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Abstract

We currently lack a comprehensive theory about how behaviourally responsive predators and prey 

use the information they acquire about the environment and each other’s presence while engaged in 

the ‘space race’. This limits our understanding of the role of behaviour in trophic relationships and 

our ability to predict predators and prey distributions. Here we combined a simulation model with a 

genetic algorithm to discover how predators and prey behaving optimally should use information in 

environments with different levels of heterogeneity in prey forage distribution and prey vulnerability. 

Our results demonstrate the key role of movement unpredictability in successful strategies for both 

predators and prey, supporting the ‘shell-game’ hypothesis. We however reveal striking differences 

between predators and prey in the magnitude of this unpredictability, and in how it varies with the 

environment. Our work offers a robust theoretical framework to better understand predator-prey 

space use and interpret empirical studies. 
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Introduction

Predators and prey can be viewed as engaged in a ‘space race’ (Sih 1984). Prey select patches 

offering a favourable balance between foraging opportunities and predation risk (Gilliam & Fraser 

1987; Brown & Kotler 2004), while predators search for patches where they have the greatest chance 

of capturing prey (Kacelnik et al. 1992; Hopcraft et al. 2005). Not only prey and predators are most 

often on the move, but prey and predators generally live in environments where resources are 

heterogeneously distributed as they get locally depleted, and renew. To succeed in such dynamic 

environments, both prey and predators should have evolved cognitive abilities to perceive, memorize 

and later use information about the environment and the distribution of their enemies in the space 

race. 

              Simple models have shown that the use of past information can greatly improve foraging 

success of individuals in heterogeneous environments by reducing their search time and improving 

the timing of their visits to patches, even when competition decreases resource predictability (Riotte-

Lambert et al. 2015, 2017)(see also (Merkle et al. 2014) for an empirical demonstration). Selection 

pressure for the evolution of mnesic capacity is likely strong and, accordingly, memory-driven space 

use is increasingly demonstrated (Fagan et al. 2013; Merkle et al. 2019). The use of memory could 

however make predators and prey more predictable, allowing prey to develop spatial avoidance 

strategies, and predators to search more efficiently. For instance, a prey foraging on a limited set of 

rich resource patches and traveling between them in virtually the same order (‘traplining’, Riotte-

Lambert et al. 2016) may become highly predictable by its predator. Even if prey move less 

deterministically, only avoiding patches with little resources, predators could perceive the intrinsic 

quality of the patches for the prey, memorize the location of food-rich patches, and focus their search 

among them (‘leap-frogging’, Sih 1998). Meanwhile, prey could also learn about this now predictable

distribution of predators, and start avoiding the resource-rich, but risky, patches. Predators would thus

be unlikely to persist with such a strategy. Generally, predators and prey face the dilemma that, while 

the use of information could apparently be beneficial to them, its use could also make them more 

predictable, thereby providing some benefits to their enemies in the predator-prey space race. 
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  Under these conditions, the predator-prey race could rather be viewed as a ‘shell game’ in 

which “predators search for elusive prey, and prey stay on the move to remain elusive” (Mitchell & 

Lima 2002). Such view emphasizes that randomness could be an integral part of optimal predator and

prey movement strategies (Mitchell & Lima 2002; Mitchell 2009). Randomness may, however, 

loosen the link between an individual and its resources, reducing the benefits of memory use. 

Mitchell & Lima (2002) and Mitchell (2009)’s models however showed that it can ultimately be 

beneficial for prey to move randomly, and thus be unpredictable, when the predator can memorize the

locations of past encounters. In such situation, the predator would be able to concentrate its search on 

prey-rich patches if those prey only focused on forage-rich patches and move predictably. 

In these models, however, the prey had no memory, and their movement strategies were compared 

only across various types of random movement. Using a different model, Bracis et al. (2018) showed 

that prey would benefit from using memory under predation risk, especially when predation risk is 

decoupled from resource distribution as prey can thus avoid predators while foraging in resource-rich 

areas. In this model, predators could however not adjust to prey distribution. As for prey, it has been 

argued that predators would gain from being unpredictable (Roth & Lima 2007; Valeix et al. 2011), 

although this would involve them searching areas where prey are rarer. We are not aware of models 

predicting the conditions under which randomness in predator movements would benefit them. 

Empirical demonstrations of the shell game are only emerging (Simon et al. 2019)(but see Laundré 

2010), and the optimal level of randomness that prey and predators should optimally use remains 

unknown. No theory integrating the co-evolution of prey and predator movement strategies has been 

proposed yet, and we argue this is a fundamental gap in our ability to understand and predict the 

movement of animals.

Here, we develop theoretical expectations for the optimal use, by behaviourally responsive 

predators and prey, of randomness and current and past information about prey forage availability and

encounters. We study whether these expectations vary with the abundance and spatial heterogeneity 

of prey forage resources and prey vulnerability across patches. 

Overall, we address 3 general questions, for both predators and prey:
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(1) How important is the information about prey forage availability compared to the information 

about encounters with enemies?

(2) How important is recent vs. older information on both forage availability and encounters with 

enemies?

(3) Is it beneficial to introduce some level of randomness in the movement strategy, and if so how 

much is optimal?

Methods

We combined a simulation model and a genetic algorithm to find the optimal movement strategies of 

both predators and prey. The implementation was done in R (R Core Team 2018) using the Rcpp 

package (Eddelbuettel & Balamuta 2018).

Model outline

The model simulates the movement of a fixed number of predators and prey between a set of patches.

Patches are characterized by (i) the current amount of forage available to the prey (hereafter referred 

to as ‘forage’), which increases logistically over time but decreases with prey consumption, (ii) the 

maximum amount of forage that can exist in the patch and (iii) the vulnerability (i.e. the likelihood of 

dying) of prey when attacked by a predator or, equivalently, the success rate of attacks of the 

predators. At each time step, prey forage and accumulate resources. Predators have a probability of 

encountering a prey that increases with prey density in the patch, but attack only once per time step. 

Both prey and predators assign weights to each patch: weights represent the assessment of patch 

quality from past experience, and the weight of a patch is therefore re-evaluated following each visit. 

Both predators and prey have movement strategies, defined by the values of 4 parameters (α, μ, β, 

and δ, see 'Model formulation' section below), determining whether forage or encounters, and recent 

or old information for each, are contributing more to the weighting of the patches, and finally whether

weights contribute a lot or little to the actual choice of the patch used at the next time step. 
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Model Formulation

Central to the model is the fact that each predator and prey store estimates of the quality of patches as

weights. For any given individual, the current weight given to patch i is:

For a prey, Wi = Fi / Ei (equation 1)

For a predator, Wi = Fi x Ei (equation 2)

where Fi is a state variable indexing the perceived quality of patch i with regard to prey forage, and Ei

a state variable indexing the perceived chance of being predated upon (for a prey) or of successfully 

capturing a prey (for a predator) in patch i (more details below).

The model consists in a sequence of time steps, themselves decomposed into consecutive substeps. 

Parameter values and initialization values of state variables are presented in Supporting Information 

(SI) 1.

Substep 1: Calculating forage growth and consumption

This substep takes place for all patches at each time step t. The amount of forage levels in patches 

follows a logistic growth reduced by prey consumption, such as:

Rt+1,i = Rt,i + rm x Rt,i x (1 – Rt,i / Ki) – (It,i x Nt,i) (equation 3)

with Rt+1,i and Rt,i the amount of forage in patch i at time t+1 and t respectively, rm the maximum 

forage growth rate (constant among patches), Ki a forage carrying capacity that can vary among 

patches, Nt,i the number of prey in patch i at time t, and It,i the forage intake of a prey in patch i at time

t. Prey forage intake follows a type II functional response, providing there is enough forage in the 

patch to feed all prey present. If not, forage is equitably shared among all prey present in the patch: 

If Rt,i > (It,i x Nt,i), Ii = a x Rt,i / (1 + a x h x Rt,i) (equation 4.1)

else, It,i = Rt,i / Nt,i (equation 4.2)

with a the attack rate on forage and h the handling time. 

We assumed that prey consumption could not lead a patch to a stage where it would not regrow, and 

allowed Rt+1,i = Rmin (with Rmin small, Table S1), if eq. 3 returned Rt+1,i < Rmin.  
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Substep 2: Estimating encounters

This substep takes place for each predator present in a patch where prey are also present. Each 

predator search for prey, and encounters each prey sequentially with a constant probability pe , until 

all prey present in the patch have been tested or an encounter occurs. The predator then stops 

searching during this time step. A prey can however encounter several predators. 

Substep 3: Updating prey patch weights

For each prey, the weight given to the patch i currently occupied, and only this one, is updated. The 

state variable Fi indexing the perceived quality, forage-wise, of patch i, is updated by integrating the 

information about the current intake:

Fi = μ x Fi + (1 - μ) x It,i (equation 5)

with μ a parameter whose value is within ]0-1[ and determine the relative contribution of recent vs. 

older information: as the value of μ increases, the relative contribution of old information to Fi 

increases, and Fi becomes mostly related to the long-term average intake at the patch, rather than to 

its recent state.  

The state variable Ei is updated by integrating the information about predation risk, such as: 

If Nt,e > 0, Ei = Ei + Nt,e x β x (γi / γmax) (equation 6.1)

else, Ei = Ei - (β / δ) (equation 6.2)

where Nt,e is the number of encounters of the prey with predators during this time step, γi the 

vulnerability (probability of prey death given an encounter) in patch i, and γmax the maximum 

vulnerability observed among all patches. β represents the importance of information about 

encounters in determining space use: prey with greater values of β gives lower weights to the patch 

after an encounter. δ represents the relative contribution of recent vs. older information on encounters 

in determining Ei. Specifically, δ x (γi / γmax) time-steps without an encounter in patch i are required 

for the influence of an encounter on the weight of patch i  to disappear. Therefore, prey with greater δ 

values give higher importance to old encounters when selecting a patch. Finally, the weight Wi is 

updated following equation 1.
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Substep 4: Updating predator patch weights

For each predator, the weight given to the patch i currently occupied, and only this one, is updated. 

This substep is similar to substep 3 and we only highlight what differs. Firstly, for predators, the state 

variable indexing prey forage availability Fi is updated based on Rt,i, the amount of forage available in

patch i at time t, rather than on prey forage intake (It,i), which would be harder to evaluate for a 

predator. Therefore, 

Fi =  μ x Fi + (1 - μ) x Rt,i (equation 7)

Secondly, as for prey, Ei is updated using equations 6.1 or 6.2, but Nt,e equals the number of prey 

encountered by the predator during this time step, which is 0 or 1 as the predator cannot encounter 

more than one prey during one time step. Finally, the weight Wi is updated following equation 2. 

Note that, in contrast to prey and because of the difference between equations 1 and 2, predators with 

greater values of β give greater (not lower) weight to the patch after an encounter. β however still 

index the importance of encounters vs. prey forage in driving patch choice.

Substep 5: Selecting target patches for predators and prey

This substep is repeated for each predator and each prey. The probability of selecting, at the next time

step, patch i among patches 1, …, p, is given by:

Pt+1,i = (Wi)α / (Σp
j=1 (Wj)α) (equation 8)

with α a parameter determining to what extent the choice of patches depends on the weights given to 

patches. If α is very near 0, the individual chooses the next patch virtually at random. If α = 1, the 

probability for the individual of choosing a specific patch is proportional to the patch weight. If α = 8,

the highest value used here, the individual has a very high probability of choosing the patch with the 

highest weight.
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Fitness calculations

At the end of the simulation, the fitness of each prey is calculated as the product of its total intake and

its survival probability. The fitness of each predator is calculated as the number of prey successfully 

captured.

Finding optimal strategies

To find the optimal strategies for both predator and prey, we built a genetic algorithm (GA) on top of 

the model (Hamblin 2013). This approach is especially valuable when brute-force optimization using 

gradient of parameter values for all parameters across all combinations is not computationally 

feasible, which was the case for our model. GA relies on a balance between exploration through the 

generation of new strategies and exploitation through the selection of the best strategies (Hamblin 

2013). As such, it can be viewed as mimicking the process of natural selection. 

The GA is initialized with a random set of strategies, each strategy being defined by a 

combination of values given to parameters α, μ, β, and δ. For 4000 generations, we iterate the same 

operation: (i) evaluation of the fitness of strategies investigated by running the model, (ii) selection 

and mutation of strategies. First, strategies that will persist are selected. Selection is elitist, so the 

strategies leading to the 10% highest fitness values are always kept. The other strategies are selected 

using the k-tournament method, with k = 2 (see Hamblin 2013). After selection of the strategies, each 

parameter of the strategies has a 5% chance of being subject to mutation, which could be a 

recombination (2.5%), a small mutation (1.25%) or a large mutation (1.25%). Recombinations 

replace the current parameter by the one of another strategy taken at random. Small mutations add a 

small increment to the current parameter value. Large mutations replace the current parameter by a 

new random value within the parameter range. On completion of the algorithm, a set of strategies 

remains and an additional series of generations is ran with selection but without mutation, in order to 

filter the remaining strategies until a single one remains for both predators and prey (Hamblin 2013). 

Even after a long run-time, a GA may fail to find optimal solutions because of continuous mutations 

or local optima. In order to check convergence of the algorithm to strategies that would be repeatedly 
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selected in a given environment, we replicated each simulation 3 times. At times, the final value of 

some parameters differed between replicates. This was the case when strategies with low α values 

(near-random movement) were efficient, as other parameters therefore did not affect the actual 

movement of individuals and were subject to drift. Figures in the main text present results for one 

replicate and those for the 2 others are shown in SI 2.

Analyses

We compared optimal strategies of predators and prey across environments that differed in (1) the 

vulnerability in standard patches (4 values); (2) the contrast in vulnerability between standard and 

riskier patches (5 values); (3) the maximum forage in standard patches (3 values); (4) the contrast in 

maximum forage between standard and riskier patches (4 values, always >1 so that riskier patches 

were always intrinsically better than standard patches in terms of prey forage). We tested all 

combinations of values (see Table S1), yielding a total of 240 different environments. In the main 

text, we present the distribution of values of strategy parameters as a function of those four 

environmental characteristics, as well as for environments without predators, to compare prey 

movement strategy with the one observed under predation risk. In SI 2, we provide a comprehensive 

report of all results on optimal strategy parameters, as well as on the distribution of predators and 

prey, for all the environments tested and for the 3 replicates.

Results

Movement predictability

In all types of environments, predators are generally much less predictable than prey. Predators 

generally have α values below 1 (Fig. 1, Fig. S2-1 to S2-5 in SI 2), suggesting significant randomness

in their patch choice. Prey movements are much more driven by patch weights (greater α)(Fig. 1, Fig.

S2-1 to S2-5). In absence of predators, however, prey would be much more predictable, virtually 

always choosing the best patches (α ~ 8, Fig. 1, Fig. S2-1 to S2-4). 
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Predator strategies involve greater randomness with higher vulnerability in standard patches (Fig. 1a),

higher maximum forage in standard patches (Fig. 1c) and very high forage contrast between standard 

and riskier patches (Fig. 1d). Predator movement predictability is minimum for intermediate contrast 

of vulnerability between standard and riskier patches (Fig. 1b). Prey movement strategies involve 

greater randomness as vulnerability in standard patches increases (Fig. 1a), vulnerability contrast 

between standard and riskier patches increases (except for highest value, Fig. 1b), maximum forage in

standard patches decreases (Fig. 1c), and forage contrast between standard and riskier patches 

increases (Fig. 1c). In absence of predators, prey were always highly predictable (Fig. 1).

Relative importance of information about encounters

Keeping in mind that predators use past information less than prey to decide where to move (see 

above), encounters have a greater importance (greater values of β, Fig. 2, Fig. S2-6 to S2-10 in SI 2) 

for predators’ assessment of patch quality than for prey. Predators grant very high importance to 

information about encounters in all environments except when the contrast of prey vulnerability is 

very low between standard and riskier patches (Fig. 2, Fig. S2-6 to S2-10). Prey generally give little 

importance to information about encounters, but this information becomes slightly more important as 

vulnerability in the standard (i.e. safest) patches increase (Fig. 2a, Fig. S2-6), the contrast in 

vulnerability between standard and riskier patches increases (Fig. 2b, Fig. S2-7), and the contrast in 

maximum forage between standard and riskier patches increases (Fig. S2-9).

Relative importance of recent vs. older information about encounters

Generally, predators and prey differ little in how they integrate information about recent and older 

encounters when determining patch weights (Fig. 3, Fig. S2-11 to S2-15 in SI 2). Both predators and 

prey grant greater importance to old encounters as vulnerability in standard patches increases (Fig. 

3a, Fig. S2-11), and as the vulnerability contrast between standard and riskier patches increases (Fig. 

3b, Fig. S2-12). When this vulnerability contrast becomes very large, prey use information about old 

encounters more than predators (Fig. 3b, Fig. S2-12). Prey forage availability has a limited effect on 
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prey and predators’ relative use of information about recent and old encounters (Fig. 3c, 3d, Fig. S2-

13, S2-14).

Relative importance of recent vs. older information about forage availability

Despite the large variability observed in the results, prey appear to use recent information on forage 

availability more than predators (Fig. 4, Fig. S2-16 to S2-20 in SI 2). Note that predators however 

rely less on information about forage availability than prey to determine where to move (see above). 

For predators, the importance of recent vs older information on forage availability increases as 

vulnerability in standard patches decreases (Fig. 4a, Fig. S2-16), when vulnerability differs greatly 

between standard and riskier patches (Fig. 4b, Fig. S2-15), and as forage contrast between standard 

and riskier patches increases (Fig. 4d, Fig. S2-19). For prey, the importance of recent vs older 

information on forage availability increases as vulnerability in standard patches decreases (Fig. 4a, 

Fig. S2-16) and the vulnerability contrast between standard and riskier patches decreases (Fig. 4b, 

Fig. S2-17). Maximum forage in standard patches (Fig. 4c, Fig. S2-18) and contrast in maximum 

forage between standard and riskier patches (fig. 4d, Fig. S2-19) also affect how recent information is

used by prey, but results varied largely between simulations. It is clear, however, that the absence of 

predators leads prey to mostly value recent information (Fig. 4).

Discussion

We developed, to our knowledge, the first model predicting how optimal predators and prey should 

use information about prey forage availability and encounters with their enemies. The model revealed

general differences in the optimal use of information between predators and prey, as well as the 

influence on patch choice strategies of key environmental characteristics such as contrasts in forage 

availability and vulnerability between patches. Our study offers a theoretical framework to interpret 

previous studies and generalize their predictions. In particular, our model provides three clear 

predictions that apply to the realistic situation of competitive prey foraging under predation risk: (1) 

predators and prey play a shell game in which each player is trying to keep its location unpredictable. 
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Predators remain however much more unpredictable than prey; (2) what makes a good patch for a 

predator is more linked to successful encounters with prey than high prey forage availability; the 

opposite is true for prey; (3) prey and predators used recent and old information about encounters 

rather similarly, and give more weight to recent encounters. In contrast, the relative importance of 

recent and old information about forage availability is highly variable, differing between prey and 

predators and depending on environmental characteristics. We now discuss these predictions further, 

in the light of existing and possible studies.

Previous theoretical (Mitchell & Lima 2002; Mitchell 2009) and empirical (Roth & Lima 

2007; Valeix et al. 2011; Bosiger et al. 2012; Simon et al. 2019) studies have suggested that predators 

and prey play a shell game in which both the prey and the predator would benefit from moving 

regularly in an unpredictable manner to prevent the other player to learn and then avoid (for the prey) 

or focus on (for the predator) places where the other player would be. Theoretical studies have 

however focused on unpredictability of the prey, as they never allowed predators to move somewhat 

randomly. Empirical studies never compared movement predictability of predators and prey. Our 

model fills these gaps from a theoretical standpoint, and predicts that predators’ movements should 

often be unpredictable. A prey knowing a predator’s patch weights would not be able to predict its 

movement as the predator’s movements were only weakly determined by those weights. Conversely, 

although prey did not always move towards the best patches, a predator knowing prey patch weights 

would significantly increase its chances to find prey, as it could restrict the number of patches where 

to look for, as prey most often selected patches with a probability at least proportional to the patch 

weight. The comparison of prey strategies in presence or absence of predators however clearly 

demonstrates that, in absence of predators, prey would be much more predictable, always moving 

towards the patch perceived as best. The general contrast in movement randomness between 

predators and prey is robust to variations in the levels and contrasts of forage availability and 

vulnerability in the landscape.

Differences in movement strategies between predators and prey could be explained by 

considering the costs and benefits of randomness for both. Regarding benefits, random movement by 
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predators increases the availability of prey that, if behaviourally responsive to predictable risk, could 

otherwise avoid places where predators would be likely to be present, leading to behavioural resource

depression (sensu Charnov 1976). Random movement by prey benefits them as it reduces the 

searching efficiency of predators that can memorize past encounters and could use this information 

for later searches (Mitchell 2009). As for costs, even though predators could recognize a good patch, 

mostly based on past encounters as high forage availability is just a proxy for the potential presence 

of prey (Flaxman & Lou 2009), the cost of ignoring this information and moving randomly is likely 

to be lower than for the prey. Predators moving randomly and arriving at a bad patch only suffer from

missed opportunity costs of foraging. In contrast, prey moving randomly rather than doing an 

informed choice and arriving on a bad patch could suffer from two costs, lower forage intake and 

increased predation risk. In our simulations, prey movement was virtually always strongly determined

by patch weights, suggesting that in most circumstances the costs associated with randomness largely 

outweighed its potential benefits. In addition, as predators evolve to be unpredictable, information 

about past encounters becomes less and less relevant to the prey. Prey therefore end up giving much 

more weight to information about forage availability than to encounters, focusing their movement 

towards good foraging patches, with a low, but not negligible, level of unpredictability to extend the 

predator’ area to search, giving prey a chance to avoid encounters. Overall, with our model, we 

confirm the potential importance of randomness in the predator-prey spatial game, and explain why 

we should expect predators to be unpredictable, and prey not so, but more than in absence of 

predation.

Our model also provides insights on how prey and predators should use recent and 

past information about encounters and forage availability. Recent encounters appear to be given more 

weight than older ones by both prey and predators. This make sense as, generally, information about 

encounters is poorly used by both: prey because they cannot predict where predators occur and thus 

mostly use information about forage availability, predators because they move rather randomly and 

therefore do not use much information, although when they do they favor information about where 

they met prey rather than about prey forage availability. It is likely that prey and predators used 
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information about recent encounters to escape (prey) or remain in (predator) patches where an 

encounter occurred. It is consistent with observations that prey often leave patches when a predator is 

detected, and do not return immediately (Courbin et al. 2016). Predators are likely to leave rapidly 

anyway as patch weight has a low contribution to patch choice. In contrast, and despite strong 

variability among simulations and environmental contexts, recent and older information about forage 

availability was used differently by prey and predators. Prey generally gave more weight to recent 

information about forage than predators did. This could be explained by the fact that recent 

information is important for the prey as it allows it to keep foraging in good foraging patches, or 

move away when foraging in poor patches. For predators, recent forage availability might be a poor 

predictor of finding prey that could have arrived there by chance, whereas longer-term information 

about forage availability in patches might be a predictor of the likelihood of prey’s presence or 

density. As discussed before, however, information about forage availability remains weakly used by 

predators, unless patches do not differ in vulnerability, in which case predators move less randomly 

and give slightly more weight to information about forage than usual (Fig. 1 and 2). Thus, although 

our study suggests that leap-frogging, i.e. when predators track prey resources rather than prey 

themselves (Sih 1998; Flaxman & Lou 2009), should be rare, it might be more detectable in 

environments where prey vulnerability is homogeneous, as in the experimental contexts where it has 

been tested (Hammond et al. 2007; Williams & Flaxman 2012).

Generally, although the level and distribution of risk and prey forage in the environment did 

not qualitatively alter the observed differences between predators and prey space use strategies, it still

had noticeable effects. Increasing global risk levels, by increasing the prey vulnerability in all 

patches, or only in riskier patches, leads prey to give increasing importance to encounters relative to 

forage availability. As risk increases, prey initially become slightly less predictable, but this effect 

does not persist, and possibly reverse, in very risky environments. Simultaneously, prey spend 

increasingly more time in standard, safer, patches (Fig. S3 in SI 3), increasingly using long-term 

information on encounter risk to identify these. Predators become less predictable and use patches 

increasingly randomly, although this effect appears to be slightly reduced when the vulnerability 
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contrast between standard and riskier patches increases, predators then using long-term information 

about encounters, likely to avoid random movements that would take them to riskiest patches barely 

ever used by prey. Therefore, our results suggest that lowest levels of movement predictability of prey

and predators should be observed at intermediate levels of vulnerability heterogeneity within the 

landscape. To the best of our knowledge, this theoretical prediction has not been made before, and is 

amenable to testing. Effects of the levels and heterogeneity of prey forage availability differed from 

those observed for vulnerability, and in cases affected movement predictability of prey and predators 

in a contrasted way. While predators become slightly less predictable as prey forage availability 

increases in all patches, prey become increasingly predictable, focusing more on standard, safest, 

patches, using long-term information on forage to identify them. Note how, in absence of predation, 

prey would in contrast increasingly use the most recent information to find most profitable patches. 

Prey predictability however decreases as riskier patches become more profitable. This occurs because

the costs of not moving to the best patches is increasingly reduced by finding higher forage 

availability when the prey move to a riskier patch, which they increasing do (Fig. S3).

Overall, our work provides the most comprehensive theoretical framework to date to predict 

how prey and predator movement strategies should have evolved in contrasted environments. In 

particular, we focused on improving previous approaches by considering both prey and predators as 

behaviorally-responsive players of the space race, as this is now well established empirically (e.g. 

invertebrates: Hammond et al. 2007; large mammals: Valeix et al. 2011; Courbin et al. 2019). Our 

predictions should now be challenged by experimental and observational studies to reveal the extent 

of our understanding of predator-prey interactions. A key insight gained here is that the interplay 

between memory use and purposeful randomness should be a central focus of future studies.
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Figures

Figure 1. Optimal values, for predators and prey, of parameter α, indexing movement 

predictability, for varying (a) vulnerability in the standard patches, (b) vulnerability contrast between

standard and rich patches, (c) maximum forage in the standard patches and (d) maximum forage 

contrast between standard and rich patches. Values for environments without predators are also 

shown (patches were then not assigned vulnerability levels). Lower values correspond to less 

informed, i.e. more random, movements. 
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Figure 2. Optimal values, for predators and prey, of parameter β, indexing the relative 

importance of information about encounters, for varying (a) vulnerability in the standard patches, 

(b) vulnerability contrast between standard and rich patches, (c) maximum forage in the standard 

patches and (d) maximum forage contrast between standard and rich patches. Lower values 

correspond to lower importance given to encounters, relative to prey forage availability.
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Figure 3. Optimal values, for predators and prey, of parameter δ, indexing the use of long-term 

information about encounters, for varying (a) vulnerability in the standard patches, (b) vulnerability

contrast between standard and rich patches, (c) maximum forage in the standard patches and (d) 

maximum forage contrast between standard and rich patches. Lower values correspond to a lower 

weight given to older information.
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Figure 4. Optimal values, for predator and prey, of parameter μ, indexing the use of long-term 

information about forage availability, for varying (a) vulnerability in the standard patches, (b) 

vulnerability contrast between standard and rich patches, (c) maximum forage in the standard patches 

and (d) maximum forage contrast between standard and rich patches. Values for environments 

without predators are also shown (patches were then not assigned vulnerability levels). Lower values 

correspond to a lower weight given to older information.
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