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Introduction
The influence of the size of microstructural features on the macroscopic mechanical 
behavior of crystalline materials has been the subject of many studies over past decades. 
These size effects are controlled by the development of plastic strain gradients in the 
microstructure. A decrease in characteristic sizes of the microstructure may lead to an 
increase of the overall stress for a given applied strain, and therefore contribute to the 
material’s hardening. This tendency is often described as a smaller is stronger size effect.

For metallic polycrystalline materials, grain-size strengthening is one the most com-
mon mechanisms. This size effect is also known as the Hall–Petch effect [1, 2], which 
states that the flow stress at constant strain is proportional to the inverse square root of 

Abstract 

This paper presents an application to metal matrix composites (MMCs) of an enhanced 
elasto-viscoplastic Fast Fourier Transform (EVP-FFT) formulation coupled with a phe-
nomenological continuum Mesoscale Field Dislocation Mechanics (MFDM) theory. 
Contrary to conventional crystal plasticity, which only accounts for plastic flow and 
hardening induced by statistically stored dislocations (SSDs), MFDM-EVP-FFT also 
describes the evolution of polarized geometrically necessary dislocation (GND) density 
and its effect on both plastic flow and hardening. Numerical results for a Fe–TiB2 MMC 
made of a ferrite matrix (α-Fe) and elastic ceramic particles (TiB2) are presented. Full-
field simulations are performed using synthetic periodic unit cells representative of the 
MMC, with single-crystalline and polycrystalline matrix, for different particle interspac-
ing distances. A strong dependence of the predicted equivalent stress, cumulated 
plastic strain and GND density fields with particle interspacing distance is observed, in 
contrast with conventional crystal plasticity. Correlations between these mechanical 
fields and microstructural features, and their influence on local and global mechanical 
behavior are examined for the different MMC microstructures.
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the mean grain size. This grain-size dependence is related to the development of plastic 
strain gradients, mainly due to lattice incompatibilities associated to the mismatch of 
plastic deformation between neighboring grains. The concept of geometrically necessary 
dislocations (GNDs) was introduced to rationalize the accommodation of plastic defor-
mation gradients in these regions [3]. GNDs were introduced to capture size effects, 
and were distinguished from the statistically stored dislocations (SSDs) that are trapped 
within grains and contribute to size-independent hardening only. As the global strain 
level increases, strain gradients are more pronounced in the vicinity of grain boundaries 
where GND pile-ups are preferentially formed. Hence, polycrystals with smaller grain 
sizes—and therefore with higher GND content—exhibit a stronger mechanical response. 
This behavior excludes the case of nano-crystalline materials with sufficiently small grain 
sizes, for which a reverse Hall–Petch effect was observed, see e.g. [4].

Similarly, the macroscopic behavior of polycrystalline materials can be influenced by 
the morphology of grains, and, in the case of multi-phase aggregates, by the volume 
fraction and the spatial distribution of the different phases. Inhomogeneous deformation 
processes, such as the development of highly deformed slip bands, also have a strong 
influence on the macroscopic response of polycrystalline aggregates. In particle-rein-
forced metals, inhomogeneous deformation involving strain accommodation between 
the soft matrix and the hard particles is at the origin of strain gradients. Therefore, in 
such materials, additional characteristic length-scales can be associated with the size of 
the reinforcements and the distance between particles. In general, flow stress of com-
posites increases with decreasing particle size at constant volume fraction of reinforce-
ments [5, 6].

In conventional crystal plasticity formulations, customarily used to model single-
crystal and polycrystal behavior, intrinsic material length-scales are not considered. 
Strain hardening only depends on crystallographic slip variables, and effects of GNDs 
are ignored. Therefore, these models are unable to capture size effects. Theories based 
on strain gradient plasticity have been developed in the last 3 decades to overcome this 
limitation [7–14]. Many models directly incorporate GND densities in the evolution of 
the flow stress leading to reported extended hardening laws containing both GND and 
SSD densities, see e.g. [7, 15–18].

In the framework of the elastic theory of continuously distributed dislocations [19], 
Acharya and co-workers [20–22] developed a continuum dislocation mechanics theory, 
called Field Dislocation Mechanics (FDM), based on the use of Nye’s dislocation den-
sity tensor [23] as an internal variable. FDM enables prediction of the time-dependent 
mechanical response of crystalline solids at scales in which the distribution of disloca-
tions can be represented by GND densities. Subsequently, an approach based on space–
time averaging of the FDM field equations, called Phenomenological Mesoscopic Field 
Dislocation Mechanics (PMFDM) was proposed [24]. PMFDM extends the theory at a 
mesoscopic scale, integrating the mobilities of both SSDs and GNDs and their contri-
bution to strain hardening through a phenomenological specification of the velocity of 
polarized dislocations.

A finite element (FE) based implementation of PMFDM was first presented in [25, 26]. 
Since then, several FE numerical studies using PMFDM have been performed to analyze 
size effects in single crystals [27, 28] and multicrystalline thin films [29, 30], including 



Page 3 of 23Genée et al. Adv. Model. and Simul. in Eng. Sci.             (2020) 7:6 	

the role of GNDs on the directionality of the yield stress in strain-aged steels [31]. Fur-
thermore, a numerical implementation of a reduced version of the PMFDM theory was 
presented in [32] and used to study the work hardening of Al-based metal-matrix com-
posites in [33]. In general, PMFDM results were consistent and in qualitative agreement 
with experimental observations.

As an efficient alternative to FE for numerically solving micromechanical problems, 
Fast Fourier Transform (FFT)-based methods were initially developed and applied to 
composites [34–37], in which the material’s heterogeneity is given by the spatial distri-
bution of phases with different mechanical properties. FFT-based methods were later 
adapted to polycrystalline materials [38–40], where the heterogeneity is related to the 
spatial distribution of anisotropic crystals with different orientations. The original crys-
tal plasticity FFT-based implementations showed the feasibility of efficiently solving the 
micromechanical behavior of polycrystalline unit cells with complex microstructures. In 
the context of continuum dislocation mechanics, the FFT-based method was adapted 
and applied to solve the elastostatic field equations of the FDM theory [41–43]. In addi-
tion, in the dynamic regime, the GND density transport equation was solved using a 
spectral exponential filter to avoid numerical oscillations related to Gibbs phenomenon 
[44]. Furthermore, the conventional (based on local crystal plasticity, no GND transport, 
etc.) elasto-viscoplastic FFT formulation [39], denoted CP-EVP-FFT here, was adapted 
to consider PMFDM equations in its reduced version. This implementation, abbrevi-
ated MFDM-EVP-FFT, was originally developed and demonstrated for two-phase lami-
nate composites by [45] and applied to Voronoi polycrystals with different average grain 
sizes under monotonic tensile and reversible tension–compression loadings to study 
the Bauschinger effect [46]. Compared to FE, FFT-based methods may be advantageous 
to avoid mesh generation [47] and less time-consuming (in some major cases except 
exascale calculations) [48].

This contribution presents a new application of MFDM-EVP-FFT to study the 
mechanical behavior of a new type of metal matrix composites (MMC), made of a full 
ferritic matrix (α-Fe, body-centered cubic (BCC) crystallographic structure) and ceramic 
particles of type TiB2 (hexagonal compact (HCP) crystallographic structure). This new 
composite is attractive for industrial applications due to the very high elastic moduli and 
low density of TiB2 particles, leading to an overall increase in the specific stiffness of 
at least 15% [49]. Previous works investigated the structure and chemistry of interfaces 
[50] and the damage mechanisms of Fe–TiB2 [51, 52]. It was demonstrated that cracking 
of TiB2 particles and subsequent damage initiation in the adjacent matrix occur, result-
ing in a significant loss of effective moduli, toughness and ductility, which is detrimen-
tal to industrial applications of such composites. In addition, the partitioning of stresses 
and strains between the ductile ferrite matrix and the hard ceramic reinforcements was 
shown to depend on particle sizes, shapes, distribution and volume fraction [53]. There-
fore, these microstructural parameters are likely to alter the deformation characteristics 
in a significant way, and therefore their influence on the mechanical behavior needs to 
be assessed in order to optimize the material’s processing routes.

The objective of this paper is to use the MFDM-EVP-FFT formulation in order to 
describe internal size effects on the mechanical behavior of the Fe–TiB2 composite. Spe-
cifically, particle interspacing effects and their influence on the development of stresses, 
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plastic distortion and distribution of dislocation densities will be discussed. For this pur-
pose, 3D synthetic microstructures are used as input of FFT-based simulations.

The paper is organized as follows. In “Description of MFDM-EVP-FFT model and 
input material data” section, the constitutive equations of the MFDM and the elasto-
viscoplastic FFT-based numerical implementation for MFDM are presented, as well 
as the material’s microstructure and parameters used as input for numerical simula-
tions. “Effect of the particle interspacing distance” section shows the application of the 
MFDM-EVP-FFT model to synthetic microstructures with single-crystal matrix and 
different interspacing distances between TiB2 particles to study the influence of particle 
interspacing on mechanical behavior of these composites. In “Interplay between particle 
interspacing and grain size effects” section, a polycrystalline ferritic matrix is considered 
to study the interplay between grain size and particle interspacing. In “Conclusions” sec-
tion we present our conclusions.

Description of MFDM‑EVP‑FFT model and input material data
MFDM equations

To solve the displacement u and stress σ fields, the following equations are solved in 
a small deformation setting for elasto-viscoplastic behavior in a volume V  with exter-
nal boundary S using standard traction/displacement boundary conditions on St and Su 
( S = St ∪ Su):

where C is the fourth order elastic stiffness tensor with classic minor and major 
symmetries.

In the presence of dislocation ensembles [20, 24–26], both the average plastic dis-
tortion Up , which results from dislocation motion, and the average elastic (or lattice) 
distortion Ue are incompatible fields. In non-local crystal plasticity, and depending on 
the resolution scale, dislocation ensembles can be categorized as GND and SSD [3]. 
Indeed, if the resolution scale is fine enough (microscopic scale), all dislocations appear 
to be polarized, i.e. GNDs. At a higher resolution (mesoscopic scale), both SSDs and 
GNDs are distinguished. SSDs accumulate inside grains and only contribute to plastic 
flow, whereas GNDs contribute to both plastic flow and long-range internal stresses. 
Polarized dislocations are represented by the dislocation density (or Nye) tensor α . The 
mesoscale FDM theory is based on an averaged value of the tensor α. Here, a simpli-
fied reduced version of the MFDM is considered [24, 32], where incompatible fields are 
assumed to be as smooth as necessary, and the average plastic distortion rate writes:

The mobility of SSDs is represented by the mesoscale plastic distortion rate Lp , where 
the averaging procedure was defined in [24]. The space–time evolution of the average 

(1)

divσ = 0

σ = C :
(
Ue

)sym

U = grad u = Ue +Up

σ · n = T on St

u = u on Su

(2)U̇p = α × v + Lp.



Page 5 of 23Genée et al. Adv. Model. and Simul. in Eng. Sci.             (2020) 7:6 	

dislocation density tensor α is obtained from the conservation of dislocation flux and is 
prescribed as [54, 55]:

Constitutive specifications on the dislocation velocity v and on the slip distortion rate 
Lp are given from thermodynamic considerations following the theory introduced by 
Acharya and Roy [24]. Furthermore, plastic flow incompressibility is considered. The 
GND velocity v is prescribed as follows:

where g is the glide force parallel to v and v is the magnitude of v . The constitutive equa-
tion adopted for v is based on the Orowan law for GND mobile dislocations together 
with a Taylor hardening rule. Here, a mechanistic formulation for v similar to [29] is 
used:

where N  is the total number of slip systems ( N = 24 for the BCC structure in ferrite: 
α-Fe), γ̇s is the slip rate on slip system s , ζ is a material constant, b is the magnitude of the 
Burgers vector, τc is the shear strength and µ is the isotropic elastic shear modulus of the 
material.

In crystal plasticity, the plastic distortion rate tensor Lp due to slip is defined as:

where bs and ns denote, respectively for each slip system s , the slip direction and the slip 
plane unit normal. The constitutive equation for γ̇s introduced in Eqs. 5 and 6 is given by 
a classic viscoplastic flow rule as a power law:

where m is the strain rate sensitivity of the material, τs is the resolved shear stress, γ̇0 is 
the reference slip rate and τc is considered identical for all slip systems. As numerical 
applications in “Interplay between particle interspacing and grain size effects” section 
are not concerned by cyclic plasticity, no intra-crystalline phenomenological back-stress 
evolution has been introduced (as it was in [29]). The cumulated slip rate on all slip sys-
tems due to both GNDs and SSDs is given by:

(3)α̇ = −curl
(
U̇p

)
.

(4)v =
g∣∣g
∣∣v with v ≥ 0

(5)v =
ζ 2b

N

(
µ

τc

)2 N∑

s=1

∣∣γ̇s
∣∣ ≥ 0

(6)Lp =
N∑

s=1

γ̇sbs ⊗ ns

(7)γ̇s = γ̇0
( |τs|

τc

)1/m

sign
(
τs
)

(8)Ŵ̇ = |α × v| +
N∑

s=1

∣∣γ̇s
∣∣.
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The evolution law for the shear strength τc follows the same hypotheses as the strain-
hardening model developed by [29], which is an extension of earlier models derived by 
[17, 56]:

where τ0 is the yield strength due to lattice friction, τs is the saturation stress, θ0 is the 
initial hardening rate and k0 is a parameter related to a geometric mean free path due to 
GND forest on slip system s [17]. In the case of a model based on conventional crystal 
plasticity (no GND, i.e. α = 0 ), Eq. 9 reduces to a classic Voce-Kocks law [57].

Numerical implementation of MFDM‑EVP‑FFT

In the FFT-based framework for periodic heterogeneous media, the constitutive equa-
tions in (1) can be solved using the Green’s function method [58] through an integral 
Lippmann–Schwinger equation. The Fourier transform of this equation is expressed as 
follows:

where ξ is the Fourier vector, Ŵ0 is the modified Green tensor associated with the homo-
geneous elastic moduli C0 , and τij = σij − C0

ijklεkl represents the stress polarization ten-
sor field due to heterogeneities. As for notation, ε̂(ξ) is the continuous Fourier transform 
of tensor field ε(x) . The calculation of the modified Green tensor in the Lippmann–
Schwinger equation is performed using a centered finite difference scheme on a rotated 
grid introduced in [59].

Equation 10 is solved using an augmented Lagrangian iterative scheme introduced in 
[37]. Stress and strain fields at iteration (n) are approximated by auxiliary fields �(n)ij  and 
e
(n)
kl  respectively. The stress polarization tensor then becomes:

The augmented Lagrangian scheme also requires the nullification of the residual R , 
which depends on the stress and strain tensors σ (n+1) and ε(n+1) (Eq. 12). This non-linear 
equation is solved using a Newton–Raphson iterative scheme.

Once the convergence is reached for σ (n+1) and ε(n+1) , the new guess for the auxiliary 
stress field � is given by using Uzawa’s descent algorithm:

The iterative algorithm is stopped when the normalized average differences between 
the stress fields σ and � and the strain fields ε and e are smaller than a threshold error of 

(9)τ̇c = θ0
τs − τc

τs − τ0
Ŵ̇ + k0

ζ 2µ2b

2(τs − τ0)

(
N∑

s=1

∣∣α · ns
∣∣∣∣γ̇s

∣∣+
N∑

s=1

∣∣α · ns
∣∣|α × v|

)

(10)ε̂(ξ) = −Ŵ̂
0
(ξ) : τ̂ (ξ)∀ξ �= 0

ε̂(0) = ε

(11)τ
(n)
ij = �

(n)
ij − C0

ijkle
(n)
kl .

(12)Rij

(
σ (n+1)

)
= σ

(n+1)
ij + C0

ijmnε
(n+1)
mn

(
σ (n+1)

)
− �

(n)
ij − C0

ijmne
(n+1)
mn .

(13)�
(n+1)
ij = �

(n)
ij + C0

ijkl

(
e
(n+1)
kl − ε

(n+1)
kl

)
.
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10−5 . This condition implies the fulfillment of both stress equilibrium and strain com-
patibility up to sufficient accuracy.

In the algorithm described above, an overall macroscopic strain E = ε(n) is applied to 
the periodic unit cell V  in the form of:

In cases of mixed boundary conditions with imposed macroscopic strain rate Ėij and 
stress Σij , the (n + 1)-guess of the macroscopic strain E(n+1)

ij  was given in [37, 39].
For the space–time evolution of the dislocation density tensor (Eq.  3), an explicit 

forward Euler scheme was derived to numerically solve this equation starting from an 
implicit backward Euler scheme together with a Taylor expansion at first order of αt+�t

ij  
where �t is the time step. An efficient numerical spectral approach that uses an expo-
nential low-pass filter [44] in order to avoid non accurate and unstable solutions due to 
the occurrence of high-frequency Gibbs oscillations and due to numerical instabilities 
resulting from the hyperbolic nature of Eq. 3. The exponential low-pass filter is defined 
as function of frequencies η as:

where β = −log(εM) and 2p correspond to the high-frequency damping parameter and 
the order of the filter respectively. Applying the filter to Eq. 3 leads to:

For the second term in Eq. 15 not concerned by the filter, a centered finite difference 
scheme coupled with discrete Fourier transform is used [45]. To satisfy stability require-
ments for the numerical resolution of the dislocation density transport equation, the 
time step �t is fixed according to a Courant–Friedrichs–Lewy (CFL) condition:

where �tCFL is the refined time step, δ is the voxel size, c is a user-specified constant and 
vmax is the maximal GND velocity.

Material and simulation data

Description of material

The material studied here is a ferritic-steel-based composite reinforced with a 9.5% vol-
ume fraction of TiB2 particles. The composite was produced by ArcelorMittal Research 
SA, by ingot casting with in situ precipitation of the ceramic TiB2 particles during solid-
ification by eutectic reactions [49]. The products were cold rolled to produce 1.5  mm 
thick sheet material before being subjected to an annealing treatment. As result of this 
processing route, the α-ferrite grains have a body-centered cubic structure (BCC) and 
presents no crystallographic texture. The TiB2 particles are uniformly distributed in 
the matrix, elongated preferentially in the rolling direction and exhibit hexagonal-like 
sections. Moreover, the crystal structure of the TiB2 particles is hexagonal—as it was 

(14)Eij = Et
ij + Ėij�t.

(15)κ(η) = exp
(
−β(η)2p

)

(16)α̂t+�t
ij = κ(η)

(
α̂t
ij −�tiξk

((
α̂ijvk

)t −
(
α̂ikvj

)t))−�ti ξkejkl

(
L̂
p
il

)t
.

(17)�tCFL = c
δ

vmax
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determined by X-ray powder diffraction analysis [49]—with a preferential alignment of 
the rolling direction with the c-axis of the hexagonal structure. The mean grain size of 
the matrix is about 4.5 µm and the mean equivalent diameter of TiB2 particles is close to 
1.7 µm. These descriptors of shapes and orientations of grains and particles were derived 
from statistical analysis of 2D SEM images of the material (not documented in the pre-
sent paper).

Material and simulation parameters

This section presents numerical simulations performed on different periodic unit cells 
representative of the Fe–TiB2 MMC. These synthetic unit cells are described in “Effect 
of the particle interspacing distance” and “Interplay between particle interspacing and 
grain size effects” sections and consist of an elasto-viscoplatic matrix with purely elastic 
particles. Assumption of elastic behavior for particles is consistent with the strong stiff-
ness contrast with the ferrite matrix, considering the low total strain level reached in the 
simulations (up to 0.2%).

Due to periodic boundary conditions required by FFT-based methods, periodicity of 
the simulation volume is assumed in all three spatial directions. Elastic constants for the 
ferrite matrix and the particles are reported in Table 1 and reflect the cubic and hexago-
nal structures of α-ferrite and TiB2, respectively. For the elasto-viscoplatic matrix, the 
material parameters related to slip rule and GND velocity ( ̇γ0,m in Eq. 7 and ζ in Eqs. 5 
and 9) are consistent with pure α-Fe and are given in Table 2. A specific fit to experimen-
tal data was carried out only to identify material parameters related to the hardening 
model ( τ0, τs and θ0 in Eq.  9). The identification procedure is described in “Identifica-
tion of hardening parameters” section. Material parameter k0 has not been experimen-
tally identified and is fixed following a value chosen by [17, 25], i.e. k0 = 20 in Eq. 9. The 
Burgers vector magnitude for α-Fe is b = 2.48× 10−10m.

Given the body-centered cubic structure of the α-Fe lattice, both {110}
〈
111

〉
 and 

{211}
〈
111

〉
 slip systems are considered (i.e. a total of 24 slip systems, with {123}

〈
111

〉
 

excluded in this analysis). As the volume fraction effect is not investigated in the present 
paper, the volume fraction of particles is fixed at 9.5%, with slight variations, depending 
on the chosen voxelization. In the following, all considered unit cells are subjected to a 
pure uniaxial tensile loading in the Z-direction, with mixed strain/stress boundary con-
ditions and applied strain rate ĖZZ = 0.001 s−1 . No specific condition was considered 

Table 1  Elastic constants used for numerical simulations [60]

TiB2 (HCP) Fe-α (BCC)

C11(GPa) C12(GPa) C13(GPa) C33(GPa) C44(GPa) E(GPa) ν

654.5 56.5 98.4 454.5 263.2 211 0.33

Table 2  Material parameters related to plasticity used for numerical simulations

γ̇0
(

s
−1

)

M η b (m) θ0 (MPa) τs (MPa) τ0 (MPa) k0

1 × 10−3 0.05 0.33 2.48 × 10−10 225 73 65 20
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across material interfaces in this study, though such physically motivated conditions can 
be introduced in the MFDM theory [29]. Finally, the specific numerical parameters used 
for GND density transport equation in Eqs. 15 and 17 are taken from a previous study 
[44], where these parameters were optimized: p = 1, εM = 0.2, c = 0.25.

Identification of hardening parameters

A fit to experimental tensile data is performed to identify material parameters related 
to the hardening model ( τ0, τs and θ0 described in “MFDM equations” section). To this 
end, a periodic unit cell representative of the Fe–TiB2 composite was generated using 
DREAM3D software [61] and is shown in Fig.  1a. The unit cell is composed of about 
200 equiaxed grains and a 9.5% volume fraction of uniformly distributed particles in the 
form of hexagonal cylinders. Ferrite grains have a random crystallographic texture and 
their sizes follow a log-normal distribution with mean grain size of dg = 4.5 µm and 
standard deviation of about 0.4 × dg  . TiB2 particles have a fixed aspect ratio of 3 with 
the cylinder axis in the Z-direction. Their equivalent diameter also follows a log-normal 
distribution with mean size of dp = 1.7 µm and standard deviation of about 0.6 × dg  . 
Finally, the c-axis of the HCP lattice is oriented along Z-axis for all particles.

Parameters have first been fitted using a coarse 32 × 32 × 32 discretization and then 
adjusted for the final more refined 64 × 64 × 64 discretization. Several realizations were 
considered to ensure representative numerical results. Both the experimental ten-
sile stress–strain response and the numerical simulation with the identified hardening 
parameters are displayed in Fig. 1b.

Outputs

For all performed numerical simulations, overall stress/strain responses are reported 
and mechanical fields inside of grains are investigated. The latter is based on the analysis 
of three different scalar outputs recorded at the same overall tensile strain EZZ = 0.2%:

	 i.	 The equivalent Von Mises stress σeq , in order to evidence stress hotspots in the 
microstructures: 

Fig. 1  a RVE of the two-phase composite discretized with 64 × 64 × 64 voxels and used for identification of 
hardening parameters; b macroscopic stress–strain responses issued from experimental tensile test (dashed 
black) and obtained from numerical simulation with fitted parameters and RVE of a 
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 where s is the deviatoric stress tensor.
	 ii.	 The equivalent cumulated plastic strain εpeq , to analyze plastic strain localization in 

the microstructures: 

 where ε̇p is the symmetric part of U̇p.
	iii.	 The L2-norm α of the Nye tensor or alternatively the GND density, defined as: 

The simplified analysis of α provides a scalar measure of GND, instead of the more 
involved study of each of the 9 Nye tensor components.

Effect of the particle interspacing distance
In this section we consider a 64 × 64 × 64 two-phase synthetic unit cell composed of 
one elastic particle embedded in a single crystal elasto-viscoplastic matrix, see Fig. 2a. 
Motivated by experimental observations, the geometry of the particle is a hexagonal 
prism, as illustrated in Fig. 2a. Given the periodic boundary conditions, this unit cell 
corresponds to a periodic cubic distribution of particles in an infinite single crystal 
matrix. Hence, spacings sX , sY  and sZ between particles are constant in each direction 
but slightly vary from one direction to another ( sX  = sy  = sz ) owing to the hexagonal 
prismatic shape of particles. We here limit the study to the effect of the mean particle 
interspacing—denoted lp—considered as a single internal length scale parameter and 
defined as the averaged value:

(18)σeq =
√

3

2
s : s

(19)εpeq =
t∫

0

√
2

3
ε̇p : ε̇pdt

(20)ρGND =
α

b
=

√
α : α
b

.

Fig. 2  a Single-particle two-phase synthetic unit cell discretized with 64 × 64 × 64 voxels; b studied 
crystallographic orientations of the ferrite matrix displayed in the standard stereographic triangle
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The choice of a periodic cubic distribution of particles here ensures that lp is constant. 
It should be noted that the aspect ratio of the particle (close to 1) was chosen lower than 
experimentally observed particles, so that no strong variation between sX , sY  and sZ is 
introduced.

Four different realistic mean particle interspacings ranging from lp = 0.105 µm to 
lp = 1.26 µm are studied, as well as two different crystallographic orientations. The lat-
ter are considered to provide some qualitative insight of the effect of crystallographic 
orientation on macroscopic response and local mechanical fields. The first one is asso-
ciated to multiple slip and such that 

[
111

]
 lies parallel to the tensile direction Z. For the 

second, single slip is the preferred slip mode (with 
(
112

)[
111

]
 system exhibiting the 

highest Schmid factor) and 
[
5, 6, 27

]
 is parallel to the tensile direction Z. These orienta-

tions will be referred to as orientation #1 and orientation #2, respectively. Finally, the 
MFDM-EVP-FFT predictions are compared to corresponding results obtained with the 
conventional CP-EVP-FFT formulation of [39].

Effect of interspacing distance on macroscopic response

Macroscopic strain–stress responses of the synthetic RVEs for the range of investigated 
mean particle interspacing distances are reported on Fig. 3a, b for both crystallographic 
orientations. For both orientations, an increase of the flow stress is observed with inter-
spacings decreasing from lp = 1.26 µm down to lp = 0.105 µm . This macroscopic 
smaller is stronger effect of particle interspacing was already obtained with strain gradi-
ent plasticity models applied to MMCs, see e.g. FEM-based calculations of [62] or [63] 
who used the model of [12, 13]. Higher stress magnitudes are reached for orientation #1 
compared to orientation #2, which is consistent with the lower Schmid factors of slip 
systems in the latter case, i.e. orientation #1 is harder with respect to the applied tensile 
direction (the maximum Schmid factor is 0.314). The flow stress at 0.2% macroscopic 

(21)lp =
1

3
(sX + sY + sZ).

Fig. 3  Macroscopic stress–strain responses of the two-phase single-particle unit cell under uniaxial tension 
predicted by the MFDM-EVP-FFT formulation (solid lines) with interspacing distances lp ranging from 0.105 
to 1.26 µm for the two orientations of the single crystal matrix, orientations #1 (a) and #2 (b), respectively. For 
comparison, tensile responses given by conventional plasticity (CP-EVP-FFT) are also shown (dotted line)
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strain corresponding to the lowest lp is 157% higher than the initial macroscopic yield 
stress for orientation #1 and 130% higher for orientation #2. Therefore, as it is directly 
observed from Fig. 3a, b, the macroscopic tensile stress is more sensitive to the particle 
interspacing effect for the multiple slip orientation #1 than for the single slip orienta-
tion #2. No scaling law of the macroscopic flow stress has been identified here, in con-
trast with grain-size effect for which the well-known Hall–Petch’s law was obtained from 
other simulations, not reported here, see [46].

In contrast with the MFDM-EVP-FFT predictions, results obtained with the conven-
tional CP-EVP-FFT model are size independent. Also, the macroscopic hardening is sig-
nificantly lower in conventional results. This is due to the absence of description of GND 
densities, that contribute to the overall hardening in the MFDM-EVP-FFT approach, as 
will be seen in the following paragraph.

Effect of interspacing distance on intra‑granular mechanical fields

The fields of scalar quantities defined in “Outputs” section are analyzed here to study 
stress and strain localization and distribution of dislocation densities. The mechanical 
fields correspond to the same macroscopic tensile strain EZZ = 0.2%.

The spatial distribution of σeq in different sections of the unit cell are reported in Fig. 4. 
As expected, higher stresses are found in the elastic particles. As illustration, the average 
σeq particle-to-matrix ratio is around 1.7 for orientation #1 and 2.3 for orientation #2 in 
the case with the largest lp . The difference in stress amplitudes between the two studied 
crystallographic orientations mentioned in “Effect of interspacing distance on macro-
scopic response” section is clearly observed in Fig. 4a–d.

The equivalent Von Mises stress is clearly inhomogeneous in both phases as stress gra-
dients develop in particles from the interface to the center of the particle, and in the 
matrix in regions between particles (hereinafter called channels) with the maximal value 
located at mid-distance between particles. The degree of heterogeneity appears stronger 
in the matrix. For both orientations, higher values of σeq are found in the regions 
between particles parallel to the tensile direction (Z-direction) and local stress hotspots 
are found close to sharp edges of the particles. For example, σeq is 1.5 times larger in the 
vicinity of particle corners than in the center of matrix channels for orientation #1 with 
the lowest lp . It is clearly observed that stress gradients are intensified in both phases 
with decreased interparticle spacing. Particle shape effects are stronger for lowest values 
of lp . In comparison, stress distribution obtained with CP-EVP-FFT shows that stress 
amplitudes are underestimated compared to MFDM-EVP-FFT. The analysis of statistical 
distribution of σeq reveals a smaller stress dispersion for CP-EVP-FFT, even if local hot-
spots are still found near particle edges, which is a common feature of CP-EVP-FFT and 
MFDM-EVP-FFT results.

Plots of the equivalent cumulated plastic strain εpeq are reported in Fig. 5. Irrespective 
of interparticle spacing, it is observed that εpeq is strongly inhomogeneous. Deformation 
bands develop in the ferrite matrix, and they are most pronounced for orientation #2 
(Fig. 5c, d). For this case, it can be clearly seen that localization patterns conform to the 
spatial distribution of particles as bands develop along the longest uninterrupted paths 
into the microstructure. They are oriented at 45° from the tensile axis and the visible slip 
traces are consistent with the slip system with the highest Schmid factor in this single 
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slip orientation. For orientation #1, bands also occur but plastic strain is more distrib-
uted around the particles, which is consistent with multiple activated slip systems on 
both possible plane families {110} and {211} , see [64].

Plastic strain distribution undergoes significant change when lp is decreased from 
lp = 1.26 µm to lp = 0.105 µm . It can be clearly seen that the region where very low lev-
els of plastic strain are predicted grows from the matrix/particle interfaces to the mid-
distance between particles. This results in a decrease of the magnitude of εpeq for smaller 
interspacing distances. However, at the same time, localization bands become thinner 
and more intense as the region where plasticity occurs is further reduced in the channels 
between particles. This is confirmed by the analysis of the distribution of εpeq/E

p
eq , i.e. εpeq 

normalized by the volume average of εpeq over the matrix (not presented here), where 
longer tails are observed regarding high ratio values for low lp values.

The spatial distribution of plastic strains predicted with CP-EVP-FFT is different from 
previous results, as it is more homogeneously distributed in the matrix, and plastic 
strain hotspots seem more tied to particle shape (Fig. 5e, f ).

The spatial distribution of GND density ρGND obtained with MFDM-EVP-FFT 
is given in Fig. 6a–d. The 2-D sections show that ρGND increases from the center of 

Fig. 4  a–d Spatial distributions of equivalent Von Mises stress σeq predicted with MFDM-EVP-FFT for 
a macroscopic strain EZZ = 0.2% , for two different particle interspacing distances lp and two different 
crystallographic orientations of the matrix. 2-D sections containing the unit cell center are either parallel or 
perpendicular to the Z tensile direction (used axis systems are displayed in a). Each 2-D section represents the 
same physical length. For comparison, CP-EVP-FFT results are given in e, f for orientation #1
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matrix channels to matrix/particle interfaces and that the magnitude of ρGND is higher 
when particles are closer to each other. Distribution of GND densities is affected both 
by the shape of the particles and the crystallographic orientation of the matrix. For 
orientation #1, strong ρGND gradients developed along the interfaces as shown in both 
the parallel and perpendicular sections. Additionally, the parallel view shows that 
very high values of ρGND are found in the vicinity of particle corners and spread far 
into the matrix, demonstrating a strong shape effect on GND density for this orienta-
tion. This shape effect is not as pronounced in the case of orientation #2 (Fig. 6c, d). 
Layers of high GND density develop in the matrix close to particles but a network of 
low ρGND values is also formed (see arrows on Fig. 6c, d).

For comparison, results obtained with CP-EVP-FFT given in Fig. 6e show that the 
post-calculated ρGND is localized at the particle’s interface/edges and no GND density 
pile-up develops and spreads inside the surrounding matrix. This is consistent with 
the earlier results reported in [45] for two-phase laminates. In addition, the magni-
tude of ρGND is 1–2 orders of magnitude lower than in the case of MFDM-EVP-FFT 
simulations.

Fig. 5  a–d Spatial distributions of equivalent cumulated plastic strain εpeq predicted with MFDM-EVP-FFT 
for a macroscopic strain EZZ = 0.2% , for two different particle interspacing distances lp and two different 
crystallographic orientations of the matrix. 2-D sections containing the unit cell center are either parallel or 
perpendicular to the Z tensile direction (used axis systems are displayed in a). Each 2-D section represents the 
same physical length. For comparison, CP-EVP-FFT results are given in e, f for orientation #1 with a different 
scale range for better visibility
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Comparing the σeq and ρGND plots of Figs. 4 and 6, respectively, it can be seen that 
regions with stress hotspots correspond quite well to high GND densities, which 
indicates that significant plastic strain incompatibilities occur at these locations in 
the matrix. Moreover, the comparison between Figs. 5 and 6 shows that the spatial 
distribution of deformation bands at low strain is strongly affected by the considera-
tion of non-local plasticity associated with the presence of GND pile-ups. Indeed, 
localization patterns, i.e. regions with high slip activity, conform exactly to regions 
with low GND. This is consistent with layers of GNDs obstructing the mean free 
path of mobile dislocations in the matrix. This mechanism cannot be described 
with conventional CP-EVP-FFT where GND densities are underestimated and not 
induced by pile-ups, and high plastic strain incompatibilities occur only at particle 
sharp edges. The effect of parameter k0 has not been studied in this paper but an 
increase of k0 could lead to higher local hardening and slightly higher GND densities 
close to phase interfaces as it was observed in previous works [45].

Fig. 6  a–d Spatial distributions of of GND densities ρGND predicted with MFDM-EVP-FFT for a macroscopic 
strain EZZ = 0.2% , for two different particle interspacing distances lp and two different crystallographic 
orientations of the matrix. 2-D sections containing the unit cell center are either parallel or perpendicular to 
the Z tensile direction (used axis systems are displayed in a). Each 2-D section represents the same physical 
length. For comparison, CP-EVP-FFT results are given in e, f for orientation #1
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Interplay between particle interspacing and grain size effects
In this section, we investigate the interplay between particle interspacing and grain size 
effects using polycrystalline MMC microstructures. For that purpose, polycrystalline 
unit cells represented in Fig.  7 and discretized with 128 × 128 × 128 voxels were gen-
erated and used as input of MFDM-EVP-FFT numerical simulations. All unit cells are 
made of 8 cubic and randomly oriented grains (Fig.  7a shows the adopted morphol-
ogy and orientations of the grains). A set of cubic grains was preferred over the use of 
Voronoi tessellation, to introduce a constant grain size instead of a distribution of grain 
sizes. Keeping the volume fraction of particles constant (close to 9.5%), regularly spaced 
hexagonal prismatic particles of different sizes were included in the polycrystalline unit 
cell. Same considerations as in “Effect of the particle interspacing distance” section were 
made about particle distribution and shape. Three unit cells were obtained by including 
8, 64 or 216 particles (Fig. 7b). By considering two different voxel sizes for each of these 
three unit cells, two sets of results were obtained, respectively: (1) constant grain size 
of dg = 1.24  µm and interspacing distances of lp = 1  µm, 0.5  µm, and 0.33  µm, and (2) 
constant grain size of dg = 6.2 µm and interspacing distances of lp = 5 µm, 2.5 µm, and 
1.66 µm.

Macroscopic responses

Macroscopic strain–stress curves of the two-phase polycrystalline unit cells are shown 
in Fig. 8. The change in grain size from dg = 6.2 µm to dg = 1.24 µm between the two sets 
of simulations clearly induces an increase of the macroscopic tensile stress. As it was 
reported in [46], this effect cannot be obtained with conventional CP-EVP-FFT, which 
is insensitive to grain size. Also, the dependence of macroscopic flow stress with grain 
size was shown to follow a Hall–Petch scaling law. However, no visible difference on the 
tensile curve is observed between the different lp for a fixed grain size. It appears that 
the grain size effect is predominant on the macroscopic tensile response, at least for the 
investigated range of length scales. For comparison, results obtained with polycrystalline 
microstructures without addition of particles are reported for comparison as black dot-
ted and plain lines, respectively for grain sizes dg = 6.2 µm and dg = 1.24 µm. The effec-
tive moduli of these microstructures being lower, a decrease of the slope in the elastic 
domain and a subsequent lower absolute macroscopic hardening are observed. However, 
the relative difference in macroscopic hardening between the two grain sizes is quite 

Fig. 7  Two-phase polycrystalline unit cells composed of eight cubic randomly oriented grains and 8, 64 or 
216 regularly spaced particles and discretized with 128 × 128 × 128 voxels. Crystallographic orientations of 
grains are displayed in the standard stereographic triangle
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similar to that with particle-reinforced microstructures for the investigated strain range, 
confirming the apparent predominance of grain size effect.

Analysis of intra‑granular mechanical fields

The scalar micromechanical fields defined in “Outputs” section, predicted at EZZ = 0.2% , 
are analyzed here. Only results for dg = 1.24  µm are presented. Similar trends were 
obtained for dg = 6.2 µm.

The field of equivalent Von Mises stress σeq inside four adjacent grains is shown in 
Fig. 9a, b. As was observed in the cases of single crystal matrix in “Effect of the particle 
interspacing distance” section, stress is strongly inhomogeneous. Stress heterogeneity is 
observed comparing the fields inside the ferrite phase and elastic particles, and now also 
comparing the fields inside different grains. Two kinds of stress hotspots are identified in 
the grains:

	 i.	 The highest stress values are found at grain boundaries near to a particle (see white 
boxes in Fig.  9b). These hotspots are present all along grain boundaries and are 
separated from each other by regions of low σeq.

	 ii.	 Local maxima of σeq are also observed between particles in the Z-direction, i.e. the 
tensile direction (see yellow boxes in Fig. 9b).

With the decrease of particle spacing, locations described in (i) become frequent along 
the grain boundaries with a slight reduction of the highest value of σeq.

Fig. 8  Macroscopic stress–strain responses of the two-phase polycrystalline unit cells under uniaxial tension 
as predicted by MFDM-EVP-FFT, with grain size dg = 1.24 µm and interspacing distances lp ranging from 
0.33 to 1 µm (solid lines), and dg = 6.20 µm and interspacing distances lp ranging from 1.55 to 5 µm (dotted 
lines). Black dotted and plain lines give the tensile response of polycrystalline unit cells without particles, with 
respective grain sizes of dg = 6.20 µm and dg = 1.24 µm
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The fields of the equivalent plastic strain εpeq are reported in Fig. 10a, b. For the sin-
gle slip orientations among the 8 considered grains, deformation bands oriented at 
45° from principal axis of tensile loading are clearly visible and can be linked to best 
oriented slip systems (as it was observed for orientation #2 in “Effect of interspacing 
distance on intra-granular mechanical fields” section). Interestingly, plastic strain val-
ues are higher in matrix channels in the center of grains, away from grain boundaries, 
which act as new impenetrable obstacles to slip. It is important to note that because 
of the cubic distribution of particles chosen here (no clustering), this statistical 
homogeneous decrease of particle interspacing distance results in the multiplication 
of possible channel paths for mobile dislocations, as it is observed from the increased 
number of slip lines between lp = 1 µm and lp = 0.33 µm.

Finally, plots of ρGND are reported on Fig.  11a, b. GND pile-ups develop at both 
matrix/particle interfaces and at grain boundaries. However, they are larger and 
more intense close to grain boundaries, especially in grain #3. Furthermore, layers 
of highest GND density are not distributed along grain boundaries. Indeed, regions 
where higher values of ρGND are obtained correspond to the stress hotspots previ-
ously described, indicating local high plastic strain incompatibilities. Interestingly, 

Fig. 9  Spatial distribution of equivalent Von Mises stress σeq for EZZ = 0.2% predicted with MFDM-EVP-FFT 
for unit cells with dg = 1.24 µm and a 8 or b 216 particles. 2-D sections through the center of the unit cell 
and in the middle of grains #1 to #4
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stress and GND density hotspots are located at the termination of plastic strain bands 
observed in Fig. 10b.

When particles become closer to each other for smaller lp , the ρGND concentrations 
progressively disappear in grains #1, #2 and #4 of Fig.  11b. The careful analysis of 
profiles of ρGND along specific paths in grain #3, illustrated in Fig. 11c, also indicates a 
slight decrease of maximum values of ρGND at grain boundaries. This can be explained 
by the following mechanism: for lp = 0.33  µm, the number of observed deformation 
bands carrying mobile dislocations is higher, but more particles are intersected by 
dislocations on each of these paths as the interspacing distance is smaller. Thus, as 
overall deformation increases, more intersections occur, where dislocations can 
be trapped in the vicinity of particles, increasing the local ρGND magnitude around 
particles. Therefore, a lower amount of dislocations contributes to the intensifi-
cation of GND pile-ups at grain boundaries. Concomitantly, a more GND pile-ups 
can be formed at grain boundaries as more intersections with deformation paths are 
observed. These two phenomena are likely to balance each other out for the ranges 
of length scales investigated here, justifying that no interparticle spacing effect was 
observed on the macroscopic tensile response in “Macroscopic responses” section for 
a given grain size.

Fig. 10  Spatial distribution of equivalent plastic strain εpeq for EZZ = 0.2% predicted with MFDM-EVP-FFT for 
unit cells with dg = 1.24 µm and a 8 or b 216 particles. 2-D sections through the center of the unit cell and in 
the middle of grains #1 to #4
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Considering that, as particles get even closer to each other, and below a critical particle 
interspacing distance to grain size ratio, the GND pile-ups at matrix/particle interfaces 
would be more detrimental to plastic strain than pile-ups at grain boundaries, then the 
particle interspacing effect should take over the grain size effect. This, however, is not 
observed here, as particle interspacing distances are probably still too high relatively to 
grain size. More importantly, observations made here are specific, and maybe restricted, 
to the chosen uniform distribution of particles with cubic periodicity. For clustered dis-
tributions of particles inside grains, local distances between neighboring particles could 
be very low compared to grain size even for a large mean particle interspacing. The pres-
ence of these particle clusters are likely to be detrimental to the emergence of defor-
mation patterns, and could lead to early and rapid damage initiation in the vicinity of 
particles during loading, as was recently shown in [65]. MFDM-EVP-FFT simulations on 
synthetic microstructures with particle clusters, to study the effect of non-uniform par-
ticle distributions on the mechanical behavior of Fe–TiB2 will be presented in a future 
contribution.

Conclusions
A spectral formulation called MFDM-EVP-FFT that includes GND and SSD effects 
through Field Dislocation Mechanics as an extension of the EVP-FFT formulation [39, 
45] was used in this paper. This FFT-based approach was able to successfully describe 
internal length scales effects in a Fe–TiB2 metal matrix composite considering both 
elastic particles and elasto-viscoplastic matrix. The matrix was considered to be either 
single crystalline (periodic unit cell with one ferrite grain without grain boundaries) 
or polycrystalline (periodic unit cell with eight grains including the presence of grain 

Fig. 11  a, b Spatial distribution of GND density ρGND for EZZ = 0.2% predicted with MFDM-EVP-FFT for unit 
cells with dg = 1.24 µm and a 8 or b 216 particles. 2-D sections through the center of the unit cell and in the 
middle of grains #1 to #4. c Profiles of intra-granular GND density ρGND along different paths indicated in a, b 
by colored arrows
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boundaries). Numerical simulations with different voxelized synthetic unit cells obtained 
with a periodic cubic distribution of particles and different particle interspacing dis-
tances were performed with 64 × 64 × 64 voxels or 128 × 128 × 128 voxels.

Numerical results for single-crystalline matrix demonstrated a strong dependence 
of equivalent stress, cumulated plastic strain and GND density with the particle inter-
spacing distance. In the non-local formulation of MFDM-EVP-FFT, dependence of 
mechanical behavior and distribution of intra-granular mechanical fields is related to 
the formation of higher GND density pile-ups at matrix/particle interfaces as opposed 
to conventional crystal plasticity (CP-EVP-FFT). MFDM-EVP-FFT results show spatial 
correlations between low and high values of GND density and respectively high and low 
values of equivalent cumulated plastic strain. Indeed, numerical simulations were able 
to describe that, with decreased distance between neighboring particles, GND pile-ups 
spread further into grain interiors. Thus, regions in matrix channels where slip activity is 
inhibited become larger leading to a more localized network of deformation bands and 
stronger slip gradients inside grains. Once GND pile-ups build up around particles, slip 
is further constrained in the matrix due to these GND pile-ups that conform with parti-
cle location and shape. This mechanism induces stronger hardening in a similar way to 
mechanism described for example in [66–68]. This effect was shown to depend strongly 
on the shape of particles and the crystallographic orientation in the matrix. Indeed, for 
orientation #2 considered in “Effect of the particle interspacing distance” section, it was 
seen that GND accumulation close to particles does not significantly impede the single 
slip activity as regions of low ρGND conform to the activated slip system and the longest 
available paths for dislocation motion in the microstructure, irrespective of interparticle 
spacing. Consequently, the hardening effect on the macroscopic behavior induced by the 
formation of GND pile-ups is less pronounced for orientation #2 than for orientation #1, 
as reported on Fig. 3.

Following the analysis of numerical results where a polycrystalline matrix is described, 
grain-size effect was shown to be predominant over particle interspacing effect for the 
range of investigated length scales and it was attributed to a too low grain size to par-
ticle spacing ratio and the choice of a periodic cubic distribution of particles in grain 
interiors. Higher GND densities and more intense deformation patterns are likely to be 
observed in clustered configurations with non-uniform particle distribution. The rela-
tionship between the degree of clustering, the macroscopic hardening and the spatial 
distribution will be discussed in a future contribution.
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