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 We calculate free radical production around a gold nanoparticle (GNP) or a water 
nanoparticle (WNP) in water, for single keV photon absorption.

 In the micrometer range from NP surface, radicals are overproduced of radicals by GNP 
(photoelectric effect) compared to WNP (Compton scattering).

 In the nanometer range, radicals are overproduced by small GNP compared to WNP due to 
Auger electrons, and comparable for large NP. 
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Abstract

For the past two decades, gold nanoparticles (GNPs) have been investigated as

a radiosensitizing agent for radiation therapy. Many theoretical studies have

shown that GNPs increase the dose deposition for keV photon irradiation, both

at macro and nano-scales, due to a high photon-gold interaction probability.

We studied by Monte Carlo simulations the production of radiolysis chemical

products (•OH and H2O2) following an ionization event induced by a 20-90 keV

photon in a nanoparticle (NP). We focused here on the primary chemical pro-

cesses occurring around nanoparticles. In the micrometer range, we obtained an

excess of chemical species following GNP ionization, as compared to a reference

water nanoparticle (WNP) ionization. This difference came from the dominant

processes of photon interaction, i.e., Compton for water and photoelectric for

gold, which are characterized by different emitted-electron energy spectra. The

overproduction of chemical species could be up to 5 times higher for GNP, de-
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pending on the photon energy. The mean concentration of chemical species in

a 100 nm sphere is higher for GNPs compared to WNPs due to Auger electrons

when the nanoparticle radius was equal to 5 nm. On the contrary, it was quite

comparable when the nanoparticle radius was equal to 50 nm. This reveals that

gold Auger-electrons do not necessarily induce a significant boost of chemical

species in the vicinity of GNP, as compared to WNP. For large GNPs, the local

effect (i.e., within a few hundreds of nm from the NP surface) is not to induce a

large yield near the ionized GNP, but rather to increase the chance of this event

to occur, due to higher photon-gold interaction probability than that of water.

Keywords: gold nanoparticles, photon irradiation, water radiolysis, free

radical production, Monte Carlo simulation

1. Introduction

Over the past two decades, the use of high-atomic-number (Z) nanoparticles

(NPs) has been of high interest due to their radiosensitizing properties. Several

pre-clinical studies have shown the efficiency of gold NPs (GNPs) to enhance the

effect of radiation therapy, in particular when using low energy (keV) X-rays5

[1, 2]. The origin of NP enhanced radiotherapy may originate from complex

physical, chemical and biological mechanisms. The relative contribution of each

stage remains under investigation [3]. Theoretical approaches, such as Monte

Carlo (MC) simulations, may help to better understand how early physical and

chemical stages could impact a biological system and lead, for instance, to cell10

death increase.

MC studies have shown that, for keV X-rays, a significant increase of dose

deposition may be reached for sufficiently large gold concentration [4, 5]. At

such energies, the photo-electric effect dominates for high-Z materials and the

photon interaction probability with GNP is much larger than the interaction15

probability with biological tissues. Other MC studies have suggested that the

heterogeneity of dose deposition in the vicinity of NPs may further contribute

to the enhancement, due to an hypothetical release of low-energy electrons.
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Following a photo-ionization of a high-Z NP, desexcitation processes result in

the emission of a cascade of secondary electrons called Auger cascade. It might20

be responsible for a high energy deposition in the vicinity of the GNP, and has

often been associated with GNP efficiency, by presumably inducing an increased

biological effectiveness similar to that observed in hadrontherapy [4, 5, 6, 7, 8].

While there have been many MC studies of the physical stage and dose deposi-

tion, simulation studies of the chemical stage are scarce [9, 10, 11]. In particular,25

GNP impact on water radiolysis has hardly been investigated, although it was

suggested to be a crucial step that may connect the physical effect to the bio-

logical consequences [3]. In a previous work [12], we studied, on a macroscopic

scale, the impact of GNPs on free radical yields for 20-90 keV photon irradiation.

We showed that for a GNP concentration of 1 mg ·mL−1, the increase of yields30

is well correlated to the macroscopic dose enhancement. Yields were found to

mostly depend on the photon energy and, to a lesser extent, on the NP radius

for a given mass concentration of GNPs. As previous MC studies at nanometric

scale pointed out the importance of dose heterogeneity and, in particular, the

high energy deposition in the vicinity of the GNP [13, 8, 14, 15, 16, 17, 18],35

we wished to focus, in this study, on the production of chemical species at the

nanoscale. In particular we searched for a possible boost of radical production

near the GNP, which might lead to local enhancement of radical recombination.

The goal of this work was thus to investigate, in a systematic way, the production

of free radicals for keV photon irradiation in water around one GNP, following40

the absorption of a photon by this nanoparticle. It was compared to the produc-

tion of chemical species following a photon absorption in a nanoparticle made

of water (WNP), to highlight the specificity of gold material. We focused in

particular on the production of oxydative species (hydroxyl radicals •OH and

hydrogen peroxide H2O2). To calculate these chemical species production, we45

implemented a MC simulation which models the physical, physico-chemical and

chemical steps.

This paper is organized as follows. In section 2, the MC tool and simulation
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Figure 1: Schematic view of the geometry. Orange dots represent excited or ionized wa-

ter molecules or chemical species produced following the NP ionization. On the right, the

dashed green and blue area represents the scoring volume used to calculate radical species

concentration in spherical concentric shells, cX(x) and CX(x).

geometry are presented. Section 3 presents the radial distribution of chemical

species around a NP. Section 4 discusses and concludes on the results.50

2. Material and methods

2.1. Geometry

The geometry considered for the calculation is described in Fig. 1. We defined a

GNP placed at the center of a volume V filled with liquid water. The half length

of V was chosen to be larger than the maximum range of the most energetic55

photo-electron in water. The GNP was ionized by a photon whose energy varied

from 20 to 90 keV. The half length of the volume was hence larger than 160 µm.

The systematic study of the NP-size impact on chemical species yields were

performed with four NP radii (5 nm, 12.5 nm, 25 nm and 50 nm). To analyze

the specificity of gold material, the calculation was also performed for a spherical60

NP made of water with the same radius.
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2.2. Monte Carlo simulation for water radiolysis

Our calculation was based on the Monte Carlo simulation MDM, and the full

description of the model is available elsewhere [12, 19, 20]. In short, 3 con-

secutive stages were performed to calculate the yield of chemical species. The65

physical stage consisted of an event-by-event tracking of electrons in the differ-

ent media (water or gold) down to thermalization energy at 300 K (37 meV).

Photons were not explicitly tracked, and we only considered the photoelectric

effect and the Compton scattering as they dominate at the investigated photon

energies. The photon ionization impact was randomly distributed within the70

NP. At the end of the physical stage, the surrounding water molecule may be

found either excited (H2O∗) or ionized (H2O+, H2O2+ and H2O−), and the

medium contained thermalized electrons. The electrons in GNP for which the

energy was too low to escape the GNP surface were no longer tracked, as they

did not lead to additional water molecule excitation or ionization.75

This stage was followed by a physico-chemical stage during which the medium

relaxes, leading to the production of primary chemical species. The different

branching ratios of each molecular rearrangement are given elsewhere [20]. At

the end of this stage, the outcome consisted of spatial distribution of chemical

species in water, with a majority of e−aq, H3O+ and •OH.80

Finally, during the chemical stage, the primary chemical species diffused and

interacted with each other. More than 50 chemical reactions were considered.

In our simulation, this phase was simulated up to 10−6 s. The method used to

calculate the yields and to optimize the computing time, as well as the list of

standard chemical reactions of water radiolysis, are available elsewhere and will85

not be discussed in this paper [20, 21, 22, 12]. In this study, we did not consider

any possible specific reactions at the surface of the GNP.

2.3. Calculated quantities

We calculated 4 different quantities to characterize the production and distri-

bution of chemical species around one NP. We calculated (1) the mean number90
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of chemical species X following one single ionization event in the NP R1
X ; (2)

the radial number of chemical species, which is the differential of this number

in the radial distance
∂R1

X

∂r ; (3) the radial concentration of the chemical species

X, cX(r), as the concentration of X averaged over the spherical shell of radius

r and of thickness δr and centered around the GNP, as represented in dashed95

green and blue in Fig. 1. This quantity is related to the previous one through

the relation,

cX(r) =
1

4/3π((r3 + δr) − r3)

∫ r+δr

r

∂R1
X

∂r′
dr′. (1)

Finally, we calculated (4) the spherical concentration defined as concentration

per ionized NP, averaged over sphere centered on the nanoparticle and limited

by the nanoparticle surface on one side, and the radial distance r on the other100

side, as represented in blue in Fig. 1,

CX(r) =
1

4
3π(r3 −R3

NP)

∫ r

RNP

∂R1
X

∂r′
dr′. (2)

To have a common origin for all NP radii, the results are presented as a function

of the distance from NP surface, x = r-RNP. We shall refer to cX(r) and CX(r)

as cX(x) and CX(x).

3. Results105

3.1. Average number of chemical species per nanoparticle ionization

Tab. 1 gives the average number of chemical species (R1
•OH and R1

H2O2
) for

various Ephoton, two NP radii (RNP = 5 and 50 nm), calculated both at 10−12

and 10−6 s following the photon absorption.

For the smallest GNPs, the number of •OH produced at 10−12 s varied from 721110

(Ephoton = 20 keV), up to 2912 (Ephoton = 70 keV), due to the increase of the

photo-electron energy. It then dropped at Ephoton = 90 keV, as there is a high

fluorescence emission in this case. The mean free path of the emitted photons is
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very large compared to the volume of the simulated system and the probability

of interaction is low. This latter was neglected in our simulations. If the GNP115

was embedded in a volume of water larger than the photon mean free path, the

photon would deposit its energy in the volume, but most of the time far away

(several mm at least) from the ionized GNP. The same variation of R1
•OH and

R1
H2O2

was obtained with regard to Ephoton, regardless of other parameters (e.g.,

radius, time ...). The number of chemical species decreased with increasing GNP120

radius due to the energy loss in the GNP. This was particularly visible at 20

keV: at 10−12 s, the number of •OH decreased from 721 to 571 when the radius

of the GNP increased from 5 nm to 50 nm. The same trends were observed with

H2O2.

For WNP, the number of chemical species was hardly impacted by the NP size.125

The number of chemical species, at fixed time, first decreased from 20 keV to

50 keV, before increasing again. The first drop was due to the fact that, at

20 keV, the photo-electric effect remained non-negligible, in which case all the

photon energy was deposited. As the Compton effect became dominant, only

part of the photon energy was deposited. This was compensated by the fact130

that the average Compton electron energy increased with the photon energy, so

that the number of species per photo-ionization increased above 50 keV.

The number of chemical species generated per photo-ionization was systemati-

cally higher for GNPs than WNPs, with two exceptions. For Ephoton = 20 keV

and RNP = 50 nm, the number of chemical species for GNPs was below that of135

WNP, due to a particularly high energy absorption within the GNP. At 10−6 s,

Ephoton = 20keV, RNP = 5 nm, and regardless of the time, the number of •OH

for GNP was also below that of WNP, while it was not the case of H2O2. This

denotes the fact that in this specific case, the recombination of •OH was par-

ticularly important, leading to a high number of H2O2. Finally, as expected,140

the largest difference between GNPs and WNPs was obtained at 70 keV. In this

case, the photo-electron emitted from the GNP had the largest kinetic energy,

while the Compton electron in water still had a limited kinetic energy.
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10−12 s 10−6 s

•OH H2O2
•OH H2O2

Energy GNP WNP GNP WNP GNP WNP GNP WNP

RNP = 5 nm

20 keV 721 673 33 28 256 288 135 118

50 keV 2070 460 81 20 934 198 350 81

70 keV 2912 501 112 21 1385 211 482 88

90 keV 1560 618 63 25 671 264 270 108

RNP = 50 nm

20 keV 571 674 25 28 212 288 107 118

50 keV 1960 455 76 19 906 196 329 80

70 keV 2820 500 107 21 1365 211 462 88

90 keV 1401 617 56 26 625 263 239 108

Table 1: Average number of chemical species produced per GNP/WNP ionization for different

times, photon energies and GNP radii. The statistical uncertainty was below 1 %.
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3.2. Spatial distribution
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Figure 2: Radial concentration c•OH(x) as a function of x (Ephoton = 50 keV and t = 10−6),

for two RNP. Solid line shows results for a GNP and dashed line for a WNP.

Fig. 2 shows the radial concentration c•OH(x) of •OH following an ionization145

event in the NP, as a function of the distance to the NP surface x = r-RNP.

The radial concentration was maximum near the NP surface and dropped severely

for higher values of r. This decrease was proportional to 1/r2. It is due to the

dependency in r2 of spherical shell volume when r increases, and to a lesser ex-

tent to the differential number of chemical species. Such tendency was similar150

regardless of the photon energy, both at 10−12 s (not shown here) and 10−6 s.

The global shape of the radial distribution was not specific to the material, as

WNP showed the same tendency.

Due to •OH recombination and diffusion, the radial concentration decreased
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with increasing t over the whole r range for •OH. For H2O2 (not shown here),155

cH2O2
(x) dropped for x < 200 nm over the time period 10−12 to 10−6. This

drop was due to outward diffusion, which is of the order of 100 nm for 1 µs. On

the contrary, H2O2 increased for larger radii.

Increasing the NP radius RNP decreased c•OH(x) below 200 nm, regardless of

photon energy, time t, chemical species or material. There are two reasons for160

this. First, by definition of the radial concentration, the number of species is

normalized to the volume of the shell. For a given value of x, this volume

increases with increasing RNP. Second, the part of the absorbed energy inside

the NP, which increases with increasing RNP, corresponds to the stopping of

low-energy electrons. When increasing the NP radius, less low-energy electrons165

escape the NP and less species are produced close to the surface.

The spatial distribution of chemical species also depended on photon energy.

To better analyze this dependency, we calculated the radial number of chemical

species, instead of the radial concentration as the latter was strongly impacted

by the r2 normalization. Fig. 3 displays the radial number of chemical species170

•OH,
∂R1

•OH

∂r , as a function of the distance to the NP surface x.

For GNP, some structures are visible around x = 100 nm and 1000 nm, regard-

less of the photon energy. The first structure came from LLS (S > N) Auger

electrons emitted with an energy lower than 2 keV, which had ranges lower than

∼ 160 nm in water. The second structure came from LMS (S > M) Auger elec-175

trons emitted with an energy between 8-12 keV, which corresponded to a range

in water around 1000-2000 nm. Another structure is visible for large x, which

corresponded to the end of photo-electron path. As shown in Tab. 2, these

photo-electrons have different energies depending on the photon energy and the

shell from which they are ejected. This phenomenon was particularly visible for180

Ephoton = 90 keV. As the probability to ionize the K-shell was overwhelming

in this case, many photo-electrons were ejected with an energy around 9 keV.

These electrons therefore contributed to the boost of the number of chemical

species observed around 1000 nm.
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Figure 3: Radial number of chemical species
∂R1

•OH
∂r

as a function of x. In each panel, results

are given for GNP (solid line) and WNP (dashed line). Results are displayed for Ephoton = 20,

50, 70 and 90 keV. RNP = 5 nm, and t = 10−6 s.

For WNP, the progressive decrease of
∂R1

•OH

∂r with x was related to the energy185

distribution of Compton electrons. An exception was noticeable for 20 keV: as

the photo-electric effect remained non-negligible, the radial number of chemi-

cal species was a combination of the radial number following a photo-electric

event producing a ∼ 19.5 keV photo-electron, and the radial number following

a Compton event producing a broad energy distribution below 1400 eV.190

When comparing GNP and WNP, the first striking fact was that
∂R1

•OH

∂r re-

mained higher at longer distances (x > ∼ 10 000 nm) for GNP. This is explained

by the fact that, on average, the Compton electron had an energy lower than

a photo-electron energy. At very small distance (x < 100 nm), the number of

chemical species was higher for GNP compared to WNP when RNP = 5 nm.195

On the contrary, it was lower for GNP compared to WNP when RNP = 50 nm.
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h

Atomic shell K L ≥ M

Ephoton P. E. R. P. E. R. P. E. R.

20 keV 0 - - 77 6-8 0.9-1.5 23 > 17 5.3-7.4

50 keV 0 - - 77 17-18 5.3-6 23 > 47 35-42

70 keV 0 - - 77 56-58 49-53 23 > 67 68-74

90 keV 77 9 1.8 16 76-78 88-92 7 > 87 > 111

Table 2: Probability (P. in %) of ionizing the shell K,L or above, photo-electron energy (E.

in keV) and range of the photo-electron in water (R. in µm) following an ionization event in

gold with a photon of energy Ephoton.

To better quantify the relative difference between GNP and WNP, we calculated

the difference of spherical concentration of GNP and WNP, to that of WNP,

CX,GNP(x) − CX,WNP(x)

CX,WNP(x)
, (3)

for the two extrema sizes of NPs investigated here. Results are shown in Tab. 3

for •OH. The results confirmed that, for RNP = 50 nm, the spherical concen-200

tration of WNPs for small volumes (10 and 100 nm thick) were higher than that

of GNP, except when the photon energy was equal to 90 keV. This was due to

non negligible energy loss in the GNP. When the considered volume increased

(x = 1000 nm), the concentration for GNPs was higher than that of WNP. For

even larger volumes (x = 10 µm), the concentrations were higher for GNPs,205

with one exception (Ephoton = 20 keV). This translated the fact that, on av-

erage, GNPs generated more chemical species than WNP following one photon

ionization event, but far away from the GNP (i.e., beyond 100 nm).

4. Discussion and conclusion

In this work, we investigated the production and spatial distribution of radical210

species following keV-photon ionization of a GNP or a WNP embedded in a

volume of water. We focus on the local production of radicals, meaning that
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x 10 nm 100 nm 1 000 nm 10 000 nm 100 000 nm

t = 10−6 s - RNP = 5 nm

20 keV 122 164 327 -11 -11

50 keV 137 123 68 289 354

70 keV 165 154 53 77 561

90 keV 233 248 196 30 159

t = 10−6 s - RNP = 50 nm

20 keV -9 39 238 -26 -26

50 keV -39 -22 25 264 365

70 keV -33 -15 9 57 547

90 keV 18 55 152 8 134

Table 3: Relative difference (in %) of spherical •OH concentration in a x nm thick shell around

a nanoparticle.

Compton and fluorescence photons, which release their energy at least millime-

ters away from the NP, were not taken into account. Radial concentrations

showed a high maximum near the nanoparticle surface which rapidly decreased215

when the distance to the nanoparticle increased. This is a purely geometric

effect due to the r2 increase of the concentric shells used as scoring volume. As

a consequence, both GNPs and WNPs showed very similar radial concentration

profiles.

Different specificities were obtained for gold compared to water:220

(1) We observed that, on average, a GNP ionization can produce up to ∼ 5.5

more chemical species than an ionization event in a WNP, as a photo-electron

carries more energy than a Compton electron, the later dominating photon-

water interactions at the investigated energy. Besides, as photo-electrons are

more energetic than Compton electrons, GNP radial concentrations are higher225

than WNP radial concentrations at distances larger than few micrometers.

(2) Chemical species produced by the interaction of Auger-electrons with water
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molecules following an ionization event in GNPs induced a minor boost in the

radial number. This boost appeared around 100 nm and 1000 nm.

(3) Both •OH and H2O2 had very similar distributions. In particular, H2O2230

production was not particularly higher due to Auger electrons. The Auger

electrons are indeed significant for GNP ionization, but their effect is rather

comparable to that of Compton electrons produced by WNP ionization.

(4) The concentration of chemical species was not necessarily higher for GNP

compared to WNP near the ionized NP (within a few hundreds of nm), despite235

the Auger electron cascade when the GNP was large. The absorption of low-

energy electrons within the GNP produced a drop of the number of chemical

species near the surface with respect to the case of smaller GNPs.

Attempting an extension of these results to biological systems, one may expect

that, on average, a cellular target containing or located near a large ionized240

GNP (x < 200 nm) does not suffer a higher concentration of chemical species,

compared to the ionization of a water molecule. However, it may experience a

higher occurrence of this event, as the cross section for gold-photon interaction

is higher than that of water-photon interaction at these energies. In other words,

the major effect of gold is not to induce a high concentration boost of chemical245

species compared to water, but rather to increase the chances of having an

ionization, due to a high probability of photon-gold interaction compared to

photon-water interaction.

In interpreting our results from a biological perspective, it is important to keep

in mind that biological media contain many scavenging elements. Besides,250

cells might catalyse complex reactions inducing an additional boost of chem-

ical species production. Our calculation may therefore only characterize the

primary chemical events at very short time generated by one photo-ionization

event. In vitro data showed that GNPs often appear clustered together in vesi-

cles [23, 24, 25, 26, 27], which might roughly be represented by large GNPs.255

Our calculated spherical concentrations may be used to estimate the primary
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chemical boost experienced by cellular components when they internalize GNPs.

Typically, a size of 10 nm may represent the dimension of a membrane; a size of

100 nm may represent the dimensions of an organelle (mitochondria, lysosome);

a size of 1000 nm may represent the dimensions of a large organelle (large lyso-260

some); a size of 10 000 nm may represent a nucleus. As our calculation showed,

the number of chemical species following an ionization event decreases for large

GNPs, especially in its vicinity. At first sight, it thus appears less advantageous

to have aggregates rather than isolated GNPs. However, if GNPs accumulate

in a specific zone of the cell, an accumulation of damages may occur near the265

GNPs, due to a high probability of photon-gold interaction. Such accumulation

might be deleterious for the cell.
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