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Abstract

1. The selection ratio (SR), i.e. the ratio of proportional use of a habitat over proportional 

availability of this habitat, has for long been the standard metric of habitat selection analyses. It is 

easy to compute and directly estimates disproportionate use. Its apparent restriction to habitat 

selection analyses using categorical predictors led to the development of the resource selection 

functions (RSF) approach, which has now become the norm.

2. The RSF approach has however led to debates and confusion. For instance, what functional form 

can be used remains debated, and the concept of relative probability of selection is often 

misunderstood.

3. I propose a reformulation of the SR demonstrating that it can be estimated in a regression 

context, and thus even with continuous predictors. This reformulation suggests that RSF can be seen

as an intermediate step in the calculation of SR. This reformulation also clarifies some long-

standing debates about RSF and data-selection/fitting practices. 

4. I further suggest that SR estimates the strength of habitat selection, but that the contribution of 

selection in determining use, which should be more directly linked to fitness than selection per se, 
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should be estimated by another metric, the selection effect on use (SE). SE could be estimated 

simply as the difference between proportional use and proportional availability, and can be 

computed from SR and a density estimation of availability.

5. I conduct a habitat selection analysis of plains zebras to demonstrate the added-value of going 

beyond RSF scores and using SR estimated in a regression context, and of combining SR and SE.

6. Overall, I highlight the inter-relation between various metrics used to study habitat selection (i.e.,

SR, other selection indices, RSF scores, marginality). I conclude by proposing that SR and SE can 

be the unifying metrics of habitat selection, as together they offer a comprehensive view on the 

strength of habitat selection and its effect on habitat use.

Keywords: distribution model, niche, method, movement, space use
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Introduction

Understanding why organisms use their environment the way they do is a key aim for ecologists 

(Morris, 2003). Decades of habitat selection studies have aimed at testing, quantifying, and 

explaining the disproportionate use of some habitats by individuals. ‘Disproportionate’ is usually 

formally defined in comparison with the expected use of habitats by individuals that would use the 

available habitats at random (Manly et al., 2002). The standard approach to estimate whether habitat

use is disproportionate has for long relied on selection indices. Many selection indices have been 

proposed (Lechowicz, 1982; Manly et al., 2002), but the most simple and commonly used is the 

forage ratio first proposed by (Savage, 1931, cited in Manly et al., 2002), often (and hereafter) 

simply referred to as selection ratio (SR). The SR for a habitat i is defined as follow:

SR i=
P i

U

Pi
A equation 1

with Pi
U the proportion of habitat i in the set of used locations, and Pi

A the proportion of 

habitat i in the set of available locations when availability is estimated using random locations. A 

SRi value of 1 indicates that use of habitat i is proportional to its availability in the accessible 

landscape, and therefore a lack of selection for this habitat. A SRi > 1 indicates selection, whereas a 

SRi < 1 indicates avoidance. The common and persisting use of SR (e.g Aho & Bowyer, 2015; 

Basille & Fortin, 2015) shows that the SR is an index widely accepted by ecologists, probably 

thanks to its ease of interpretation and the clear match between its calculation and the definition of 

selection as a disproportionate use compared to random use. 

The SR approach however appeared limited to situations in which the habitat could be 

defined by a limited number of categorical predictors, as one needs to be able to compute 

proportions over habitat categories (e.g., open vs. closed habitats). In 1990, McDonald et al. 

proposed a new statistical approach – resource selection functions (RSF) – to analyze the selection 

of habitats (or resources) defined by several variables, categorical or continuous, and their 

interactions (Mcdonald, Manly & Raley, 1990). This flexibility, associated with the increasing 

ability to integrate many habitat-defining variables thanks to advances in remote sensing, has made 
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RSF the model of choice to estimate the strength of habitat selection.

A RSF is a function, often termed w, that transforms the density distribution of habitat i in 

the set of available locations into the density distribution of the same habitat in the set of used 

locations (Mcdonald et al., 1990; Johnson et al. 2006; Lele & Keim, 2006; McDonald, 2013), such 

that: 

w (x)=
f U

(x)
f A

(x )
equation 2

with w (x) the RSF, f U
( x) and f A

(x) the density distributions of used and available 

locations respectively. For a set of predictors x1 to xn, 

w= f (β0+β1∗x1+ ...βn∗xn)

Interpreted differently, the RSF describes how the relative probability of selection of habitats varies 

with their characteristics defined by a set of predictors (Manly et al., 2002). As the link between eq. 

1 and 2 makes clear, and as stated by (Lele, 2009), the RSF “is simply an extension of the idea of 

selection index to the case of continuous covariates”.

Despite its apparent simplicity, the RSF methodology has led to debates and confusion, 

which I now summarize:

(1) RSF are commonly assumed to have an exponential form, such that

w=exp(β0+β1∗x1+...βn∗xn)

There is however little theoretical justification for the use of this specific form. The exponential 

RSF is the unique model when both the used and available distribution follow a normal distribution 

(Lele et al., 2013; McDonald, 2013), but these conditions are rarely, if ever, met. The use of 

exponential RSF is actually based on practicality: if one assumes an exponential RSF, the likelihood

of the RSF is proportional to the likelihood of a logistic regression, with used locations being coded 

as 1 and available locations as 0 (Johnson et al., 2006; McDonald, 2013). Therefore, the parameters 

of the exponential RSF are equivalent to those returned by a logistic regression, a procedure 

available in virtually all statistical software. McDonald (2013) however suggested that a RSF could 

be any unbounded, monotonically increasing and positive function, as the only constraint he 
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identified was that the RSF, being a ratio, should return values between [0, +Inf[. He also 

emphasized that Logistic, Complementary log-log or Probit functions are inappropriate because 

they don't map values in the [0, +Inf[ range. On the contrary, Lele et al. (Lele & Keim, 2006; Lele et

al., 2013) argued however that other models, such as probit or complementary log-log functions, 

could actually be used, and should sometimes be favoured, to fit RSF. Thus, although most studies 

assume an exponential form for the RSF, it is still unclear whether other functions could be used, 

and how they would perform compared to exponential RSF.

(2) RSF do not estimate absolute probability of selection (i.e. the probability of selecting an habitat 

when encountered (Lele et al., 2013). In RSF models, the intercept, which would allow normalizing 

the RSF scores to obtain probabilities of selection (Avgar et al. 2017), is considered uninterpretable 

because it depends heavily on how the ‘used’ and ‘available’ locations are sampled (Manly et al., 

2002; Lele & Keim, 2006; McDonald, 2013). RSF are therefore only valid to “estimate relative 

probability of selecting one habitat unit with a particular set of characteristics relative to another 

unit with different characteristics” (McDonald, 2013). In the current RSF framework, assuming that

i is the reference habitat, one can conclude that habitat j has (for instance) a higher probability of 

being selected than reference habitat i, but one cannot conclude about the extent to which habitats i 

and j are selected or avoided, compared to expectations under random use of the available habitats. 

Nevertheless, results from RSF analyses are often wrongly interpreted as ‘habitat j is selected’, 

overlooking that estimates of the strength of habitat selection are only relative. If the study of the 

relative probability of selection between habitats can in itself be sometimes of interest, often one 

would want to estimate whether habitats are selected, used proportionally to their availability, or 

avoided, irrespectively of others, in accordance with the usual definition of habitat selection being 

used more than expected under random use. This is most clearly seen if considering a RSF analysis 

with a continuous explanatory variable only, for instance distance to nearest road. The RSF will 

inform on whether selection increases or decreases as distance increases, but will not allow 

concluding about the distance at which selection shifts from attraction to random use or avoidance. 
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It suggests that RSF cannot fulfill the original goal of most habitat selection studies. Moreover, and 

as emphasized by Lele et al. (2013), the interpretation of relative probability of selection is difficult:

a doubling in the relative probability of selection does not have the same biological implication if 

the absolute probability of selection of the reference habitat is 0.004 or is 0.4. It has been claimed 

that absolute probability of selection can be estimated using resource selection probability functions

(RSPF)(Lele, 2009), but not all authors agree (McDonald, 2013), and they are limited to specific 

situations (e.g., for instance models should contain at least one continuous predictor (Lele & Keim, 

2006; Lele, 2009). Generally, very few studies have fitted RSPF models, suggesting that 

practitioners do not feel at ease with RSPF models.

(3) RS(P)F have led to misinterpretations. As emphasized by Lele et al. (2013) who clarified

it, the concept of probability of selection which underlies the RS(P)F framework is commonly 

misunderstood, often confounded with probability of use or probability of choice (Lele et al., 2013).

The use of the logistic regression machinery, classically used in statistics to model probabilities, but

in RSF analyses used to estimate the parameters of the exponential RSF and the relative probability 

of selection, has also created some confusion (Lele et al., 2013). It is not uncommon to see authors 

reporting RSF scores as if they were log-ratio of the probabilities of selection, although they are not 

(Lele et al., 2013; Avgar et al., 2017). Additionally, the common practice of reporting or plotting the

raw coefficients of logistic regression to visualize the effect sizes is misleading because the 

exponentiation required to calculate the RSF scores affects the scaling.

Overall, RS(P)F are powerful tools to study complex habitat selection models, but they also 

have drawbacks and can be misunderstood. I re-emphasize here that the RS(P)F framework 

emerged from the need to integrate continuous variables in habitat selection analyses previously 

conducted using SR. With this in mind, I propose a new formulation of SR, mathematically 

equivalent to eq. 1, showing that SR are directly estimable in a classical regression framework 

integrating both categorical and continuous variables. I therefore argue that SR can be the standard 

metrics for the study of the strength of habitat selection. I complement this approach with an 
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additional step allowing to differentiate between the strength of habitat selection and its effect on 

habitat use, which is mediated by habitat availability and should be more directly related to 

individual fitness than the strength of habitat selection (Gaillard et al., 2010).

A reformulation of the selection ratio 

The SR of any habitat i (SRi), when estimated using samples of use and available locations, can be 

reformulated as follow:  

SR i=
P i

U

Pi
A
=

N i
U

NU

N i
A

N A

=
N i

U

NU
∗

N A

N i
A
=

N i
U

N i
A
∗

N A

NU
equation 3

Thus, SRi equals the ratio, calculated using locations falling in habitat i only, of the number of used 

locations N i
U  over the number of available locations N i

A , multiplied by the ratio, calculated 

using all locations, of the number of available locations N A  over the number of used locations

NU .

The ratio 
N i

A

N i
U  is the ratio of the numbers of locations that could be of two mutually exclusive 

types: be a ‘used’ location or be an ‘available’ location. Therefore, it is simply the odd of the 

probability that a data location falling in habitat i belongs to the set of ‘used’ locations. This is 

demonstrated here:

N i
U

N i
A
=

N i
U

N i

N i
A

N i

=

N i
U

N i

(N i−N i
U
)

N i

=
Pi

setU

1−Pi
setU

=odd(P i
setU) equation 4

We obtain the reformulation of SR by combining eq. 3 and eq. 4: 

SR i=odd (Pi
setU

)∗
N A

NU
equation 5

For a given analysis, NU is the total number of used locations to be analyzed, N A  is selected 
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by the analyst, and thus N A

NU
 is a known scalar. Therefore, one only needs to model how oddi 

varies with the predictors to model how those affect habitat selection, measured using SR. 

Eq. 5 provides a new justification for the use of exponential RSF estimated by logistic 

regression in habitat selection studies, as logistic regression is the most common statistical approach

to model probabilities and odds. Logistic regression uses a logit link function to linearize 

probabilities (Fox, 2015), and fits:

logit (Pi
setU

)= log (
Pi

setU

1−Pi
setU )= log (odd (Pi

setU
))=β0+β1∗x1+...+βn∗xn equation 6

It is clear that the score w i
exp of an exponential RSF, such that

w i
exp

=exp(β0+β1∗x1+...+βn∗xn) , estimates odd (Pi
setU

) , and eq. 5 shows that SRi can be 

recovered simply:

SR i=w i
exp

∗
N A

NU
equation 7

Alternatively, one could fit an exponential RSF using logistic regression incorporating log (
N A

NU )

as an offset, in which case the RSF score would directly equal the SR. Using a number of random 

locations equals to the number of used locations, so that N A

NU =1 , could appear an easy way to 

directly obtain SR without any calculations beyond RSF fitting. In most cases however, this would 

lead to use a relatively low number of available locations and a poor estimation of the availability of

habitats (Northrup et al., 2013), and is therefore not advised. Note that, when N A

NU =1 and thus wi 

equals SRi, the practice of normalizing RSF scores over all available habitats leads one to obtain 

values that are equivalent to Chesson’s α selection index (Chesson, 1978; Lechowicz, 1982; Manly 

et al., 2002).

Overall, I suggest that RSF can be viewed as an intermediate step towards the calculation of 
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SR, which could remain the central metrics to estimate the strength of habitat selection, even when 

one considers continuous predictors. 

Implications of the reformulation of the SR, and benefits of its use

The use of SR to estimate the strength of habitat selection naturally solves some of the 

aforementioned issues and debates associated with RSF modelling, and additionally shed light on 

another issue that had until now been overlooked when fitting RSF as hierarchical (i.e., mixed) 

models.

First and foremost, SR are easily interpreted and directly match the accepted definition of 

selection, i.e., the disproportionate use of some habitats relative to a null model of random use of 

the available landscape. The concept of SR may thus be viewed as conceptually more appealing 

than the concept of (relative) probability of selection, which is not always understood (Lele et al., 

2013). The use of SR, which allow calculating selection strength for each habitat, should also 

prevents misinterpretation arising from the use of RSF models, which estimate differences in the 

strength of selection between habitats, with the strength of selection for the reference habitat 

remaining unknown. Note that the use of SR does not prevent the comparison of selection strength 

between habitats when these are of interest. All of this suggests that SR could be a unifying metric 

of the strength of habitat selection.

Second, the reformulation of SR highlights that the use of logistic regression to estimate the 

parameters of RSF can be viewed not as a ‘statistical trick’ based on the equivalence between the 

likelihoods of the logistic regression and of the use-availability or point-process models (e.g. 

(Johnson et al., 2006; Aarts, Fieberg, & Matthiopoulos, 2012; McDonald, 2013), but as being 

justified on the basis of the required estimation of an odd. Logistic regression is the most common 

and straightforward method to estimate odds, but other probability models such as probit or 

complementary-log-log (clog-log) models could also be used, re-expressing results as odds (Fox, 

2015). This would make no sense if all predictors are categorical variables, because in that case 
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results are perfectly identical between logit, probit or clog-log models. When continuous predictors 

are involved, having the choice of models could offer more flexibility. In practice, it could however 

be more straightforward to use the logit link with either transformed predictors, polynomials or 

splines to obtain the desired level of flexibility. Regression coefficients are also more easily 

interpreted when using a logit link, as they represent odd-ratios, and results from regression with 

logit or probit links are usually very similar. Note that estimating SR in a regression context as 

proposed here, even when only one categorical predictor is present, naturally solves the difficulty of

estimating confidence intervals for SR (Aho & Bowyer, 2015). 

Overall, the reformulation of SR supports the common use of exponential RSF, but importantly 

highlights that other link functions could also be appropriate (see also Lele & Keim (2006) for a 

similar claim, on a different basis). It is worth emphasizing once more that the estimated odd is not 

the odd of the probability of selection, and that results from logistic regression in the context of 

habitat selection analyses should not be interpreted as a log-odd-ratio of the probability of selection 

(Lele et al., 2013; McDonald, 2013). This issue would disappear if the estimation process is pursued

up to the estimation of SR. 

Third, the reformulation of SR demonstrates that, contrary to current practice, the intercept 

of RSF models, which allows calculating the associated RSF score wr for the reference habitat r, 

should not be overlooked. First, wr allows the SR of the reference habitat to be estimated (eq. 7), 

which can be of interest in itself. Second, it is crucial to recognize that the estimation of the 

intercept affects the estimation of other parameters of the RSF. In particular, it is clear from 

equations above that the intercept aggregates a biological and a sampling process (see also Fieberg 

et al., 2010 and McDonald, 2013). Eq. 7 shows that w r=SRr∗
N U

N A
, so that the value of the 

intercept will vary with the individual's strength of selection for the reference habitat r, but also with

the ratio of used/available locations in the dataset. This dependence of the intercept on a biological 

and a sampling process warrants some caution when fitting hierarchical (i.e., mixed) RSF models. 
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For instance, it questions the recommendation made to use random intercepts to account for 

unbalanced sample size between individuals when fitting hierarchical RSF models (Gillies et al., 

2006). Eq. 7 shows that what matters is actually not differences in the number of ‘used’ locations

NU  between individuals, but the ratio NU

N A
. When this ratio is constant among individuals 

there is no need to account for differences in the number of ‘used’ locations. When this ratio varies 

between individuals, because for instance the same number of ‘available’ locations is chosen for all 

individuals whereas their number of ‘used’ locations vary, then random intercepts will account for 

both the variation in NU

N A
ratios and the difference in the strength of selection for the reference 

habitat (SRr). The fixed effect intercept will therefore be a meaningless average of these effects 

across individuals, and the parameter estimates for other habitats, which are estimated as difference 

from this reference habitat, will therefore also be biased. Similarly, when NU

N A
 ratios vary 

between individuals, the random intercepts and their variance will not accurately quantify inter-

individual differences in the strength of habitat selection between individuals. In this case they 

should therefore not be used to assess ‘personalities’ for instance. This is especially true as, for 

categorical habitat variables, the variation in the strength of selection between individuals is spread 

between random intercepts (for the reference habitat) and random slopes (for other habitats). Fitting

random intercepts and slopes is therefore required when fitting hierarchical RSF models (see also 

Muff et al., 2018 for a similar suggestion, based on a different ground). From personal experience, 

fitting such models could prove challenging (e.g., large computation time, frequent convergence 

issues) when categorical habitat variables are defined by many classes, or involved in a number of 

interactions with other variables. Two-stage approaches where one model is fit per individual and 

individual results later aggregated accounting for uncertainty in estimates may sometimes be easier 

to implement (Murtaugh, 2007; Fieberg et al., 2010).
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Finally, the relevance of the intercept of RSF analyses also leads to questioning the current 

use of step-selection-function (SSF) analyses. SSF analyses are now routinely used when location 

data are collected at temporal resolution such that subsequent locations cannot be considered 

independent (Thurfjell, Ciuti, & Boyce, 2014). In SSF analyses, each used step is matched to a 

number of available steps, and SSF models are then fitted using conditional logistic regression with 

strata identifying the association between used and matched available steps (Fortin et al., 2005; 

Thurfjell et al., 2014). Because of the conditioning, conditional logistic regression models do not 

estimate an intercept (Duchesne, Fortin, & Courbin, 2010). This possibly explains why SSF models 

do not allow simulating utilization distribution when habitat selection is strong (Signer, Fieberg, & 

Avgar, 2017). Further work trying to bridge the gap between RSF and SSF models, or on other 

approaches for autocorrelated location data (Michelot et al., 2018), is urgently needed.

Beyond the strength of selection, estimating the contribution of selection to habitat use

The SR is a natural and intuitive measure of the strength of habitat selection. It is well known 

however that the strength of habitat selection does not in itself reflects to what extent the amount of 

use of a habitat is modified by habitat selection (Lele et al., 2013). For instance, a highly selected 

habitat, as assessed by its SR, is used only moderately more than under random use if it is little 

available. This can be shown formally by considering that the selection effect (SE) on the use of 

habitat i can be estimated by:

SE i=Pi
U
−Pi

A

From eq. 1, 

Pi
U
=SRi∗Pi

A

and therefore:

SE i=Pi
A
∗(SRi−1) equation 8

Eq. 8 makes clear that the selection effect of the amount of use of one habitat depends on both the 

strength of selection for this habitat and its availability. Once SR i have been estimated as 
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suggested above, it is thus straightforward to estimate SE i , as Pi
A can be directly estimated 

using density estimation (this might require binning the continuous variables). Although SE i  

could also be expressed as a function of Pi
U   and SR i , its estimation would likely be less 

accurate as the estimation of Pi
U  by density estimation is likely to be less precise that the one of

Pi
A , due to sample size. Note that, whereas SR is a unitless metric, SE is on the scale of use and 

availability measures. For instance, if one assumes that the number of locations in habitat i 

estimates the time spent in habitat i, then SEi estimates how much time spent in habitat i has been 

added or lost by selection compared to expectations under random use of habitats.

It is interesting to note that the SE index had already been proposed by Strauss (1979) as an index 

of selection (Lechowicz, 1982), and that an index equaled to the square of SE, termed marginality, 

is the basis of some statistical approaches of habitat selection (Ecological-Niche Factor Analysis: 

Hirzel et al. 2002; K-select analysis: Calenge, Dufour, & Maillard, 2005; General niche-

environment system factor analysis: Calenge & Basille, 2008). More recently, myself and 

colleagues have emphasized that SE can be understood as the contribution of selection in 

determining use, and it provides a different, but complementary way, to measure habitat selection, 

compared to SR (Padié et al., 2015). SR estimates the effort made by the animal to select and use 

specific habitats, whereas SE estimates to what extent this effort actually modifies its habitat use, 

relatively to a random use of the available landscape. Thus, SR and SE do not estimate the same 

aspects of the habitat selection process and caution should be applied when comparing studies based

on SR or RSF approaches with studies based on SE or marginality. Also, SE should be preferred 

when studying to what extent habitat selection affect demographic performances, as fitness is 

influenced by use, rather than selection itself (Gaillard et al., 2010). 

Overall, the study of SR and SE will provide a comprehensive understanding of the strength 

of habitat selection and of its consequences for habitat use.
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An example: plains zebra habitat selection

To demonstrate the value of the approach described above, I conducted an analysis of dry-season 

habitat selection analyses of plains zebras (Equus quagga), using data from 19 individuals collected

in Hwange National Park (Zimbabwe). I estimated the strength of habitat selection and the 

contribution of habitat selection on habitat use, using SR and SE respectively, in one of the 

management block of the Park. Habitats were defined using information on vegetation types (i.e., 

grassland, bushland or woodland) and distance to water. See Supplementary Appendix S1 for more 

information on the study area and the data. 

I fitted an exponential RSF, which uses a logit link function, as this is the approach most 

commonly used. Coefficients from the RSF (Supplementary Appendix S1) showed that the strength 

of habitat selection increased with proximity to water, and was higher in grasslands that in the two 

other vegetation types. However, from such a RSF model, one could not know when, along the 

distance to water gradient, the strength of selection shifted from selection to avoidance. This 

information could however be critical in a management context, for example when deciding how to 

spread artificial waterholes in a landscape. Computing SR from the RSF model, following eq. 7, 

solved this issue and revealed that the shift from selection to avoidance occurred at ~ 2 km from 

water in bushland and woodland vegetation types, but at ~ 5 km from water in grasslands (Fig. 1A).

Estimating the contribution of selection to habitat use provided further insights: the strong selection 

for habitats near water increased zebras’ use of grasslands (Fig. 1B), but had only a minor effect on 

the use of bushlands and woodlands because these were rare near water (Fig. 1B). The zebras’ 

habitat selection process affected the use of bushlands and woodlands only at intermediate (~ 3 to 7 

km) distance to water, where these types of vegetation were less used than expected by chance. The 

general avoidance of areas located far from water also did not influence habitat use, compared to a 

random use, because these areas were rare in the landscape (Fig. 1B).
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Figure 1. (A) Strength of zebra habitat selection, estimated using the selection ratio (SR), as a 

function of vegetation types and distance to water. Dotted lines show the 95% confidence intervals. 

(B) Contribution of habitat selection to habitat use, estimated using the selection effect (SE) metric 

(see text for details). Dotted lines show the 95% confidence intervals. The inset shows the 

distribution of habitats in the available landscape, estimated from data binned over 1 km bins.

Conclusion

The reformulation of the SR presented here reveals that SR can be estimated in a regression context,

even with continuous predictors, whereas it was initially the need to incorporate these predictors 

that led to the formulation of RSF (Mcdonald et al., 1990; Lele, 2009). It also clarifies some long-

standing debates about RSF and data-selection/fitting practices. Finally, it shows that, with a 

trivially simple extra-step (i.e., multiplication of RSF scores by N A

NU
), the interpretation of 

habitat selection analyses can be greatly clarified. Finally, it highlights the inter-relation between 

various metrics used to study habitat selection (i.e., SR, other selection indices, RSF scores, 

marginality). I thereby propose that SR and SE can be the unifying metrics of habitat selection, as 
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together they offer a comprehensive view on the strength of habitat selection and its effect on 

habitat use. 
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Supplementary Appendix

S1. Presentation of the data used to analyze plains zebras habitat selection

The study was conducted using GPS data from zebra collared in Hwange National Park, Zimbabwe.

The park vegetation is typical of dystrophic savannas: the vegetation is mostly made of bushland, 

interspersed by patches of woodlands and grasslands that are particularly common near waterholes 

(Chamaillé-Jammes, Fritz, & Madzikanda, 2009). For this study I used the 30-m resolution 

vegetation map produced by Arraut et al. (2018). I reduced the number of vegetation classes to three

by pooling grasslands and bushed grasslands into a ‘grassland’ class, bushlands on Kalahari sands 

and scrublands on basalts into a ‘bushland’ class and deciduous woodland on Kalahari sands, 

deciduous woodland on basalts and evergreen woodlands into a ‘woodland’ class. The location of 

all permanent waterholes that retain water during the dry season is known (Chamaillé-Jammes, 

Fritz, & Murindagomo, 2007). I used GPS tracking data collected during the dry season (August to 

October) on 19 adult females living in different harems. Locations were originally acquired every 

30 min or every hour but I reduced autocorrelation in the data by retaining only one location per 

day, the one closest to noon. See for instance Courbin et al. (2016, 2019) for further information 

about the zebra tracking study.

S2. Statistical models and results

I studied zebra habitat selection by fitting resource selection function (RSF) models to 

estimate selection ratios (SR) and selection effect on use (SE). The RSF models were fitted in the 

use/available framework: I used the actual GPS locations as ‘used’ zebra locations, and drew 

‘available’ locations randomly within the study area defined as the Main Camp management block 

of Hwange National Park (see Chamaillé-Jammes, Valeix, & Fritz 2007 for map). The ratio of 

available/used locations was 1000 for all individuals.

For the example provided here I fitted an exponential RSF model, which uses a logit link 
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function, as it is the most commonly used RSF functional form. I used vegetation type (categorical 

variable with 3 categories, and ‘bushland’ as reference category), distance to water (continuous, log-

transformed as we previously showed before that it greatly improved the fit of RSF models on these

data (Courbin et al., 2016)) and the interaction between these two variables as predictors in the RSF

model. I included zebra identity as random effects on the intercept and slopes for all predictors.  All 

analyses were conducted with the R software v. 3.5.2 (R Core Team 2018) and the lme4 package v. 

1.1.17 (Bates et al. 2015). 

The exponential RSF model showed that the strength of habitat selection increased with 

proximity to water, and was higher in grasslands that in the two other vegetation types (Table S1). 

Table S1. Estimates of fixed effects coefficients of the exponential resource selection function 

model. The reference vegetation type is ‘bushland’. P-values are based on the Wald Z-statistics and 

are reported as guidelines for interpretation only. 

Parameter Estimate ± SE  P-value

Intercept -6.556 ± 0.124 <0.001

Vegetation type ‘grassland’ 1.277 ± 0.142 <0.001

Vegetation type ‘woodland’ 0.096 ± 0.198 0.629

log(Distance to water) -1.216 ± 0.154 <0.001

Vegetation type ‘grassland’ : log(Distance to water) 0.292 ± 0.114 0.011

Vegetation type ‘woodland’ : log(Distance to water) 0.317 ± 0.125 0.011

However, from such a RSF model, one could not know when, along the distance to water gradient, 

the strength of selection shifted from selection to avoidance. Converting RSF scores to SR values 

solved this issue (see main text).
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