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Abstract

We describe several graphs with arbitrarily large rankwidth (or equivalently with
arbitrarily large cliquewidth). Korpelainen, Lozin, and Mayhill [Split permutation
graphs, Graphs and Combinatorics, 30(3):633–646, 2014] proved that there exist split
graphs with Dilworth number 2 with arbitrarily large rankwidth, but without explicitly
constructing them. Our construction provides an explicit construction. Maffray, Penev,
and Vušković [Coloring rings, CoRR, abs/1907.11905, 2019] proved that graphs that
they call rings on n sets can be colored in polynomial time. Our construction shows
that for some fixed integer n ≥ 3, there exist rings on n sets with arbitrarily large
rankwidth. When n ≥ 5 and n is odd, this provides a new construction of even-hole-
free graphs with arbitrarily large rankwidth.

1 Introduction

The cliquewidth of a graph is an integer intended to measure how complex is the graph.
It was defined by Courcelle, Engelfriet and Rozenberg in [6] and is successful in the
sense that many hard problems on graphs become tractable on graph classes of bounded
cliquewidth [7]. This includes for instance finding the largest clique or independent set, and
deciding if a colouring with at most k colors exists (for fixed k ∈ N). This makes cliquewidth
particularly interesting in the study of algorithmic properties of hereditary graph classes.

The notion of rankwidth was defined by Oum and Seymour in [16], where they use
it for an approximation algorithm for cliquewidth. They also show that rankwidth and
cliquewidth are equivalent, in the sense that a graph class has bounded rankwidth if, and
only if, it has bounded cliquewidth. In the rest of this article, we only use rankwidth, and
we therefore refer to results in the literature with this notion, even if in the original papers,
the notion of cliquewidth is used (recall the two notions are equivalent as long as we care
only for a class being bounded or not by the parameter).
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Determining whether a given class of graphs has bounded rankwidth has been well
studied lately, and let us survey the main results in this direction. For every classe of
graphs defined by forbidding one or two graphs as induced subgraphs, it is known whether
the class has bounded or unbounded rankwidth, apart for a very small number of open
cases, see [8] for the most recent results.

Similar classifications were obtained for chordal graphs [3] and split graphs [2]. Recall
that a chordal graph is a graph such that every cycle of length at least 4 has a chord, and
a split graph is a graph whose vertex set can be partitioned into a clique and a stable set.

A graph is even-hole-free if every cycle of even length has a chord. Determining whether
several subclasses of even-hole-free graphs have bounded rankwidth also attracted some
attention. See [17, 13, 5, 4] for subclasses of bounded rankwidth and [1, 18] for subclasses
with unbounded rankwidth.

When G is a graph and x a vertex of G, we denote by N(x) the set of all neighbors
of x. We set N [x] = N(x) ∪ {x}. The Dilworth number of a graph G is the maximum
number of vertices in a set D such that for all distinct x, y ∈ D, the two sets N(x) \N [y]
and N(y) \N [x] are non-empty. In [11], it is proved that graphs with Dilworth number 2
and arbitrarily large rankwidth exist. It should be pointed out that these graphs are split,
and that only their existence is proved, no explicit construction is given.

For an integer n ≥ 3, a ring on n sets is a graph G whose vertex set can be partitioned
into n cliques X1, . . . , Xn, with three additional properties:

• For all i ∈ {1, . . . , n} and all x, x′ ∈ Xi, either N(x) ⊆ N(x′) or N(x′) ⊆ N(x).

• For all i ∈ {1, . . . , n} and all x ∈ Xi, N(x) ⊆ Xi−1 ∪Xi ∪Xi+1 (where the addition
of subscripts is modulo n).

• For all i ∈ {1, . . . , n}, there exists a vertex x ∈ Xi that is adjacent to all vertices of
Xi−1 ∪Xi+1.

Rings were studied in [15], where a polynomial time algorithm to color them is given.
The notion of ring in [15] is slightly more restricted than ours (at least 4 sets are required),
but it makes no essential difference here. Observe that the Dilworth number of a ring on n
sets is at most n. As explained in [13], a construction from [10] shows that there exist rings
with arbitrarily large rankwidth. Also in [12], it is proved that the so-called twisted chain
graphs, that are similar in some respect to rings on 3 sets, have unbounded rankwidth.
However, for any fixed integer n, it is not known whether there exist rings on n sets with
arbitrarily large rankwidth.

Our main result is a new way to build graphs with arbitrarily large rankwidth. The
construction has some flexibility, so it allows us to reach several goals. First, we give
split graphs with Dilworth number 2 with arbitrarily large rankwidth, and we describe
them explicitly. By “tuning” the construction differently, we will show that for each integer
n ≥ 3, there exist rings on n sets with arbitrarily large rankwidth. For odd integers n, this
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provides new even-hole-free graphs with arbitrarily large rankwidth. It should be pointed
out that our construction does not rely on modifying a grid (a classical method to obtain
graphs with arbitrarily large rankwidth).

In Section 2, we recall the definition of rankwidth together with lemmas related to it.
In Section 3, we give the main ingredients needed to construct our graphs, called carousels,
to be defined in Section 4. In Section 5, we give an overview of the proof that carousels
have unbounded rankwidth. In Section 6, we give several technical lemmas about the rank
of matrices that arise form partitions of the vertices in carousels. In Sections 7 and 8, we
prove that carousels have unbounded rankwidth (we need two sections because there are
two kinds of carousels, the even ones and the odd ones). In Section 9, we show how to
tune carousels in order to obtain graphs split graphs with Dilworth number 2 or rings. We
conclude the paper by open questions in Section 10.

2 Rankwidth

When G is a graph and (Y,Z) a partition of some subset of V (G), we denote by MG,Y,Z the
matrixM whose rows are indexed by Y , whose columns are indexed by Z and suchMy,z = 1
when yz ∈ E(G) and My,z = 0 when yz /∈ E(G). We define rankG(Y,Z) = rank(MG,Y,Z),
where the rank is computed on the binary field. When the context is clear, we may refer
to rank(GY,Z) as the rank of (Y, Z).

A tree is a connected acyclic graph. A leaf of a tree is a node incident to exactly one
edge. For a tree T , we let L(T ) denote the set of all leaves of T . A tree node that is not a
leaf is called internal. A tree is cubic, if it has at least two nodes and every internal node
has degree 3.

A tree decomposition of a graph G is a cubic tree T , such that L(T ) = V (G). Note that
if |V (G)| ≤ 1, then G has no tree decomposition. For every edge e ∈ E(T ), T \ e has two
connected components, Ye and Ze (that we view as trees). The width of an edge e ∈ E(T )
is defined as rank(MG,L(Ye),L(Ze)). The width of T is the maximum width over all edges
of T . The rankwidth of G, denoted by rw(G), is the minimum integer k, such that there is
a tree decomposition of G of width k. If |V (G)| ≤ 1, we let rw(G) = 0.

Let G be a graph. A partition (Y,Z) of V (G) is balanced if

|V (G)|/3 ≤ |Y |, |Z| ≤ 2|V (G)|/3

and unbalanced otherwise. An edge of a tree decomposition T is (un)-balanced if the
partition (L(Ye), L(Ze)) of G as defined above is (un)-balanced.

Lemma 2.1 Every tree decomposition T of a graph G has a balanced edge.

Proof. For every edge e ∈ E(T ), removing e from T yields two components Ye and Ze. We
orient e from Ye to Ze if 2 |L(Ye)| < |L(Ze)|. If there is a non-oriented edge e, then e is
balanced. So, assume that all edges are oriented. Since T is a tree, some node s ∈ V (T )
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must be a sink. Note that s cannot be a leaf. But T is cubic, so each of the three subtrees
obtained from T by deleting s contains less than 1

3 of the vertices of L(T ), a contradiction.2

Interestingly, we do not need the full definition of the rankwidth of a graph, the following
property is enough for our purpose.

Lemma 2.2 Let G be a graph and r ≥ 1 an integer. If every partition (Y,Z) of V (G) with
rank less than r is unbalanced, then rw(G) ≥ r.

Proof. Suppose for a contradiction that rw(G) < r. Then there exists a tree decomposition
T of G with width less that r. Consider a balanced edge e of T , and let Ye and Ze be the
two connected components of T \ e. Then, (L(Ye), L(Ze)) is a partition of V (G) that is
balanced and has rank less than r, a contradiction to our assumptions. 2

We do not need many definitions from linear algebra. In fact the following basic lemma
and the fact that the rank does not increase when taking submatrices are enough for our
purpose. A (0-1) n × n matrix M is diagonal if Mi,j = 1 whenever i = j and Mi,j = 0
whenever i 6= j. It is antidiagonal if Mi,j = 0 whenever i = j and Mi,j = 1 whenever i 6= j.
It is triangular if Mi,j = 1 whenever i ≥ j and Mi,j = 0 whenever i < j.

Lemma 2.3 For every integer r ≥ 1, the rank of a diagonal, antidiagonal or triangular
r×r matrix is at least r−1 (in fact it is r−1 when r is odd and the matrix is antidiagonal,
and it is r otherwise).

Proof. Clear. 2

A (0-1) n × n matrix M is near-triangular if Mi,j = 1 whenever i > j and Mi,j = 0
whenever i < j. The values on the diagonal are not restricted.

Lemma 2.4 For every integer r ≥ 1, the rank of a near-triangular 2r× 2r matrix M is at
least r.

Proof. The submatrix N of M formed by the rows of even indexes and the columns of odd
indexes is a triangular r × r matrix (formally for every i, j ∈ {1, . . . r}, Ni,j = M2i,2j−1).
By Lemma 2.3, rank(M) ≥ rank(N) = r. 2

3 Matchings, antimatchings and crossings

In this section, we describe the particular adjacencies that we need to build our graphs.
Suppose that a graph G contains two disjoint ordered sets of vertices of same cardinality
k, say X = {u1, . . . , uk} and X ′ = {v1, . . . , vk}.
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• We say that (G,X,X ′) is a regular matching when:

for all j, j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if j = j′.

• We say that (G,X,X ′) is a regular antimatching when:

for all j, j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if j 6= j′.

• We say that (G,X,X ′) is a regular crossing when:

for all j, j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if j + j′ ≥ k + 1.

• We say that (G,X,X ′) is a expanding matching when:

for all j, j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if j′ = 2j or j′ = 2j + 1.

• We say that (G,X,X ′) is a expanding antimatching when:

for all j, j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if j′ 6= 2j and j′ 6= 2j + 1.

• We say that (G,X,X ′) is a expanding crossing when:

for all j, j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if 2j + j′ ≥ 2k + 2.

• We say that (G,X,X ′) is a skew expanding matching when k equal 2 modulo 4 and:

For all j ∈ {1, . . . , (k − 2)/4} and j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if j′ = 2j
or j′ = 2j + 1; and

For all j ∈ {(k − 2)/4 + 1, . . . , (3k + 2)/4} and j′ ∈ {1, . . . , k}, ujvj′ /∈ E(G);

For all j ∈ {(3k + 2)/4 + 1, . . . , k} and j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if
j′ = 2j − k − 2 or j′ = 2j − k − 1.

• We say that (G,X,X ′) is a skew expanding antimatching when k equal 2 modulo 4
and:

for all j ∈ {1, . . . , (k − 2)/4} and j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if j′ = 2j
or j′ = 2j + 1;

for all j ∈ {(k − 2)/4 + 1, . . . , (3k + 2)/4} and j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G); and

for all j ∈ {(3k + 2)/4 + 1, . . . , k} and j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if
j′ = 2j − k − 2 or j′ = 2j − k − 1.

• We say that (G,X,X ′) is a skew expanding crossing when k equal 2 modulo 4 and:

for all j ∈ {1, . . . , (k−2)/4} and j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if 2j+j′ ≥ k;

for all j ∈ {(k − 2)/4 + 1, . . . , k/2} and j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if
j′ ≥ k/2 + 1;

for all j ∈ {k/2 + 1, . . . , (3k + 2)/4} and j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if
j′ ≥ k/2− 1; and
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Figure 1: A regular matching, a regular antimatching and a regular crossing (on the regular
antimatching, only non-edges are represented)

for all j ∈ {(3k + 2)/4 + 1, . . . , k} and j′ ∈ {1, . . . , k}, ujvj′ ∈ E(G) if and only if
2j + j′ − 2 ≥ 2k.

A triple (G,X,X ′) is regular if it is a regular matching, a regular antimatching or a
regular crossing, see Figure 1. On the figures, vertices are partitioned into boxes and several
sets receive names. These will be explained in the next section.

A triple (G,X,X ′) is expanding if it is an expanding matching, an expanding antimatch-
ing or an expanding crossing, see Figure 2.

A triple (G,X,X ′) is skew expanding if it is a skew expanding matching, a skew ex-
panding antimatching or a skew expanding crossing, see Figure 3.

A triple (G,X,X ′) is a parallel triple if it is a matching or an antimatching (regular,
expanding or skew expanding). A triple (G,X,X ′) is a cross triple if it is a crossing (regular,
expanding or skew expanding).

4 Carousels

The graphs that we construct are called carousels and are built from n ≥ 3 sets of vertices of
equal cardinality k ≥ 1: X1, . . . , Xn. So, let G be a graph such that V (G) = X1∪· · ·∪Xn.
Throughout the rest of the paper, the subscripts for sets Xi’s are considered modulo n.
The graph G is a carousel on n sets of cardinality k if:

(i) (G,X1, X2) is a regular crossing;

(ii) for every i ∈ {2, . . . , n− 1}, (G,Xi, Xi+1) is a regular triple and

(iii) (G,Xn, X1) is an expanding triple or a skew expanding triple.
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1 such that j is

minimum is represented)
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Whether (G,Xn, X1) should be an expanding triple or a skew expanding triple depends
on how many crossing triples there are among the triples (G,Xi, Xi+1) for i ∈ {1, . . . , n}.
Let us explain this.

Let s ≥ 1 be an integer. An even carousel of order s on n sets is a carousel on n sets
of cardinality k such that:

(i) k = 2s − 1;

(ii) the total number of crossing triples among the triples (G,Xi, Xi+1) for i ∈ {1, . . . , n}
is even and

(iii) (G,Xn, X1) is an expanding triple.

Let s ≥ 1 be an integer. An odd carousel of order s on n sets is a carousel on n sets of
cardinality k such that:

(i) k = 2× (2s − 1) (so k is equal to 2 modulo 4);

(ii) the total number of crossing triples among the triples (G,Xi, Xi+1) for i ∈ {1, . . . , n}
is odd and

(iii) (G,Xn, X1) is a skew expanding triple.

In carousels, the edges inside the sets Xi or between sets Xi and Xj such that j /∈
{i− 1, i, i+ 1} are not specified, they can be anything. Our main result is the following.

Theorem 4.1 For every integers n ≥ 3 and r ≥ 1, there exists an integer s such that every
even carousel and every odd carousel of order s on n sets has rankwidth at least r.

5 Outline of the proof

In this section, we provide an outline of the proof of the main theorem. The detail will be
given in later sections.

For all i ∈ {1, ..., n}, we let Xi = {x1i , ..., xki }. There is a symmetry in every set Xi

and we need some notation for it. Let f be the function defined for each integer j by
f(j) = k− j+1. We will use an horizontal bar to denote it as follows. When xji is a vertex
in some set Xi, we denote by xji the vertex x

f(j)
i and by xji+1 the vertex x

f(j)
i+1 . We use a

similar notation for sets of vertices: if Si ⊆ Xi then

Si = {xji |x
j
i ∈ Si}

and
Si+1 = {xji+1|x

j
i ∈ Si}.
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Note that a = a for any object a such that a is defined.
Each set Xi is partitioned into parts and this differs for the even and the odd case.
When G is an even carousel, we designate by induction each set Xi as a top set or a

botom set. The set X1 is by definition a top set, and the status of the next ones change at
every cross triple. More formally, for every i ∈ {1, . . . , n− 1}:

• If Xi is top set and (G,Xi, Xi+1) is a parallel triple, then Xi+1 is a top set.

• If Xi is top set and (G,Xi, Xi+1) is a cross triple, then Xi+1 is a botom set.

• If Xi is botom set and (G,Xi, Xi+1) is a parallel triple, then Xi+1 is a botom set.

• If Xi is botom set and (G,Xi, Xi+1) is a cross triple, then Xi+1 is a top set.

Then, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , s}, we setXi,j = {x2
j−1

i , . . . , x2
j−1

i }. Observe
that for some fixed i, the Xi,j ’s (resp. the Xi,j ’s) form a partition of Xi. We view every top
set Xi as partitioned by the Xi,j ’s and every botom set Xi as partitioned by the Xi,j ’s.

In an odd carousel of order s, there are also top sets and botom sets (defined as above),
but they are all partitioned in the same way. For all i ∈ {1, . . . , n} and j ∈ {1, . . . , s}, we
set Xi,j = {x2j−1

i , . . . , x2
j−1

i }. Observe that for some fixed i, the Xi,j ’s and Xi,j ’s form a
partition of Xi.

To prove Theorem 4.1, we fix the integers n and r. We then compute a large integer s
(depending on n and r) and we consider a carousel G of order s on n sets. We then study
the behavior of a partition (Y,Z) of V (G) of rank less than r, our goal being to prove that
it is unbalanced (this proves the rankwidth of G is at least r by Lemma 2.2).

To check whether a partition is balanced, we need a notation to measure how many
elements of Y some set contains. For an integer m ≥ 0, a set S ⊆ V (G) receive label Ym if

(m− 1)r < |S ∩ Y | ≤ mr.

Note that S has label Y0 if and only if S ⊆ Z. Having label Ym means that d|S∩Y |/re = m.
Observe that for every subset S of V (G), there exists a unique integer m ≥ 0 such that S
has label Ym.

The first step of the proof is to note that when going from x11 to xk1 (so in X1), there
are not too many changes from Y to Z or from Z to Y . Because a big number of changes
would imply that the rank between X1 and X2 is high, this is formally stated and proved
in Lemma 6.1. For this to be true, we need that (G,X1, X2) is a crossing, this is why there
is no flexibility in the definition for the adjacency between X1 and X2 in the definition of
carousels.

Since k (the common cardinality of the sets Xi’s) is large enough by our choice of s, we
then know that in X1 there must be large intervals of consecutive vertices in Y or in Z,
say in Z up to symmetry. So, one of the sets that partition X1 is fully in Z, say X1,t for
some large integer t, and has therefore label Y0. The rest of the proof shows that this label

9



propagates in the rest of the graph. By a propagation lemma (stated in the next section),
we prove that X2,t (if (G,X1, X2) is a parallel triple) or X2,t (if (G,X1, X2) is a cross triple)
has a label very close to Y0, namely Y0 or Y1. This is because a larger label, say, Ym with
m > 1, would give rise to a matrix of rank at least r between Y and Z. And we continue
to apply the propagation mechanism until we reach Xn,1 (or Xn,1). The label may be Y0,
Y1, . . . , Yn−1, but not larger.

Now, we apply other propagation lemmas to handle the triple (G,Xn, X1) (that is
expanding or skew expanding by definition of carousels). Here the adjacency is designed
so that some part that is twice larger than Xi,t, namely X1,t+1 if G is an even carousel, or
X1,t+1 if G is an odd carousel, has a label being not too large.

For even carousels, by repeating the procedure above, we prove that for each i ∈
{1, . . . , n}, Xi,s−1 and Xi,s have a label Ym with m not too large. And since the size
of the sets Xi,j is exponential in j, these two sets Xi,s−1 and Xi,s represent a proportion
more than 3

4 of all the set Xi. And since Xi,s−1 and Xi,s have label Ym with m small, they
contains mostly vertices from Z, so that the partition (Y,Z) is unbalanced.

For odd carousels, the proof is similar, except that we prove that Xi,s−1, Xi,s, Xi,s−1
and Xi,s have label Ym with m being not too large. These 4n sets represent a proportion
more than 3

4 of all the set Xi.
In the next section, we supply the detail of this proof.

6 Blocks and propagation

Throughout the rest of this section, n ≥ 3, s ≥ 1 and G is a an even or an odd carousel of
order s on n sets. Also, we assume r ≥ 2 is an integer and (Y,Z) is a partition of V (G) of
rank less than r.

Suppose X = {x1, . . . , xk} is an ordered set and (Y,Z) is a partition of X. We call
interval of X any subset of X of the form {xi, xi+1, . . . , xj}. A block of X w.r.t. (Y,Z) is
any non-empty interval of X that is fully contained in Y or in Z and that is maximal w.r.t.
this property. Clearly, X is partitioned into its blocks w.r.t. (Y,Z).

Lemma 6.1 X1 has less than 8r blocks w.r.t. (Y, Z).

Proof. Suppose that X1 has at least 8r blocks, and let B1, . . . , B8r be the 8r first ones. Up
to symmetry, we may assume that for every i ∈ {1, . . . , 4r}, B2i−1 ⊆ Y and B2i ⊆ Z. For
each i ∈ {1, . . . , 4r}, we choose some element yi1 ∈ B2i−1 and some element zi1 ∈ B2i. We
denote by yi2 and zi2 the corresponding vertices in X2 of yi1 and zi1 respectively. Formally,
yi1 = xj1 for some integer j ∈ {1, . . . , k}, yi2 = xj2 = xk−j+1

2 and the definiton of zi2 is similar.
We set X ′2 = {y12, z12, . . . , y4r2 , z4r2 }.

Consider i, j ∈ {1, . . . , 4r}, u ∈ {yi1, zi1} and v ∈ {yj2, z
j
2}. From the definition of regular

crossings, we have the following key observation:
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• If i+ j < 4r + 1, then uv /∈ E(G).

• If i+ j > 4r + 1, then uv ∈ E(G).

• Note that if i+ j = 4r+1, the adjacency between u and v is not specified, it depends
on whether u is yi1 or zi1 and on whether v is yj2 or zj2.

Suppose first that |Y ∩ X ′2| ≥ |Z ∩ X ′2|. Then, there exist at least 2r sets among
{y12, z12}, . . . {y4r2 , z4r2 } that have a non-empty intersection with Y . This means that there
exist 2r distinct integers i1, . . . , i2r such that for every j ∈ {1, . . . , 2r}, some vertex from
{yij2 , z

ij
2 } is in Y . We denote by vj such a vertex, and let Y ′ = {v1, . . . , v2r}. We then set

Z ′ = {zi11 , . . . , zi2r1 }.
By definition, Z ′ ⊆ Z and Y ′ ⊆ Y . Also, by the key observation above, the matrix

MG[Y ′∪Z′],Y ′,Z′ is a near-triangular 2r × 2r matrix. By Lemma 2.4, it has rank at least r.
This proves that rankG(Y, Z) ≥ r, a contradiction.

When |Z ∩X2| ≥ |Y ∩X2|, the proof is similar. 2

The following lemma explains how labels propagate in regular triples (represented in
Figure 1).

Lemma 6.2 Let m ≥ 0, 1 ≤ i < n and 1 ≤ j ≤ s be integers.

(i) Suppose that (G,Xi, Xi+1) is a regular parallel triple. If Xi,j has label Ym, then Xi+1,j

has label Ymax(m−1,0), Ym or Ym+1.

If Xi,j has label Ym, then Xi+1,j has label Ymax(m−1,0), Ym or Ym+1.

(ii) Suppose that (G,Xi, Xi+1) is a regular cross triple. If Xi,j has label Ym, then Xi+1,j

has label Ymax(m−1,0), Ym or Ym+1.

If Xi,j has label Ym, then Xi+1,j has label Ymax(m−1,0), Ym or Ym+1.

Proof. We first deal with the case when (G,Xi, Xi+1) is a cross triple and Xi,j has label
Ym. Suppose that the conclusion does not hold. This means that Xi+1,j has label Yj with
j > m+ 1 or 0 ≤ j < m− 1.

If j > m + 1, then |Xi+1,j ∩ Y | > (m + 1)r. Since |Xi,j ∩ Y | ≤ mr, we have |Xi+1,j ∩
Y | − |Xi,j ∩ Y | ≥ r + 1. So there exists a subset Si of Xi,j such that |Si| = r + 1, Si ⊆ Z
and Si+1 ⊆ Y . The matrix MG[Si∪Si+1],Si,Si+1

is triangular and has rank at least r by
Lemma 2.3, a contradiction to (Y,Z) being a partition of V (G) of rank less than r.

If 0 ≤ j < m− 1, then |Xi+1,j ∩ Y | ≤ (m− 2)r. Since |Xi,j ∩ Y | > (m− 1)r, we have
|Xi,j ∩ Y | − |Xi+1,j ∩ Y | ≥ r+1. So, there exists a subset Si of Xi,j such that |Si| = r+1,
Si ⊆ Y and Si+1 ⊆ Z. The matrix MG[Si∪Si+1],Si,Si+1

is triangular and has rank at least r
by Lemma 2.3, a contradiction to (Y,Z) being a partition of V (G) of rank less than r.
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All the other cases are similar. When Xi,j has label Ym, the proof is symmetric. When
(G,Xi, Xi+1) is a regular matching, we obtain a diagonal matrix, and when (G,Xi, Xi+1)
is a regular antimatching, we obtain a antidiagonal matrix. 2

The following lemma describes how labels propagate in expanding triples (see Figure 2).

Lemma 6.3 Let m ≥ 0 and j be integers such that 1 ≤ j ≤ s− 1.

(i) Suppose that (G,Xn, X1) is a parallel expanding triple. If Xn,j has label Ym, then
X1,j+1 has label Ymax(m−2,0), Ymax(m−1,0), Ym, Ym+1 or Ym+2.

(ii) Suppose that (G,Xn, X1) is a cross expanding triple. If Xn,j has label Ym, then X1,j+1

has label Ymax(m−2,0), Ymax(m−1,0), Ym, Ym+1 or Ym+2.

Proof. We first deal with the case when (G,Xn, X1) is a cross expanding triple and Xn,j

has label Ym. Suppose that the conclusion does not hold. This means that X1,j+1 has label
Yj with j > m+ 2 or 0 ≤ j < m− 2.

If j > m+ 2, then |X1,j+1 ∩ Y | > (m+ 2)r. Since |Xn,j ∩ Y | ≤ mr, we have |X1,j+1 ∩
Y | − |Xn,j+1 ∩ Y | ≥ 2r + 1. So there exists a subset Sn of Xn,j such that |Sn| = 2r + 1,
Sn ⊆ Z and S1 ⊆ Y . So, Sn contains a subset S′n such that |S′n| = r+1, S′n ⊆ Z, S′1 ⊆ Y
and the matrix MG[S′n∪S′1,j+1],S

′
n,S′1,j+1

is triangular and has rank at least r by Lemma 2.3,
a contradiction to (Y, Z) being a partition of V (G) of rank less than r.

If 0 ≤ j < m − 2, then |X1,j+1 ∩ Y | ≤ (m − 3)r. Since |Xn,j ∩ Y | > (m − 1)r, we
have |Xn,j ∩ Y | − |X1,j+1 ∩ Y | ≥ 2r + 1. So, there exists a subset Sn of Xn,j such that
|Sn| = 2r + 1, Si ⊆ Y and S1 ⊆ Z. So, Sn contains a subset S′n such that |S′n| = r + 1,
S′n ⊆ Y , S′1 ⊆ Z and the matrix MG[S′n∪S′1,j+1],S

′
n,S′1,j+1

is triangular and has rank at least
r by Lemma 2.3, a contradiction to (Y,Z) being a partition of V (G) of rank less than r.

When (G,Xn, X1) is a parallel expanding triple, the proof is similar. We obtain a
diagonal, or anti-diagonal matrix of rank at least r, a contradiction. 2

The following lemma describes how labels propagate in skew expanding triples (see
Figure 3). We omit the proof since it is similar to the previous one.

Lemma 6.4 Let m ≥ 0 and j be integers such that 1 ≤ j ≤ s− 1.

(i) Suppose that (G,Xn, X1) is a parallel skew expanding triple.

If Xn,j has label Ym, then X1,j+1 has label Ymax(m−2,0), Ymax(m−1,0), Ym, Ym+1 or
Ym+2.

If Xn,j has label Ym, then X1,j+1 has label Ymax(m−2,0), Ymax(m−1,0), Ym, Ym+1 or
Ym+2.
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(ii) Suppose that (G,Xi, Xi+1) is a cross triple.

If Xn,j has label Ym, then X1,j+1 has label Ymax(m−2,0), Ymax(m−1,0), Ym, Ym+1 or
Ym+2.

If Xn,j has label Ym, then X1,j+1 has label Ymax(m−2,0), Ymax(m−1,0), Ym, Ym+1 or
Ym+2.

7 Even carousels

In this section, n ≥ 3 and r ≥ 2 are fixed integers. We prove Theorem 4.1 for even carousels.
We therefore look for an integer s such that every even carousel of order s on n sets has
rankwidth at least r. We define s as follows. Let q be an integer such that:

2q+8r−1 ≥ 10(n+ 1)(q + 8r + 1)r (1)

Clearly q exists. We set s = q + 8r + 1. We now consider an even carousel G of order
s on n sets. To prove that it has rankwidth at least r, it is enough by Lemma 2.2 to prove
that every partition (Y,Z) of V (G) with rank less than r is unbalanced, so let us consider
(Y,Z) a partition of V (G) or rank less than r.

Lemma 7.1 There exists t ∈ {q, . . . , q + 8r − 1} such that X1,t has label Y0 or Z0.

Proof. Otherwise, for every t ∈ {q, . . . , q+8r−1} the set X1,i is an interval of X1 that must
contain elements of Y and elements of Z. Hence, the 8r sets X1,q, . . . , X1,q+8r−1 show that
the interval S = ∪q+8r−1

j=q X1,j has at least 8r blocks, a contradiction to Lemma 6.1. 2

Up to symmetry, we may assume that there exists t ∈ {q, . . . , q+8r− 1} such that X1,t

has label Y0. We denote by X̃i,j the set that is equal to Xi,j if Xi is a top set, and that is
equal to Xi,j if Xi is a botom set.

The idea is now to apply Lemmas 6.2 and 6.3 repeatedly to show that for all i ∈
{1, . . . , n} and for all j ∈ {t, . . . , q+8r+1}, the set X̃i,j has a label Ym with m not too big.
We obtain that m ≤ (n+1)(8r+1), because there are at most (n−1)(8r+1) applications of
Lemmas 6.2 that each augments the index of the label by at most 1, and 8r+1 applications
of Lemma 6.3 that each augment the index of the label by at most 2.

Let us now prove that (Y,Z) is unbalanced. To do so, we focus on the sets X̃i,j for
i ∈ {1, . . . , n} and j ∈ {s − 1, s}. We denote by X their union. By elementary properties
of powers of 2, we have |X| > 3

4 |V (G)|. Also, by the discussion above, each of the set Xi,j

has label Ym with m ≤ (n + 1)(8r + 1). Hence, for i ∈ {1, . . . , n} and j ∈ {8r, 8r + 1},
|Xi,j ∩ Y | ≤ (n+ 1)(q + 8r + 1)r. So, by inequality (1), the proportion of vertices from Z
in X is at least 9

10 . Hence,

|Z| ≥ 3

4
× 9

10
|V (G)| = 27

40
|V (G)| > 2

3
|V (G)|.
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The partition (Y,Z) is therefore unbalanced as claimed.

8 Odd carousels

In this section, n ≥ 3 and r ≥ 2 are fixed integers. We prove Theorem 4.1 for odd carousels.
We therefore look for an integer s such that every odd carousel of order s on n sets has
rankwidth at least r. We define s as follows. Let q be an integer such that:

2q+16r−1 ≥ 10(n+ 1)(q + 16r + 1)r (2)

Clearly q exists. We set s = q + 16r + 1. We now consider a skew carousel G of order
s on n sets. To prove that it has rankwidth at least r, it is enough by Lemma 2.2 to prove
that every partition (Y,Z) of V (G) with rank less than r is unbalanced, so let us consider
(Y, Z) a partition of V (G) of rank less than r.

Lemma 8.1 There exists t ∈ {q, . . . , q + 16r − 1} such that X1,t ∪X1,t+1 has label Y0 or
Z0.

Proof. Otherwise, for every i ∈ {q, . . . , q + 16r − 2} the set X1,i ∪X1,i+1 is an interval of
X1 that must contain elements of Y and elements of Z. Hence, the 8r sets X1,q ∪X1,q+1,
X1,q+2∪X1,q+3, . . . , X1,q+16r−2∪X1,q+16r−1 show that the interval of X1 S = ∪q+16r−1

j=q X1,j

has at least 8r blocks a contradiction to Lemma 6.1. 2

Up to symmetry, we may assume that there exists t ∈ {q, . . . , q + 16r − 2} such that
X1,t ∪X1,t+1 has label Y0. We denote X̃i,j the set that is equal to Xi,j if Xi is a top set,
and that is equal to Xi,j if Xi is a botom set.

The idea is now to apply Lemmas 6.2 and 6.4 repeatedly to show that all i ∈ {1, . . . , n}
and all j ∈ {t, . . . , q + 16r + 1}, the sets Xi,j and Xi,j both have a label Ym with m not
too big. We obtain that m ≤ (n+ 1)(16r + 1), because there are at most (n− 1)(16r + 1)
applications of Lemmas 6.2 that each augment the index of the label by at most 1, and
16r + 1 applications of Lemma 6.3 that each augment the index of the label by at most 2.

Let us now prove that (Y,Z) is unbalanced. To do so, we focus on the 4n sets Xi,j ,
Xi,j for i ∈ {1, . . . , n} and j ∈ {s − 1, s}. We denote by X their union. By elementary
properties of powers of 2, we have |X| > 3

4 |V (G)|. Also, each of the set Xi,j or Xi,j has
label Ym with m ≤ (n+1)(16r+1). Hence, for i ∈ {1, . . . , n} and j ∈ {s−1, s}, |Xi,j∩Y | ≤
(n + 1)(q + 16r + 1)r (and a similar inequality holds for Xi,j). So, by inequality (2), the
proportion of vertices from Z in X is at least 9

10 . Hence,

|Z| ≥ 3

4
× 9

10
|V (G)| = 27

40
|V (G)| > 2

3
|V (G)|.

The partition (Y,Z) is therefore unbalanced as claimed.
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9 Applications

In this section, we explain how to tune our carousels to obtain the results announced in the
introduction.

Split permutation graphs with Dilworth number 2

In [11], it is proved that there exist split permutation graphs with Dilworth number 2 and
arbitrarily large rankwidth. Theorem 3 in [11] states that the class of split permutation
graphs is precisely the class of split graphs of Dilworth number at most 2. Therefore, it is
enough for us to study split graphs with Dilworth number 2.

We now provide an explicit construction. Consider an even carousel on 4 sets X1, X2,
X3, X4 and the following additional properties:

• X1 ∪X3 is a clique.

• X2 ∪X4 is a stable set.

• The triples (G,X1, X2), (G,X2, X3), (G,X3, X4); are regular crossings.

• The triple (G,X4, X1) is an expanding crossing.

It is clear that graphs constructed in that way are split graphs because X1 ∪ X3 is a
clique and X2∪X4 is a stable set. To check that they have Dilworth number 2, it is enough
to notice that for all vertices x, y ∈ X1 ∪X2, either N(x) \ N [y] = ∅ or N(y) \ N [x] = ∅,
and for all vertices x, y ∈ X3 ∪X4, either N(x) \N [y] = ∅ or N(y) \N [x] = ∅.

Rings

We consider a carousel on n ≥ 3 sets, all are cliques cliques, with all triples being crossings.
If n even, this is an even carousel; and if n is odd, this is an odd carousel. For a fixed n,
this gives rings with arbitrarily large rankwidth.

Flexibility of carousels

Observe that in this section, we never use matchings and antimatchings, that were included
in the definition for possible later use of carousels. More generality could be allowed (for
instance by not forcing (G,X1, X2) to be crossing, and instead forcing some (G,Xi, Xi+1)
to be crossing). This might be useful, but we felt that it would make the explanation too
complicated.
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Figure 4: Graphs that are not induced subgraphs of rings on 3 sets, and that are minimal
with respect to this property

10 Open questions

It would be nice to characterize the class of induced subgraphs of rings on n sets by forbidden
induced subgraphs. For n = 3 this seems to be non-trivial. It might be easier for larger n.
On Figure 4, a list of obstructions for n = 3 is given but we do not know whether it is
complete.

Let S1,2,3 be the graph represented on Figure 5, and let C the class of graphs that
contain no triangle and no S1,2,3 as an induced subgraph. A famous open question [8] is to
determine whether graphs in C have bounded rankwidth. We tried many ways to tune our
construction, but each time, there was either a triangle or an S1,2,3 in it. So, to the best of
our knowledge, our construction does not help to prove that the rankwidth is unbounded
for this class. Similarly, whatever tuning we try, it seems that our construction does not
help to solve the open problems from [2, 3, 8]. This might be because we did not try hard
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Figure 5: S1,2,3

enough to tune our construction, or because it is not the right approach. And of course,
the rankwidth might be bounded for all these classes.

In [9], a conjecture is given, stating that in each class of graphs that is closed under
taking induced subgraphs and where the rankwidth is unbounded, there should be an
infinite sequence of graphs G1, G2, . . . such that for each pair of distinct integers i, j, Gi is
not an induced subgraph of Gj . This was later disproved, see [14], but we wonder whether
carousels may provide new counter-examples. This is difficult to check, because it not clear
whether “big” carousels contain smaller ones as induced subgraphs.
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