani et al., 2013) 

 

The viscoelastic behavior of the matrix and the coating is described by twelve generalized 

Maxwell model parameter sets. These parameters describe the complex Young’s modulus 𝐸∗ 

of the matrix phase M. This complex material parameter is decomposed in a real and 
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imaginary part representing the storage and the loss moduli, respectively. Following the work 

of Park and Schapery (Park and Schapery, 1999), the real and imaginary part of the complex 

Young’s modulus are defined in the frequency domain with the relaxation time 𝜏!, the 

relaxation strength 𝐸! and the equilibrium modulus 𝐸! by: 

𝐸!∗ 𝜔 = 𝐸!! 𝜔 + 𝑖𝐸!!! 𝜔  

𝑤𝑖𝑡ℎ  𝐸!! 𝜔 = 𝐸! + 𝐸!
𝜔!𝜏!!

𝜔!𝜏!! + 1

!

!!!
  

𝑎𝑛𝑑  𝐸!!! 𝜔 =  𝐸!
𝜔𝜏!

𝜔!𝜏!! + 1

!

!!!
 

(50) 

 

For the description of the viscoelastic rubber matrix behavior, the experimental dynamic 

mechanical analysis (DMA) curves of Diani and co-workers (Diani et al., 2013) are 

considered as shown in Figure 6. Here, to describe the viscoelastic behavior of the matrix, Eq. 

(50) is considered, and the same number of generalized Maxwell parameters (m=12), as well 

as the same values for the relaxation strengths Ei and for Ee. However, in order to well fit the 

experimental DMA data, the associated relaxation times were recalibrated for the present 

study. The corresponding Prony series parameters are detailed in Table 2. 

 

Relaxation time 𝜏! [s] Relaxation strength 𝐸! [MPa] 

12.038 × 10-8 320.3 

58.455 × 10-8 293.7 

28.392 × 10-7 235.3 

13.787 × 10-6 86.88 

66.950 × 10-6 18.79 

32.526 × 10-5 4.283 

15.802 × 10-4 2.488 

76.765 × 10-4 0.891 

37.271 × 10-3 0.394 

18.103 × 10-2 0.237 

87.945 × 10-2 0.870 × 10-2 

42.705 × 10-1 0.271 × 10-3 

 Equilibrium modulus: 𝐸! = 2.3 MPa 

Table 2: Prony series material parameters of the viscoelastic rubber matrix identied for the description of 
the experimental DMA data as reported in Figure 6. The relaxation strengths 𝐸! [MPa] and the 
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equilibrium modulus 𝐸! [MPa] are the same as the ones reported in Diani et al. (2013). The relaxation 
times 𝜏! [s] have been recalibrated in the present work. 

 

To verify the implementation of the viscoelastic matrix properties compared to the original 

experimental data, the storage and the loss modulus of the rubber matrix are displayed in 

Figure 6. It is shown, that the viscoelastic behavior of the matrix can be described with the 

updated relaxation times using Eq. (50) and Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Comparison of the experimental matrix storage/loss moduli with the 
identified Prony series parameters introduced in Eq. (50) and Table 2. 
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The Young’s modulus of the interphase is formulated based on the presented matrix behavior. 

Following the description of Diani et al. (2013), the mechanical properties of the interphase 

(coating phase 𝐶) depend on the complex Young’s modulus of unfilled bulk rubber matrix 

𝐸!∗ 𝜔  as well as its constant value in the glassy state denoted 𝐸!"∗  (purely elastic state) 

where 𝐸!"∗ = 𝐸!"!  since 𝐸!"!! = 0 for elastic materials (Diani et al., 2013): 

𝐸!∗ 𝜔 = 𝐸!"∗ + 𝑥 𝐸!∗ 𝜔 − 𝐸!"∗  (51) 

In accordance to the work of Diani et al. (2013), the factor 𝑥 ∈ [0,1] is set to a value of 0.95. 

Thus, all material parameters displayed in Table 1 can be specified and are subsequently 

applied to represent the mechanical behavior of each phase of the composite. These material 

parameters are incorporated in the extended Mori-Tanaka homogenization based on the exact 

solutions of Hervé and Zaoui (1990) and based on the proposed RDI model to derive the 

effective storage and loss moduli as functions frequency and of coated inclusion volume 

fractions. As a consequence, the complex moduli of the three-phase composite can be 

developed using the proposed modeling approaches for 𝑓!" not exceeding 40%. The work 

presented in Diani et al. (Diani et al., 2013) provides experimental DMA results for 

composites with different volume fractions of coated inclusions. Thus, these experimental 

data can be applied for further validation of the proposed RDI model for the determination of 

the effective viscoelastic behavior of this three-phase composite as compared to section 3.1. 

In the present study, two composite material datasets are selected from the experimental 

DMA results. A summary of the corresponding volume fraction of each phase is given in 

Table 3 for two composite materials denoted M5 (𝑓!" = 0.08) and M30 (𝑓!" = 0.39), 

respectively not to exceed 40% of coated inclusion volume fraction. 

 

Material Name Volume Fraction 
Inclusion 

𝑓! 

Volume Fraction 
Coating 
𝑓!  

Volume Fraction 
Coated Inclusion 

𝑓!" 
M5 0.05 0.03 0.08 
M30 0.28 0.11 0.39 

Table 3: Selected composite materials with different coated volume fractions based on the materials data given 
in (Diani et al., 2013) for comparison with the extended Mori-Tanaka homogenization based on the exact 
solutions of Hervé and Zaoui (1990) and based on the proposed RDI model. 

For the subsequent comparison between the experimental results and the micromechanical 

models, the extended homogenization schemes based on the exact solution and the RDI model 
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are both investigated. Figure 7 represents the effective complex modulus of the composite, 

which splits into the real and complex parts, the storage and loss moduli, respectively. 

Thereby, both Materials M5 and M30 are implemented with their corresponding volume 

fractions. The material properties described in the previous section are identical among the 

different materials in order to investigate the influence of the composite volume fraction on 

the models prediction capabilities. 
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It is observed from Figure 7, that the effective behavior described with the exact analytical 

solution and the RDI model are superimposed independently for the different volume 

fractions of coated inclusions and for the broad range of frequency. This result is seen as a 

confirmation of the results presented in Figures 2 to 5. Nevertheless, the prediction of the 

experimental results shows a distinct influence of the respective volume fraction. In case of 

the M5 material containing a small amount of coated inclusions with 𝑓!" = 0.08, the storage 

modulus is predicted with high accuracy for all frequencies. In addition, the loss modulus is 

correctly approximated, especially in the frequency range between 101 Hz and 106 Hz. The 

deviations at lower and higher frequencies are principally based on the initial Prony 

parameters of the matrix material, which show the same diverging tendency for the loss 

modulus in Figure 6. Furthermore, the M30 material with a volume fraction of 𝑓!" = 0.39 

represents the limit of the present extended Mori-Tanaka scheme. Especially at low 

frequencies, an increased deviation from the experimental data is found. However, starting 

from frequencies greater than 103 Hz, both storage and loss modulus converge closer to the 

experimental data. Thus, the storage and loss modulus are predicted with the same 

performance as the M5 material for higher frequencies. 

In summary, increased coating inclusion volume fractions are leading to an underestimation 

of the complex modulus at lower frequencies. Nevertheless, at these volume fractions the 

experimental and numerical datasets are still well converging at frequencies above 103 Hz. 

For this reason, the proposed micromechanical approach is also applicable for composites 

with volume fractions similar to the M30 material. Therefore, the material parameter 𝑓!  and 𝑥 

should be reconsidered. In the reference study by Diani et al. (Diani et al., 2013), these two 

parameters were introduced as fitting parameters and are set in order to calibrate a four-phase 

self-consistent scheme (Maurer, 1990). Thus, the identically applied values of 𝑓!  and 𝑥 in this 

study could possibly not describe optimal choices of these parameters in the framework of the 

RDI model together with an extended Mori-Tanaka scheme. With regard to the definition of 

the complex modulus of the interphase in Eq. (51), the parameter 𝑥 is notably seen as the 

Figure 7: Storage and loss moduli of two composites M5 (fDI=0.08) and M30 (fDI=0.39): comparison between 
experimental DMA data extracted from Diani et al. (2013) (diamonds) and predictions obtained from the 
extended Mori-Tanaka homogenization scheme based on coated inclusions using the exact solutions from Hervé 
and Zaoui (1990) (solid lines) and the proposed RDI model detailed in section 2 (dotted lines). 
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determining factor to raise the interphase properties especially in the range of low 

frequencies. In the present study, these fitting parameters are considered identical to the 

reference work of Diani et al. (Diani et al., 2013) to investigate the relevance of the present 

micromechanical model. Thus, it is shown that an appropriate prediction of the viscoelastic 

behavior can be given already without a recalibration of the fitting parameters. Consequently, 

the presented RDI model is also efficient in the framework of the present homogenization 

scheme for the description of linear viscoelastic experimental data of three-phase composites 

like carbon-black filled styrene butadiene rubber.  

  

4 Conclusion 

In this study, the reconsidered DI model (abbreviated RDI model) first introduced by 

Aboutajeddine and Neale (2005) was adopted to the case of three-phase viscoelastic 

composites with coated inclusions and with different mechanical properties in an extended 

Mori-Tanaka homogenization scheme. The entire micromechanical framework was 

formulated in the frequency domain to include linear viscoelasticity by using the 

correspondence principle and Laplace-Carson transforms. The classic DI model originally 

proposed by Hori and Nemat-Nasser (1993) was also considered following the same Mori-

Tanaka homogenization scheme but including different strain concentration tensors for three 

phase composites in order to enable some comparisons with the RDI model. Both models 

were applied to three-phase composites with inclusions and interphases constituted of 

isotropic viscoelastic phases embedded in a viscoelastic matrix. To validate the proposition of 

the RDI model based homogenization scheme, the application to spherical coated inclusions 

and the comparison with the exact solution by Hervé and Zaoui (Hervé and Zaoui, 1990) were 

presented. It was shown that the RDI model provides better predictions than the DI model. 

Herein, it was emphasized, that the proposed Mori-Tanaka extension in the RDI model 

predicts exactly the same effective bulk modulus as the exact reference model. Additionally, 

the shear moduli were seen to be very close to the reference solution in the case of the RDI 

model, which was not the case for the DI model. Based on this satisfying validation, the 

homogenization schemes based on the RDI model and on the exact solutions were applied to 

predict the effective viscoelastic behavior of real three-phase composites with interphase. The 

models predictions were confronted to experimental data in the case of a carbon-black filled 

styrene butadiene rubber reported in Diani et al. (2013). As a first approximation, this 



- 27 - 

heterogeneous material was realistically represented by a three-phase composite with 

spherical coated inclusions embedded in the bulk unfilled rubber. The effective viscoelastic 

behavior was estimated with a good accuracy in terms of the storage and loss moduli for 

different volume fractions of coated inclusions up to 40%. Furthermore, the RDI model 

coincides with the exact solution independently of the coated inclusion volume fraction. In 

case of high volume fractions of coated inclusions (𝑓!" = 0.39) and high frequencies 

superior to 103 Hz, the storage and loss moduli of the composite were still well represented. 

However, the complex moduli at low frequencies were significantly lower than the ones given 

by experimental results. This effect could be explained with the choice of the mechanical 

interphase properties at lower frequencies, which were identical to the work of Diani et al. 

(Diani et al., 2013). Currently, the experimental characterization of the interphase (micro-

geometry, mechanical behavior) in polymer-based composites remains a challenging issue 

(Schöneich et al., 2015). The present work provides an efficient micromechanical model for 

viscoelastic composites based on the coated-inclusion problem solved with the RDI model. 

The present approach can be applied to further applications in an extended Mori-Tanaka 

scheme or in a four-phase self-consistent scheme (see Dinzart et al., 2016) without a 

restriction to spherical or cylindrical inclusions in contrast with the exact solutions. Thus, 

anisotropic viscoelastic behavior and non-homothetic inclusions and coated inclusions could 

be considered in further studies with the present model. 
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Appendix A 

A.1. Exact strain concentration solution for spherical coating inclusion with isotropic 

properties  

The exact solution by Hervé and Zaoui (Hervé and Zaoui, 1990) is extended to the application 

to three phases to include the coating (interphase) 𝐶, which surrounds the spherical inclusion 

𝐼. The coated inclusion (DI=I+C) is embedded in the matrix phase 𝑀. Therefore, the Mori-

Tanaka scheme is also applied as well as the further extension to viscoelasticity using the 

correspondence principle and the involved Laplace-Carson transformation. Thus, the 

fundamental exact strain concentration equations of the dilatational and deviatoric part 

denoted as 𝜃!,! and 𝑒!,! adopted from the original work are still valid and implemented as: 

 

𝜃! =
3𝑘! + 4𝜇! 3𝑘! + 4𝜇!

3𝑘! + 4𝜇! 3𝑘! + 4𝜇! + 12𝑐 𝜇! − 𝜇! 𝑘! − 𝑘!
𝜃! 

  

𝜃! =
3𝑘! + 4𝜇! 3𝑘! + 4𝜇!

3𝑘! + 4𝜇! 3𝑘! + 4𝜇! + 12𝑐 𝜇! − 𝜇! 𝑘! − 𝑘!
𝜃! 

(A.1) 

 

𝑒! =
15 1− 𝜐! 𝑋!

1− 𝑐  

×
𝑋! − 1 𝐴 + 60𝑐 1− 𝜐! 𝜂!𝑐! ! − 𝜂! 7− 10𝜐! + 35 1− 𝜐! 𝜂!𝜂! 1− 𝑐

Δ 𝑒! 

  

𝑒! = 225 1− 𝜐! 1− 𝜐! 𝑋! 

×
−4 𝑋! − 1 𝜂!𝑐! ! − 𝜂! 7− 10𝜐!  + 35𝜂! 1− 𝜐!

Δ 𝑒! 

(A.2) 

 

In the present contribution, no changes regarding the involved parameters 𝑐,𝑋0,𝐴, 𝜂1, 𝜂2, 𝜂3 

and Δ have been made. Thus, these parameters are defined with reference to the original work 

of Hervé and Zaoui (Hervé and Zaoui, 1990) and the corresponding Poisson’s ratio 

𝜐! ,𝛼 = 𝐼,𝐶,𝑀 as: 
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𝑐 = 𝑓! 𝑓!" 

Δ = 2 4− 5𝜐! 𝐶 + 7− 5𝜐! 𝐴𝑋! 𝑋! − 1 + 525𝜂! 1− 𝜐!  

         × 2𝛼 𝜐! − 𝜐! 𝑐 + 1− 𝜐! 𝜂! 𝑋! 

𝜂! = 49− 50𝜐!𝜐! 𝛼 + 35 1+ 𝛼 𝜐! − 2𝜐! + 35 2𝜐! − 𝜐!  

𝜂! = 7+ 5𝜐! 1+ 𝛼 + 4 7− 10𝜐!  

𝜂! = 2 1+ 𝛼 4− 5𝜐! + 7− 5𝜐!  

𝛼 = (𝜇! 𝜇!)− 1 

𝑋! = 𝜇! 𝜇!  

𝐴 = −4 𝜂! − 2𝛼 4− 5𝜐! 𝑐 𝜂!𝑐! ! − 𝜂! 7− 10𝜐!  

         −126𝛼 𝜂!𝑐 1− 𝑐! ! !
 

𝐶 = − 𝜂! + 𝛼 7− 5𝜐! 𝑐 4𝜂!𝑐! ! + 𝜂! 7+ 5𝜐!  

         −126𝛼 𝜂!𝑐 1− 𝑐! ! !
 

(A.3) 

 

In the homogenization step, the strain concentration factors of the inclusion and the coating 

following the exact solution by Hervé and Zaoui are emerging directly from Eqs. (A.1) (A.2) 

and (A.3) and from the homogenization procedure described in Eqs. (44-46). At this point, it 

can be remarked that the effective solution for the dilatational part of the exact approach is 

identical to the solution for the effective bulk modulus from the homogenization scheme 

based on the RDI model. In contrast, the classic DI model cannot retrieve this result (see 

Figures 2 and 4). 
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