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Disentangling the roles of bottom-up and top-down drivers in the 

trade-off between food acquisition and safety in prey with multiple 

predators 

 

Abstract 

1. Prey face a trade-off between acquiring food and avoiding predation, but food availability, 

and therefore its effect, is rarely measured in field studies investigating non-lethal effects of 

predation. The main aim of this study is to investigate the role of the presence of predators 

in the functional adjustments of feeding parameters with patch quality in a medium-size 

herbivore. 

2. In Hwange National Park (Zimbabwe), we set up an experiment by manipulating, over 

two years, patch quality for impala (Aepyceros melampus), a medium-sized herbivore. 

We assess predation risk by monitoring the presence of three GPS-equipped predators: 

African lions (Panthera leo), spotted hyaenas (Crocuta crocuta) and African wild 

dogs (Lycaon pictus).  

3. In enriched, fertilised plots the impalas reduced step rates (i.e. the rates of change in 

feeding stations), and increased their number of bites per feeding station while bite 

rates were not affected. Thus, the main adjustment of their feeding was the step rate. 

The total time the impalas spent vigilant appeared to be a good predictor of the 

variation of their bite rate. Although vigilance caused a reduction in bite rate when at a 

feeding station, the impalas reduced the relative costs of vigilance by continuing 

chewing and processing their food when scanning for predators. 
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4. When predators were in the vicinity, the impalas increased their exclusive vigilance 

(high-cost vigilance) but not their vigilance while chewing (low-cost vigilance) and 

decreased their bite rate while their step rate and the number of bites per feeding 

station did not change significantly. The impalas were thus visually disconnected from 

their patch, and reduced their bite rate when actually foraging. Exclusive vigilance 

increased when both lions and hyaenas were in the vicinity, and when wild dogs were 

nearby.  

5. Patterns of vigilance that altered bite rate were linked to the presence of predators 

during the previous 24h. Over the long term patch quality was the main determinant of 

the feeding parameters (step rate and bite rate). This study shows how predators, by 

affecting the time prey devote to predator detection, shape the functional adjustments 

of food acquisition by prey to local patch quality.  

Key-words 

Antipredator response; Feeding rate; Foraging strategy; Herbivore; Patch quality; Risk effect; 

Savanna; Vigilance 
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Introduction 

Limitation of populations under natural conditions is driven by both bottom-up and top-down drivers 

(Sinclair et al. 2000; Shurin et al. 2002; Hayward, O’Brien & Kerley 2007; Hopcraft, Olff & Sinclair 

2010). Food abundance and quality have been reported to control herbivore biomass (Fritz & Duncan 

1994) as they affect the physical condition of individuals and thus their capacity to survive and breed 

(Mduma, Sinclair & Hilborn 1999). The role of predators in the limitation of prey populations through 

numerical lethal effects (e.g. direct killing) has been demonstrated in numerous studies (Sinclair, 

Mduma & Brashares 2003; Preisser, Bolnick & Bernard 2005; Heithaus et al. 2009). In addition, 

antipredator behaviours of prey, such as changes in habitat use (e.g. Werner et al. 1983), changes in 

temporal niches (Valeix et al. 2009a), vigilance (e.g. Dröge et al. 2017) and foraging strategies (e.g. 

Barnier et al. 2014), may have energetic (e.g. Kotler, Brown & Bouskila 2004) and physiological 

consequences (e.g. stress, Boonstra et al. 1998; Creel, Winnie & Christianson 2009), which can 

adversely affect prey demography (e.g. Lima 1998; Creel & Christianson 2008; Zanette et al. 2011). 

Although the antipredator responses of prey have been well described (Creel 2018), assessments of 

the costs of these responses are scarce and little is known about the non-lethal effects of the 

presence of predators on large mammalian prey populations (Creel et al. 2017, Say-Sallaz et al. 

2019).  

Vigilance is one behaviour that is central to the trade-off between food acquisition and 

safety, and contributes to the indirect impact of predators on the fitness of prey through its link with 

fitness-enhancing activities (Hopcraft, Olff & Sinclair 2010). Although maintaining high levels of 

predator detection allows prey to reduce their probability of being killed, this strategy is likely to 

reduce food acquisition and thus to incur fitness costs (Brown & Kotler 2004). Studies in birds (Fritz, 

Guillemain & Durant 2002) and mammals (Fortin et al. 2004) have reported that an increase of 

vigilance significantly reduced feeding efficiency (e.g. instantaneous intake rate) of foragers. This 
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trade-off between foraging costs and vigilance may be critical when food resources are of poor 

nutritional quality, forcing foragers to maximise their foraging effort.  

In studies investigating the non-lethal effects of the presence of predators, information on 

the spatial and temporal variation in food availability for prey is often lacking, particularly in studies 

of vigilance strategies in free-ranging animals. This makes it difficult or impossible to disentangle the 

roles played by predation pressure and food quality in shaping the trade-off between food 

acquisition and predator detection (McNamara & Houston 1994). When food biomass and quality are 

not measured, it is uncertain whether vigilance behaviour of prey reduces food intake rate up to the 

point where it jeopardizes fitness, as intake rates vary with patch quality and biomass (Cromsigt & 

Olff 2006; Owen-Smith, Fryxell & Merrill 2010). Although the foraging strategies of herbivores have 

been well studied (Spalinger & Hobbs 1992; Wilmshurst, Fryxell & Colucci 1999), the impacts of 

variations in forage characteristics, particularly when they are seasonally driven, on the foraging 

costs of vigilance are far from clear (Favreau et al. 2018). For instance, studies of short-grass grazers 

have shown that higher grass biomasses are generally less digestible (Fryxell 1991), making the 

relationship between food intake and the greenness and biomass of food (i.e. two proxies of patch 

quality) complex to understand. However, an increase in vigilance is likely to affect food acquisition 

differently if the animals are foraging in patches of different forage characteristics and quality: food 

acquisition is affected by grass height and density (through their effects on bite sizes and rates), and 

the chemical composition of grass affects its digestibility. Moreover, during antipredator vigilance, 

many animals, including birds (Baker et al. 2011) and mammals (Blanchard & Fritz 2007), reduce 

foraging costs by exhibiting vigilance while processing food (e.g. chewing) or moving (Illius & 

Fitzgibbon 1994; Fortin et al. 2004). Vigilance with chewing contrasts with high-cost vigilance (called 

exclusive vigilance) during which individuals stop handling food. Thus, the effects of predation risk on 

food acquisition should be examined with attention to the way these two types of vigilance affect 



5 

 

functional adjustments in foraging parameters that influence intake rates (particularly bite rate and 

step rate) in relation to patch quality.  

Variations in prey animals’ perception of predation risk (such as high vs low risk habitats) 

affects the time prey allocate to foraging (Winnie & Creel 2007) and food acquisition (Sansom, Lind & 

Cresswell 2009). Although some studies have investigated responses of prey to a single predator 

species (Chamaillé-Jammes et al. 2014; LaManna & Martin 2016), we know little about the effects of 

the presence of more than one predator species on vigilance strategies and consequently on food 

intake rates. Most natural ecological systems are multi-predator systems in which prey can be caught 

by several predator species (Sinclair, Mduma & Brashares 2003, Thaker et al. 2011, Creel et al. 2017, 

Montgomery et al. 2019). For a complete understanding of the trade-off between vigilance and food 

acquisition in these multi-predator systems, it is important to determine how prey alter their intake 

rate in response to specific predator species and the presence of single versus multiple predator 

species. Finally, it is uncertain for how long after a predator is near the prey, it affects the trade-off 

between food acquisition and predator detection by prey particularly when they do not encounter 

their predators every day (Middleton et al. 2013, Courbin et al. 2016). 

To examine the role of predators and food quality in shaping the trade-off between food 

acquisition and predator detection, we studied vigilance and foraging strategies in impala (Aepyceros 

melampus), a medium-sized herbivore, in Hwange National Park (HNP), Zimbabwe. Over a two-year 

period, we used an experiment in which patch quality was manipulated by fertilising and mowing 

plots in a grassland (cutting stimulates regrowth, Leriche et al. 2003), thus affecting both plant 

biomass and its quality (the proportion of green plant material). Predation risk was investigated by 

monitoring the presence of three predators, African lions (Panthera leo), spotted hyaenas (Crocuta 

crocuta) and African wild dogs (Lycaon pictus) marked with GPS-collars.  

We first assessed how impalas adjusted their feeding behaviour to patch quality (biomass 

and greenness) controlling for the presence of predators and perceived predation risk (visibility 
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around the individual impalas). Three parameters were used to describe impala feeding behaviour: 

bite rate, i.e. the number of bites per min, step rate, i.e. the number of steps per min, and the ratio 

between the number of bites and steps (the number of bites per feeding station), which is an 

indicator of the number of bites per feeding station. Bite rate can be a proxy of intake rate, as it is 

highly dependent on the rate of bite encounters, i.e. bite density, and on bite size, since bigger bites 

take longer to chew hence lowering bite rate. In our study, grass biomass was mostly below 50g/m² 

(see FigS1 Appendix1). Below this value, medium sized antelopes and gazelles are limited in their 

adjustment of bite size (Wilmshurst, Fryxell & Colucci 1999; Wilmshurst, Fryxell & Bergman 2000). 

Thus, bite size can vary but not in relation to patch biomass. Hence, we expected feeding parameters 

in impalas foraging in our study area to respond more to the proportion of green tissues than 

variation of grass biomass. This limited possibility to adjust bite size implies that bite rate was a 

reasonable proxy of intake rate, and this intake rate was more dependent on encounter rate than 

chewing rate (Process 2 of Spalinger & Hobbs 1992). Step rate while foraging gives an index of the 

rate of change in feeding stations, with a greater rate of change when grass quality is low. While step 

rate may affect the bite rates and the local density of acceptable bites, step rate can be influenced by 

disturbance mechanisms unrelated to food. Thus, one metric that may directly translate the 

perception of feeding patches giving a better description of the perceived patch quality is the ratio 

bite rate/step rate (the number of bites per feeding station). If the amount of acceptable bites in a 

given patch is high, the number of bites per feeding station is high. Thus we predicted that under low 

predation risk, step rate should decrease with increases in patch quality while bite rate remains 

stable, resulting in an increase in the number of bites per feeding station with patch quality i.e. in 

enriched patches of tall grass (Fig 1a). 

We tested the effects of perceived predation risk (measured by the level of vigilance) and the 

recent nearby occurrence of predators on the feeding behaviour of impalas (bite rate) and how 

impalas perceived and used feeding patches (indicated by the number of bites per feeding station). 
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We expected to find one or both of two patterns of adjustment to perceived predation risk (Pattern 

1.1 and 1.2) and one pattern to the recent nearby occurrence of predators (Pattern 2) which are 

presented in the Figure 1. Pattern 1.1 and 1.2 result from perceived predation risk that increases the 

need for low-cost vigilance (while chewing or moving) and causes adjustment of step rate or bite 

rate, respectively. In Pattern 1.1 the animal maintains selectivity for high quality bites. When the 

cropping process is interrupted by vigilance before the mouth is full, the individual leaves the 

partially depleted patch to go to a better patch with higher densities of acceptable bites, thus 

increasing step rate. It is also consistent with vigilance interruption impairing searching for food 

items in a partially depleted patch (Fritz et al. 2002). This would lead to a decrease in the number of 

bites per feeding station mostly induced by higher step rate (Fig 1b). In Pattern 1.2, the animal 

broadens the acceptability of bites in a given patch to achieve a full mouth before vigilance interrupts 

it. This implies more bites per patch and smaller distances between bites, therefore higher bite rates, 

leading to an increase of the number of bites per feeding station because of this increase of bite rate 

for a given feeding station (Fig. 1c).  

When predators are actually present, the level of vigilance should be higher for both low and 

high-cost vigilance (Favreau et al. 2013). We expected a different pattern (Pattern 2) in which the 

increase of high-cost vigilance visually disconnected the individual from its food patch, inducing a 

greater cost of searching for acceptable bites. Under this scenario, we expected the number of bites 

per feeding station to decrease because bite rate decreases (Fig 1d), particularly in the tall grass 

where searching may be more difficult, but mainly because visibility while foraging with head down is 

poor and thus perceived as risky (Pays et al. 2012). If the costs of resuming searching for remaining 

bites is high, then stepping to another feeding station would be an alternative option allowing for 

vigilance while moving. As in Pattern 1, this would cause an increase in step rate.  

Previous observations in HNP reported that zebras, Equus quagga, encountered lions at night 

every 35 days on average (Courbin et al. 2016). Thus observations with predators in the vicinity of 
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impalas may be rare compared to the ones without predators. From a statistical standpoint, this may 

lead to failure to detect an effect of the recent nearby occurrence of collared predators on the 

behaviours of the impalas. To avoid missing an effect of predation on the trade-off between food 

acquisition and vigilance, we compared vigilance and bite rates and step rates of focal impalas on 

days when collared predators had been in the vicinity during the previous 24 hours with observations 

on days before their arrival (i.e. the preceding 24 hours). We also investigated whether behavioural 

adjustments were more extreme when more than one predator species was present.  

 

Materials and methods 

Study site 

Hwange National Park (HNP) hosts an exceptional diversity of mammals including most of the small 

to large herbivores and carnivores observed in Southern African savannas (Fritz et al. 2011). The 

fieldwork was conducted near Main Camp in the north of HNP (19°00’S, 26°30’E). The study site is an 

open grassland area of 64 ha surrounded by Acacia and Combretum bushes, typical of the mixed 

bushed grassland on nutrient-poor soils of the eastern Kalahari sands. Bushes form a natural and 

visually obstructive boundary of the grassland. The long-term mean annual rainfall is 600 mm and the 

rainy season occurs between October and April (Chamaillé-Jammes, Fritz & Murindagomo 2006). The 

fieldwork was conducted from January to August in 2009 and 2010, which received 823.6 mm and 

935.4 mm of rainfall respectively. 

 The density (± SD) of impalas around Main Camp was 1.43 impalas/km² (± 0.63) (Chamaillé-

Jammes et al. 2009). Impalas are expected to be top-down limited (Hopcraft, Olff & Sinclair 2010) as 

their body mass averages 45 kg (Cumming & Cumming 2003), i.e. below the 180-200kg threshold 

under which population dynamics of prey should be controlled by predation (Sinclair, Mduma & 

Brashares 2003). Impalas are preferred by African wild dogs, cheetahs (Acynonyx jubatus), and 
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leopards (Panthera pardus) (Hayward & Kerley 2008) and other large carnivores such as spotted 

hyaenas and lions also feed on impalas (e.g. impalas represent 17% and 8% of the total number of 

prey found in lion and hyaena scats respectively in HNP (Davidson et al. 2013 and Périquet et al. 2015 

respectively)). Impalas are mixed feeders and their feeding strategy varies seasonally (Jarman 1974): 

they are predominantly grazers while grasses are green and growing, and browsers of foliage, forbs, 

shoots and seedpods at other times.  Here, we studied behavioural responses of impalas when they 

were grazing. Focals when impalas browsed short bushes or trees were excluded from this analysis. 

 From 50 to 150 impalas (mainly adult females and juveniles) foraged each day at the study 

site. All adult females in the study site formed a single herd (as described in Jarman & Jarman 1973) 

which divided into a variable number of groups with marked fusion-fission dynamics. It was not 

possible to capture and mark all individuals in the study population. However, since the year 2000 

newborn fawns have been captured and tagged on an annual basis, it was possible to regularly 

observe about 30 ear-tagged adult females. Ear-tagged individuals allowed us to confirm that 

individuals randomly selected for observations (called ‘focals’ here) were rarely resampled and the 

effect of potential pseudo-replication is therefore negligible. 

 

Ethical Statement 

The experiments complied with the laws (including animal welfare ethics) of Zimbabwe. They were 

approved and conducted under permits from the Director General of the Zimbabwe Parks and 

Wildlife Management Authority (Ref: DM/Gen/ (T), Permit numbers: 23(l) (c) (ii): 01/2009 and 

01/2010 for the impala behavioural study and hyaena collaring, 03/2009 and 25/2010 for lion 

collaring, and 09/2009 and 07/2010 for wild dog collaring). The long-term individual-based study on 

impala population dynamics in HNP started in 2000 under permits from the same authorities cited 

above. 
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Experimental design 

We manipulated the impalas’ food resources by spreading common fertiliser for pasture (N: 3.5%, 

P2O5, 24.4%, S: 11.0% and Zn: 0.5%, at 70kg/ha) and by mowing (cutting) grass to increase both the 

biomass and the proportion of grass that was green (and thus high quality) since herbivores select for 

green tissues (e.g. Murray & Baird 2008). Four enriched and four control plots (60 × 120m), all 

including strips of cut and uncut grass, were created at different distances from cover (Fig 2). 

Fertilisation and mowing were performed in January 2009 and 2010, two weeks before the beginning 

of the behavioural studies. We confirmed that fertilisation and mowing changed grass availability and 

quality by measuring grass biomass, greenness and bare soil in all plots (192 samples in 2009 and 353 

in 2010 for the three cited variables). Grass biomass was measured using a previously calibrated disk-

pasture meter and the proportion of green tissues and the average grass cover were estimated 

visually by using photographs (as in Vanha-Majamaa et al. 2000, see Pays et al. 2012 for details, and 

see Appendix 1 for statistical details and variations among seasons and between years and the 

effects on patch quality). On average, during the 2-year experiment, biomass was 30% higher in 

enriched plots compared to control plots in uncut strips while we did not detect any significant 

difference in cut strips. The proportion of green tissues was 25 % higher in enriched plots than in 

control plots in cut strips and 13% higher in uncut strips. In cut and uncut strips, the proportion of 

bare soil was on average 17% lower in enriched plots compared to control plots. 

  

Recording behaviour 

We studied vigilance and foraging behaviours of impalas by videotaping focal adult females only 

(hence avoiding adding sex-age effects), for 5-min periods chosen at random during the daytime 

from February to August. Juveniles were present in all groups; it was not possible to say at which 
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female each juvenile belonged to. We filmed individuals in groups whose predominant activity during 

the video sequence was grazing. 5-min focals were sufficient to obtain sequences during which both 

foraging and vigilance behaviours could be studied. In total we recorded 740 sequences: 532 in 2009 

and 208 in 2010.  

 Observations were made from vehicles, maintaining a minimum distance of 100m between 

the focal group and the observer to minimize disturbance. When several individuals were filmed 

during the same day, the observer took care to avoid filming the same individuals to ensure 

independence between observations. Finally, it was crucial that animals did not move long distances 

(i.e. stayed in the same ecological conditions) during the 5-min video sequences to ensure that food 

biomass and quality remained approximately stable during the focal. So we rejected focals during 

which the individual left the plot and did not forage in the same mowed or uncut strips during the 5 

min video sequence. We sampled 163 impalas foraging inside enriched plots, 58 in control plots and 

519 outside plots (Fig 2c). We considered data collected outside plots as uncut controls. 

 An impala was considered vigilant when it raised its head above the horizontal, scanning its 

surroundings, without moving its feet. Previous studies have shown that impala often chew when 

vigilant, but it is assumed that this multitasking might reduce their ability to hear approaching 

predators. Impalas have indeed been observed to stop chewing when hearing a threatening stimulus 

(Blanchard & Fritz 2007; Favreau et al. 2013). Thus, we extracted the total time an individual spent in 

vigilance, distinguishing high-cost vigilance when impalas stopped chewing their bites while vigilant 

and low-cost vigilance when they continued chewing. From each focal, we also recorded when 

individuals moved their left front leg to calculate the step rate and when they took a bite (easily 

recognizable by jerky head movements) to calculate the bite rate. We then calculated the number of 

bites per feeding station.  

 The observer recorded date, time of day and the location of the focal females on a field map. 

Visibility around foraging individuals was categorized based on the height of the grass (Grass height), 
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which was visually estimated and classified in four classes: short when grass height was not above 

the focal impala’s hooves distinguishing between cut (short cut) and uncut (short uncut) strips, 

medium when it was below the upper part of the impala’s metacarpals, and high when it reached the 

impala’s tibia. In tall grass, how easily the focal impala could see the potential predators was 

assumed to be strongly limited. The position of the individuals within a group (i.e. peripheral or 

central) was impossible to determine during the video sampling because the animals moved 

constantly when foraging. Although distance to cover was assessed through three classes: ≤50, 50-

100, and >100m, we did not detect any effect of this variable on any of the vigilance and foraging 

behaviours of impalas (Chi-square tests, all P > 0.54), probably because we included plot identity as a 

random factor and plots were set up at different distances to cover. Moreover, although group size 

was assessed during video sampling, we did not detect any effect of the log-transformed group size, 

considering the two way interactions on any feeding parameters (Chi-square tests, all P > 0.080) and 

vigilance activities (Chi-square tests, all P > 0.071), probably because the range of group size was not 

great enough since we avoided small group sizes (the mean group size (± SD) = 41.74 ± 32.70, range 

from 10 to 108 individuals). Thus, we did not consider these two variables in the final analyses. 

 

Carnivore data 

Long-term GPS-tracking studies of large carnivores in HNP allowed us to investigate how the 

presence of carnivores influenced impala foraging behaviour. During the study period, 7 lions in 

different groups (2 female adults from 2 different prides and 5 male adults from 5 different 

coalitions), 5 spotted hyaenas distributed in 2 clans, and 2 wild dogs representative of 2 clans of 5 

and 7 individuals were tracked around the study site, which they did use. Given the size of the 

different predator groups, this leads to the following proportions of collared individuals for the local 

populations of lions, wild dogs and hyaenas respectively: 0.50, 0.20, and 0.17. Collared individuals 

visited the study site in 2009 and 2010 occasionally or regularly. We assumed that these individuals 
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were representative of the movements of their groups at least for lions (Valeix et al. 2009b) and wild 

dogs (van der Meer 2011) (see Appendix 2 for more details). Although other predator species were 

not collared, visits of cheetah and leopard were rarely observed during the study. We therefore 

assumed that predation pressure at the study site was mainly driven by the three monitored 

predator species. Because lions and hyaenas are active mainly at night and move little during the 

day, GPS locations were acquired every hour from 18h to 6h hours, plus two fixes during the day. For 

wild dogs, GPS locations were acquired every 100 minutes day and night (see van der Meer 2011; 

Benhamou et al. 2014; Périquet et al. 2015 for details on captures and GPS-collars of wild dogs, lions 

and hyaenas respectively). From GPS coordinates of collared predators, we determined whether 

predators occurred in the vicinity of the focal impalas (i.e. within a radius of 2 km centred around the 

focal impala) in the 24 hours preceding the focal. A previous study in the same area reported that 

vigilance of prey including impala was affected by predators at this 2 km threshold (Périquet et al. 

2012). Predators were present within 2 km of the focal impalas in 127 of the 740 video sequences, 

including 97 sequences with lion only, 19 with wild dog only and 11 with both lion and hyaena. As we 

observed only hyaenas only once, and the combination wild dog with lions only once, we discarded 

these two sequences for the analyses.  

 

Data analysis 

Functional adjustment of foraging 

We fitted linear mixed effect models to test for the effect of food quality or quantity on the 

variations in bite rate. We included plot enrichment (whether the impala foraged on control or 

enriched plots), grass height (contrasting the four classes, i.e. high, medium, short uncut, short cut), 

predator within 2 km (whether GPS-collared predators were present in the 2 surrounding km in the 

preceding 24 hours, i.e. no or yes) and two two-way interactions as independent variables:  
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w(x) = β0 + β1(Plot enrichment) + β2(Predator within 2 km) + β3(Grass height) + β4(Plot enrichment × 

Predator within 2km) + β5(Predator within 2km × Grass height)  (1) 

With w(x), the response variable (e.g. bite rate), β0, the intercept and βk the coefficient estimated for 

each predictor xk. Because of the mowing of the grass, the two-way interaction Plot enrichment × 

Grass height could not be considered in the models. We included year (contrasting 2009 and 2010), 

season (contrasting three periods i.e. Feb.-March, April-May or July-Aug.) and plot identity as nested 

random factors to control for time and spatial correlations that might occur in the data set. To 

capture the sequential structure of the data set, we converted the dates of focals to Julian days 

cumulated over the two years and applied an autocorrelation function of order 1 using the function 

corAR1. We tested the effect of each variable using likelihood ratio tests (i.e. χ²). We used post-hoc 

Tukey tests for multiple comparisons when necessary. The same procedure was applied to the log-

transformed step rate and the number of bites per feeding station. We paid special attention to 

check the normality of residuals, the distribution of residuals against fitted values and the lack of 

sequential autocorrelation in residuals (see Appendix 4).   

 

Trade-offs between bite rate, the number of bites per feeding station and vigilant behaviour  

To investigate how investment in vigilance affected bite rate in these impalas, we fitted linear mixed-

effect models including total time in vigilance as the predictor and bite rate as the dependent 

variable. We log-transformed the total time spent in vigilance to achieve statistical requirements on 

model’s residuals: 

w(x) = β0 + β1(Log(Total vigilance))    (2) 

With w(x), the response variable (e.g. bite rate), β0, the intercept and β1, the coefficient derived for 

the predictor. Year, season and plot identity were included as nested random factors and an 

autocorrelation function of order 1 on Julian day as described earlier. The same procedure was used 
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to test the effect of vigilance on the number of bites per feeding station and the effect of low and 

high-cost vigilance on bite rate and the number of bites per feeding station. 

 

Effect of the presence of collared predators in the surroundings 

Although Eq. 1 allowed us to examine whether predator presence affected foraging and vigilance 

over the whole period, we ran the same model (Eq. 1) comparing focals when collared predators 

were in the surroundings in the 24h preceding the focals (N = 127) with focals the day before their 

arrivals (N = 69). We used linear mixed-effect models including year and season as nested random 

factors. To compare focals belonging to the same event, we created a variable called predator event 

identity allowing focals during which a collared predator was present to be linked to focals collected 

the day before their arrival and included it as a random factor nested into year and season. We 

applied the same autocorrelation function of order 1 on the Julian day as described earlier. We 

tested the effect of each variable using likelihood ratio tests (i.e. χ²). The residuals of the model were 

analysed and they fulfilled statistical requirements (see Appendix 4). The same procedure was 

applied on bite rate, the log-transformed step rate and the number of bites per feeding station. 

 Finally, we tested for differences in vigilance including high and low-cost vigilance (log-

transformed), bite rate, the log-transformed step rate and the number of bites per feeding station 

between different categories of predation risk within the surrounding 2km (lion only, wild dog only vs 

lion with hyaena) using linear mixed effects models including predator species within 2 km and grass 

height and including year, season and predator event identity as nested random factors:  

w(x) = β0 + β1(Predator species within 2 km) + β3(Grass height)  (3) 

With w(x) as bite rate, the log-transformed step rate and number of bites per feeding station, β0, the 

intercept and βk the coefficient derived for each predictor xk. The size of the data set did not allow us 

to test for the effect of two-way interactions with each type of collared predator on foraging 
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parameters and vigilance, as each type of predator was not observed in each class of grass height. 

We applied the same autocorrelation function of order 1 on the Julian day as described earlier. The 

residuals of the model were analysed and they fulfilled statistical requirements.  

Statistical analyses were performed using R 3.6.2 (R Development Core Team 2019). Models 

were performed with the nlme package (Pinheiro et al. 2019) and multiple comparisons with the 

lsmeans package (Lenth 2016). 

 

Results 

Functional adjustments of foraging parameters 

On average, bite rate, step rate and the number of bites per feeding station (mean ± SD) in impalas 

foraging in our study area were 30 ± 9.60, 4.5 ± 3.60, and 15 ± 20 respectively. Plot enrichment and 

grass height affected certain foraging parameters of these impalas. As expected, bite rate declined in 

taller grass (22% reduction between tall and short cut grass, Fig. 3a), with the highest values when 

impalas foraged in short cut strips (Table 1). We did not detect any significant effect of plot 

enrichment on bite rate (Table 1), but step rate was lower by 27% and the number of bites per 

feeding station higher by 18% in enriched than in control plots (Fig. 3b,d). On average, step rate 

declined in the tall grass by 12% (Table 1, Fig. 3c) although we did not detect any difference between 

medium and short- grass height for step rate (Appendix 3 for multiple comparisons). Contrary to step 

rate, the number of bites per feeding station increased in tall grass by 53% (Table 1, Fig. 3e) with no 

difference between medium and short grass height (Appendix 3). To conclude, when plot enrichment 

increased patch quality (see Appendix 1), impalas reduced their step rate by 1 step per minute on 

average and gained 3 bites per feeding station. 
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Trade-offs between bite rate, the number of bites per feeding station and vigilance  

The impalas spent on average (± SD) 15% (± 13) of their foraging time in vigilance with 22% (± 20) of 

their total vigilance spent in high-cost vigilance. Thus, while vigilant, individuals mostly continue 

chewing and processing their food. Bite rate decreased with the log-transformed time spent in 

vigilance (β ± SE = -11.213 ± 0.611, χ² = 273.044, df = 1, P < 0.001, pseudo R² = 0.35), high-cost 

vigilance (β ± SE = -3.450 ± 0.289, χ² = 131.586, df = 1, P < 0.001, pseudo R² = 0.16) and low-cost 

vigilance (β ± SE = -6.788 ± 0.631, χ² = 100.988, df = 1, P < 0.001, pseudo R² = 0.18). Figure 4 shows 

that when individuals invested a lot in vigilance to detect predators (for instance 66% of their 

foraging time, i.e. log(2.4)), impalas could lose up to 20 bites per minute, falling from 40 to 20.  

 The number of bites per feeding station also decreased with the log-transformed time spent 

in vigilance (β ± SE = -0.134 ± 0.033, χ² = 16.045, df = 1, P = 0.001, pseudo R² = 0.01) and high-cost 

vigilance (β ± SE = -3.450 ± 0.289, χ² = 42.007, df = 1, P < 0.001, pseudo R² = 0.05) whereas low-cost 

vigilance had no effect (χ² = 0.725, df = 1, P = 0.394). Despite the significant patterns, the pseudo R² 

were low and the investment in vigilance was not a good predictor of the number of bites per 

feeding station.  

 

Effect of the presence of collared predators in the surroundings 

Collared predators were present in the surroundings (within 2km) during 18 days of the 114 days of 

data collection. Contrasting focals during these 18 days with the ones from the day before the 

predator’s arrival (controls) and controlling for the effects of grass height, showed that the presence 

of collared predators (regardless of species) affected bite rate but did not affect step rate or the 

number of bites per feeding station (Table 2). On average, impalas lost about 4 bites per minute 

when predators were in the surroundings (14% reduction) with no difference of bite rate between a 

single predator species or multi-predator species (χ² = 1.999, df = 2, P = 0.368). Finally, the presence 
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of collared predators affected both the total time spent in vigilance and high-cost vigilance (Table 3) 

but did not affect low-cost vigilance (χ² = 1.986, df = 2, P = 0.370). Compared to days before the 

predator’s arrival (controls), impalas were more vigilant and increased their high-cost vigilance when 

wild dogs were in surroundings by 101% and 167% respectively and when both lions and hyaenas 

were present by 116% and 355% respectively although we did not detect any significant difference 

when only lions were present (Table 4, Fig. 5). 

 

Discussion 

Functional adjustment of foraging parameters 

As reported in other species of herbivores including warthog (Phacochoerus aethiopicus) and 

white rhinoceros (Ceratotherium simum) (Cromsigt & Olff 2006), our study shows that local 

patch quality shapes the feeding strategy of impalas. In enriched plots, impalas reduced their 

step rate, the rate of change in feeding stations, and increased their number of bites per 

feeding station while bite rate was not affected. The main adjustment parameter for the intake 

rate is therefore step rate. By adjusting step rate to maintain bite rate, hence presumably intake 

rate, impala decreased the number of bites per feeding station in control plots (for enrichment, 

Fig. 3d) i.e. in places where there was a smaller proportions of green material. This analysis 

of feeding parameters from the experimental plots suggests that intake rate is limited by the 

encounter rate of acceptable bites, as occurs in the Process 2 in the theoretical framework of 

Spalinger and Hobbs (1992). This result is consistent with both our prediction of the selective 

feeding strategy in such medium-sized ruminants (see Fig. 1a) and other studies in the same 

species (Fritz & de Garine-Wichatitsky 1996). Our results suggest that for medium-sized and 

large herbivores that use step rate as an adjusting parameter of intake rate, individuals may 
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use low-cost vigilance (i.e. vigilance while chewing or moving) to minimise cost of predator 

detection (Blanchard & Fritz 2007). 

 Grass height commonly shapes feeding parameters (e.g. bite size), and hence food 

intake rate in grazing herbivores (Arsenault & Owen-Smith 2008). Our results show that in 

tall grass bite rate and step rate were low and the number of bites per feeding station was high 

indicating that the amount of acceptable bites was high in patches of tall grass. For a selective 

herbivore like impala, the difficulty in finding high quality green blades in tall grass may lead 

individuals to reduce their speed when they forage in tall patches when predators are absent. 

However, as visibility around them is low, individuals may also reduce speed as the 

perception of predation risk is high, investing more in vigilance (Pays et al. 2012). Thus more 

studies are needed to clarify the functional adjustments with grass height in the trade-off 

between feeding and detection of predators. 

 To improve patch quality, besides fertilization, we mowed grass to stimulate regrowth 

and thus increase the availability of green leaves. Our results show that bite rate, step rate and 

the number of bites per feeding station did not change significantly between short mown and 

naturally short grasses. The impalas responded clearly to fertilisation particularly when they 

foraged in tall grass. However, the effect of mowing on their feeding behaviour was not 

significant. Indeed, although the percentage of green material was higher in cut strips, the 

difference in biomass between cut (mown) and uncut strips was small, particularly in 2010, 

even in fertilised plots (Appendix 1) and might have therefore limited the opportunity to 

detect an effect of mowing on foraging.  

 

Trade-offs between bite rate, the number of bites per feeding station and vigilance  

Both high and low-cost vigilance have been examined here, and the total time spent in 

vigilance was the best predictor of the variation in bite rate. Vigilance altered bite rate (and 
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potentially intake rates) as reported in previous studies (Fortin et al. 2004), although it had no 

effect on the number of bites per feeding station. When at a feeding station, impalas reduced 

the relative costs of vigilance by continuing chewing and processing their food (Pays et al. 

2012). Our results show that impalas spent around 80% of their vigilance time in low-cost 

vigilance, indicating how individuals can considerably reduce the potential costs of predator 

detection when they are foraging. 

 Feeding with larger bites could mitigate foraging costs of vigilance in grazing 

herbivores (see Spalinger & Hobbs 1992, and Wilmshurst et al 1999 for an example in 

gazelles). Larger bites would induce longer chewing bouts, increase spare time and allow 

individuals to use low-cost vigilance for longer periods. However, in our study, grass biomass 

was mostly below the optimal value for impala (see Introduction) and it is unlikely that patch 

biomasses on this site allowed individuals to take larger bite sizes. Our results suggest that 

step rate was the adjusting parameter of intake rate, so we expect impalas to increase their 

step rate between two feeding stations to improve bite quality (i.e. to detect patches with more 

green tissues) and to increase encounter rates (Spalinger & Hobbs 1992). Finally, although we 

did not detect a group-size effect on foraging and vigilance activities (as we mostly sampled 

individuals in large groups), it has been commonly reported in gregarious species (Jarman 

1974), including impalas (Pays et al. 2012), that individuals forage in large groups to reduce 

foraging costs of vigilance and reallocate the time for predator detection to foraging 

(FitzGibbon 1989, 1990).  

   

Effects of the presence of predators and perceived predation risk 

Creel et al. (2014) analysed the variation of antipredator behaviours and their foraging costs in 

five ungulates (zebra, Equus quagga, Grant’s gazelle, Nanger granti, wildebeest, 

Connochaetes taurinus, impala and giraffe, Giraffa camelopardalis) in response to the 
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presence of lions and spotted hyaenas in the surroundings. They found that the increase of 

vigilance in response to the presence of predators triggered a large reduction in time spent 

foraging in four species including impala but not in wildebeest.  In our study, we show that in 

response to the presence of collared predators, impalas 1) were more vigilant, increasing their 

exclusive (i.e. high-cost) vigilance and 2) on average they reduced bite rate while maintaining 

their step rate and the number of bites per feeding station. These results suggest that the 

presence of predators leads individuals to use more vigilance, which visually disconnects 

foragers from their food and leads to lower bite rates (Fig. 1d). Thus our results may apply to 

other herbivore prey species in which an increase in vigilance is likely to affect food 

acquisition. This is particularly expected in tall grass where both bite rate and visibility are 

low for individuals foraging head down. However, in tall grass bite rate and step rate were 

low while the number of bites per feeding station was high, our results therefore fully support 

the expected Pattern 2 as the decrease in bite rate did not lead to a decrease of the number of 

bites per feeding station when predation risk was high. Finally, our results did not support the 

hypothesis under which perceived predation risk would increase the need for low-cost 

vigilance hence reduce the number of bites per feeding station (Pattern 1.1, Fig 1b) or broaden 

the acceptability of bites in a given patch, leading to an increase of the number of bites per 

feeding station (particularly in short grass) (Pattern 1.2, Fig 1c).  

 Several studies have reported that prey exhibit a large range of proactive behavioural 

strategies including adjustment of space use, group size and time spent in risky habitat to 

decrease overall predation risk and to invest in fitness-enhancing activities such as foraging 

(Valeix et al. 2009b, Basille et al. 2015, Courbin et al. 2019). The interaction between 

vigilance and proactive space use is complex and might make applying predictions to other 

systems difficult (Patin et al. 2019). In addition, other studies have shown that prey can 

reactively adjust their space use (Middleton et al. 2013, Courbin et al. 2016) or increase their 
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time allocated to vigilance in response to cues of predation risk (Pays et al. 2013, Dannock et 

al. 2018), as was the case when impalas were stimulated by lion roars (Favreau et al. 2013) or 

faeces of wild dogs (van der Meer, Fritz & Pays 2015). We show here that impalas increased 

their vigilance by increasing their high-cost vigilance when two predators (i.e. lion with 

hyaena) or when wild dogs were in the surroundings. Although our data on hyaenas did not 

allow us to examine focals with only hyaenas in the surroundings, our results show that the 

largest increase of high-cost vigilance in impalas was observed when two predators (lions and 

hyaenas) were present at the same time in the surroundings. As the increase of vigilance with 

lions only in the surroundings was small, we might expect that the presence of hyaenas 

affected the vigilance of impalas. Overall, our results suggest that although impala is the main 

prey of African wild dogs (Hayward & Kerley 2008, van der Meer et al. 2014), the presence 

of two predators at the same time may be perceived as the most important threat. Although 

our data did not allow us to investigate finer time and spatial scales (due to sample size 

constraints), it would be very interesting to test for behavioural adjustments to predation risk 

at other time lags. 

 Analyses over the whole study show that patch quality is the main determinant of 

feeding parameters (step rate and bite rate). However, these impalas do respond to predators 

in their vicinity by increasing their vigilance, and this reduced bite rate. This effect was clear 

only when we compared focal samples from the 24 hour periods when predators were nearby 

with focals from the days before. Although our experimental design focused on a large herd 

of impalas (up to 150 individuals) foraging in one grassland area where many predators were 

collared, some individual impalas may have been affected by uncollared predators. Our study 

highlights the need to conduct fine scale analyses in order to understand the effect of patch 

quality and predators on the trade-off between food acquisition and predator detection.  In this 

context, an important aspect of understanding the effect of the predators on feeding 
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parameters and ultimately the foraging costs of vigilance in prey is the frequency of 

encounters of the prey with the predator. We suggest that this time scale issue merits specific 

attention in future studies.  
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Table 1. Factors influencing the bite rate (bite per minute), step rate (step per minute, log-

transformed) and number of bite per step (Log-transformed) of impalas over the 2-year period 

β ± SE are indicated for significant variables. Plot enrichment indicated whether the impala 

foraged on control or enriched plots, Predator within 2 km indicated whether GPS collared 

predators were present within 2km (no and yes), grass height contrasted 4 classes (High, 

medium, short, short cut) and Log Group Size was the log-transformed group size in which 

the focal impala was studied with classes in italics that were considered as references in the 

linear mixed-effects model including Year, Season and Plot ID as nested random factors. 

 

 

Dependant 

Variables 
Predictors χ² Df P β ± SE (P) 

Bite rate 

    (intercept: 30.944 ± 1.392) 

Plot enrichment 0.023 1 0.878  

Predator within 2km 
1.190

8 
1 0.167  

Grass height 
14.10

6 
3 0.003 

Medium: 1.461 ± 0.789 (0.065) 

Short: 4.060 ± 1.409 (0.005) 

Short cut: 3.073 ± 1.327 (0.021) 

Plot enrichment × Predator within 2km 1.025 1 0.599  

Predator within 2km × Grass height 6.079 3 0.108  

Log (Step rate) 

    (intercept: 0.429 ± 0.061) 

Plot enrichment 2.709 1 0.033 Enriched plot: -0.080 ± 0.035 

Predator within 2km 0.003 1 0.957  

Grass height 
23.52

2 
3 <0.001 

Medium: 0.104 ± 0.032 (0.001) 

Short: 0.195 ± 0.054 (<0.001) 

Short cut: 0.186 ± 0.053 (<0.001) 

Plot enrichment × Predator within 2km 3.732 1 0.155  

Predator within 2km × Grass height 5.170 3 0.160  

Log (Bites per 

feeding station) 

    (intercept: 1.028 ± 0.053) 

Plot enrichment 4.234 1 0.039 Enriched: 0.128 ± 0.054 

Predator within 2km 0.279 1 0.598  

Grass height 
12.77

6 
3 0.005 

Medium: -0.117 ± 0.037 (0.002) 

Short: -0.116 ± 0.062 (0.060) 

Short cut: -0.147 ± 0.058 (0.013) 

Plot enrichment × Predator within 2km 5.119 1 0.078  

Predator within 2km × Grass height 6.346 3 0.096  
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Table 2. Factors influencing the bite rate (bites per minute, BR), step rate (steps per minute, 

log-transformed, SR) and number of bites per step (log-transformed, B/S) of impalas when 

comparing the behaviour of focals when GPS collared predators were present and the day 

before the arrival of the predators. β ± SE are indicated for significant variables. Plot 

enrichment indicates whether the impala foraged on control or enriched plots, predator within 

2 km indicates whether GPS collared predators were present within 2km of the impalas (no 

and yes), grass height contrasts 4 classes (High, medium, short, short cut) and Log Group size 

is the log-transformed group size in which the focal impala was studied with classes in italics 

that were considered as references in the linear mixed-effects model including Year, Season 

and Predator event ID as nested random factors. 

 

 

 

Dependant 

Variables 
Predictors χ² Df P β ± SE (P) 

Bite rate 

    (intercept: 30.610 ± 1.281) 

Plot enrichment 1.354 1 0.245  

Predator within 2km 7.080 1 0.008 Yes: -3.559 ± 1.177 

Grass height 11.904 3 0.008 

Medium: 1.860 ± 1.321 (0.161) 

Short: 6.252 ± 2.430 (0.011) 

Short cut: 9.258 ± 2.232 (<0.001) 

Plot enrichment × Predator within 2km 0.147 1 0.701  

Predator within 2km × Grass height 6.221 1 0.101  

Log (Step rate) 

    (intercept: 0.548 ± 0.084) 

Plot enrichment 2.013 1 0.154  

Predator within 2km 0.596 1 0.440  

Grass height 0.618 3 0.893  

Plot enrichment × Predator within 2km 0.009 1 0.925  

Predator within 2km × Grass height 4.836 1 0.180  

Log (Bites per 

feeding station) 

    (intercept: 0.929 ± 0.110) 

Plot enrichment 0.574 1 0.449  

Predator within 2km 0.181 1 0.671  

Grass height 1.601 3 0.659  

Plot enrichment × Predator within 2km 0.013 1 0.910  

Predator within 2km × Grass height 4.797 1 0.187  
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Table 3. Effect of the presence of a GPS-collared predator within the 2km surroundings when 

comparing focals on days when collared predators had been in the vicinity during the previous 

24 hours with observations on days before their arrival on the log-transformed total time spent 

in vigilance (Total vigilance) and exclusive (high-cost) vigilance of impalas considering the 

effects of grass height (High, medium, short, short cut). We contrasted 4 classes (days before 

predators had been in the vicinity, lion only, wild dog only, lion with hyaena) with in italics, 

classes that were considered as references. Year, Season and Predator event ID were included 

as nested random factors. β ± SE are indicated for significant variables. 

 

 

 

 

 

 

 

 

 

 

Dependent variables Predictors χ² Df P β ± SE (P) 

Log total vigilance 

    (intercept: 1.603 ± 0.119) 

Predator within 2 km  7.192 2 0.027 See table 4 for multiple comparison 

Grass height 5.245 3 0.157  

Log exclusive 

vigilance 

    (intercept: 0.188 ± 0.122) 

Predator within 2 km  7.180 2 0.028 See table 4 for multiple comparison 

Grass height 1.605 3 0.658  
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Table 4. Post-hoc Tukey test on the effect of the presence of GPS-collared predators within 2km, 

contrasting 4 classes (days before the predators’ arrival, lion only, wild dog only vs lion with hyaena) 

on the log-transformed total time spent in vigilance (Log Total Vigilance) and high-cost vigilance (Log 

Exclusive Vigilance). The data on hyaenas were too sparse to allow the effect of this species to be 

analysed alone. 

 

Contrast 
Log(Total vigilance) Log(Exclusive vigilance) 

Β SE P β SE P 

Lion only - Days before 0.131 0.071 0.070 0.377 0.253 0.138 

Wild dog only - Days before 0.332 0.118 0.005 0.960 0.558 0.046 

Lion with hyaena - Days before 0.476 0.148 0.002 1.023 0.317 0.001 

Wild dog only - Lion only 0.220 0.114 0.041 0.261 0.245 0.288 

Lion with hyaena - Lion only 0.344 0.145 0.018 0.908 0.311 0.004 

Lion with hyaena - Wild dog only 0.144 0.172 0.404 0.647 0.370 0.082 
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Figure legends 

FIGURE 1 Expected variations of functional parameters of feeding behaviour in impala with patch 

quality (as indicated by the interaction between grass height and enriched), and predation risk. BR is 

bite rate, i.e. the number of bites per min, SR is step rate, i.e. the number of steps per min, and B/S is 

the number of bites per feeding station i.e. the ratio between the number of bites and steps. The 

arrows and grey lines indicate how an individual would be expected to adjust its functional 

parameters of feeding behaviour to an increase of predation risk (see Introduction for more details 

on expected mechanisms): (a) when predation risk is low, the number of bites per feeding station 

increases with patch quality; (b) when perceived predation risk increases, the time spent grazing 

decreases so does the number of bites per feeding station at a feeding station (Pattern 1.1) or (c) 

increases the acceptability of bites (and thus the number of bites per feeding station) at the feeding 

station (Pattern 1.2); (d) when predators are present leading to an increase of high-cost vigilance 

altering the number of bites per feeding station (Pattern 2).  

 

FIGURE 2 Experimental design for manipulating the quality of feeding patches for free-ranging 

impalas in Hwange National Park, Zimbabwe. (a) and (b) the location of our study area, (c) an 

overview of the experimental design, (d) plot features and (e) an aerial photograph of one plot. 

 

FIGURE 3 Effect of patch quality on foraging parameters of impala over the 2-year experiment: (a) 

the effect of grass height on bite rate, (b) the effect of plot enrichment and (c) the effect of grass 

height on the log-transformed step rate, (d) the effect of plot enrichment and (e) the effect of grass 

height on the log-transformed bites per step. Lines of box plots indicate the lower quartile (25%), 

median in bold (50%) and upper quartile (75%). The black dot within the box indicates mean value. 
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Whiskers indicate the minimum and maximum values excluding outliers (open dots). Outliers are 

values less than 1.5 times the lower quartile and more than 1.5 times the upper quartile. 

 

FIGURE 4 Trade-off between investment in vigilance and food acquisition in impalas. This trade-off is 

represented by the decrease of bite rate with the log-transformed time spent in vigilance in impala 

over the 2-year experiment. 

 

FIGURE 5 Effect of the presence of GPS collared predators on investment in vigilance in impalas. The 

analysis contrasted focals sampled during days with predators and the ones sampled the day before 

the predators’ arrival (called days before) distinguishing when lion, wild dog and both lion and 

hyaena were present within a 2km radius around the focal impala. See title of Fig. 3 for details on 

features of box plots. The data on hyaenas were too sparse to allow the effect of this species to be 

analysed alone. 
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Figure 2 
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Figure 3  
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Appendix 1 

We tested for differences of biomass and proportions of green tissues and bare soil between enriched 

and control plots, cut and uncut strips controlling for season and year. 

 In the uncut strips, biomass was on average higher in enriched plots compared to control plots 

in 2009: February (βenriched ± SE = 0.070 ± 0.030, P = 0.019), March (βenriched ± SE = 0.059 ± 0.039, P = 

0.127) and May (βenriched ± SE = 0.079 ± 0.042, P = 0.060) 2009; March (βenriched ± SE = 0.140 ± 0.033, 

P < 0.001) and July (βenriched ± SE = 0.098 ± 0.057, P = 0.048) 2010 (Fig 3). In the cut strips, biomass 

did not differ between enriched and control plots in February (P = 0.156), March (P = 0.674), May (P 

= 0.940) 2009 and in March (P = 0.237) and July (P = 0.280) 2010 (Fig S1). 

 

Fig. S1. Variation of grass biomass between enriched and control plots, cut and uncut strips over the 2 

years of the experiment. 

In the cut and uncut strips in 2009, the proportion of green tissues was higher in enriched plots 

compared to control plots in April (βenriched in cut ± SE = 0.078 ± 0.036, P = 0.032, βenriched in uncut ± SE = 

0.131 ± 0.041; P = 0.002) as well as in July 2010 (βenriched in cut ± SE = 0.032 ± 0.014, P = 0.019) while 

we did not detect any difference in green tissues among the uncut strips (P = 0.456) (Fig S2). The 
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proportion of green tissues was higher in April 2009 compared to July 2010 (βApril ± SE = 0.188 ± 

0.011, P < 0.001) and in cut compared to uncut strips (βCut ± SE = 0.025 ± 0.009, P = 0.009) (Fig S2).  

 In cut and uncut strips, the proportion of bare soil was less in enriched plots compared to 

control plots in April 2009 (βenriched in cut ± SE = -0.116 ± 0.039, P = 0.003, βenriched in uncut ± SE = -0.123 ± 

0.048, P = 0.012) as well as in July 2010 (βenriched in cut ± SE = -0.178 ± 0.028, P < 0.001; βenriched in uncut ± 

SE = -0.187 ± 0.028, P < 0.001) (Fig S2). We did not detect any difference in the proportion of bare 

soil between April 2009 and July 2010 (P = 0.793) while the proportion of bare soil was higher in the 

cut compared to uncut strips (β ± SE = 0.069 ± 0.018, P < 0.001) (Fig S2). 

 

 
 
Fig. S2. Variation of the proportion of green tissues and bare soil between enriched and control plots, 

cut and uncut strips over the 2 years of the experiment. 
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Appendix 2 

Lions are known to live in a fusion-fission society but the frequency of pride fission increases 

with increase in pride size (Mbizah et al. 2019. Applying the resource dispersion hypothesis 

to a fission-fusion society: a case study of the African lion (Panthera leo) Ecology and 

Evolution 9: 9111-9119). In the Main Camp area, where the study site is located, prides are 

rather small and composed of up to 4 female adults and previous work has revealed that 

lionesses from the same pride stay together most of the time, with females from a pride 

sighted together in 89.2% of sightings (Valeix et al. 2009. article in Ecology cited in the 

manuscript). Therefore, for lions, we can be rather confident that the movements of the 

collared individuals are quite representative of the movements of almost all lions around the 

study site (only dispersing individuals were missed).     

Regarding wild dogs, members from a pack always stay together except during the denning 

period when some individuals become helpers at the den. So overall, the individuals that have 

been GPS collared per pack were representative of the movements of all individuals in their 

pack around the study site. 

Regarding spotted hyaenas, because clans are characterized by a very high level of fission-

fusion, we have to acknowledge that the movements of the collared individuals cannot be 

considered representative of the members of the monitored clans. Hence, the results about 

hyaenas must be interpreted with caution, as it is very likely that the movements of uncollared 

individuals were missed. However, we believe that the effect of undetected hyaenas should 

mainly reduce our capacity to detect differences. 
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Appendix 3  
Post-hoc Tukey tests on the effect of grass height on bite rate (bites per minute), step rate 

(steps per minute) and number of bites per step (Log-transformed) over the 2-year period 
(a) 

and when comparing focals when equipped predators were present with the days before their 

arrival 
(b)

.  
 

Contrast 
Bite rate 

a
 Bite rate 

b
 Log(Step rate) 

a
 Log(Bite per step)

 a 

β SE P β SE P β SE P Β SE P 

High - Medium  1.461 0.789 0.065 1.389       1.340    0.301     0.104 0.032    0.001 -0.117     0.037   0.002 

High - Short uncut  4.060 1.409 0.005 5.507       2.469    0.026 0.195     0.054    <0.001 -0.116     0.062   0.060 

High - Short cut  3.073 1.327 0.021 9.471       2.278    <0.001 0.186     0.053    <0.001 -0.147     0.058   0.013 

Medium - Short uncut  2.606 1.363    0.056 4.117      2.318    0.077 0.091     0.053    0.085 0.001     0.060    0.992      

Medium - Short cut 4.642 1.037    <0.001 8.082      2.113    <0.001 0.082     0.054   0.126 -0.029     0.060    0.615      

Short uncut- Short cut 2.036 1.555 0.191 3.964 2.961 0.182 -0.009 0.071 0.899 -0.030 0.079 0.703 
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Appendix 4 

Fig. S3. Diagnostic plots on the structure of residuals from the linear mixed-effects model 

investigating the plot enrichment, predator within 2 km, grass height and their two-was interactions 

and including year, season and plot ID (a-c) or predator event ID (d-f) as three nested random factors 

on bite rate in the impalas over the 2-year experiment (a-c) and contrasting focals sampled during days 

with predators and focals on the days before predators’ arrivals (d-f). An autocorrelation function of 

order 1 (“corAR1”) was also considered in models to control for the sequential structure of the data set 

(see Methods). The residuals against fitted values in (a) and (d) show that the variance remains 

approximately constant as the fitted values increased. (b) and (e) show that the distribution of residuals 

was consistent with normality. (c) and (f) show the autocorrelation function (ACF) estimated on 

residuals. The horizontal dotted lines provide an approximate 95% confidence interval for the 

autocorrelation estimate at each lag and reveal that sequential correlation was controlled. 
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