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Abstract

The Expectation Maximization (EM) algorithm is of key importance for inference
in latent variable models including mixture of regressors and experts, missing ob-
servations. This paper introduces a novel EM algorithm, called SPIDER-EM, for
inference from a training set of size n, n ≫ 1. At the core of our algorithm is
an estimator of the full conditional expectation in the E-step, adapted from the
stochastic path-integrated differential estimator (SPIDER) technique. We derive
finite-time complexity bounds for smooth non-convex likelihood: we show that
for convergence to an ǫ-approximate stationary point, the complexity scales as
KOpt(n, ǫ) = O(ǫ−1) and KCE(n, ǫ) = n +

√
nO(ǫ−1), where KOpt(n, ǫ) and

KCE(n, ǫ) are respectively the number of M-steps and the number of per-sample
conditional expectations evaluations. This improves over the state-of-the-art algo-
rithms. Numerical results support our findings.

This paper is close to the final version accepted for publication in the Conference on Neural Infor-
mation Processing Systems (NeurIPS 2020). The final version can be found at
https://papers.nips.cc/paper/2020/hash/c589c3a8f99401b24b9380e86d939842-Abstract.html

1 Introduction

Expectation Maximization (EM) is a key algorithm in machine-learning and statistics [20]. Ap-
plications are numerous including clustering, natural language processing, parameter estimation in
mixed models, missing data, to give just a few. The common feature of all these applications is the
introduction of latent variables: the “incomplete” likelihood p(y; θ) where θ ∈ Θ ⊆ R

d is defined
by marginalizing the “complete-data” likelihood p(y, z; θ) defined as the joint distribution of the
observation y and a non-observed latent variable z ∈ Z, i.e. p(y; θ) =

∫
p(y, z; θ)µ(dz) where Z is

the latent space and µ is a measure on Z. We focus in this paper on the case where p(y, z; θ) belongs
to a curved exponential family, given by

p(y, z; θ)
def
= ρ(y, z) exp

{
〈s(y, z), φ(θ)〉 − ψ(θ)

}
; (1)

where s(y, z) ∈ R
q is the complete data sufficient statistics, φ : Θ → R

q and ψ : Θ → R,
ρ : Y × Z → R

+ are vector/scalar functions. Given a training set of n independent observations
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{yi}ni=1, our goal is to minimize the negated penalized log-likelihood with respect to θ ∈ Θ:

min
θ∈Θ

F (θ)
def
=

1

n

n∑

i=1

Li(θ) + R(θ), Li(θ) def
= − log p(yi; θ), (2)

such that R(θ) is a regularizer. A popular solution approach to (2) is the EM algorithm [10] which is
a special instance of the Majorize-Minimization (MM) algorithm. It alternates between two steps:
in the Expectation (E) step, using the current value of the iterate θcurr, we compute a majorizing
function θ 7→ Q(θ, θcurr) given up to an additive constant by

Q(θ, θcurr)
def
= −〈s̄(θcurr), φ(θ)〉 + ψ(θ) + R(θ) where s̄(θ)

def
=

1

n

n∑

i=1

s̄i(θ) ; (3)

and s̄i(θ) is the ith sample conditional expectation of the complete data sufficient statistics:

s̄i(θ)
def
=

∫

Z

s(yi, z)p(z|yi; θ)µ(dz) , p(z|yi; θ) def
= p(yi, z; θ)/p(yi; θ) . (4)

As for the Maximization (M) step, a new value of θcurr is computed as a minimizer of θ 7→
Q(θ, θcurr). The majorizing function is then updated with the new θcurr. This process is iterated
until convergence. One of the distinctive advantage of EM algorithms with respect to (w.r.t.) first-
order methods stems from the fact that it is invariant by change of parameterization and that EM is,
by construction, monotone; see [20].

The conventional EM algorithm is not suitable for analyzing the increasingly large data sets, such
as those that could be considered as big data in volumes [5, 14]: in such case, the explicit computa-
tion of s̄(θcurr) in each E-step of the EM algorithm involves evaluating n conditional expectations
[20]. As a remedy, incremental methods were designed which reduce the number of samples used
per iteration to a mini-batch. Among the incremental methods, the first approach to cope with
large-scale EM setting is the incremental EM (iEM) algorithm [21] (also see [22] for a refined algo-
rithm). At each iteration, iEM selects a minibatch Bcurr of size b and updates the associated statistic

s̄i(θcurr), i ∈ Bcurr, in the current estimate Ŝcurr of s̄(θcurr); and then updates the parameters by a
classical M-step. Later, an alternative approach was proposed in [6] as the Online EM algorithm,
which shares some similarities with stochastic gradient descent [4] even though Online EM is not a
first-order method. Recent papers have proposed improvements to Online EM by combining it with
variance reduction techniques. For instance, [7] and [18] proposed respectively the stochastic EM
with variance reduction (sEM-vr) and the fast incremental EM (FIEM) algorithms. These methods
are extensions to the EM algorithm of the SVRG [15] and the SAGA [8] techniques.

The complexity of these algorithms have been analyzed under the assumption that F (θ) is smooth
but possibly non-convex. They are expressed as the number of M-steps updates, KOpt(n, ǫ), and
the number of per-sample conditional expectations evaluations KCE(n, ǫ), in order to find an ǫ-
approximate stationary point of F (θ); see (11) for the definition. It was established in [18] that

KOpt(n, ǫ) = KCE(n, ǫ) = n + n2/3O(ǫ−1) updates/evaluations are needed for the sEM-vr and
FIEM algorithms (the rate for FIEM can be sharpened, see [12]). These complexity bounds match
those of the SVRG and the SAGA algorithms for smooth non-convex optimization [25].

For smooth non-convex problems, the Stochastic Path-Integrated Differential EstimatoR (SPIDER)
technique has recently been introduced by [11] (see also [27] for SPIDER-BOOST and [24] for
SARAH), which established an n +

√
nO(ǫ−1) bound of calls to first order oracles to find an ǫ-

approximate stationary solution of a general finite sum optimization problem. Furthermore, the√
n-dependence was proven to be optimal. This motivates the current work to explore new EM

algorithms with reduced complexity. Our contributions are:

• We propose a novel SPIDER-EM algorithm, inspired by the SPIDER estimator in [11] and tailored
to the EM framework for curved exponential family class of distributions. The SPIDER-EM
uses an outer loop to maintain a control variate that requires a full scan of the dataset to compute
s̄(θcurr), and inner loops which perform low complexity updates by drawing random minibatches
of samples.

• We introduce a unified framework of stochastic approximation (SA) within EM which covers
the convergence analysis of Online EM, sEM-vr, FIEM, SPIDER-EM. In this general framework,
SPIDER-EM may be seen as a stochastic approximation algorithm using variance reduced esti-

mate Ŝcurr.
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• Using the SA analysis framework, we prove that the complexity bounds for SPIDER-EM are
KOpt(n, ǫ) = O(ǫ−1), KCE(n, ǫ) = n +

√
nO(ǫ−1). Among the incremental-EM techniques,

we provide state of the art complexity bounds that overpass all the previous ones.

• The EM is not a first-order method contrary to SPIDER. Therefore, the convergence analysis of
SPIDER-EMmethods require specific mathematical developments which differ significantly from
the original SPIDER analysis. In addition, the analysis of SPIDER-EM differs from previous ones
for incremental EM algorithms, since it involves biased approximations, which makes the proof
more challenging (see section 9, Lemma 11).

• We provide a new perspective to interpret SPIDER-EM as an equivalent algorithm to a perturbed
Online-EM where the perturbation acts as a control variate to reduce variance - see algorithm 7.

Furthermore, the SPIDER-EM algorithm operates with a significantly lower memory footprint than
iEM and FIEM, and the memory footprint is on par with sEM-vr and Online EM. To our best knowl-
edge, the proposed algorithm offers the best of both worlds – having a low complexity bounds and
a low memory footprint. Lastly, we support the theoretical findings with numerical experiments and
show that SPIDER-EM performs favorably compared to existing algorithms.

Notations. For two vectors a, b ∈ R
r, 〈a, b〉 denotes the usual Euclidean product and ‖a‖ the

associated norm. By convention, vectors are column vectors. For a vector x with components
(x1, . . . , xr), xi:j denotes the sub-vector with components (xi, xi+1, . . . , xj−1, xj). For two matri-
ces A ∈ R

r1×r2 and B ∈ R
r3×r4 , A ⊗ B denotes the Kronecker product. Ir is the r × r identity

matrix. AT is the transpose of A.

2 EM Algorithm and its Variants using Stochastic Approximation

We formulate the model assumptions and introduce the SPIDER-EM algorithm. Recall the definition
of the negated penalized log-likelihood F (θ) from (2) and consider a few regulatory assumptions:

H1. Θ ⊆ R
d is a measurable convex set. (Z,Z) is a measurable space and µ is a σ-finite positive

measure on Z . The functions R : Θ → R, φ : Θ → R
q , ψ : Θ → R, and ρ(yi, ·) : Z → R+,

s(yi, ·) : Z → R
q for i ∈ {1, . . . , n} are measurable functions. For any θ ∈ Θ and i ∈ {1, . . . , n},

the log-likelihood is bounded as −∞ < Li(θ) <∞.

H2. For all θ ∈ Θ and i ∈ {1, . . . , n}, the conditional expectation s̄i(θ) is well-defined.

H3. For any s ∈ R
q , the map s 7→ Argminθ∈Θ {ψ(θ) + R(θ)− 〈s, φ(θ)〉} exists and is unique;

the singleton is denoted by {T(s)}.

As discussed in the Introduction, the EM algorithm is an MM algorithm associated with the ma-
jorization functions {θ 7→ Q(θ, θcurr), θcurr ∈ Θ}. Thus, the EM algorithm defines a sequence
{θk, k ≥ 0} that can be computed recursively as θk+1 = T ◦ s̄(θk), where the map T is defined in
H3 and s̄ is defined in (3). On the other hand, the EM algorithm can be defined through a mapping
in the complete data sufficient statistics, referred to as the expectation space. In this setting, the EM

iteration defines a sequence in R
q {Ŝk, k ≥ 0} given by Ŝk+1 = s̄ ◦ T(Ŝk). To summarize, we

observe that the EM algorithm admits two equivalent representations:

(Parameter space) θk+1 = T ◦ s̄(θk); (Expectation space) Ŝk+1 = s̄ ◦ T(Ŝk). (5)

In this paper, we focus on the expectation space representation. Let θ⋆
def
= T(s⋆) where s⋆ ∈ R

q . It
has been shown in [9] that if s⋆ is a fixed point to the EM algorithm in the expectation space, then
θ⋆ = T(s⋆) is a fixed point of the EM algorithm in the parameter space, i.e., θ⋆ = T ◦ s̄(θ⋆). Note
that the converse is also true. The limit points of the EM algorithm in the expectation space are the
roots of the mean field

h(s)
def
= s̄ ◦ T(s)− s, s ∈ R

q . (6)

Consider the following assumption.

H4. 1. The functions φ, ψ and R are continuously differentiable on Θv. If Θ is open, then Θv = Θ,
otherwise Θv is a neighborhood of Θ. T is continuously differentiable on R

q.

2. The function F is continuously differentiable on Θv and for any θ ∈ Θ, ∇F (θ) =
−∇φ(θ)⊤s̄(θ) +∇ψ(θ) +∇R(θ).
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3. For any s ∈ R
q, B(s)

def
= ∇(φ ◦ T)(s) is a symmetric matrix with positive minimal eigenvalue.

These assumptions are classical, see for example, [18] and the references therein.

A key property of the EM algorithm is that it is monotone: in the parameter space θk+1 = T ◦ s̄(θk)
decreases the objective function with F (θk+1) ≤ F (θk). The same monotone property also holds
in the expectation space. Define

W(s)
def
= F ◦ T(s) = 1

n

n∑

i=1

Li(T(s)) + R(T(s)), s ∈ R
q . (7)

It can be shown that F (θk+1) ≤ F (θk) implies W(Ŝk+1) ≤W(Ŝk). In addition, [9] showed that:

Proposition 1. Under H1, H2, H3 and H4, W(s) is continuously differentiable on R
q and for any

s ∈ R
q , ∇W(s) = −B(s)h(s).

Hence, s⋆ is a fixed point to the EM algorithm in expectation space, with s⋆ = s̄ ◦ T(s⋆) and
h(s⋆) = 0 if and only if s⋆ is a stationary point satisfying ∇W(s⋆) = 0. This property has made
it possible to develop a new class of algorithms that preserve desirable properties of the EM (e.g,
invariant in the choice of parameterization) while replacing the computation of s̄(θ) by a stochastic
approximation (SA) scheme; see [26, 2, 3] for a survey on SA. This scheme has been exploited in
[9] to deal with the case where the computation of the conditional expectation s̄(θ) is intractable.

We consider yet another form of intractability in this work which is linked with the size of the dataset

n ≫ 1. To alleviate this problem, the Online EM algorithm [6] defines a sequence {Ŝk, k ≥ 0}
with the recursion:

Ŝk+1 = Ŝk + γk+1

(
s̄Bk+1

◦ T(Ŝk)− Ŝk

)
, (8)

where {γk+1, k ≥ 0} is a deterministic sequence of step sizes, Bk+1 is a mini-batch of b examples

sampled at random in {1, . . . , n} and for a mini-batch B of size b, we set s̄B
def
= b−1

∑
i∈B s̄i.

The Online EM algorithm can be viewed as an SA scheme designed for finding the roots of the

mean-field h; indeed, the mean-field of Online EM satisfies E[s̄Bk+1
◦ T(Ŝk) − Ŝk] = h(Ŝk).

Hence, the possible limiting points of Online EM are the roots of h(s), such a root s⋆ is a stationary
point of W (see Proposition 1 and (7)), and T(s⋆) corresponds to a stationary point of the penalized
likelihood (2); see [6] for a precise statement and [17] for a detailed convergence analysis.

Variance Reduction for SA with EM Algorithm. For the finite-sum problem (2), more efficient
algorithms can be developed by introducing a control variate in order to achieve variance reduction.

Suppose that we have a random variable (r.v.) U and our aim is to estimate u
def
= E[U ]. For any

zero-mean r.v. V , the sum U + V is an unbiased estimator of u. Now, if V is negatively correlated
with U and Var(V 2) ≤ −2Cov(U, V ), then the variance of U + V will be lower than that of the
standalone estimator U ; V is a control variate.

This approach has been proven to be effective for stochastic gradient algorithms: emblematic exam-
ples are Stochastic Variance Reduced Gradient (SVRG) introduced by [15] and SAGA introduced
by [8]. Whereas control variates have been originally designed to the stochastic gradient framework,
similar ideas can be applied to SA procedures for finite-sum optimization. For Online EM, variance
reduction amounts to expressing the mean-field as h(s) = E [s̄B ◦ T(s)− s+ V ] where V is a con-
trol variate. These methods differ in the way the control variate is constructed. The efficiency of
such variance reduction methods improves with the correlation of V with s̄B ◦ T(s)− s.
An SVRG-like algorithm is the Stochastic EM with Variance Reduction (sEM-vr) algo-
rithm [7]. In sEM-vr, the control variate is reset in an outer loop every kin iterations: in the outer
loop #t for t ∈ {1, . . . , kout}, and the inner loop #(k + 1) for k ∈ {0, . . . , kin − 2}, the complete
data sufficient statistic is updated using Online EM and a recursively defined control variate

Ŝt,k+1 = Ŝt,k + γt,k+1(s̄Bt,k+1
◦ T(Ŝt,k)− Ŝt,k + Vt,k+1) , (9)

Vt,k+1 = s̄ ◦ T(Ŝt−1,kin−1)− s̄Bt,k+1
◦ T(Ŝt−1,kin−1) . (10)

When k = 0, the complete data sufficient statistic Ŝt,0 is obtained by performing first a full-pass on

the dataset S̃t,0 = s̄◦T(Ŝt−1,kin−1) and then updating Ŝt,0 = Ŝt−1,kin−1+γt,0(S̃t,0− Ŝt−1,kin−1).
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An SAGA-like version is the Fast Incremental EM (FIEM) algorithm proposed in [18]. The
construction of the control variate for FIEM is more involved; for details, see algorithm 5 in the
supplementary material.

In [18], the sEM-VR and FIEM algorithms have been analyzed with a randomized terminating iter-
ation (τ, ξ), uniformly selected from {1, . . . , kout} × {0, . . . , kin − 1} where kin (resp. kout) is
the number of inner loops per outer one, and kout is the total number of outer loops. The random
termination is inspired by [13] which enables one to show non-asymptotic convergence of stochastic
gradient methods to a stationary point. Consider first sEM-VR. For any n, ǫ, we define K(n, ǫ) ⊂ N

3

such that, for any (kin, kout, b) ∈ K(n, ǫ),

E[‖h(Ŝτ,ξ)‖2] def= kmax
−1∑kout

t=1

∑kin−1
k=0 E[‖h(Ŝt,k)‖2] ≤ ǫ , (11)

where kmax = kinkout. In words, the randomly terminated algorithm computes a solution Ŝτ,ξ

such that the expected squared norm of the mean field is less than ǫ; see [13]. The finite sample
complexity in terms of the number of M-steps is KsEM-VR

Opt (n, ǫ) = infK(n,ǫ) kinkout.

The complexity in terms of the total number of per-sample conditional expectations evaluations, is
defined as KsEM-VR

CE (n, ǫ, b) = infK(n,ǫ){n+ koutn+ bkinkout + (n ∧ (bkin))kout}. Similar results
can be derived for FIEM and other incremental EM algorithms (see section 6). In such case, define by
kmax = kmax(n, ǫ) the minimal number of iterations such that (11) is satisfied and setKFIEM

Opt (n, ǫ) =

kmax(n, ǫ) and KFIEM

CE (n, ǫ) = 2kmax(n, ǫ)b. It can be shown (see [18] and the supplementary

material) that KsEM-VR

Opt (n, ǫ) = KFIEM

Opt (n, ǫ) = n2/3O(ǫ−1) and KsEM-VR

CE (n, ǫ) = KFIEM

CE (n, ǫ) =

n+n2/3O(ǫ−1). These bounds exhibit anO(ǫ−1) growth as the stationarity requirement ǫ decreases.
Such a rate is comparable to a deterministic gradient method for smooth and non-convex objective
functions. However, the complexity of M-step computations as well as of conditional expectations

evaluations grow at the rate of n2/3, which can be undesirable if n≫ 1. Hereafter, we aim to design
a novel algorithm with better finite-time complexities.

3 The SPIDER-EM Algorithm

To reduce the dependence on n and the overall complexity, we propose to design a new control
variate, and to optimize the size of the minibatch. To this regard, we borrow from [11, 27] (see
also [24] and the algorithm SARAH) a new technique called Stochastic Path-Integrated Differential
Estimator (SPIDER) to generate the control variates for estimating the conditional expectation of the
complete data for the full dataset.

Algorithm Description. We propose the SPIDER-EM algorithm formulated in the expectation space.

The outer loop is the same as that of sEM-vr. The difference lays in the update of Ŝk as follows:

Data: kin ∈ N⋆, kout ∈ N⋆, Ŝinit ∈ R
q , {γt,k+1, t ≥ 1, k ≥ 0} positive sequence.

Result: The SPIDER-EM sequence: Ŝt,k, t = 1, . . . , kout and k = 0, . . . , kin − 1

1 Ŝ1,0 = Ŝ1,−1 = Ŝinit, S1,0 = s̄ ◦ T(Ŝ1,−1) ;
2 for t = 1, . . . , kout do
3 for k = 0, . . . , kin − 2 do
4 Sample a mini-batch Bt,k+1 in {1, . . . , n} of size b, with or without replacement;

5 St,k+1 = St,k + s̄Bt,k+1
◦ T(Ŝt,k)− s̄Bt,k+1

◦ T(Ŝt,k−1) ;

6 Ŝt,k+1 = Ŝt,k + γt,k+1

(
St,k+1 − Ŝt,k

)

7 Ŝt+1,−1 = Ŝt,kin−1 ;

8 St+1,0 = s̄ ◦ T(Ŝt+1,−1) ;

9 Ŝt+1,0 = Ŝt,kin−1 + γt,kin

(
St+1,0 − Ŝt,kin−1

)

Algorithm 1: The SPIDER-EM algorithm.

We discuss the design considerations of the SPIDER-EM algorithm and provide insights on how it
can accelerate convergence as follows.
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Control Variate and Variance Reduction. We shall analyze SPIDER-EM as an SA scheme with
control variate to reduce variance. While the description of SPIDER-EM algorithm in the above does
not present the control variates explicitly, it is possible to re-interpret the inner loop (line 4–line 6)
with a control variate defined, for t ∈ N⋆ and k ∈ {0, . . . , kin − 2}, as

Vt,k+1 = Vt,k + s̄Bt,k
◦ T(Ŝt,k−1)− s̄Bt,k+1

◦ T(Ŝt,k−1)

=
∑k

j=0{s̄Bt,j
◦ T(Ŝt,j−1)− s̄Bt,j+1 ◦ T(Ŝt,j−1)},

(12)

where Vt,0 = 0 is reset at every outer iteration and, by convention, Bt,0 def
= {1, . . . , n}. It is seen

that line 6 can be rewritten as (see Lemma 3 in the supplementary material)

Ŝt,k+1 = Ŝt,k + γt,k+1

(
s̄Bt,k+1

◦ T(Ŝt,k)− Ŝt,k + Vt,k+1

)
. (13)

Note that, by construction, the control variate Vt,k is zero mean because, E[s̄Bt,j
◦ T(Ŝt,j−1)] =

E[s̄Bt,j+1 ◦ T(Ŝt,j−1)] = E[s̄ ◦ T(Ŝt,j−1)]. Eq. (12) shows how SPIDER-EM constructs a control
variate by accumulating information – similar to SPIDER and SARAH in the gradient descent setting.

Comparing (12)-(13) to (9)-(10), the SPIDER-EM algorithm differs from sEM-vr only in the con-
struction of the control variate. To obtain insights about their performance, let us denote the filtration

as Ft,k
def
= σ(Ŝinit,B1,1, . . . ,B1,kin−1, . . . ,Bt,1, . . . ,Bt,k). Observe that the conditional variances

(given Ft,k) of Ŝt,k+1 of the sEM-VR and SPIDER-EM algorithms are:

Var
[
ŜsEM−vr

t,k+1 |Ft,k

]
= γ2t,k+1 Var[s̄Bt,k+1

◦ T(Ŝt,k)− s̄Bt,k+1
◦ T(Ŝt−1,kin−1)|Ft,k] ,

Var
[
ŜSPIDER−EM

t,k+1 |Ft,k

]
= γ2t,k+1 Var[s̄Bt,k+1

◦ T(Ŝt,k)− s̄Bt,k+1
◦ T(Ŝt,k−1)|Ft,k] .

As a comparison, the variance of Ŝ(t−1)kin+k+1 for the Online EM is given by

γ2(t−1)kin+k+1 Var
[
s̄B(t−1)kin+k+1

◦ T(Ŝ(t−1)kin+k)|FO−EM

(t−1)kin+k

]
.

Here, FO−EM

τ
def
= σ(Ŝinit,B1, . . . ,Bτ). In this sense, both sEM-vr and SPIDER-EM are variance-

reduced versions of the Online EM. Additionally, SPIDER-EM and sEM-VR are designed to ex-

ploit two values Ŝt,k, Ŝt,k−1 and Ŝt,k, Ŝt−1,kin−1, respectively. The former thus takes the benefit

of a stronger correlation between two successive values of {Ŝt,k, k ≥ 1} than between Ŝt,k and

Ŝt−1,kin−1 in the variance reduction step. As a result, SPIDER-EM should inherit a better rate of
convergence – an intuition which is established will be Theorem 2.

Step Size and Memory Footprint. The SPIDER-EM algorithm is described with a positive step
size sequence {γt,k+1, t ≥ 1, k ≥ 0}. Different strategies are allowed: (a) a constant step size
γt,k+1 = γ for any k ≥ 0, or (b) a random sequence. We focus on case (a) in the following, while
we refer the readers to [11] for such a strategy in the gradient setting. Lastly, we observe that the
SPIDER-EM algorithm has the same memory footprint requirement as the sEM-vr algorithm.

Convergence Analysis. Let (τ, ξ) be uniform r.v. on {1, . . . , kout}×{0, . . . , kin− 1}, independent

of the SPIDER-EM sequence {Ŝt,k, t = 1, · · · , kout; k = −1, · · · , kin − 1}. Our goal is to derive

explicit upper bounds for E[‖h(Ŝτ,ξ−1)‖2] for the SPIDER-EM sequence given by algorithm 1 with
a constant step size (γt,k+1 = γ for any t ≥ 1, k ≥ 0). We strengthen the assumption H4 as follows:

H5. (a) There exist 0 < vmin ≤ vmax < ∞ such that for all s ∈ R
q, the spectrum of B(s) is in

[vmin, vmax]; B(s) is defined in H4.

(b) For any i ∈ {1, . . . , n}, the map s̄i ◦ T is globally Lipschitz on R
q with constant Li.

(c) The function s 7→ ∇W(s) = −B(s)h(s) is globally Lipschitz on R
q with constant L∇W.

From H5-(a) and Proposition 1, we have E
[
‖h(Ŝτ,ξ−1)‖2

]
≥ v−2

maxE
[
‖∇W(Ŝτ,ξ−1)‖2

]
so that a

control of E
[
‖h(Ŝτ,ξ−1)‖2

]
provides a control of E

[
‖∇W(Ŝτ,ξ−1)‖2

]
. The convergence result for

SPIDER-EM is summarized below:
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Theorem 2. Assume H1, H2, H3, H4 and H5 and set L2 def
= n−1

∑n
i=1 L

2
i . Fix kout, kin ∈ N⋆,

b ∈ N⋆ and set γt,k
def
= α/L for any t, k > 0 where α ∈ (0, vmin/µ⋆(kin, b)) with

µ⋆(kin, b)
def
= vmax

√
kin/b+ L∇W/(2L) . (14)

The SPIDER-EM sequence {Ŝt,k, t ≥ 1, k ≥ 0} given by algorithm 1 satisfies

E

[
‖h(Ŝτ,ξ−1)‖2

]
≤
(

1

kin
+
α2

b

)
2L

α{vmin − αµ⋆(kin, b)}
1

kout

(
E[W(Ŝinit)]−minW

)
.

Our analysis, whose detail can be found in the supplementary material, shares some similarities
with the one in SPIDER-Boost [27]. Nevertheless, there are a number of differences because (a)
SPIDER-EM algorithm recursion uses two spaces (the expectation space and the parameter space)
which are connected by the maps s̄ and T; (b) SPIDER-EM is not a gradient algorithm in the ex-
pectation space, but an SA scheme to obtain a root for h; (c) there is a Lyapunov function W(s)
where∇W(s) 6= −h(s), but which satisfies 〈∇W(s), h(s)〉 ≤ −vmin‖h(s)‖2. In addition, in rela-
tion to the above points, our analysis took insights from [16, 17] to analyze SPIDER-EM as a biased
SA scheme. Our challenge lies in carefully controlling the bias/variance of the SPIDER estimator
employed, which is not reported in the prior literature.

Proof Sketch. While we shall omit the proof details, an outline of the proof is provided. Set

Ht,k+1
def
= γ−1

t,k+1(Ŝt,k+1 − Ŝt,k). A key property is the following descent condition for the Lya-

punov function W. There exist positive sequences Λt,k, βt,k such that for any t ≥ 1, k ≥ 0,

W(Ŝt,k+1) ≤W(Ŝt,k)− Λt,k+1‖Ht,k+1‖2 + γt,k+1
v2
max

2β2
t,k+1
‖Ht,k+1 − h(Ŝt,k)‖2 .

It holds for any t ≥ 1 and 0 ≤ k ≤ kin − 2,

E

[
‖Ht,k+1 − h(Ŝt,k)‖2|Ft−1,kin−1

]
≤ L2

b

∑k
j=0 γ

2
t,jE

[
‖Ht,j‖2|Ft−1,kin−1

]
. (15)

The above conditions can be combined to yield
∑kout

t=1

∑kin−1
k=0 At,kE

[
‖Ht,k‖2

]
≤ E

[
W(Ŝinit)

]
−minW

where the At,k’s are positive. Dividing both sides of the inequality by
∑kout

t=1

∑kin−1
k=0 At,k leads to

a bound on E[‖HΞ‖2] for some r.v. Ξ on {1, . . . , kout} × {0, . . . , kin − 1}. For the concerned case
when γt,k = γ, we have At,k = A and Ξ = (τ, ξ) is the uniform distribution, thus the convergence

rate for E[‖Hτ,ξ‖2] is O(1/kinkout). Lastly, we obtain a bound for the mean field ‖h(Ŝτ,ξ−1)‖2
using the standard inequality (a+ b)2 ≤ 2a2 + 2b2 and (15) again.

Choice of kin, b, kout and Complexity Bounds. The maximum of α{vmin − αµ⋆(kin, b)} on

(0, vmin/µ⋆(kin, b)) is α⋆(kin, b)
def
= vmin/{2µ⋆(kin, b)} which yields γ = vmin/{2µ⋆(kin, b)L}

and the upper bound

E

[
‖h(Ŝτ,ξ−1)‖2

]
≤
(
µ⋆(kin, b)

v2min

+
kin

4µ⋆(kin, b)b

)
8L

kinkout
(E[W(Ŝinit)]−minW) .

The number of parameter updates is 1 + kout + kinkout. The number of per-sample conditional
expectation computations is n + koutn + 2bkinkout. Assume that n and ǫ > 0 are given. Set for
simplicity b = kin = ⌈√n⌉ which means that the number of per-sample conditional expectations
evaluations in the inner loop is equal to n, i.e., is an epoch (see subsection 9.3 for a discussion on

other strategies). With this choice, we get µ⋆(kin, b) = m⋆
def
= vmax + L∇W/(2L). Taking

kout ≥
(

m⋆

v2
min

+ 1
4m⋆

)
8L√
nǫ

(E[W(Ŝinit)]−minW) ,

then we have E[‖h(Ŝτ,ξ−1)‖2] ≤ ǫ. With these choices of kin, kout, b, the complexity in terms of

the number of per-sample conditional expectations evaluations s̄i is KCE(n, ǫ) = n+
√
nLO(ǫ−1).

The number of parameter updates is KOpt(n, ǫ) = O(ǫ−1). Note that the step size is chosen to be
γ = α⋆(kin, b)/L, which is independent of the targeted accuracy ǫ.

Linear convergence rate. In section 10, we provide a modification of SPIDER-EM which exhibits
a linear convergence rate when W satisfies a Polyak-Lojasiewicz inequality. Note that the latter
condition (or its variants) has been used in a few recent works, e.g., [1, 7].
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Figure 1: [Left] Median estimated number of parameter updates KOpt(n, ǫ) needed to reach an

accuracy of 2.5 × 10−5 [Right] Median estimated number of per-sample conditional expectations
KCE(n, ǫ)−n needed to reach an accuracy of 2.5×10−5. The median is taken from a Monte-Carlo
simulation among 50 trials.

4 Numerical illustration

Synthetic Data. We evaluate the efficiency of SPIDER-EM against the problem size. We gener-
ate a synthetic dataset with n observations from a scalar two-components Gaussian mixture model
(GMM) with 0.2N (0.5, 1) + 0.8N (−0.5, 1). The variances and the weights are assumed known.
We fit the means µ1, µ2 of a GMM to the observed data. For SPIDER-EM, we set b = ⌈√n/20⌉,
kin = ⌈n/b⌉ and a fixed step size γk = 0.01. We define τemp = tempkin + kemp as the total

number of updates of Ŝk evaluated, such that temp, kemp are the indices of outer, inner iteration,
respectively. To estimate KOpt(n, ǫ) and KCE(n, ǫ), we run the SPIDER-EM algorithm until the

first iteration τemp when the solution satisfies ‖h(Ŝtemp,kemp)‖2 ≤ ǫ = 2.5 × 10−5. We take the

median of τemp over 50 runs to give an estimate of KOpt(n, ǫ); similarly, we take the median of
ntemp + 2bτemp to give an estimate of KCE(n, ǫ). Note that the conditional expectations computed
during the initialization step are ignored.

Figure 1 compares SPIDER-EM to the state-of-the-art incremental EM algorithms for different set-
tings of n. The results illustrate that the empirical performance of SPIDER-EM agrees with the
theoretical analysis. In particular, we observe that for SPIDER-EM, the estimated KOpt(n, ǫ) is in-
dependent of the problem size n while KCE(n, ǫ)− n grows at the rate of

√
n.

MNIST Dataset. We perform experiment on the MNIST dataset to illustrate the effectiveness of
SPIDER-EM on real data; this example is taken from [23, Section 5]. The dataset consists of n =
6 × 104 images of handwritten digits, each with 784 pixels. We pre-process the dataset as follows.
First, we eliminate the uninformative pixels (67 pixels are always zero) across all images to obtain
a dense representation with ddense = 717 pixels per image. Second, we apply principal component
analysis (PCA) to further reduce the data dimension. We keep the dPC = 20 principal components
(PCs) of each observation.

We estimate a multivariate GMM model with g = 12 components. Unlike in the previous experi-
ment, here the parameter θ collects the mixture’s weights {αℓ, 1 ≤ ℓ ≤ g}, the expectations of each
component and a pulled full covariance matrix. SPIDER-EM is compared to iEM [21], Online EM
[6], FIEM [18], and sEM-vr [7]. Details on the multivariate Gaussian mixture model are given in
the supplementary material, section 11, where we give technical conditions required to verify the
assumptions of Theorem 2.

In Figure 2, we display the sequence of parameter estimates {θτ}, the objective function {−W(Ŝτ )}
and the squared norm of the mean field {‖h(Ŝτ)‖2}. Figure 3 gives insights on the distribution of

‖h(Ŝt,k)‖2 along SPIDER-EM paths. The mini-batches {Bτ}τ are independent, and sampled at
random in {1, . . . , n} with replacement. For a fair comparison, we use the same seed to sample the
minibatches {Bk}; another seed is used for FIEM which requires a second sequence of minibatches

{Bτ}τ . The minibatch size is set to be b = 100 and the stepsize γτ = 5×10−3 except for iEM where

γτ = 1. The same initial value Ŝinit is used for all experiments. We have implemented the procedure

of [19] in order to obtain the initialization θinit and then we set Ŝinit
def
= s̄(θinit) ( −W(Ŝinit) =

8
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Figure 2: [Left] Evolution of the estimates of the weights αℓ for ℓ = 1, . . . , g by Online EM (top)
and SPIDER-EM (bottom) vs the number of epochs. [Right] Evolution of the objective function

−W(Ŝk) vs the number of epochs.
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Figure 3: [Left] Quantile 0.25 and [Right] quantile 0.75 of the distribution of ‖h(Ŝt,−1)‖2 vs the
number of epochs t; the quantiles are estimated from 40 independent samples of this distribution.

−58.3). The plots illustrate that SPIDER-EM reduces the variability of Online EM and compares
favorably to iEM and FIEM. Additional details and results are given in the Supplementary material.

5 Conclusions

We have introduced the SPIDER-EM algorithm for large-scale inference. The algorithm offers low
memory footprint and improved complexity bounds compared to the state-of-the-art, which is veri-
fied by theoretical analysis and numerical experiments.
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Notations. For two vectors a, b ∈ R
r, 〈a, b〉 denotes the usual Euclidean product and ‖a‖ the

associated norm. By convention, vectors are column vectors. For a vector x with components
(x1, . . . , xr), xi:j denotes the sub-vector with components (xi, xi+1, . . . , xj−1, xj).

For two matrices A ∈ R
r1×r2 and B ∈ R

r3×r4 , A ⊗ B denotes the Kronecker product. Ir is the
r × r identity matrix. AT is the transpose of A.

6 Complexity of incremental EM-based methods for smooth non-convex

finite sum optimization

We first compare the complexities of the incremental EM based methods using the following table
which summarizes the state-of-the-art results.

algorithm γ KOpt KCE Optimal KCE

EM [10] - 1 + kmax n+ nkmax N/A

online-EM [6] decaying; O(L−1k−1/2) 1 + kmax n+ bkmax ǫ−2

iEM [21] 1 1 + kmax n+ bkmax ǫ−1n

sEM-vr [7, 18] O(L−1n−2/3) 1 + kinkout n(1 + kout) + (bkin + n)kout ǫ−1n2/3

FIEM [18] O(L−1n−2/3) 1 + kmax n+ 2bkmax ǫ−1n2/3

FIEM [12] O(L−1n−1/3k
−1/3
max ) 1 + kmax n+ 2bkmax ǫ−3/2√n

SPIDER-EM O(L−1) 1 + kinkout n+ koutn+ 2bkinkout ǫ−1√n

Table 1: Comparison between different EM-based algorithms for smooth non convex finite sum
optimization. Except sEM-vr and SPIDER-EMwhich have nested loops (kout is the maximal number
of outer loops and kin is the number of inner loops per outer loop), kmax is the maximal number of
iterations. The last column is the optimal complexity to reach an ǫ-approximate stationary point.

Next, we provide the psuedo-codes of several existing incremental EM-based algorithms, following
the notations defined in the main paper.
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Data: kmax ∈ N⋆, Ŝinit ∈ R
q

Result: The EM sequence: Ŝk, k = 0, . . . , kmax

1 Ŝ0 = s̄ ◦ T(Ŝinit) ;
2 for k = 0, . . . , kmax − 1 do

3 Ŝk+1 = s̄ ◦ T(Ŝk)

Algorithm 2: The EM algorithm in the expectation space.

Data: kmax ∈ N⋆, Ŝinit ∈ R
q , γk ∈ (0,∞) for k = 1, . . . , kmax

Result: The SA sequence: Ŝk, k = 0, . . . , kmax

1 Ŝ0 = s̄ ◦ T(Ŝinit) ;
2 for k = 0, . . . , kmax − 1 do
3 Sample a mini-batch Bk+1 in {1, . . . , n} of size b, with replacement ;

4 Ŝk+1 = Ŝk + γk+1

(
s̄Bk+1

◦ T(Ŝk)− Ŝk

)
.

Algorithm 3: The Online EM algorithm.

Data: kmax ∈ N⋆, Ŝinit ∈ R
q , γk ∈ (0,∞) for k = 1, . . . , kmax

Result: The iEM sequence: Ŝk, k = 0, . . . , kmax

1 S0,i = s̄i ◦ T(Ŝinit) for all i = 1, . . . , n;

2 Ŝ0 = S̃0 = n−1
∑n

i=1 S0,i;
3 for k = 0, . . . , kmax − 1 do
4 Sample a mini-batch Bk+1 in {1, . . . , n} of size b, with replacement ;
5 Sk+1,i = Sk,i for i /∈ Bk+1 ;

6 Sk+1,i = s̄i ◦ T(Ŝk) for i ∈ Bk+1;

7 S̃k+1 = S̃k + n−1
∑

i∈Bk+1
(Sk+1,i − Sk,i) ;

8 Ŝk+1 = Ŝk + γk+1(S̃k+1 − Ŝk)

Algorithm 4: The Incremental EM (iEM) algorithm.

Data: kmax ∈ N⋆, Ŝinit ∈ R
q , γk ∈ (0,∞) for k = 1, . . . , kmax

Result: The FIEM sequence: Ŝk, k = 0, . . . , kmax

1 S0,i = s̄i ◦ T(Ŝinit) for all i = 1, . . . , n;

2 Ŝ0 = S̃0 = n−1
∑n

i=1 S0,i;
3 for k = 0, . . . , kmax − 1 do
4 Sample a mini-batch Bk+1 in {1, . . . , n} of size b, with replacement ;
5 Sk+1,i = Sk,i for i /∈ Bk+1 ;

6 Sk+1,i = s̄i ◦ T(Ŝk) for i ∈ Bk+1 ;

7 S̃k+1 = S̃k + n−1
∑

i∈Bk+1
(Sk+1,i − Sk,i) ;

8 Sample a mini-batch B′
k+1 in {1, . . . , n} of size b, with replacement ;

9 Vk+1 = S̃k+1 − b−1
∑

i∈B′

k+1
Sk+1,i ;

10 Ŝk+1 = Ŝk + γk+1(s̄B′

k+1
◦ T(Ŝk)− Ŝk + Vk+1)

Algorithm 5: The Fast Incremental EM (FIEM) algorithm.
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Data: kin ∈ N⋆, kout ∈ N⋆, Ŝinit ∈ R
q , γt,k ∈ (0,∞) for t ≥ 1, k ≥ 1

Result: The sEM-vr sequence: Ŝt,k, t = 1, . . . , kout and k = 0, . . . , kin − 1

1 S1,0 = s̄ ◦ T(Ŝinit) ;

2 Ŝ1,0 = Ŝinit ;
3 for t = 1, . . . , kout do
4 for k = 0, . . . , kin − 2 do
5 Sample a mini-batch Bt,k+1 in {1, . . . , n} of size b, with replacement ;

6 Vt,k+1 = St,0 − s̄Bt,k+1
◦ T(Ŝt−1,kin−1) ;

7 Ŝt,k+1 = Ŝt,k + γt,k+1

(
s̄Bt,k+1

◦ T(Ŝt,k)− Ŝt,k + Vt,k+1

)

8 St+1,0 = s̄ ◦ T(Ŝt,kin−1) ;

9 Ŝt+1,0 = Ŝt,kin−1 + γt,kin

(
St+1,0 − Ŝt,kin−1

)

Algorithm 6: The sEM-vr algorithm.

7 An equivalent definition of the SPIDER-EM algorithm

Using Lemma 3 below this page, we deduce that SPIDER-EM can be equivalently described by the
following algorithm 7.

Data: kin ∈ N⋆, kout ∈ N⋆, Ŝinit ∈ R
q , a positive sequence {γt,k, t, k ≥ 1}.

Result: The SPIDER-EM sequence: Ŝt,k, t = 1, . . . , kout, k = 0, . . . , kin − 1

1 Ŝ1,−1 = Ŝinit ;

2 S̃1,0 = s̄ ◦ T(Ŝinit) ;
3 for t = 1, . . . , kout do
4 Vt,0 = 0 ;
5 for k = 0, . . . , kin − 2 do
6 Sample a mini-batch Bt,k+1 in {1, . . . , n} of size b, with or without replacement ;

7 Vt,k+1 = Vt,k + S̃t,k − s̄Bt,k+1
◦ T(Ŝt,k−1) ;

8 S̃t,k+1 = s̄Bt,k+1
◦ T(Ŝt,k) ;

9 Ŝt,k+1 = Ŝt,k + γt,k+1

(
S̃t,k+1 − Ŝt,k + Vt,k+1

)

10 S̃t+1,0 = s̄ ◦ T(Ŝt,kin−1) ;

11 Ŝt+1,0 = Ŝt,kin−1 + γt,kin

(
S̃t+1,0 − Ŝt,kin−1

)

Algorithm 7: The SPIDER-EM algorithm (equivalent description)

Lemma 3. Let {γk, k ≥ 1} be a positive deterministic sequence and {Bk, t, k ≥ 1} be a family of

mini-batches sampled from {1, . . . , n}. Fix Ŝ−1, Ŝ0 and S0. Define for k = 0, · · · , kin − 2

{
Sk+1

def
= Sk + s̄Bk+1

◦ T(Ŝk)− s̄Bk+1
◦ T(Ŝk−1) ,

Ŝk+1
def
= Ŝk + γk+1

(
Sk+1 − Ŝk

)
.

Set S̃−1
def
= Ŝ−1, S̃0

def
= Ŝ0, V0

def
= 0 and define for k = 0, . . . , kin − 2,

{
Vk+1

def
= Vk + s̄Bk

◦ T(S̃k−1)− s̄Bk+1
◦ T(S̃k−1) ,

S̃k+1
def
= S̃k + γk+1

(
s̄Bk+1

◦ T(S̃k)− S̃k + Vk+1

)
;

by convention, set s̄B0 ◦ T(S̃−1) = S0.

Then for any k = −1, . . . , kin − 1, S̃k = Ŝk.
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Proof. We prove by induction that for any k ≥ 1, Vk = Sk− s̄Bk
◦T(Ŝk−1) and S̃k = Ŝk. We have

by definition of V0, s̄B0 ◦ T(S̃−1), S̃−1 and S1,

V1 = S0 − s̄B1 ◦ T(S̃−1) = S0 − s̄B1 ◦ T(Ŝ−1) = S1 − s̄B1 ◦ T(Ŝ0) .

In addition, by definition of S̃0, S̃1 and V1, we have

S̃1 = Ŝ0 + γ1

(
s̄B1 ◦ T(Ŝ0)− Ŝ0 + S1 − s̄B1 ◦ T(Ŝ−0)

)
.

Assume that the property holds for any 0 ≤ j ≤ k. Then, by definition of Vk+1, the induction
assumption on Vk and the definition of Sk+1, it holds

Vk+1 = Vk + s̄Bk
◦ T(S̃k−1)− s̄Bk+1

◦ T(S̃k−1)

= Sk − s̄Bk+1
◦ T(S̃k−1) = Sk+1 − s̄Bk+1

◦ T(S̃k) .

This concludes the induction for the property on {Vk, k ≥ 0}. In addition, by the induction assump-

tion on S̃k, the definition of Vk+1, the induction assumption on Vk and the definition of Sk+1, we
have

S̃k+1 = Ŝk + γk+1

(
s̄Bk+1

◦ T(Ŝk)− Ŝk + Vk + s̄Bk
◦ T(Ŝk−1)− s̄Bk+1

◦ T(Ŝk−1)
)

= Ŝk + γk+1

(
s̄Bk+1

◦ T(Ŝk)− Ŝk + Sk − s̄Bk+1
◦ T(Ŝk−1)

)

= Ŝk + γk+1

(
Sk+1 − Ŝk

)
= Ŝk+1 .

This concludes the proof.

8 General convergence results

The purpose of this section is to show the general convergence results of a SPIDER-EM like algo-
rithm, and these results will be specialized in section 9. For all i = 1, . . . , n, s̄i ◦ T is a function
from R

q to R
q; for a selection of b indices B in {1, . . . , n} with or without replacement, we set

s̄B ◦ T def
= b−1

∑
i∈B s̄i ◦ T. More generally, s̄ ◦ T def

= n−1
∑n

i=1 s̄i ◦ T. For some results below,
specific assumptions may be introduced on s̄t ◦ T.

Let {γk, k ≥ 1} be a positive deterministic sequence. Let {Bk, k ≥ 1} be a family of independent
random mini batches sampled in {1, . . . , n} of size b, (either with replacement or without replace-
ment). Finally, let U−1, U0 be random variables. Assume that (U−1, U0) are independent from the
sequences {Bk, k ≥ 1} and set

Ũ0
def
= s̄ ◦ T(U−1) = E [s̄B1 ◦ T(U−1)|U−1] . (16)

Consider the recursive definition for k ≥ 0,

Ũk+1 = Ũk + s̄Bk+1
◦ T(Uk)− s̄Bk+1

◦ T(Uk−1) ,

Uk+1 = Uk + γk+1

(
Ũk+1 − Uk

)
.

Finally, define the filtration

G0 def
= σ(U−1, U0), for k ≥ 0, Gk+1

def
= σ (Gk ∪ Bk+1) ,

and define the sequence of random variables

∆0
def
= h(U−1), for k ≥ 0, ∆k+1

def
= Ũk+1 − Uk = γ−1

k+1(Uk+1 − Uk) .

Lemma 4. For any k ≥ 0, Bk+1 and Gk are independent. For any u ∈ R
q,

E
[
s̄Bk+1

◦ T(u)
]
= s̄ ◦ T(u) .

Assume that s̄i ◦ T is globally Lipschitz with constant Li; set L2 def
= n−1

∑n
i=1 L

2
i . For any u, u′ ∈

R
q ,

E
[
‖s̄Bk+1

◦ T(u)− s̄Bk+1
◦ T(u′)− s̄ ◦ T(u) + s̄ ◦ T(u′)‖2

]

≤ 1

b

(
L2‖u− u′‖2 − ‖s̄ ◦ T(u)− s̄ ◦ T(u′)‖2

)
.

15



Proof. By assumption, Bk+1 and (U0, U−1) are independent, and therefore Bk+1 and G0 are also.
In addition, Bk+1 is independent of Bℓ for any ℓ ≤ k so Bk+1 is independent of Gk.

• Case: sampling with replacement. We write Bk+1 = {I1, · · · , Ib} where the random variables are
independent, and uniformly distributed on {1, · · · , n}. Then

E
[
s̄Bk+1

◦ T(u)
]
=

1

b

b∑

ℓ=1

E [s̄Iℓ ◦ T(u)] = E [s̄I1 ◦ T(u)] = s̄ ◦ T(u) .

In addition, since the variance of the sum is the sum of the variance for independent r.v.

E
[
‖s̄Bk+1

◦ T(u)− s̄Bk+1
◦ T(u′)− s̄ ◦ T(u) + s̄ ◦ T(u′)‖2

]

=
1

b2

b∑

ℓ=1

E
[
‖s̄Iℓ ◦ T(u)− s̄Iℓ ◦ T(u′)− s̄ ◦ T(u) + s̄ ◦ T(u′)‖2

]

Then we have

E
[
‖s̄Iℓ ◦ T(u)− s̄Iℓ ◦ T(u′)− s̄ ◦ T(u) + s̄ ◦ T(u′)‖2

]

=
1

n

n∑

i=1

E
[
‖s̄i ◦ T(u)− s̄i ◦ T(u′)‖2

]
− ‖s̄ ◦ T(u) + s̄ ◦ T(u′)‖2

≤ ‖u− u′‖2 1
n

n∑

i=1

L2
i − ‖s̄ ◦ T(u) + s̄ ◦ T(u′)‖2 (17)

which concludes the proof.

• Case: sampling with no replacement. I1 is a uniform random variable on {1, · · · , n} so that
E [s̄I1 ◦ T(u)] = s̄◦T(u). Conditionally to I1, I2 is a uniform random variable on {1, · · · , n}\{I1}.
Therefore

E [s̄I2 ◦ T(u)] =
1

n− 1




n∑

j=1

s̄j ◦ T(u)− E [s̄I1 ◦ T(u)]


 =

n

n− 1
s̄ ◦ T(u)− 1

n− 1
s̄ ◦ T(u) .

By induction, for any ℓ ≥ 2,

E [s̄Iℓ ◦ T(u)] =
1

n− ℓ+ 1




n∑

j=1

s̄j ◦ T(u)−
ℓ−1∑

q=1

E
[
s̄Iq ◦ T(u)

]



=
n

n− ℓ+ 1
s̄ ◦ T(u)− ℓ− 1

n− ℓ+ 1
s̄ ◦ T(u) .

As a conclusion, b−1
∑

b

ℓ=1 E [s̄Iℓ ◦ T(u)] = s̄◦T(u). Let u, u′ ∈ R
q; set φ(Iℓ)

def
= s̄Iℓ ◦T(u)− s̄◦

T(u)+ s̄Iℓ ◦T(u′)− s̄◦T(u′). Then E [φ(Iℓ)] = 0. We first prove by induction that E
[
‖φ(Iℓ)‖2

]
=

E
[
‖φ(I1)‖2

]
. Upon noting that I1 is a uniform random variable on {1, · · · , n},

E
[
‖φ(Iℓ)‖2

]
=

1

n− ℓ+ 1

(
n∑

i=1

‖φ(i)‖2 − E
[
‖φ(I1)‖2 + · · ·+ ‖φ(Iℓ−1)‖2

]
)

=
n

n− ℓ+ 1
E
[
‖φ(I1)‖2

]
− 1

n− ℓ+ 1

ℓ−1∑

p=1

E
[
‖φ(Ip)‖2

]

which concludes the induction. Second, let us prove that for any ℓ ≥ 0,

E

[
‖

ℓ+1∑

p=1

φ(Ip)‖2
]
≤ (ℓ + 1)E

[
‖φ(I1)‖2

]
. (18)

Since n−1
∑n

i=1 φ(i) = E [φ(I1)] = 0,

E

[〈
ℓ∑

p=1

φ(Ip), φ(Iℓ+1)

〉]
=

1

n− ℓE
[〈

ℓ∑

p=1

φ(Ip),

n∑

i=1

φ(i)−
ℓ∑

p=1

φ(Ip)

〉]
= − 1

n− ℓE
[
‖

ℓ∑

p=1

φ(Ip)‖2
]
,
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so that

E

[
‖

ℓ+1∑

p=1

φ(Ip)‖2
]
=

(
1− 2

n− ℓ

)
E

[
‖

ℓ∑

p=1

φ(Ip)‖2
]
+E

[
‖φ(Iℓ+1)‖2

]
≤ (ℓ+1)E

[
‖φ(I1)‖2

]
.

The proof follows from (18) and (17) since here again, I1 is uniformly distributed on {1, · · · , n}.

Lemma 5. For any k ≥ 0,

E [∆k+1|Gk]− h(Uk) = ∆k − h(Uk−1) .

Proof. Let k ≥ 0. Since conditionally to Gk, Bk+1 = {I1, . . . , Ib} where the random variables Ik’s
are independent and uniformly distributed on {1, . . . , n}, we have

E

[
Ũk+1|Gk

]
= Ũk + s̄ ◦ T(Uk)− s̄ ◦ T(Uk−1) .

In the case k = 0, we have by using (16)

E [∆1 − h(U0)|G0] = E

[
Ũ1|G0

]
− s̄ ◦ T(U0) = 0 = ∆0 − h(U−1) ;

the last equality explains the convention for ∆0. In the case k > 0,

E [∆k+1|Gk] = E

[
Ũk+1 − Uk|Gk

]
= Ũk + h(Uk)− s̄ ◦ T(Uk−1)

= ∆k + Uk−1 + h(Uk)− ◦̄T(Uk−1) = h(Uk) + ∆k − h(Uk−1) .

Proposition 6. Assume that for all i = 1, · · · , n, s̄i ◦ T is globally Lipschitz, with constant Li; set

L2 def
= n−1

∑n
i=1 L

2
i . Then ∆0 − E [∆0|G0] = 0,

E[‖∆1 − E [∆1|G0] ‖2|G0] = E[‖∆1 − h(U0)‖2|G0]

≤ −1

b
‖s̄ ◦ T(U0)− s̄ ◦ T(U−1)‖2 +

L2

b
‖U0 − U−1‖2 .

and for any k ≥ 1,

E[‖∆k+1 − E[∆k+1|Gk]‖2|Gk] ≤ −
1

b
‖s̄ ◦ T(Uk)− s̄ ◦ T(Uk−1)‖2 +

L2

b
γ2k ‖∆k‖2 ;

E[‖∆k+1 − h(Uk)‖2|G0] ≤ −
1

b

k∑

j=0

E
[
‖s̄ ◦ T(Uj)− s̄ ◦ T(Uj−1)‖2|G0

]

+
L2

b




k∑

j=1

γ2j E
[
‖∆j‖2|G0

]
+ ‖U0 − U−1‖2


 .

Proof. The statement on ∆0 is trivial since ∆0 = h(U−1) ∈ G0. By definition of ∆1, by Lemma 4
and by (16)

E [∆1|G0] = E

[
Ũ1|G0

]
− U0 = Ũ0 + s̄ ◦ T(U0)− s̄ ◦ T(U−1)− U0 = h(U0) .

The equation

∆1 − E [∆1|G0] = s̄B1 ◦ T(U0)− s̄B1 ◦ T(U−1)− (s̄ ◦ T(U0)− s̄ ◦ T(U−1))

and Lemma 4 provides the upper bound for ∆1. Let k ≥ 1. By definition of ∆k+1 and by Lemma 4,

∆k+1 − E [∆k+1|Gk] = Ũk+1 − E

[
Ũk+1|Gk

]

= s̄Bk+1
◦ T(Uk)− s̄Bk+1

◦ T(Uk−1) + s̄ ◦ T(Uk)− s̄ ◦ T(Uk−1)
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and we then conclude by Lemma 4 again. For the second statement, since we have E
[
‖U‖2

]
=

E
[
‖U − E[U |V ]‖2

]
+ E

[
‖E[U |V ]‖2

]
for any random variables U, V , it holds for any k ≥ 0,

E
[
‖∆k+1 − h(Uk)‖2|Gk

]
= E

[
‖∆k+1 − E [∆k+1|Gk] ‖2|Gk

]
+ ‖E [∆k+1|Gk]− h(Uk)‖2

= E
[
‖∆k+1 − E [∆k+1|Gk] ‖2|Gk

]
+ ‖∆k − h(Uk−1)‖2

where we used Lemma 5 in the last equality. By induction, this yields

E
[
‖∆k+1 − h(Uk)‖2|G0

]
=

k∑

j=0

E
[
E
[
‖∆j+1 − E [∆j+1|Gj ] ‖2|Gj

]
|G0
]

where we have used that ∆0−h(U−1) = 0 (by definition). We then conclude with the first statement.

Lemma 7. For any h, s, S ∈ R
q and any q × q symmetric matrix B, it holds

−2 〈Bh, S〉 = −〈BS, S〉 − 〈Bh, h〉+ 〈B{h− S}, h− S〉 .
Proposition 8. Assume H1, H2, H3 and H4 and H5. It holds for any K ≥ 2,

K−1∑

ℓ=1

δℓ E
[
‖Uℓ − Uℓ−1‖2|G0

]
+
vmin

2

K−2∑

k=0

γk+1E
[
‖h(Uk)‖2|G0

]

≤W(U0)− E [W(UK−1)|G0] +
L2vmax

2b

(
K−1∑

k=1

γk

)
‖U0 − U−1‖2 ,

where (by convention,
∑K−2

ℓ=K−1 = 0)

δℓ
def
=

(
vmin

2γℓ
− L∇W

2
− vmax

2

L2

b

K−2∑

k=ℓ

γk+1

)

Proof. Let k ∈ {0, · · · ,K−2}. By Proposition 1 and H5-Item (c), W is continuously differentiable
with globally Lipschitz gradient, which implies

W(Uk+1)−W(Uk) ≤ 〈∇W(Uk), Uk+1 − Uk〉+
L∇W

2
‖Uk+1 − Uk‖2 .

By Proposition 1, we have∇W(Uk) = −B(Uk)h(Uk); hence,

〈∇W(Uk), Uk+1 − Uk〉 = −〈B(Uk)h(Uk), Uk+1 − Uk〉 .
We apply Lemma 7 with B ← B(Uk), h ← h(Uk) and S ← ∆k+1 = (Uk+1 − Uk)/γk+1. This
yields by H5-Item (a),

〈∇W(Uk), Uk+1 − Uk〉 ≤ −
γk+1vmin

2
‖∆k+1‖2−

vminγk+1

2
‖h(Uk)‖2+

vmaxγk+1

2
‖h(Uk)−∆k+1‖2

and since ∆k+1 = (Uk+1 − Uk)/γk+1, we obtain

〈∇W(Uk), Uk+1 − Uk〉 ≤ −
vmin

2γk+1
‖Uk+1 − Uk‖2 −

vminγk+1

2
‖h(Uk)‖2 +

vmaxγk+1

2
‖∆k+1 − h(Uk)‖2 .

Therefore, we established(
vmin

2γk+1
− L∇W

2

)
‖Uk+1 − Uk‖2 +

vminγk+1

2
‖h(Uk)‖2 ≤

vmaxγk+1

2
‖∆k+1 − h(Uk)‖2

+W(Uk)−W(Uk+1) .

Applying the conditional expectation and using Proposition 6 (and again γ2j ‖∆j‖2 = ‖Uj−Uj−1‖2
for j ≥ 1), this yields

(
vmin

2γk+1
− L∇W

2

)
E
[
‖Uk+1 − Uk‖2|G0

]
+
vminγk+1

2
E
[
‖h(Uk)‖2|G0

]

≤ vmaxγk+1

2

L2

b

k∑

j=0

E
[
‖Uj − Uj−1‖2|G0

]
+ E [W(Uk)−W(Uk+1)|G0] .
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We now sum from k = 0 to k = K − 2 and obtain by using Lemma 9 with ∆̄j ←
E
[
‖Uj − Uj−1‖2|G0

]
,

(
vmin

2γK−1
− L∇W

2

)
E
[
‖UK−1 − UK−2‖2|G0

]

+
K−2∑

ℓ=1

(
vmin

2γℓ
− L∇W

2
− vmax

2

L2

b

K−2∑

k=ℓ

γk+1

)
E
[
‖Uℓ − Uℓ−1‖2|G0

]

+
vmin

2

K−2∑

k=0

γk+1E
[
‖h(Uk)‖2|G0

]
≤ E [W(U0)−W(UK−1)|G0]

+ ‖U0 − U−1‖2
(

K−1∑

k=1

γk

)
L2vmax

2b
.

This concludes the proof.

Lemma 9. For any real numbers ai, bi, ∆̄i and K ≥ 2,

K−1∑

k=1

(
ak∆̄k − bk

k−1∑

ℓ=0

∆̄ℓ

)
= aK−1∆̄K−1 − ∆̄0

K−1∑

k=1

bk +

K−2∑

ℓ=1

(
aℓ −

K−1∑

k=ℓ+1

bk

)
∆̄ℓ .

Lemma 10. For any k ≥ (t− 1)kin,

k∑

q=(t−1)kin


−aq+1Xq+1 + bq+1

q∑

j=(t−1)kin

Yj + cq+1

q∑

j=(t−1)kin

djXj




= −ak+1Xk+1 + d(t−1)kin




k∑

q=(t−1)kin

cq+1


X(t−1)kin

+

k∑

j=(t−1)kin+1


dj




k∑

q=j

cq+1


− aj


Xj +

k∑

j=(t−1)kin




k∑

q=j

bq+1


Yj .

9 Proof of Main Results in section 3

For t = 1, · · · , kout and k = 0, · · · , kin − 2, define the σ-field Ft,k:

F0,kin−1
def
= σ(Ŝinit) , Ft,0

def
= Ft−1,kin−1 , Ft,k+1

def
= σ (Ft,k ∪ Bt,k+1) .

With these definitions, we have for t = 1, · · · , kout and k = 0, · · · , kin − 2,

Ŝt,k+1 ∈ Ft,k+1 , St,k+1 ∈ Ft,k+1 , Bt,k+1 ∈ Ft,k+1 ;

and Ŝt,0 ∈ Ft,0, St,0 ∈ Ft,0. For t = 1, · · · , kout and k = 0, · · · , kin − 2 set

Ht,k+1
def
= γ−1

t,k+1

(
Ŝt,k+1 − Ŝt,k

)
= St,k+1 − Ŝt,k ∈ Ft,k+1 ; (19)

and choose the conventionH1,0
def
= h(Ŝ1,−1), and

Ht+1,0 = Ht,kin

def
= γ−1

t,kin
(Ŝt+1,0 − Ŝt,kin−1) = St+1,0 − Ŝt,kin−1 = h

(
Ŝt,kin−1

)
. (20)

9.1 Preliminary lemmas

The following results are consequences of the general analysis in section 8.
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Lemma 11. Assume H1, H2, H3. Let {Ŝt,k, t = 1, · · · , kout, k = 0, · · · , kin − 1} be the sequence
given by algorithm 1. For t = 1, · · · , kout and k = 0, · · · , kin − 2

E [Ht,k+1|Ft,k]− h(Ŝt,k) = Ht,k − h(Ŝt,k−1) ,

Ht,0 − h(Ŝt,−1) = 0 = Ht,kin − h(Ŝt,kin−1) .

Proof. Let t ≥ 1: apply Lemma 5 with U0 ← Ŝt,0, U−1 ← Ŝt,−1, γk+1 ← γt,k+1, Bk+1 ← Bt,k+1.

Then Ũ0 ← St,0 satisfies the condition (16) and for any k ≥ 0, we have Uk+1 = Ŝt,k+1, Ũk+1 =
St,k+1, ∆k+1 = Ht,k+1 and Gk+1 = Ft,k+1. This yields the result.

Corollary 12 (of Lemma 11). For t = 1, · · · , kout and k = 0, · · · , kin
E[Ht,k − h(Ŝt,k−1)|Ft,0] = 0 .

Proof. Let t ≥ 1. If k = 0 then by Lemma 11, the property holds. Let k ∈ {0, . . . , kin − 2}. We
write by using Lemma 11

E[Ht,k+1 − h(Ŝt,k)|Ft,0] = E[E[Ht,k+1 − h(Ŝt,k)|Ft,k]|Ft,0] = E[Ht,k − h(Ŝt,k−1)|Ft,0] .

The proof is concluded by induction:

E[Ht,k+1 − h(Ŝt,k)|Ft,0] = E[Ht,0 − h(Ŝt,−1)|Ft,0] = 0 .

Proposition 13. Assume H1, H2, H3, H5-(b) and set L2 def
= n−1

∑n
i=1 L

2
i . For any t = 1, · · · , kout,

Ht,0 − h(Ŝt,−1) = 0, and

E[‖Ht,1 − E [Ht,1|Ft,0] ‖2|Ft,0] ≤ −
1

b
‖s̄ ◦ T(Ŝt,0)− s̄ ◦ T(Ŝt,−1)‖2 +

L2

b
‖Ŝt,0 − Ŝt,−1‖2 .

In addition, for k = 1, · · · , kin − 2,

E[‖Ht,k+1 − h(Ŝt,k)‖2|Ft,0] ≤ −
1

b

k∑

j=0

E

[
‖s̄ ◦ T(Ŝt,j)− s̄ ◦ T(Ŝt,j−1)‖2|Ft,0

]

+
L2

b




k∑

j=1

γ2t,j E
[
‖Ht,j‖2|Ft,0

]
+ ‖Ŝt,0 − Ŝt,−1‖2


 ,

E[‖Ht,k+1 − E[Ht,k+1|Ft,k]‖2|Ft,k] ≤ −
1

b
‖s̄ ◦ T(Ŝt,k)− s̄ ◦ T(Ŝt,k−1)‖2 +

L2

b
γ2t,k ‖Ht,k‖2 .

Finally,

‖Ht,kin − h(Ŝt,kin−1)‖ = ‖Ht,kin − E [Ht,kin |Ft,kin−1] ‖ = 0 .

Proof. Let t ≥ 1. Apply Proposition 6 with γk ← γt,k, Bk+1 ← Bt,k+1, U0 ← Ŝt,0, U−1 ← Ŝt,−1,

Gk ← Ft,k. Since St,0 = s̄◦T(Ŝt,−1), then the condition (16) is satisfied with Ũ0 = St,0. Conclude

by observing that Ũk = St,k and ∆k+1 = Ht,k+1.

9.2 Proof of Theorem 2

Proposition 14. Assume H1, H2, H3, H4 and H5. Set L2 def
= n−1

∑n
i=1 L

2
i . For any positive

numbers βt,k, set for t = 1, · · · , kout and k = 0, · · · , kin − 1

At,k
def
= γt,kvmin

(
1−

β2
t,k

2vmin
− γt,k

L∇W

2vmin
− L2v2max

2vminb
γt,k

(
kin−2∑

ℓ=k

γt,ℓ+1

β2
t,ℓ+1

))

Bt,k
def
=

v2max

2b

kin−2∑

k=0

(
kin−2∑

ℓ=k

γt,ℓ+1

β2
t,ℓ+1

)
;
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by convention βt,0 = 0, γt,0 = γt−1,kin , γ0,kin = 0 and Bt,kin−1 = 0.

Let {Ŝt,k, t = 1, · · · , kout; k = 0, · · · , kin − 1} be the sequence given by algorithm 1. For any
t = 1, · · · , kout,

W(Ŝt,0) ≤W(Ŝt,−1)− γt−1,kinvmin

(
1− γt−1,kin

L∇W

2vmin

)
‖h(Ŝt,−1)‖2 ; (21)

and

kout∑

t=1

kin−1∑

k=0

(
At,kE[‖Ht,k‖2] +Bt,kE[‖s̄ ◦ T(Ŝt,k)− s̄ ◦ T(Ŝt,k−1)‖2]

)
≤ E[W(Ŝinit)]−minW .

Proof. Let t ≥ 1. By H5-(c), we have for any k = −1, · · · , kin − 1,

W(Ŝt,k+1) ≤W(Ŝt,k) + γt,k+1

〈
∇W(Ŝt,k), Ht,k+1

〉
+ γ2t,k+1

L∇W

2
‖Ht,k+1‖2 ; (22)

by convention, we set Ŝt,kin

def
= Ŝt+1,0. By Proposition 1, H5-(a) and (20), we have

〈
∇W(Ŝt,kin−1), Ht,kin

〉
≤ −vmin‖h(Ŝt,kin−1)‖2 = −vmin‖Ht,kin‖2 ,

so that

W(Ŝt,kin) ≤W(Ŝt,kin−1)− γt,kinvmin‖Ht,kin‖2 + γ2t,kin

L∇W

2
‖Ht,kin‖2 . (23)

This concludes the proof of (21) since Ŝt,kin = Ŝt+1,0 and Ŝt,kin−1 = Ŝk+1,−1. Now, let us fix
k ∈ {0, · · · , kin − 2}. We write
〈
∇W(Ŝt,k), Ht,k+1

〉
= −

〈
B(Ŝt,k)h(Ŝt,k), Ht,k+1

〉

= −
〈
B(Ŝt,k)

(
h(Ŝt,k)−Ht,k+1

)
, Ht,k+1

〉
−
〈
B(Ŝt,k)Ht,k+1, Ht,k+1

〉

≤ −
〈
B(Ŝt,k)

(
h(Ŝt,k)−Ht,k+1

)
, Ht,k+1

〉
− vmin‖Ht,k+1‖2 . (24)

Note that for a, b ∈ R
q and β > 0,

〈a, b〉 ≤ β2

2
‖a‖2 + 1

2β2
‖b‖2 .

By H5-(a), we have for any βt,k+1 > 0,

∣∣∣
〈
B(Ŝt,k)

(
h(Ŝt,k)−Ht,k+1

)
, Ht,k+1

〉∣∣∣ ≤
β2
t,k+1

2
‖Ht,k+1‖2 +

v2max

2β2
t,k+1

‖Ht,k+1 − h(Ŝt,k)‖2 .
(25)

Combining (22), (24) and (25) yield

W(Ŝt,k+1) ≤W(Ŝt,k)− Λt,k+1‖Ht,k+1‖2 + γt,k+1
v2max

2β2
t,k+1

‖Ht,k+1 − h(Ŝt,k)‖2 ,

where for ℓ = 1, . . . , kin − 1,

Λt,ℓ
def
= γt,ℓvmin

(
1−

β2
t,ℓ

2vmin
− γt,ℓ

L∇W

2vmin

)
.

By Proposition 13,

E

[
W(Ŝt,k+1)|Ft,0

]
≤ E

[
W(Ŝt,k)|Ft,0

]
− Λt,k+1E

[
‖Ht,k+1‖2|Ft,0

]

− γt,k+1
v2max

2β2
t,k+1

1

b

k∑

j=0

E

[
‖s̄ ◦ T(Ŝt,j)− s̄ ◦ T(Ŝt,j−1)‖2|Ft,0

]

+ γt,k+1
v2max

2β2
t,k+1

L2

b




k∑

j=1

γ2t,j E
[
‖Ht,j‖2|Ft,0

]
+ ‖Ŝt,0 − Ŝt,−1‖2


 ;
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by taking the expectation, this yields

E

[
W(Ŝt,k+1)

]
≤ E

[
W(Ŝt,k)

]
− Λt,k+1E

[
‖Ht,k+1‖2

]

− γt,k+1
v2max

2β2
t,k+1

1

b

k∑

j=0

E

[
‖s̄ ◦ T(Ŝt,j)− s̄ ◦ T(Ŝt,j−1)‖2

]

+ γt,k+1
v2max

2β2
t,k+1

L2

b




k∑

j=1

γ2t,j E
[
‖Ht,j‖2

]
+ E

[
‖Ŝt,0 − Ŝt,−1‖2

]

 ;

By summing from time k = 0 to k = kin − 2, we have (see Lemma 10)

E

[
W(Ŝt+1,−1)

]
= E

[
W(Ŝt,kin−1)

]
≤ E

[
W(Ŝt,0)

]
− Λt,kin−1E

[
‖Ht,kin−1‖2

]

+
v2maxL

2

2b

(
kin−2∑

ℓ=0

γt,ℓ+1

β2
t,ℓ+1

)
E

[
‖Ŝt,0 − Ŝt,−1‖2

]

− v2max

2b

kin−2∑

k=0

(
kin−2∑

ℓ=k

γt,ℓ+1

β2
t,ℓ+1

)
E

[
‖s̄ ◦ T(Ŝt,k)− s̄ ◦ T(Ŝt,k−1)‖2

]

+

kin−2∑

k=1

(
L2v2max

2b
γ2t,k

(
kin−2∑

ℓ=k

γt,ℓ+1

β2
t,ℓ+1

)
− Λt,k

)
E
[
‖Ht,k‖2

]
.

With (21), and using Ht,kin = h(Ŝt,kin−1) = h(Ŝt+1,−1); Ŝ1,0 = Ŝ1,−1 = Ŝinit; and for t ≥ 2,

Ŝt,0 − Ŝt,−1 = γt−1,kinh(Ŝt−1,kin−1) = γt−1,kinHt−1,kin = γt−1,kinHt,0:

E

[
W(Ŝt+1,0)

]
− E

[
W(Ŝt,0)

]

≤ −Λt,kin−1E
[
‖Ht,kin−1‖2

]
+
v2maxL

2

2b
γ2t−1,kin

(
kin−2∑

ℓ=0

γt,ℓ+1

β2
t,ℓ+1

)
E
[
‖Ht,0‖2

]
1t>1

− v2max

2b

kin−2∑

k=0

(
kin−2∑

ℓ=k

γt,ℓ+1

β2
t,ℓ+1

)
E

[
‖s̄ ◦ T(Ŝt,k)− s̄ ◦ T(Ŝt,k−1)‖2

]

+

kin−2∑

k=1

(
L2v2max

2b
γ2t,k

(
kin−2∑

ℓ=k

γt,ℓ+1

β2
t,ℓ+1

)
− Λt,k

)
E
[
‖Ht,k‖2

]
− γt,kinvmin

(
1− γt,kin

L∇W

2vmin

)
E
[
‖Ht+1,0‖2

]

≤ −Bt,kE

[
‖s̄ ◦ T(Ŝt,k)− s̄ ◦ T(Ŝt,k−1)‖2

]
+

kin−1∑

k=1

(
L2v2max

2b
γ2t,k

(
kin−2∑

ℓ=k

γt,ℓ+1

β2
t,ℓ+1

)
− Λt,k

)
E
[
‖Ht,k‖2

]

+
v2maxL

2

2b
γ2t−1,kin

(
kin−2∑

ℓ=0

γt,ℓ+1

β2
t,ℓ+1

)
E
[
‖Ht,0‖2

]
1t>1 − γt,kinvmin

(
1− γt,kin

L∇W

2vmin

)
E
[
‖Ht+1,0‖2

]
.

We now sum from t = 1 to t = kout.

Corollary 15 (of Proposition 14). Choose α > 0, β > 0 such that

C(α, β)
def
= 1− β2

2vmin
− α

2vmin

L∇W

L
− α2v2max

2β2vmin

kin
b

is positive; and set

γt,k+1
def
=

α

L
, βt,k+1

def
= β .

Then, for uniform random variables τ, ξ on {1, · · · , kout} and {0, · · · , kin − 1} respectively, inde-
pendent from Fkout,kin−1,

E
[
‖Hτ,ξ‖2

]
≤ L

αvminC(α, β)

1

kinkout

(
E

[
W(Ŝinit)

]
−minW

)
.

22



Proof. We have

At,k ≥
αvmin

L

(
1− β2

2vmin
− α

2vmin

L∇W

L
− α2v2max

2β2vmin

kin
b

)
,

Bt,k ≥
v2max

2b

α

Lβ2
kin ,

from which the conclusion follows.

Proof of Theorem 2 Let τ, ξ be uniform random variables resp. on {1, · · · , kout} and

{0, · · · , kin − 1}. Since Ŝ1,−1 = Ŝ1,0 and for t ≥ 2, Ŝt,−1 = Ŝt−1,kin−1, then Ŝt,ξ−1 is well
defined. We write

E

[
‖h(Ŝτ,ξ−1)‖2

]
≤ 2E

[
‖Hτ,ξ‖2

]
+ 2E

[
‖Hτ,ξ − h(Ŝτ,ξ−1)‖2

]
.

For the second term, we have

E[‖Hτ,ξ − h(Ŝτ,ξ−1)‖2] =
1

kinkout

kout∑

t=1

kin−1∑

k=0

E[‖Ht,k − h(Ŝt,k−1)‖2] (26)

by Proposition 13, since Ŝ1,0 = Ŝ1,−1, the RHS of (26) is upper bounded by

α2

b

1

kout

kout∑

t=1

kin−1∑

k=0

E
[
‖Ht,k‖2

]
≤ α2kin

b
E
[
‖Hτ,ξ‖2

]
.

The proof is concluded by Corollary 15:

E[‖h(Ŝτ,ξ−1)‖2] ≤
(

1

kin
+
α2

b

)
2L

αvminC(α, β)

1

kout

(
E[W(Ŝinit)]−minW

)
. (27)

Let us choose β > 0 so that β 7→ C(α, β) is maximal: for A,B > 0, the function x 7→ x/A+B/x

is minimal at x⋆
def
=
√
AB. This yields

β2(α)
def
= αvmax

√
kin
b
,

and

vminC(α, β(α))
def
= vmin − αµ⋆ , µ⋆

def
= vmax

√
kin
b

+
L∇W

2L
.

The function α 7→ αvmin C(α, β(α)) is maximal when α⋆
def
= vmin/(2µ⋆) thus yielding

α⋆ vminC(α⋆, β(α⋆)) = v2min/(4µ⋆). By replacing β ← β(α) and α← α⋆ in (27), we have

E[‖h(Ŝτ,ξ−1)‖2] ≤
(
µ⋆ +

kinv
2
min

4µ⋆b

)
8L

v2min

1

kin kout

(
E[W(Ŝinit)]−minW

)
. (28)

9.3 On the Batch Size b and Epoch Length kin

Assume that b = O(na) and kin = O(nc) for some a, c ≥ 0. Let ǫ > 0.

Case a ≥ c. When n → ∞, µ⋆(kin, b) = O(1). Choose α ∈ (0, vmin/µ⋆(kin, b)) such that

α = O(n−d) for some d ≥ 0.

The RHS in (15) is lower than ǫ by choosing

kout = O

(
ǫ−1n−c

(
nd +

1

nd+a−c

))
;

this implies that

KCE(n, ǫ) = O
(
n+ (n+ na+c)kout

)
, KOpt(n, ǫ) = O (1 + (1 + nc)kout) .

23



In order to make kout as small as possible, we choose d = 0 and c as large as possible (i.e. a = c).
Hence kout = O(ǫ−1n−a). This implies that KOpt(n, ǫ) = O(ǫ−1). For fixed a ≥ 0, KCE(n, ǫ) is
optimized by choosing a ≤ 1 − a, which implies a ≤ 1/2. The largest value of a will provide the
best rate for kout. Hence, the conclusion is

a = c = 1/2, d = 0,

which yields b = O(
√
n), kin = O(

√
n), kout = O(ǫ−1n−1/2), KCE(n, ǫ) = O(n + ǫ−1

√
n) and

KOpt(n, ǫ) = O(ǫ−1).

Case a < c. When n → ∞, µ⋆(kin, b) = O(n(c−a)/2). Choose α ∈ (0, vmin/µ⋆(kin, b)) such

that α = O(n−d) for some d ≥ (c− a)/2.

The RHS in (15) is lower than ǫ by choosing

kout = O

(
ǫ−1n−c

(
nd +

1

nd+a−c

))
;

we also have

KCE(n, ǫ) = O
(
n+ (n+ na+c)kout

)
, KOpt(n, ǫ) = O (1 + (1 + nc)kout) .

In order to make kout as small as possible, we choose d = (c − a)/2 so kout = O(ǫ−1n−(a+c)/2),
and then we choose c+a as large as possible. Hence This implies thatKOpt(n, ǫ) = O(ǫ−1n(c−a)/2)
andKOpt(n, ǫ) is optimized by choosing c− a as small as possible. Finally,KCE(n, ǫ) is optimized
with a+ c ≤ 1. Hence, the conclusion is: choose δ > 0 and set

a = (1− δ)/2, c = (1 + δ)/2, d = δ/2,

which yields b = O(n1/2−δ/2), kin = O(n1/2+δ/2), kout = O(ǫ−1n−1/2), KCE(n, ǫ) = O(n +
ǫ−1√n) and KOpt(n, ǫ) = O(ǫ−1nδ/2).

Conclusion. The above discussion shows that the best complexity in terms of the number of com-
putations of per-sample conditional expectations and the one in terms of number of parameter up-
dates are both optimized in the case a = c = 1/2.

10 Linear convergence rate of SPIDER-EM-PL

In this section, we establish a linear convergence rate of a slightly modified version of SPIDER-EM,
see algorithm 8, the main modification being in the initialization. The proof is adapted from [27,
Theorem 5].

Data: kin ∈ N⋆, kout ∈ N⋆, Ŝinit ∈ R
q , {γt,k+1, t = 1, · · · , kout and k = 0, · · · , kin − 1}

positive sequence.

Result: A SPIDER-EM-PL sequence: Ŝt,k, t = 1, · · · , kout, k = 0, . . . , kin − 1

1 S1,0 = s̄ ◦ T(Ŝinit), Ŝ1,0 = Ŝ1,−1 = Ŝinit ;
2 for t = 1, . . . , kout do
3 Sample ξt a uniform random variable on {1, · · · , kin − 1} ;
4 for k = 0, · · · , ξt − 1 do
5 Sample a mini-batch Bt,k+1 in {1, . . . , n} of size b, with or without replacement ;

6 St,k+1 = St,k + s̄Bt,k+1
◦ T(Ŝt,k)− s̄Bt,k+1

◦ T(Ŝt,k−1) ;

7 Ŝt,k+1 = Ŝt,k + γt,k+1

(
St,k+1 − Ŝt,k

)

8 Ŝt+1,0 = Ŝt+1,−1 = Ŝt,ξt ;

9 St+1,0 = s̄ ◦ T(Ŝt,ξt)

Algorithm 8: The SPIDER-EM-PL algorithm.

By Proposition 8, we have
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Proposition 16. Assume H1, H2, H3 and H4 and H5. Set L2 def
= n−1

∑n
i=1 L

2
i . For any integers

t ≥ 1 and K ≥ 2

K−1∑

ℓ=1

δt,ℓ E
[
‖Ŝt,ℓ − Ŝt,ℓ−1‖2|Ft,0

]
+
vmin

2

K−2∑

k=0

γt,k+1E

[
‖h(Ŝt,k)‖2|Ft,0

]

≤ E

[
W(Ŝt,0)−W(Ŝt,K−1)|Ft,0

]
,

where (by convention,
∑K−2

ℓ=K−1 = 0),

δt,ℓ
def
=

(
vmin

2γt,ℓ
− L∇W

2
− vmax

2

L2

b

K−2∑

k=ℓ

γt,k+1

)
.

Corollary 17 (of Proposition 16). For any γ > 0 such that

γ2 +
L∇W b

vmaxL2(K − 1)
γ − vminb

vmaxL2(K − 1)
< 0 ,

we have

vminγ

2

K−1∑

k=0

E

[
‖h(Ŝt,k)‖2|Ft,0

]
≤ E

[
W(Ŝt,0)−W(Ŝt,K)|Ft,0

]
.

As a consequence of Corollary 17, if ξt is a uniform random variable on {1, · · · , kin−1} independent
of the other random variables, then

E

[
‖h(Ŝt,ξt)‖2

]
≤ 2

vminγ(kin − 1)
E

[
W(Ŝt,0)−minW

]
.

When the Polyak-Lojasiewicz inequality holds

∃τ⋆ > 0 such that ∀s,W(s)−minW ≤ τ⋆ ‖∇W(s)‖2 , (29)

this yields by H5-Item (a)

E

[
‖h(Ŝt,ξt)‖2

]
≤ 2

vminγ(kin − 1)
E

[
W(Ŝt,0)−minW

]
≤ 2τ⋆v2max

vminγ(kin − 1)
E

[
‖h(Ŝt,0)‖2

]
.

The above discussion establishes the following result.

Theorem 18. Assume H1, H2, H3, H4 and H5 and set L2 def
= n−1

∑n
i=1 L

2
i . Assume also that

the Polyak-Lojasiewicz inequality (29) holds. Fix kout, kin ∈ N⋆, b ∈ N⋆; set γt,k+1
def
= γ for any

t ≥ 1, k ≥ 0 for some γ > 0 satisfying

γ2 +
L∇W b

vmaxL2(kin − 1)
γ − vminb

vmaxL2(kin − 1)
< 0 .

Let {Ŝt,k, t = 1, · · · , kout, k = 0, · · · , ξt} be the sequence given by algorithm 8. Then

E

[
‖h(Ŝt+1,0)‖2

]
= E

[
‖h(Ŝt,ξt)‖2

]
≤ 2τ⋆v2max

vminγ(kin − 1)
E

[
‖h(Ŝt,0)‖2

]
.

11 Mixture of Gaussian distributions

In this section, we use the common notation {Ŝℓ, ℓ ≥ 0} for a path. For sEM-vr and SPIDER-EM,

Ŝℓ stands for Ŝtℓ,kℓ
where tℓ ≥ 1 and kℓ ∈ {0, · · · , kin − 1} are the unique integers such that

ℓ = (tℓ − 1)kin + kℓ.
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11.1 The model

Consider a mixture of Gaussian distributions on R
p,

y 7→
g∑

ℓ=1

αℓNp (µℓ,Σ) [y] ; (30)

Np (µℓ,Σ) [y] denotes the density of a Rp-valued Gaussian distribution with expectation µℓ, covari-
ance matrix Σ and evaluated at y ∈ R

p. We consider a parametric statistical model indexed by

θ
def
= (α1, . . . , αg, µ1, . . . , µg,Σ) in Θ where

Θ
def
=

{
αℓ ≥ 0,

g∑

ℓ=1

αℓ = 1

}
× R

pg ×M+
p ; (31)

M+
p denotes the set of positive definite p× p matrices.

Given n examples y1, . . . , yn modeled as independent realizations of a mixture of Gaussian distri-
butions as described by (30), the log-likelihood is

θ 7→
n∑

i=1

log

g∑

ℓ=1

αℓNp (µℓ,Σ) [yi] .

Proposition 19 shows that the minimization of the negative log-likelihood on Θ is covered by the
optimization problem addressed in the paper.

Proposition 19. Set Γ
def
= Σ−1, and define for y ∈ R

p and z ∈ {1, . . . , g},

Ay
def
=

[
Ig

Ig ⊗ y
]
∈ R

g(1+p)×g , ρ(z)
def
=

[
1z=1

. . .
1z=g

]
.

The negative normalized log-likelihood is of the form (2) with ρ(y, z) = 1, s(y, z)
def
= Ay ρ(z) and

φ(θ)
def
=




lnα1 − 0.5µT
1 Γµ1

. . .
lnαg − 0.5µT

g Γµg

Γµ1

. . .
Γµg



, (32)

ψ(θ)
def
=

p

2
ln(2π) +

1

2
Tr

(
Γ

n

n∑

i=1

yiy
T
i

)
− 1

2
ln det(Γ) . (33)

Proof. The likelihood of a single observation yi is given by

θ 7→ 1√
2π

p

g∑

z=1

αz

√
det(Γ) exp

(
−1

2
(yi − µz)

TΓ(yi − µz)

)

=

√
det(Γ)√
2π

p exp

(
−1

2
yTi Γyi

) g∑

z=1

exp

(
g∑

ℓ=1

1z=ℓ

{
lnαℓ − 0.5µT

ℓ Γµℓ + µT
ℓ Γyi

}
)

=

√
det(Γ)√
2π

p exp

(
−1

2
Tr(Γyiy

T
i )

) g∑

z=1

exp

(
g∑

ℓ=1

1z=ℓ{lnαℓ − 0.5µT
ℓ Γµℓ}+

g∑

ℓ=1

〈Γµℓ, yi1z=ℓ〉
)

=

√
det(Γ)√
2π

p exp

(
−1

2
Tr(Γyiy

T
i )

) g∑

z=1

exp (〈s(yi, z), φ(θ)〉)

where we used that Tr(AuuT ) = uTAu. Since the observations are modeled as independent, the
log-likelihood of the n observations y1, . . . , yn is

θ 7→ n

2
(log det(Γ)− p log(2π)) − 1

2
Tr(Γ

n∑

i=1

yiy
T
i ) +

n∑

i=1

log

g∑

z=1

exp (〈s(yi, z), φ(θ)〉) .

This yields the expression of the negative normalized log-likeliood.
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The following statement gives the expression of the optimization map T. It relies on standard com-
putations; the proof is omitted.

Proposition 20. Let φ, ψ and Θ resp. given by Proposition 19 and (31). For any s =
(s1, . . . , sg+pg) ∈ R

g+pg in the set

(
s1 > 0, . . . , sg > 0,

1

n

n∑

i=1

yiy
T
i −

g∑

ℓ=1

s−1
ℓ sg+(ℓ−1)p+1:g+ℓp s

T
g+(ℓ−1)p+1:g+ℓp positive definite

)

the minimizer of θ 7→ − 〈s, φ(θ)〉 + ψ(θ) under the constraint that θ ∈ Θ, exists and is unique and
is given by

αℓ
def
=

sℓ∑g
u=1 su

, ℓ = 1, . . . , g ,

µℓ
def
=

1

sℓ
sg+(ℓ−1)p+1:g+ℓp , ℓ = 1, . . . , g ,

Σ−1 def
=

1

n

n∑

i=1

yiy
T
i −

g∑

ℓ=1

sℓµℓµ
T
ℓ .

Proposition 21 provides the expression of the conditional probabilities z 7→ p(z|yi; θ) on {1, . . . , g};
as a corollary of this statement, we also have the expression of the per sample conditional expecta-
tions

s̄i(θ)
def
=

g∑

z=1

s(yi, z) p(z|yi; θ) ,

for all i = 1, . . . , n.

Proposition 21. For any y ∈ R
p, z ∈ {1, . . . , g} and θ ∈ Θ where Θ is defined by (31), we have

p(z|y; θ) def
=

αz Np(µz ,Σ)[y]∑g
u=1 αu Np(µu,Σ)[y]

, (34)

and

g∑

z=1

s(y, z) p(z|y; θ) =




p(1|y; θ)
. . .

p(g|y; θ)
y p(1|y; θ)

. . .
y p(g|y; θ)



,

where s(y, z) is defined in Proposition 19.

As a corollary of this statement, we have

s̄i(θ)
def
=




p(1|yi; θ)
. . .

p(g|yi; θ)
yi p(1|yi; θ)

. . .
yi p(g|yi; θ)



= Ayi

[
p(1|yi; θ)

. . .
p(g|yi; θ)

]
,

s̄(θ)
def
=




n−1
∑n

i=1 p(1|yi; θ)
. . .

n−1
∑n

i=1 p(g|yi; θ)
n−1

∑n
i=1 yi p(1|yi; θ)
. . .

n−1
∑n

i=1 yi p(g|yi; θ)



=

1

n

n∑

i=1

Ayi

[
p(1|yi; θ)

. . .
p(g|yi; θ)

]
, (35)

where the probability p(·|y; θ) is given by (34).
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11.2 On the Assumption H3

Let Ay be the matrix defined in Proposition 19. It is proved in [12, Section 5] that T(s) ∈ Θ if

s ∈ S def
=

{
s =

1

n

n∑

i=1

Ayi
ρi, ρi = (ρi,1, . . . , ρi,g) ∈ (R+)

g,

g∑

ℓ=1

ρi,ℓ = 1

}
.

The following statement shows that the SPIDER-EM sequence {Ŝk, k ≥ 0} is at least in

S̃ def
=

{
s =

1

n

n∑

i=1

Ayi
ρi, ρi = (ρi,1, . . . , ρi,g) ∈ R

g,

g∑

ℓ=1

ρi,ℓ = 1

}
.

Proposition 22. Assume that Ŝinit ∈ S. Then, for any t ∈ N, St,0 ∈ S and for any k ≥ 0, Ŝt,k ∈ S̃
and St,k ∈ S̃.

Proof. It is trivially seen from (35) that St,0 ∈ S for any t ∈ N. Define ρ
(t,0)
i ∈ (R+)

g and

ρ̂
(t,0)
i ∈ (R+)

g such that

St,0 =
1

n

n∑

i=1

Ayi
ρ
(t,0)
i , Ŝt,0 =

1

n

n∑

i=1

Ayi
ρ̂
(t,0)
i ;

note that by (35),
∑g

ℓ=1 ρ
(t,0)
i,ℓ = 1 and by assumption,

∑g
ℓ=1 ρ̂

(t,0)
i,ℓ = 1.

From line 5 of algorithm 1, we have when k < kin − 1,

St,k+1 =
1

n

n∑

i=1

Ayi

(
ρ
(t,k)
i +

n

b
1i∈Bt,k+1

{
p(·|yi;T(Ŝt,k))− p(·|yi;T(Ŝt,k−1))

})

where p(·|y; θ) is defined by (34), thus implying that

ρ
(t,k+1)
i = ρ

(t,k)
i +

n

b
1i∈Bt,k+1

{
p(·|yi;T(Ŝt,k))− p(·|yi;T(Ŝt,k−1))

}
.

Hence by a trivial induction,
∑g

ℓ=1 ρ
(t,k+1)
i,ℓ = 1 for any i = 1, . . . , n. From ?? and line 9 of

algorithm 1, we have for any k ≥ 0,

Ŝt,k+1 =
1

n

n∑

i=1

Ayi

(
(1 − γt,k+1)ρ̂

(t,k)
i + γt,k+1ρ

(t,k+1)
i

)

thus implying that

ρ̂
(t,k+1)
i = (1− γt,k+1)ρ̂

(t,k)
i + γt,k+1ρ

(t,k+1)
i .

Here again, by a trivial induction, we have
∑g

ℓ=1 ρ̂
(t,k+1)
i,ℓ = 1 for any i = 1, . . . , n.

11.3 Numerical Analysis

11.3.1 The data set

We consider n = 6 × 104 observations in R
p, p = 20; modeled as independent observations from

a mixture of Gaussian distributions with g = 12 components. These data are obtained from the
MNIST data training set available at http://yann.lecun.com/exdb/mnist.

The set contains n = 6× 104 examples of size 28× 28; among these pixels, 67 are constant over all
the images and are removed yielding to observations of length 717. A PCA is performed in order to
reduce the dimensionality to p = 20 features.
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11.3.2 The algorithms

We compare EM, iEM, Online EM, FIEM and sEM-vr implemented as described in algorithm 2 to
algorithm 6. The map T is given by Proposition 20.

The design parameters b, γt,k+1 are fixed to

• b = 100,

• for all the algorithms except iEM, the step size is constant and equal to 5 10−3. In iEM,
γk+1 = 1.

Initialization. For all the algorithms and all the paths, the same initial value Ŝinit is considered. It is
obtained as follows: we run the random initialization technique described in [19] in order to obtain

θinit ∈ Θ, and then we set Ŝinit
def
= s̄(θinit). Below, Ŝinit is such that −W(Ŝinit) = −58.3097 (the

constant term p log(2π)/2 is omitted in this evaluation, and in any evaluation of the log-likelihood
given below).

Mini-batch. The mini-batches are independent, and sampled at random in {1, . . . , n} with replace-
ment. For a fair comparison of the algorithms, they share the same seed; another seed is used for

FIEM which requires a second sequence of minibatches {Bk+1, k ≥ 0}.
An epoch. In the analyses below, an epoch is defined as the selection of n examples:

• For EM, an epoch is one iteration Ŝk → Ŝk+1. It necessitates the computation of n condi-

tional expectations s̄i and of a single optimization T(Ŝ).

• For iEM and Online EM, an epoch is n/b iterations Ŝk → Ŝk+1. It necessitates the com-

putation of n conditional expectations s̄i and of n/b optimizations T(Ŝ).

• For FIEM, an epoch is n/b iterations Ŝk → Ŝk+1. It necessitates the computation of 2n

conditional expectations s̄i and of n/b optimizations T(Ŝ).

• For sEM-vr and SPIDER-EM, an epoch is either one iteration Ŝt,−1 → Ŝt,0 or n/b iterations

Ŝt,k → Ŝt,k+1 for k < kin − 1. They resp. necessitate the computation of n and 2n/b

conditional expectations s̄i and of 1 and n/b optimizations T(Ŝ).

Hybrid methods. Since FIEM, sEM-vr and SPIDER-EM are variance reduction methods w.r.t.
Online EM, we advocate to combine them with few steps of Online EM. Here, we start with

kswitch = 2 epochs of Online EM and obtain Ŝ1, Ŝ2; before switching to FIEM, sEM-vr and
SPIDER-EM.

Value of kmax. The number kmax is fixed in order to compare the algorithms with the same number
of epochs equal to 150. For EM, kmax = 150; for Online EM and iEM, kmax = 150n/b; for FIEM,
kmax = (150− kswitch)n/b; for sEM-vr, kout = (150− kswitch)/2 and kin = 1 + n/b; and for
SPIDER-EM, kout = (150− kswitch)/2 and kin = 1 + n/b.

11.3.3 Experimental Results

We first analyze the behavior of the functional W along a path of the algorithm. We display on
Figure 4 a Monte Carlo approximation, computed from 40 independent runs, of the expectation
of the normalized log-likelihood as a function of the number of epochs. Different algorithms are
considered: EM remains trapped in a local extremum while the stochastic EM algorithms succeed
in exiting to a better limiting point. Online EM is far more variable than iEM, FIEM, sEM-vr and
SPIDER-EM. The convergence of iEM is longer, when compared to FIEM, sEM-vr and SPIDER-EM.

On Figure 5 and Figure 6, for each of the algorithms FIEM, sEM-vr and SPIDER-EM, four different
realizations of a path of the normalized likelihood are displayed as a function of the number of
epochs. These four sets of curves differ from the selection of the sequence of mini-batches. The
staircase behavior of the paths of sEM-vr and SPIDER-EM comes from the two successive kinds
of epoch: one corresponds to a single optimization and a full scan of the data set and the other
one corresponds to n/b optimizations and the use of n/b minibatches; the largest increase of W
corresponds to the second type of epoch. Based on this criterion, the three algorithms are equivalent.
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Figure 4: Monte Carlo approximation (computed over 40 independent runs) of −E[W(Ŝℓ)] =

−E[F ◦ T(Ŝℓ)] against the number of epochs. [left] Epochs 1 to 25; [right] epochs 25 to 150.
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Figure 5: The objective function −W(Ŝℓ) = −F ◦ T(Ŝℓ) against the number of epochs along two
(left, right) independent runs of FIEM, sEM-vr and SPIDER-EM. The first 25 epochs are discarded.

Figure 7 displays the evolution of the g = 12 iterates {α1, . . . , αg} along a path of many algorithms.
Figure 8 display the evolution of the p = 20 eigenvalues of the covariance matrix Σ along a path of
many algorithms. Here again, we observe a strong variability of Online EM when compared to the
other algorithms.

Figure 9 and Figure 10 display 40 independent realizations of the squared norm of the mean field
h as a function of the number of epochs for different algorithms. It may be seen that Online EM
has a strong variability and FIEM, sEM-vr, SPIDER-EM succeed in reducing this variability. FIEM
converges more rapidly than iEM, and they achieve the same level of accuracy (here not better than
10−6). sEM-vr and SPIDER-EM have the same level of accuracy, which is most often far smaller
than the one reached by FIEM (more than 75% of the paths reached an accuracy level of 10−10 after
150 epochs). Based on this criterion, we will definitively advocate the use of sEM-vr or SPIDER-EM
when compared to iEM, Online EM and FIEM.

Figure 11 and Figure 12 display the boxplots of 40 independent realizations of ‖h(Ŝℓ)‖2 at time
in {20, 40, 60, 80, 110} epochs for different algorithms. In Figure 12, Online EM is not displayed
since it is too large (compare the third plot on Figure 11 and the first one on Figure 12). The quan-

tities {‖h(Ŝℓ)‖2, ℓ ≥ 0} are the key informations for deriving the complexity bounds in Theorem 2.
The plots below show again that for small, medium and large values of the number of epochs k,
sEM-vr and SPIDER-EM provide the best results.

30



40 60 80 100 120 140
-31.89

-31.88

-31.87

-31.86

-31.85

-31.84

-31.83

-31.82

-31.81

-31.8

-31.79

FIEM

sEM-vr

SPIDER-EM

40 60 80 100 120 140
-31.925

-31.92

-31.915

-31.91

-31.905

-31.9

-31.895

-31.89

FIEM

SVREM

SPIDER-EM

Figure 6: The objective function −W(Ŝℓ) = −F ◦ T(Ŝℓ) against the number of epochs along two
(left,right) independent runs of FIEM, sEM-vr and SPIDER-EM. The first 25 epochs are discarded.
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Figure 7: Evolution of the g = 12 iterates αk = (αk,1, . . . , αk,g) against the number of epochs, for
EM, iEM and Online EM on the top from left to right; FIEM, sEM-vr and SPIDER-EM on the bottom
from left ro right.
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Figure 8: Evolution of the p = 20 eigenvalues of the iterates {Σℓ, ℓ ≥ 0} against the number of
epochs ℓ, for EM, iEM and Online EM on the top from left to right; FIEM, sEM-vr and SPIDER-EM
on the bottom from left ro right.
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Figure 9: [left] We display 40 independent realizations of the squared norm of the mean field ℓ 7→
‖h(Ŝℓ)‖2 as a function of the number of epochs, along a iEM path. [center] same analysis for Online
EM. [right] same analysis for FIEM.
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Figure 10: [left] We display 40 independent realizations of the squared norm of the mean field

ℓ 7→ ‖h(Ŝℓ)‖2 as a function of the number of epochs, along a sEM-vr path. [right] same analysis
for SPIDER-EM.
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Figure 11: Boxplots of 40 independent points of ‖h(Ŝℓ)‖2 [left] at time 20 epochs; [center] at time
40 epochs; [right] at time 60 epochs. The outliers are removed.
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Figure 12: Boxplots of 40 independent points of ‖h(Ŝℓ)‖2 [left] at time 60 epochs; [center] at time
80 epochs; [right] at time 110 epochs. The outliers are removed.
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