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Synopsis 

Obliterative arterial disease of the lower limbs is a disease that obstructs lower extremities 

arteries, resulting in reduced lower limb perfusion and possibly mitochondrial dysfunction. 

Mitochondrial function of the calf assessed via 31P MRS at moderate and low exercise 

intensities before and after revascularization and phase contrast angiography of the posterior 

tibial artery enabled the assessment of vascular and mitochondrial contributions of the 

patients. 

Introduction 

Obliterative arterial disease of the lower limbs also known as peripheral arterial occlusive disease 

(PAOD) is defined as partial or total obstruction of one, or more, lower extremity arteries most often 

of atherosclerotic origin [1,2]. It is a common pathology whose five-year mortality of a patient with 

PAOD is about 30%, mainly of cardiovascular origin. In addition, most of the literature suggests that 

lower extremity mitochondrial function is severely reduced in PAOD. The main objective is to study 

skeletal muscle mitochondrial function by 31P spectroscopy (τPCr) before and after revascularization 

in patients with PAOD using an exercise paradigm that approaches the ischemic stress stage and 



using an alternative exercise paradigm that is well below ischemic stress[3,4]. 

This approach allow insight into the relative contribution of the vascular and mitochondrial 

components to the degradation of muscle function in PAOD. The overall hypothesis was that slowed 

τPCr in PAOD is the result of reduced skeletal muscle perfusion. Successful revascularization should 

be accompanied by an immediate improvement of the τPCr in the absence of mitochondriopathy. 

On the other hand, in the case of mitochondrial disease, the τPCr should remain altered in early 

post-revascularization and despite the lifting of the vascular factor. 

Methods 

Experimental protocol 

Four patients (male, age=60±6 yrs old, mean±SD) were measured before and after revascularization. 

Each patient was supine on the MR bed of the scanner, with a surface coil 31P/1H Tx/Rx under the 

calf muscle. 

For dynamic measurements, an MR compatible ergometer was used during isometric plantar flexion. 

MR scans were performed using a non-localized, MR-FID sequence with saturation bands done with 

adiabatic pulses[5]. 

Maximum Voluntary Contraction (MVC) force were performed for 1-2 s. Prior localization was done 

with a dixon sequence (FA 9deg , TR 4.1ms, TE 1.4ms, matrix size 118×192 , FOV 169×206 ). Thus, 

resting 31P acquisitions were done with a 90deg FA, TR 30s,10 averages, bandwidth 2500Hz, and 

saturation bands placed on anterior muscles. Then, 2 dynamic protocols were performed with TR 4s, 

but with different dynamic resolution times (time between two exercises), see figure 1. Thus, a 

moderate intensity exercise protocol, expected to approach the ischemic stage as well as a low 

intensity gated exercise protocol that would be well above the ischemic limit were performed by 

each subject before and after revascularization. A total of 30 contractions were performed in the 

moderate protocol at a rate of 0.25 Hz and a total of 15 contractions were performed in the gated 

protocol at a rate of 0.05 Hz. In addition, resting flow in the posterior tibial artery was assess with 

ECG gated phased contrast MR angiography. 

Data Processing 

Data was processed using CSIAPO software[7] for phasing, MATLAB(The MathWorks) and the 

method QUEST(QUantitation based on QUantum ESTimation)[8]. For the gated protocol, the last 10 

contractions cycles were averaged together, resulting in 10 points during the contraction/recovery 

cycle. In addition, 10 spectra were averaged over the initial rest. The following formula was used to 

estimate τPCr gated: 

τ=-Δt/ln[D/(D+Q)], 

where D represents the PCr drop to the steady state (rest PCr–max PCr after steady state is reached), 

Q is the PCr change in the steady state (max PCr in the steady state–minimum PCr), and t=time 

between contractions[6]. pH was determined using the frequency difference between PCr and Pi as: 

pH=pKa1+log((FreqPi−FreqPCr)−pKam)./pKaM−(FreqPi−FreqPCr), 

with pKa1=6.75, pKam=3.27, pKaM=5.69 and FreqPCr and FreqPi the resonant frequencies of PCr 



and Pi[9]. 

For blood velocity and flow analyses, velocity was extracted from each time point across the cardiac 

cycle. Flow was the product of the vessel CSA and velocity averaged across the vessel. Data were 

compared using paired t-tests to examine differences between exercise protocol and between 

measurement times with significance at p<0.05. 

Results 

Figure 2 shows a sample stack plot of spectra from the moderate exercise protocol and the low 

intensity gated protocol; Table 1 reports the MRS results. In general, the PCr recovery time constant 

was substantially longer for the moderate compared to the gated exercise protocol before surgery 

(τ=72.2s vs. 34.5s, respectively, p=0.012). Following surgery, there was a 33% improvement of the 

τPCr for the moderate protocol (p=0.039). However, there was no significant improvement in τPCr 

for the gated protocol. Blood flow parameters are reported in Table 1. The arterial waveforms are 

shown in Figure 3. The waveforms in 3 cases are characterized as monophasic. Following 

revascularization, there was an apparent increase in peak blood velocity that approached 

significance. This was particularly the case for Subj01 and Subj03 who adopted a biphasic arterial 

waveform following revascularization. 

Discussion 

The results primarily indicate that blood flow is a large determinant of the measured PCr time 

constant under standard exercise conditions. This is demonstrated both when comparing the 

moderate to the low intensity protocol and when examining the moderate exercise PCr time constant 

post-surgery. These results encourage the quantification of blood flow when assessing mitochondrial 

function in conditions of compromised flow. Alternatively, a “gated” low intensity protocol may be 

utilized to independently assess mitochondrial function in conditions of compromised blood flow, 

oxygen delivery, or oxygen consumption. 
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