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We design a new algorithm for solving parametric systems of equations having finitely many complex solutions for generic values of the parameters. More precisely, let 𝑓 = (𝑓 1 , . . . , 𝑓 𝑚 ) ⊂ Q[𝑦][𝑥] with 𝑦 = (𝑦 1 , . . . , 𝑦 𝑡 ) and 𝑥 = (𝑥 1 , . . . , 𝑥 𝑛 ), 𝒱 ⊂ C 𝑡 × C 𝑛 be the algebraic set defined by the simultaneous vanishing of the 𝑓 𝑖 's and 𝜋 be the projection (𝑦, 𝑥) → 𝑦. Under the assumptions that 𝑓 admits finitely many complex solutions when specializing 𝑦 to generic values and that the ideal generated by 𝑓 is radical, we solve the following algorithmic problem. On input 𝑓 , we compute semi-algebraic formulas defining open semi-algebraic sets 𝒮 1 , . . . , 𝒮 ℓ in the parameters' space R 𝑡 such that ∪ ℓ 𝑖=1 𝒮 𝑖 is dense in R 𝑡 and, for 1 ≤ 𝑖 ≤ ℓ, the number of real points in 𝒱 ∩ 𝜋 -1 (𝜂) is invariant when 𝜂 ranges over 𝒮 𝑖 . This algorithm exploits special properties of some well chosen monomial bases in the quotient algebra Q(𝑦)[𝑥]/𝐼 where 𝐼 ⊂ Q(𝑦) [𝑥] is the ideal generated by 𝑓 in Q(𝑦) [𝑥] as well as the specialization property of the so-called Hermite matrices which represent Hermite's quadratic forms. This allows us to obtain "compact" representations of the semi-algebraic sets 𝒮 𝑖 by means of semi-algebraic formulas encoding the signature of a given symmetric matrix.

When 𝑓 satisfies extra genericity assumptions (such as regularity), we use the theory of Gröbner bases to derive complexity bounds both on the number of arithmetic operations in Q and the degree of the output polynomials. More precisely, letting 𝑑 be the maximal degrees of the 𝑓 𝑖 's and D = 𝑛(𝑑 -1)𝑑 𝑛 , we prove that, on a generic input 𝑓 = (𝑓 1 , . . . , 𝑓 𝑛 ), one can compute those semi-algebraic formulas

)︁ arithmetic operations in Q and that the polynomials involved in these formulas have degree bounded by D.

We report on practical experiments which illustrate the efficiency of this algorithm, both on generic parametric systems and parametric systems coming from applications since it allows us to solve systems which were out of reach on the current state-of-the-art.

Introduction 1.Problem statement and motivations

In the whole paper, Q, R and C denote respectively the fields of rational, real and complex numbers.

Let 𝑓 = (𝑓1, . . . , 𝑓𝑚) be a polynomial sequence in Q[𝑦] [𝑥] where the indeterminates 𝑦 = (𝑦1, . . . , 𝑦𝑡) are considered as parameters and 𝑥 = (𝑥1, . . . , 𝑥𝑛) are considered as variables. We denote by 𝒱 ⊂ C 𝑡 × C 𝑛 the (complex) algebraic set defined by 𝑓1 = • • • = 𝑓𝑚 = 0 and by 𝒱 R its real trace 𝒱 ∩ R 𝑡+𝑛 . We consider also the projection on the parameter space 𝑦 A more popular approach consists in computing polynomials ℎ1, . . . , ℎ𝑟 in Q[𝑦] such that ∪ 𝑟 𝑖=1 𝑉 (ℎ𝑖) ∩ R 𝑡 contains the boundaries of semi-algebraic sets 𝒮1, . . . , 𝒮 ℓ enjoying the properties required to solve Problem [START_REF] Alman | A refined laser method and faster matrix multiplication[END_REF]. Next, one needs to compute semi-algebraic descriptions of the connected components of R 𝑡 ∖ ∪ 𝑟 𝑖=1 𝑉 (ℎ𝑖) as well as sample points in these connected components. This is basically the approach followed by [START_REF] Yang | Real solution classification for parametric semi-algebraic systems[END_REF] (the ℎ𝑖's are called border polynomials) and [START_REF] Lazard | Solving parametric polynomial systems[END_REF] (the set ∪ 𝑟 𝑖=1 𝑉 (ℎ𝑖) is called discriminant variety) under the assumption that ⟨𝑓 ⟩ is a radical ideal. Note that both [START_REF] Yang | Real solution classification for parametric semi-algebraic systems[END_REF] and [START_REF] Lazard | Solving parametric polynomial systems[END_REF] provide algorithms that can handle variants of Problem [START_REF] Alman | A refined laser method and faster matrix multiplication[END_REF] allowing inequalities. In this paper, we focus on the situation where we only have equations in our input parametric system.

When ⟨𝑓 ⟩ is radical and the restriction of 𝜋 to 𝒱 ∩ R 𝑡 × R 𝑛 is proper, one can easily prove using a semi-algebraic version of Thom's isotopy lemma [START_REF] Coste | s first isotopy lemma: a semialgebraic version, with uniform bounds(real singularities and real algebraic geometry)[END_REF] that one can choose ∪ 𝑟 𝑖=1 𝑉 (ℎ𝑖) to be the set of critical values of the restriction of 𝜋 to 𝒱 (see e.g. [START_REF] Bonnard | Determinantal sets, singularities and application to optimal control in medical imagery[END_REF]). If 𝑓 is a regular sequence (hence 𝑚 = 𝑛), the critical set of the restriction of 𝜋 to 𝒱 is defined as the intersection of 𝒱 with the hypersurface defined by the vanishing of the determinant of the Jacobian matrix of 𝑓 with respect to the variables 𝑥. When 𝑑 dominates the degrees of the entries of 𝑓 , Bézout's theorem allows us to state that the degree of this set is bounded above by 𝑛(𝑑 -1)𝑑 𝑛 .

It is worth noticing that, usually, this approach is used only to solve the aforementioned weak version of Problem [START_REF] Alman | A refined laser method and faster matrix multiplication[END_REF] as getting a semi-algebraic description of the connected components of R 𝑡 ∖ ∪ 𝑟 𝑖=1 𝑉 (ℎ𝑖) through CAD is too expensive when 𝑡 ≥ 4 (still, because of the doubly exponential complexity of CAD). Under the above assumptions and notation, the output degree of the polynomials in such formulas would be bounded by (𝑛(𝑑 -1)𝑑 𝑛 ) 2 𝑂 (𝑡) .

An alternative would be to use parametric roadmap algorithms to do such computations using e.g. [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Chap. 16] to compute semi-algebraic representations of the connected components of R 𝑡 ∖ ∪ 𝑟 𝑖=1 𝑉 (ℎ𝑖). Under the above extra assumptions, this would result in output formulas involving polynomials of degree bounded by (𝑛(𝑑 -1)𝑑 𝑛 ) 𝑂(𝑡 3 ) using (𝑛(𝑑 -1)𝑑 𝑛 ) 𝑂(𝑡 4 ) arithmetic operations (see [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Theorem 16.13]). Note that the output degrees are by several orders of magnitude larger than 𝑛(𝑑 -1)𝑑 𝑛 which bounds the degree of the set of critical values of the restriction of 𝜋 to 𝒱.

Hence, one topical algorithmic issue is to design an efficient algorithm for solving Problem (1) which would output semi-algebraic formulas of degree bounded by 𝑛(𝑑 -1)𝑑 𝑛 (using a number of arithmetic operations polynomial in this quantity). At this stage of our exposition, this is not clear that it is doable. Actually, admittedly "folklore" algorithms in symbolic computation already allow one to achieve such a result.

Using the (probabilistic) algorithm of [START_REF] Schost | Computing parametric geometric resolutions[END_REF], one can compute a rational parametrization of 𝒱 = 𝑉 (𝑓 ) with respect to the 𝑥-variables, i.e. a sequence of polynomials (𝑤, 𝑣1, . . . , 𝑣𝑛) in Q(𝑦) [𝑢] where 𝑢 is a new variable, such that the constructible set 𝒵 ⊂ C 𝑡 × C 𝑛 of every point (︂ 𝜂, 𝑣1 𝜕𝑤/𝜕𝑢 (𝜂, 𝜗), . . . , 𝑣𝑛 𝜕𝑤/𝜕𝑢 (𝜂, 𝜗)

)︂ ,

where (𝜂, 𝜗) ∈ C 𝑡 × C such that 𝑤(𝜂, 𝜗) = 0 and 𝜂 does not cancel 𝜕𝑤/𝜕𝑢 and any denominator of (𝑤, 𝑣1, . . . , 𝑣𝑛), is Zariski dense in 𝒱, i.e., the Zariski closure of 𝒵 coincides with 𝒱.

The bi-rational equivalence between 𝒵 and its projection on the (𝑢, 𝑦)-space implies that semi-algebraic formulas solving Problem (1) can be obtained through the computation of the subresultant sequence associated to (︀ 𝑤, 𝜕𝑤 𝜕𝑢 )︀ (see e.g. [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Chap. 4]). Combining the complexity results of [START_REF] Schost | Computing parametric geometric resolutions[END_REF] to compute a rational parametrization of 𝒱 with those of [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Chap. 4] for computing subresultants we obtain that this algorithm uses

𝑂 ̃︀ (︃(︃ 𝑡 + 2𝑑 2𝑛 𝑡 )︃ 2 5𝑡 𝑑 5𝑛𝑡+3𝑛
)︃ arithmetic operations in Q, and that the semi-algebraic formulas computed by this algorithm involve polynomials in Q[𝑦] of degree bounded by 2𝑑 2𝑛 . Recall that the degree of the critical locus of the restriction of 𝜋 to 𝒱 is bounded by 𝑛(𝑑 -1)𝑑 𝑛 . Hence, computing semi-algebraic formulas solving Problem (1) involving polynomials of degrees in 𝑂(𝑑 𝑛 ) through an efficient algorithm reflecting this complexity gain is still an open problem.

Main results

Basically, our main result is to provide a new algorithm solving Problem (1) when ⟨𝑓 ⟩ is radical and assumption (A) holds. Under some genericity assumptions, we prove that it outputs formulas involing polynomials of degree in 𝑂(𝑑 𝑛 ) with a better arithmetic complexity than what was previously known. )︃ .

arithmetic operations in Q.

ii) There exists a probabilistic algorithm that returns the formulas of a collection of semi-algebraic sets solving Problem (1) within

𝑂 ̃︀ (︃(︃ 𝑡 + D 𝑡 )︃ 2 3𝑡 𝑛 2𝑡+1 𝑑 3𝑛𝑡+2(𝑛+𝑡)+1
)︃ arithmetic operations in Q in case of success.

iii) The semi-algebraic descriptions output by the above algorithm involves polynomials in Q[𝑦] of degree bounded by D.

We note that the binomial coefficient (︀ 𝑡+D 𝑡 )︀ is bounded from above by D 𝑡 ≃ 𝑛 𝑡 𝑑 𝑛𝑡+𝑡 . Therefore, the complexities given in the items i) and ii) of Theorem I can be bounded by 𝑂 ̃︀ (︀ 2 3𝑡 𝑛 3𝑡 𝑑 3𝑛𝑡 )︀ and 𝑂 ̃︀ (︀ 2 3𝑡 𝑛 3𝑡 𝑑 4𝑛𝑡 )︀ respectively.

We also implemented this algorithm to illustrate its practical behaviour and compare it with the state-of-the-art software within the MAPLE packages ROOTFINDING[PARAMETRIC] and REGULARCHAINS [PARAMETRICSYSTEMTOOLS]. We report on experiments showing that our implementation outperforms these packages, which is justified by our complexity result.

The key ingredient on which one relies to obtain these results is a set of well-known properties of Hermite quadratic forms to count the real roots of zero-dimensional ideals. The use of such quadratic forms for counting the number of real solutions was introduced in [START_REF] Hermite | Sur le nombre des racines d'une équation algébrique comprises entre des limites données. extrait d'une lettre á m. borchardt[END_REF] and then later on generalized by [START_REF] Pedersen | Counting real zeros in the multivariate case[END_REF] and used in [START_REF] Rouillier | Solving zero-dimensional systems through the rational univariate representation[END_REF]. We refer to [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Theorem 4.102] for the explicit relation between the number of real roots of a zero-dimensional algebraic set and the signature of these quadratic forms and to [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Algo. 8.43] for an algorithm computing these signatures.

We first slightly extend the definition of Hermite's quadratic forms and Hermite's matrices to the context of parametric systems; we call them parametric Hermite quadratic forms and parametric Hermite matrices. This is easily done since the ideal of Q(𝑦) [𝑥] generated by 𝑓 , considering Q(𝑦) as the base field, has dimension zero. We also establish natural specialization properties for these parametric Hermite matrices.

Hence, a parametric Hermite matrix, similar to its zero-dimensional counterpart, allows one to count respectively the number of distinct real and complex roots at any parameters outside a strict algebraic sets of R 𝑡 by evaluating the signature and rank of its specialization.

Based on this specialization property, we design two algorithms for solving Problem (1) and also its weak version for the input system 𝑓 which satisfies Assumption (A) and generates a radical ideal.

Our algorithm for the weak version of Problem (1) reduces to the following main steps. (b) Compute a set of sample points {𝜂1, . . . , 𝜂 ℓ } in the connected components of the semi-algebraic set of R 𝑡 defined by 𝑤 ̸ = 0 where 𝑤 is derived from ℋ. This is done through the so-called critical point method (see e.g. [4, Chap. 12] and references therein) which are adapted to obtain practically fast algorithms following [START_REF] Safey El Din | Polar varieties and computation of one point in each connected component of a smooth real algebraic set[END_REF]. We will explain in detail this step in Section 3. This algorithm takes as input 𝑠 polynomials of degree 𝐷 involving 𝑡 variables and computes sample points per connected components in the semi-algebraic set defined by the non-vanishing of these polynomials using

𝑂 ̃︀ (︃(︃ 𝐷 + 𝑡 𝑡 )︃ 𝑠 𝑡+1 2 3𝑡 𝐷 2𝑡+1 )︃ . (c) Compute the number 𝑟𝑖 of real points in 𝒱 ∩ 𝜋 -1 (𝜂𝑖) for 1 ≤ 𝑖 ≤ ℓ.
This is done by simply evaluating the signature of the specialization of ℋ at each 𝜂𝑖.

It is worth noting that, in the algorithm above, we obtain through parametric Hermite matrices a polynomial 𝑤 that plays the same role as the discriminant varieties of [START_REF] Lazard | Solving parametric polynomial systems[END_REF] or the border polynomials of [START_REF] Yang | A complete algorithm for automated discovering of a class of inequality-type theorems[END_REF]. We will see in the section reporting experiments that our approach outperforms the other two on every example we consider.

To return semi-algebraic formulas, our routine is basically the same except instead of computing sample points in the set {𝑤 ̸ = 0}, one needs to consider all principal minors of the matrix ℋ and compute sample points outside the union of the vanishing sets of all these polynomials.

Another contribution of this paper is to make clear how to perform the step (a). For this, we rely on the theory of Gröbner bases. More precisely, we use specialization properties of Gröbner bases, similar to those already proven in [START_REF] Kalkbrener | On the stability of gröbner bases under specializations[END_REF]. This leaves some freedom when running the algorithm: since we rely on Gröbner bases, one may choose monomial orderings which are more convenient for practical computations. In particular, the monomial basis of the quotient ring Q(𝑦)[𝑥]/𝐼 where 𝐼 is the ideal generated by 𝑓 in Q(𝑦) [𝑥] depends on the choice of the monomial ordering used for Gröbner bases computations. We describe the behavior of our algorithm when choosing the graded reverse lexicographical ordering whose interest for practical computations is explained in [START_REF] Bayer | A theorem on refining division orders by the reverse lexicographic order[END_REF]. Further, we denote by grevlex(𝑥) the graded reverse lexicographical ordering applied to the sequence of the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛) (with

𝑥1 ≻ • • • ≻ 𝑥𝑛).
Further, we also denote by ≻ 𝑙𝑒𝑥 the lexicographical ordering.

We report, at the end of the paper, on the practical behavior of this algorithm. We compare with two Maple packages ROOTFIND-ING[PARAMETRIC] and REGULARCHAINS[PARAMETRICSYSTEMTOOLS] which respectively implement the algorithms of [START_REF] Lazard | Solving parametric polynomial systems[END_REF] and [START_REF] Yang | Real solution classification for parametric semi-algebraic systems[END_REF]. In particular, our algorithm allows us to solve instances of Problem (1) which were not tractable by the state-of-the-art as well as the actual degrees of the polynomials in the output formula which are bounded by 𝑛(𝑑 -1)𝑑 𝑛 .

We actually prove such a statement under some generic assumptions. Our main complexity result is stated below. Its proof is given in Subsection 6.2, where the generic assumptions in use are given explicitly.

Organization of the paper Section 2 reviews fundamental notions of algebraic geometry and the theory of Gröbner bases that we use further. Next, we present a dedicated algorithm for computing at least one point per connected component of a semi-algebraic defined by a list of inequations in Section 3. Section 4 lies the definition and some useful properties of parametric Hermite matrices.

In Section 5, we describe our algorithm for solving the real root classification problem using this parametric Hermite matrix. The complexity analysis of the algorithms mentioned above is given in Section 6. Finally, in Section 7, we report on the practical behavior of our algorithms and illustrate its practical capabilities.

Preliminaries

In the first paragraph, we fix some notations on ideals and algebraic sets and recall the definition of critical points associated to a given polynomial map. Next, we give the definitions of regular sequences, Hilbert series, Noether position and proper maps, which are used later in Subsection 6.1. The fourth paragraph recalls some basic properties of Gröbner bases and quotient algebras of zero-dimensional ideals. We refer to [START_REF] Cox | Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF] for an introductory study on the algorithmic theory of Gröbner bases. In the last paragraphs, we recall respectively the definitions of zero-dimensional parametrizations and rational parametrizations which go back to [START_REF] Kronecker | Grundzüge einer arithmetischen theorie der algebraischen grössen[END_REF] and is widely used in computer algebra (see e.g. [START_REF] Gianni | Algebraic solution of systems of polynomial equations using Gröebner bases[END_REF][START_REF] Giusti | A gröbner free alternative for polynomial system solving[END_REF][START_REF] Giusti | When polynomial equation systems can be "solved" fast?[END_REF]) to represent finite algebraic sets. and 𝒱 ⊂ C 𝑛 be a smooth equi-dimensional algebraic set. We denote by crit(𝜑, 𝒱) the set of critical points of the restriction of 𝜑 to 𝒱. If 𝑐 is the codimension of 𝒱 and (𝑓1, . . . , 𝑓𝑚) generates the vanishing ideal associated to 𝒱, then crit(𝜑, 𝒱) is the subset of 𝒱 at which the Jacobian matrix associated to (𝑓1, . . . , 𝑓𝑚, 𝜑) has rank less than or equal to 𝑐 (see, e.g., [START_REF] Safey El Din | A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets[END_REF]Subsection 3.1]).

Algebraic sets and critical points

Regular sequences & Hilbert series

Let F be a field and (𝑓1, . . . , 𝑓𝑚) ⊂ F[𝑥] where 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑚 ≤ 𝑛 be a homogeneous polynomial sequence. We say that (𝑓1, . . . , 𝑓𝑚) ⊂ F[𝑥] is a regular sequence if for any 𝑖 ∈ {1, . . . , 𝑚}, 𝑓𝑖 is not a zero-divisor in F[𝑥]/⟨𝑓1, . . . , 𝑓𝑖-1⟩.

The notion of regular sequences is the algebraic analogue of complete intersection. In this paper, we focus particularly on the Hilbert series of homogeneous regular sequences, which are recalled below.

Let 𝐼 ⊂ F[𝑥] be a homogeneous ideal. We denote by F[𝑥]𝑟 the set of every homogeneous polynomial whose degree is equal to 𝑟. Then F[𝑥]𝑟 and 𝐼 ∩ F[𝑥]𝑟 are two F-vector spaces of dimensions dim F (F[𝑥]𝑟) and dim F (𝐼 ∩ F[𝑥]𝑟) respectively. The Hilbert series of 𝐼 is defined as

HS𝐼 (𝑧) = ∞ ∑︁ 𝑟=0 (dim F (F[𝑥]𝑟) -dim F (𝐼 ∩ F[𝑥]𝑟)) • 𝑧 𝑟 .
We now consider the affine polynomial sequences. Note that one can define affine regular sequences by simply removing the homogeneity assumption of (𝑓1, . . . , 𝑓𝑚) from the above definition. However, as explained in [2, Sec 1.7], many important properties that hold for homogeneous regular sequences are no longer valid for the affine ones. Therefore, in this paper, we use [2, Definition 1.7.2] of affine regular sequences, which is more restrictive but allows us to preserve similar results as the homogeneous case. We recall that definition below.

For 𝑝 ∈ F[𝑥1, . . . , 𝑥𝑛], we denote by 𝐻 𝑝 the homogeneous component of largest degree of 𝑝. A polynomial sequence (𝑓1, . . . , 𝑓𝑚) ⊂ F[𝑥1, . . . , 𝑥𝑛], not necessarily homogeneous, is called a regular sequence if and only if ( 𝐻 𝑓1, . . . , 𝐻 𝑓𝑚) is a homogeneous regular sequence.

Noether position & Properness

Let F be a field and 𝑓 = (𝑓1, . . . , 𝑓𝑛) ⊂ F[𝑥1, . . . , 𝑥𝑛+𝑡]. The variables (𝑥1, . . . , 𝑥𝑛) are in Noether position with respect to the ideal ⟨𝑓 ⟩ if their canonical images in the quotient algebra F[𝑥1, . . . , 𝑥𝑛+𝑡]/⟨𝑓 ⟩ are algebraic integers over F[𝑥𝑛+1, . . . , 𝑥𝑛+𝑡] and, moreover, F[𝑥𝑛+1, . . . , 𝑥𝑛+𝑡] ∩ ⟨𝑓 ⟩ = ⟨0⟩.

From a geometric point of view, Noether position is strongly related to the notion of proper map below (see [START_REF] Bardet | On the complexity of the F5 Gröbner basis algorithm[END_REF]).

Let 𝒱 be the algebraic set defined by 𝑓 ∈ R[𝑦1, . . . , 𝑦𝑡, 𝑥1, . . . , 𝑥𝑛]. The restriction of the projection 𝜋 : (𝑦, 𝑥) ↦ → 𝑦 to 𝒱 ∩ R 𝑡+𝑛 is said to be proper if the inverse image of every compact subset of 𝜋(𝒱 ∩ R 𝑡+𝑛 ) is compact. If the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛) is in Noether position with respect to ⟨𝑓 ⟩, then the projection 𝜋 : 𝒱 ∩ R 𝑡+𝑛 → R 𝑡 , (𝑦, 𝑥) ↦ → 𝑦 is proper.

A point 𝜂 ∈ R 𝑡 is a non-proper point of the restriction of 𝜋 to 𝒱 if and only 𝜋 -1 (𝒰) ∩ 𝒱 ∩ R 𝑡+𝑛 is not compact for any compact neighborhood 𝒰 of 𝜂 in R 𝑡 .

Gröbner bases and zero-dimensional ideals Let F be a field and F be its algebraic closure. We denote by F[𝑥] the polynomial algebra in the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛). We fix an admissible monomial ordering ≻ (see Section 2.2, [START_REF] Cox | Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]) over F [𝑥]. For a polynomial 𝑝 ∈ F[𝑥], the leading monomial of 𝑝 with respect to ≻ is denoted by lm≻(𝑝).

Given an ideal 𝐼 ⊂ F[𝑥], the initial ideal of 𝐼 with respect to the ordering ≻ is the ideal ⟨lm≻(𝑝) | 𝑝 ∈ 𝐼⟩. A Gröbner basis 𝐺 of 𝐼 with respect to the ordering ≻ is a generating set of 𝐼 such that the set of leading monomials {lm≻(𝑔) | 𝑔 ∈ 𝐺} generates the initial ideal ⟨lm≻(𝑝) | 𝑝 ∈ 𝐼⟩.

For any polynomial 𝑝 ∈ F[𝑥], the remainder of the division of 𝑝 by 𝐺 using the monomial ordering ≻ is uniquely defined. It is called the normal form of 𝑝 with respect to 𝐺 and is denoted by NF𝐺(𝑝). A polynomial 𝑝 is reduced by 𝐺 if 𝑝 coincides with its normal form in 𝐺. A Gröbner basis 𝐺 is said to be reduced if, for any 𝑔 ∈ 𝐺, all terms of 𝑔 are reduced modulo the leading terms of 𝐺. 

An
)︂ ∈ C 𝑛 | 𝜗 ∈ C such that 𝑤(𝜗) = 0 }︂ , is finite.
A finite algebraic set 𝒱 ∈ C 𝑛 is said to be represented by a zero-dimensional parametrization R if and only if 𝒱 coincides with 𝑍(R).

Note that the cardinality of 𝒱 is the same as the degree of 𝑤 ; we also call it the degree of the zero-dimensional parametrization.

Note that it is possible to retrieve a polynomial parametrization by inverting the derivative 𝑤 ′ modulo 𝑤. Still, this rational parametrization whose denominator is the derivative of 𝑤 is known to be better for practical computations as it usually involves coefficients with smaller bit size (see [START_REF] Dahan | Sharp estimates for triangular sets[END_REF]).

3 Computing sample points in semi-algebraic sets defined by the non-vanishing of polynomials

In this section, we study the following algorithmic problem. Given (𝑔1, . . . , 𝑔𝑠) in Q[𝑦1, . . . , 𝑦𝑡], compute at least one sample point per connected component of the semi-algebraic set 𝒮 ⊂ R 𝑡 defined by

𝑔1 ̸ = 0, . . . , 𝑔𝑠 ̸ = 0.
Such sample points will be encoded with zero-dimensional parametrizations which we described in Section 2.

The main result of this section which will be used in the sequel of this paper is the following.

Theorem II. Let (𝑔1, . . . , 𝑔𝑠) in Q[𝑦1, . . . , 𝑦𝑡] with 𝐷 ≥ max 1≤𝑖≤𝑠 deg(𝑔𝑖) and 𝒮 ⊂ R 𝑡 be the semi-algebraic set defined by

𝑔1 ̸ = 0, . . . , 𝑔𝑠 ̸ = 0.
There exists a probabilistic algorithm which on input (𝑔1, . . . , 𝑔𝑠) outputs a finite family of zero-dimensional parametrizations R1, . . . , R 𝑘 , all of them of degree bounded by (2𝐷) 𝑡 , which encode at most (2𝑠𝐷) 𝑡 points such that ∪ 𝑘 𝑖=1 𝑍(R𝑖) meets every connected component of 𝒮 using

𝑂 ̃︀ (︃(︃ 𝐷 + 𝑡 𝑡 )︃ 𝑠 𝑡+1 2 3𝑡 𝐷 2𝑡+1
)︃ .

arithmetic operations in Q.

The rest of this section is devoted to the proof of this theorem.

Proof. By [19, Lemma 1], there exists a non-empty Zariski open set 𝒜 × ℰ ⊂ C 𝑠 × C such that for (𝑎 = (𝑎1, . . . , 𝑎𝑠), 𝑒) ∈ 𝒜 × ℰ ∩ R 𝑠 × R, the following holds. For ℐ = {𝑖1, . . . , 𝑖 ℓ } ⊂ {1, . . . , 𝑠} and 𝜎 = (𝜎1, . . . , 𝜎𝑠) ∈ {-1, 1} 𝑠 , the algebraic sets 𝑉 ℐ,𝜎 𝑎,𝑒 ⊂ C 𝑡 defined by

𝑔𝑖 1 + 𝜎𝑖 1 𝑎𝑖 1 𝑒 = • • • = 𝑔𝑖 ℓ + 𝜎𝑖 ℓ 𝑎𝑖 ℓ 𝑒 = 0
are, either empty, or (𝑡 -ℓ)-equidimensional and smooth, and the ideal generated by their defining equations is radical.

Note that by the transfer principle, one can choose instead of a scalar 𝑒 an infinitesimal 𝜀 so that the algebraic sets 𝑉 ℐ,𝜎 𝑎,𝜀 and their defining set of equations satisfy the above properties. When, in the above equations, one leaves 𝜀 as a variable, one obtains equations defining an algebraic set in C 𝑡+1 . We denote by V ℐ,𝜎 𝑎,𝜀 the union of the (𝑡 + 1 -ℓ)-equidimensional components of this algebraic set. Further we also assume that the 𝑎𝑖's are chosen positive.

Denote by 𝒮 (𝜀) the extension of the semi-algebraic set 𝒮 to R⟨𝜀⟩ 𝑡 ; similarly, the extension of any connected component 𝐶 of 𝒮 to R⟨𝜀⟩ 𝑡 is denoted by 𝐶 (𝜀) . Now, remark that any connected component 𝐶 (𝜀) of 𝒮 (𝜀) contains a connected component of the semi-algebraic set 𝒮 (𝜀) 𝑎 defined by:

(-𝑎1𝜀 ≥ 𝑔1 ∨ 𝑔1 ≥ 𝑎1𝜀) ∧ • • • ∧ (-𝑎𝑠𝜀 ≥ 𝑔𝑠 ∨ 𝑔𝑠 ≥ 𝑎𝑠𝜀)
Hence, we are led to compute sample points per connected component of 𝒮 (𝜀)

𝑎 . These will be encoded with zero-dimensional parametrizations with coefficients in Q[𝜀].

By [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Proposition 13.1], in order to compute sample points per connected component in 𝒮 (𝜀) 𝑎 , it suffices to compute sample points in the real algebraic sets 𝑉 ℐ,𝜎 𝑎,𝜀 ∩ R 𝑡 . To do that, since the algebraic sets 𝑉 ℐ,𝜎 𝑎,𝜀 satisfy the above regularity properties, we can use the algorithm and geometric results of [START_REF] Safey El Din | Polar varieties and computation of one point in each connected component of a smooth real algebraic set[END_REF]. To state these results, one needs to introduce some notation.

Let Q be a real field, R be a real closure of Q and C be an algebraic closure of R. For an algebraic set 𝑉 ⊂ C 𝑡 defined by ℎ1 = • • • = ℎ ℓ = 0 (ℎ𝑖 ∈ Q[𝑦] with 𝑦 = (𝑦1, . . . , 𝑦𝑡)) and 𝑀 ∈ GL𝑡(R), we denote by 𝑉 𝑀 the set {𝑀 -1 • 𝑥 | 𝑥 ∈ 𝑉 } and, for 1 ≤ 𝑖 ≤ ℓ, by ℎ𝑖 𝑀 the polynomial ℎ𝑖(𝑀 • 𝑦) and by 𝜋𝑖 the canonical projection (𝑦1, . . . , 𝑦𝑡) ↦ → (𝑦1, . . . , 𝑦𝑖) (𝜋0 will simply denote (𝑦1, . . . , 𝑦𝑡) ↦ → {•}). By slightly abusing notation, we will also denote by 𝜋𝑖 projections from V ℐ,𝜎 𝑎,𝜀 to the first 𝑖 coordinates (𝑦1, . . . , 𝑦𝑖).

We will consider the set of critical points of the restriction of 𝜋𝑖 to 𝑉 and will denote this set by crit(𝜋𝑖, 𝑉 ) for 1 ≤ 𝑖 ≤ ℓ. By [41, Theorem 2], for a generic choice of 𝑀 ∈ GL𝑡(R), the union of 𝑉 𝑀 ∩ 𝜋 -1 𝑡-ℓ (0) with the sets crit(𝜋𝑖, 𝑉 𝑀 ) ∩ 𝜋 -1 𝑖-1 (0) (for 1 ≤ 𝑖 ≤ 𝑡 -ℓ) is finite and meets all connected components of 𝑉 𝑀 ∩ R 𝑡 . Because 𝑉 satisfies the aforementioned regularity assumptions, crit(𝜋𝑖, 𝑉 𝑀 ) ∩ 𝜋 -1 𝑖-1 (0) is defined as the projection on the 𝑦-space of the solution set to the polynomials

ℎ 𝑀 , (𝜆1, . . . , 𝜆 ℓ ).𝑗𝑎𝑐(ℎ 𝑀 , 𝑖), 𝑢1𝜆1 + • • • + 𝑢 ℓ 𝜆 ℓ = 1, 𝑦1 = • • • = 𝑦𝑖-1 = 0,
where ℎ = (ℎ1, . . . , ℎ ℓ ), 𝜆1, . . . , 𝜆 ℓ are new variables (called Lagrange multipliers), 𝑗𝑎𝑐(ℎ 𝑀 , 𝑖) is the Jacobian matrix associated to ℎ 𝑀 truncated by forgetting its first first 𝑖 columns and the 𝑢𝑖's are generically chosen (see also [START_REF] Safey El Din | A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets[END_REF]App. B]).

Assume that 𝐷 is the maximum degree of the ℎ𝑗's and let 𝐸 be the length of a straight-line program evaluating ℎ. Observe now that, setting the 𝑦𝑗's to 0 (for 1 ≤ 𝑗 ≤ 𝑖 -1), and using [43, Theorem 1] combined with the degree estimates in [43, Section 5], we obtain that such systems can be solved using

𝑂 (︃(︃(︃ 𝑡 -𝑖 ℓ )︃ 𝐷 ℓ (𝐷 -1) 𝑡-(𝑖-1)-ℓ )︃ 2 (𝐸 + (𝑡 + ℓ)𝐷 + (𝑡 + ℓ) 2 )(𝑡 + ℓ) )︃
arithmetic operations in Q and have at most

(︃ 𝑡 -𝑖 ℓ )︃ 𝐷 ℓ (𝐷 -1) 𝑡-(𝑖-1)-ℓ solutions.
Going back to our initial problem, one then needs to solve polynomial systems which encode the set crit(𝜋𝑖, 𝑉 ℐ,𝜎 𝑎,𝜀 ) of critical points of the restriction of 𝜋𝑖 to 𝑉 ℐ,𝜎 𝑎,𝜀 . Note that these systems have coefficients in Q[𝜀]. To solve such systems, we rely on [START_REF] Schost | Computing parametric geometric resolutions[END_REF], which consists in specializing 𝜀 to a generic value 𝑣 ∈ Q and compute a zero-dimensional parametrization of the solution set to the obtained system (within the above arithmetic complexity over Q) and next use Hensel lifting and rational reconstruction to deduce from this parametrization a zero-dimensional parametrization with coefficients in Q(𝜀). By [44, Corollary 1] and multi-homogeneous bounds on the degree of the critical points of 𝜋𝑖 to V ℐ,𝜎 𝑎,𝜀 as in [START_REF] Safey El Din | Bit complexity for multi-homogeneous polynomial system solving-application to polynomial minimization[END_REF]Section 5], this lifting step has a cost

𝑂 ̃︀ (︃ ((𝑡 + ℓ) 4 + (𝑡 + ℓ + 1)𝐸) (︃(︃ 𝑡 -𝑖 ℓ )︃ 𝐷 ℓ (𝐷 -1) 𝑡-(𝑖-1)-ℓ )︃ 2 )︃ .
Hence, all in all computing one zero-dimensional parametrization for one critical locus uses

𝑂 ̃︀ (︃ ((𝑡 + ℓ) 4 𝐷 + (𝑡 + ℓ + 1)𝐸) (︃(︃ 𝑡 -𝑖 ℓ )︃ 𝐷 ℓ (𝐷 -1) 𝑡-(𝑖-1)-ℓ )︃ 2 )︃
arithmetic operations in Q. Note that, following [START_REF] Schost | Computing parametric geometric resolutions[END_REF], the degrees in 𝜀 of the numerators and denominators of the coefficients of these parametrizations are bounded by

(︀ 𝑡 ℓ )︀ 𝐷 ℓ (𝐷 -1) 𝑡-ℓ .
Summing up for all critical loci and using

𝑡-ℓ ∑︁ 𝑖=0 (︃ 𝑡 -𝑖 ℓ )︃ = (︃ 𝑡 + 1 ℓ + 1
)︃ , the computation for a fixed 𝑉 ℐ,𝜎 𝑎,𝜀 uses

𝑂 ̃︀ (︃ ((𝑡 + ℓ) 4 𝐷 + (𝑡 + ℓ + 1)𝐸) (︃ 𝑡 + 1 ℓ + 1 )︃ 2 (︁ 𝐷 ℓ (𝐷 -1) 𝑡-ℓ )︁ 2 )︃
arithmetic operations in Q. Also, the number of points computed this way is dominated by

(︃ 𝑡 + 1 ℓ + 1 )︃ (︁ 𝐷 ℓ (𝐷 -1) 𝑡-ℓ )︁ .
Note that the above quantity is upper bounded by (2𝐷) 𝑡 and bounds the degree of the output zero-dimensional parametrizations.

Taking the sum for all possible algebraic sets 𝑉 ℐ,𝜎 𝑎,𝜀 and remarking that

• the sum of number of indices of cardinality ℓ for 0 ≤ ℓ ≤ 𝑡 is bounded by 𝑠 𝑡 ;

• the number of sets 𝜎 for a given ℓ is bounded by 2 𝑡 ;

• the sum

∑︀ 𝑡 ℓ=0 (︀ 𝑡+1 ℓ+1 )︀ 2 equals 2 (︀ 2𝑡+1 𝑡 )︀ -1
one deduces that all these zero-dimensional parametrizations can be computed within

𝑂 ̃︀ (︃ 𝑠 𝑡 2 𝑡 (︃ 2𝑡 + 1 𝑡 )︃ (︀ (2𝑡) 4 𝐷 + (2𝑡 + 1)Γ )︀ 𝐷 2𝑡
)︃ arithmetic operations in Q (recall that Γ bounds the length of a straight line program evaluating all the polynomials defining our semi-algebraic set 𝒮) which we simplify to

𝑂 ̃︀ (︀ Γ 𝑠 𝑡 2 3𝑡 𝐷 2𝑡+1 )︀ .
Similarly, using the above simplifications, the total number of points encoded by these zero-dimensional parametrizations is bounded above by (2𝑠𝐷) 𝑡 .

At this stage, we have just obtained zero-dimensional parametrizations with coefficients in Q(𝜀).

The above bound on the number of returned points is done but it remains to show how to specialize 𝜀 in order to get sample points per connected components in 𝒮. To do that, given a parametrization R𝜀 = (𝑤, 𝑣1, . . . , 𝑣𝑡) ⊂ Q(𝜀)[𝑢] 𝑡+1 , we need to find a specialization value 𝑒 for 𝜀 to obtain a parametrization R𝑒 such that

• the number of real roots of the zero set associated to R𝑒 is the same as the number of real roots of the zero set associated to R𝜀;

• when 𝜂 ranges over the interval ]0, 𝑒] the signs of the 𝑔𝑖's at the zero set associated to 𝜂 does not vary.

To do that, it suffices to choose 𝑒 such that it is smaller than the smallest positive root of the resultant associated to (︀ 𝑤, 𝜕𝑤

𝜕𝑢

)︀ and the smallest positive roots of the resultant associated to 𝑤 and 𝑔𝑖 (︁

𝑣 1 𝜕𝑤/𝜕𝑢 , . . . , 𝑣 𝑡 𝜕𝑤/𝜕𝑢
)︁ . The algebraic cost (i.e. the resultant computations) are dominated by the complexity estimates of the previous step.

Finally, note that Γ can be bounded by 𝑠 (︀ 𝐷+𝑡 𝑡 )︀ when the 𝑔𝑖's are given in an expanded form in the monomial basis. Therefore, the arithmetic complexity for computing sample points of the semi-algebraic set defined by 𝑔1 ̸ = 0, . . . , 𝑔𝑠 ̸ = 0 can be bounded by

𝑂 ̃︀ (︃(︃ 𝐷 + 𝑡 𝑡 )︃ 𝑠 𝑡+1 2 3𝑡 𝐷 2𝑡+1
)︃ .

Remark 2. Observe that since the coefficients of the rational parametrizations with coefficients in Q[𝜀] have bit size depending both on the maximum bit size 𝜏 of the coefficients of the input polynomials 𝑔1, . . . , 𝑔𝑠 and the bit size of the generically chosen 𝑎𝑖's.

When substituting 𝜀 by a small enough rational number 𝑒, one obtains zero-dimensional parametrizations with coefficients in Q of bit size depending on the one of 𝑒 also. Admissible values for 𝑒 depend on the magnitude of the real roots of the univariate resultant we exhibit in the above proof. Because we start with rational parametrizations of degree bounded by 𝑂(𝐷) 𝑡 , assuming that the bit size of the 𝑎𝑖's is bounded by 𝑂(𝐷) 𝑡 (following reasonings like the one in [START_REF] Elliott | On the bit complexity of finding points in connected components of a smooth real hypersurface[END_REF]), one could show using standard quantitative results that the bit size of 𝑒 may be 𝜏 𝐷 𝑂(𝑡) (because 𝑒 is obtained through the isolation of real roots of a univariate polynomial of degree 𝐷 𝑂(𝑡) ). However, this is a worst case analysis and most of the time, we observe in practice that one can choose for 𝑒 values of reasonable bit size.

We end this section with a Corollary which is a consequence of the proof of [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Theorem 13.18]. Basically, once we have the parametrizations computed by the algorithm on which Theorem II relies, one can compute sample points per connected components of the semi-algebraic set 𝒮 within the same arithmetic complexity bounds. The idea is just to evaluate the 𝑔𝑖's at these rational parametrizations and use bounds on the minimal distance between two roots of a univariate polynomial such as [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Prop. 10.22].

Hence, the proof of the corollary below follows mutatis mutandis the same steps as the one of [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Theorem 13.18].

Corollary 3. Let (𝑔1, . . . , 𝑔𝑠) in Q[𝑦1, . . . , 𝑦𝑡] with 𝐷 ≥ max 1≤𝑖≤𝑠 deg(𝑔𝑖)
and 𝒮 ⊂ R 𝑡 be the semi-algebraic set defined by

𝑔1 ̸ = 0, . . . , 𝑔𝑠 ̸ = 0.
There exists a probabilistic algorithm which on input (𝑔1, . . . , 𝑔𝑠) outputs a finite set of points P in Q 𝑡 of cardinality at most (2𝑠𝐷) 𝑡 points such that P meets every connected component of 𝒮 using

𝑂 ̃︀ (︃(︃ 𝐷 + 𝑡 𝑡 )︃ 𝑠 𝑡+1 2 3𝑡 𝐷 2𝑡+1 )︃ .
arithmetic operations in Q.

Note that the main difference, by contrast with Theorem II, the above Corollary shows how to obtain output points with coordinates in Q.

Parametric Hermite matrices

In this section, we adapt the construction encoding Hermite's quadratic forms, also known as Hermite matrices to the context of parametric systems and describe an algorithm for computing those parametric Hermite matrices.

Definition

Let K be a field and 𝐼 ⊂ K[𝑥] be a zero-dimensional ideal. Recall that the quotient ring

𝐴 K = K[𝑥]/𝐼 is a K-vector space of finite dimension [12, Section 5.3, Theorem 6]. For 𝑝 ∈ K[𝑥], we denote by ℒ𝑝 the multiplication map 𝑞 ∈ 𝐴 K ↦ → 𝑝 • 𝑞, ∈ 𝐴 K .
Note that the map ℒ𝑝 is an endomorphism of 𝐴 K as a K-vector space. The Hermite quadratic form associated to 𝐼 is defined as the bilinear form that sends (𝑝, 𝑞) ∈ 𝐴 K × 𝐴 K to the trace of ℒ𝑝•𝑞 as an endomorphism of 𝐴 K .

We refer to [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Chap. 4] for more details about Hermite quadratic forms. Now, let 𝑓 = (𝑓1, . . . , 𝑓𝑚) be a polynomial sequence in Q[𝑦][𝑥]. We take the rational function field Q(𝑦) as the base field K and denote by ⟨𝑓 ⟩ K the ideal generated by 𝑓 in K[𝑥]. We require that the system 𝑓 satisfies Assumption (A).

This leads to the following well-known lemma, which is the foundation for the construction of our parametric Hermite matrices. Lemma 4. Assume that 𝑓 satisfies Assumption (A). Then the ideal ⟨𝑓 ⟩ K is zero-dimensional.

Proof. Assume that there exists a coordinate 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛 such that ⟨𝑓 ⟩ ∩ C[𝑦, 𝑥𝑖] = ⟨0⟩. We denote respectively by 𝜋𝑖 and π𝑖 the projections (𝑦, 𝑥) ↦ → (𝑦, 𝑥𝑖) and (𝑦, 𝑥𝑖) ↦ → 𝑦. By the assumption above, 𝜋𝑖(𝒱) is the whole space C 𝑡+1 . Then, we have the identity

C 𝑡+1 = (︀ π𝑖 -1 (𝒪) ∪ π𝑖 -1 (C 𝑡 ∖ 𝒪) )︀ ∩ 𝜋𝑖(𝒱),
where 𝒪 be the dense Zariski open subset of C 𝑡 required in Assumption (A).

Since π𝑖 is a map from C 𝑡+1 to C 𝑡 , its fibers are of dimension at most 1. Therefore, we have that dim π𝑖 -1 (C 𝑡 ∖ 𝒪) ≤ 1 + dim(C 𝑡 ∖ 𝒪) ≤ 𝑡. As Assumption (A) holds and dim π-1 𝑖 (C 𝑡 ∖ 𝒪) ≤ 𝑡, we have that dim π𝑖 -1 (𝒪) ∩ 𝜋𝑖(𝒱) = 𝑡. This contradicts to the identity above. We conclude that, for

1 ≤ 𝑖 ≤ 𝑛, ⟨𝑓 ⟩ ∩ C[𝑦, 𝑥𝑖] ̸ = ⟨0⟩.
On the other hand, by Assumption (A), the Zariski-closure of 𝜋(𝒱) is the whole parameter space C 𝑡 . Thus, we have that

⟨𝑓 ⟩ ∩ C[𝑦] = ⟨0⟩. Since ⟨𝑓 ⟩ ∩ C[𝑦] = (⟨𝑓 ⟩ ∩ C[𝑦, 𝑥𝑖]) ∩ C[𝑦] for every 1 ≤ 𝑖 ≤ 𝑛, there exists a polynomial 𝑝𝑖 ∈ ⟨𝑓 ⟩ ∩ C[𝑦, 𝑥𝑖]
whose degree with respect to 𝑥𝑖 is non-zero. Clearly, 𝑝𝑖 is an element of the ideal ⟨𝑓 ⟩ K . Thus, there exists 𝑑𝑖 such that 𝑥 𝑑 𝑖 𝑖 is a leading term in ⟨𝑓 ⟩ K . Hence, ⟨𝑓 ⟩ K is a zero-dimensional ideal.

Lemma 4 allows us to apply the construction of Hermite matrices described in [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Chap. 4] to parametric systems as follows.

Since the ideal ⟨𝑓 ⟩ K is zero-dimensional by Lemma 4, its associated quotient ring 𝐴 K = K[𝑥]/⟨𝑓 ⟩ K is a finite dimensional K-vector space. Let 𝛿 denote the dimension of 𝐴 K as a K-vector space.

We consider a basis 𝐵 = {𝑏1, . . . , 𝑏 𝛿 } of 𝐴 K , where the 𝑏𝑖's are taken as monomials in the variables 𝑥. Such a basis can be derived from Gröbner bases as follows. We fix an admissible monomial ordering ≻ over the set of monomials in the variables 𝑥 and compute a Gröbner basis 𝐺 with respect to the ordering ≻ of the ideal ⟨𝑓 ⟩ K . Then, the monomials that are not divisible by any leading monomial of elements of 𝐺 form a basis of 𝐴 K .

Recall that, for an element 𝑝 ∈ K[𝑥], we denote by 𝑝 the class of 𝑝 in the quotient ring 𝐴 K . A representative of 𝑝 can be derived by computing the normal form of 𝑝 by the Gröbner basis 𝐺, which results in a linear combination of elements of 𝐵 with coefficients in Q(𝑦).

Assume now the basis 𝐵 of 𝐴 K is fixed. For any 𝑝 ∈ K[𝑥], the multiplication map ℒ𝑝 is an endomorphism of 𝐴 K . Therefore, it admits a matrix representation with respect to 𝐵, whose entries are elements in Q(𝑦). The trace of ℒ𝑝 can be computed as the trace of the matrix representing it. Similarly, the Hermite's quadratic form of the ideal ⟨𝑓 ⟩ K can be represented by a matrix with respect to 𝐵. This leads to the following definition.

Definition 5. Given a parametric polynomial system 𝑓 = (𝑓1, . . . , 𝑓𝑚) ⊂ Q[𝑦][𝑥] satisfying Assumption (A). We fix a basis 𝐵 = {𝑏1, . . . , 𝑏 𝛿 } of the vector space K[𝑥]/⟨𝑓 ⟩ K . The parametric Hermite matrix associated to 𝑓 with respect to the basis 𝐵 is defined as the symmetric matrix 𝐻 = (ℎ𝑖,𝑗) 1≤𝑖,𝑗≤𝛿 where ℎ𝑖,𝑗 = trace(ℒ 𝑏 𝑖 •𝑏 𝑗 ).

It is important to note that the definition of parametric Hermite matrices depends both on the input system 𝑓 and the choice of the monomial basis 𝐵.

Gröbner bases and parametric Hermite matrices

In the previous subsection, we have defined parametric Hermite matrices assuming one knows a Gröbner basis 𝐺 with respect to some monomial ordering of the ideal ⟨𝑓 ⟩ K where K = Q(𝑦) and ⟨𝑓 ⟩ K is the ideal of K[𝑥] generated by 𝑓 .

Computing such a Gröbner basis may be costly as this would require to perform arithmetic operations over the field Q(𝑦) (or Z/𝑝Z(𝑦) where 𝑝 is a prime when tackling this computational task through modular computations). In this paragraph, we show that one can obtain parametric Hermite matrices by considering some Gröbner bases of the ideal ⟨𝑓 ⟩ ⊂ Q[𝑦, 𝑥] (hence, enabling the use of efficient implementations of Gröbner bases such as the 𝐹4/𝐹5 algorithms [START_REF] Faugere | A new efficient algorithm for computing Gröbner bases (F4)[END_REF][START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)[END_REF]).

Since the graded reverse lexicographical ordering (grevlex for short) is known for yielding Gröbner bases of relatively small degree comparing to other orders, we prefer using this ordering to construct our parametric Hermite matrices. Further, we will use the notation grevlex(𝑥) for the grevlex ordering among the variables 𝑥 (with 𝑥1 ≻ • • • ≻ 𝑥𝑛) and grevlex(𝑥) ≻ grevlex(𝑦) (with 𝑦1 ≻ • • • ≻ 𝑦𝑡) for the elimination ordering. We denote respectively by lm𝑥(𝑝) and lc𝑥(𝑝) the leading monomial and the leading coefficient of 𝑝 ∈ K[𝑥] with respect to the ordering grevlex(𝑥). Lemma 6. Let 𝒢 be the reduced Gröbner basis of ⟨𝑓 ⟩ with respect to the elimination ordering grevlex(𝑥) ≻ grevlex(𝑦). Then 𝒢 is also a Gröbner basis of ⟨𝑓 ⟩ K with respect to the ordering grevlex(𝑥).

Proof. Since 𝒢 is a Gröbner basis of the ideal ⟨𝑓 ⟩, every polynomial 𝑓𝑖 of 𝑓 can be written as

𝑓𝑖 = ∑︀ 𝑔∈𝒢 𝑐𝑔 • 𝑔 where 𝑐𝑔 ∈ Q[𝑥, 𝑦].
Therefore, any element of ⟨𝑓 ⟩ K can also be written as a combination of elements of 𝒢 with coefficients in Q(𝑦) [𝑥]. In other words, 𝒢 is a set of generators of ⟨𝑓 ⟩ K .

Let 𝑝 be a polynomial in K[𝑥], 𝑝 is contained in ⟨𝑓 ⟩ K if and only if there exists a polynomial 𝑞 ∈ Q[𝑦] such that 𝑞 • 𝑝 ∈ ⟨𝑓 ⟩. Thus, the leading monomial of 𝑝 as an element of K[𝑥] with respect to the grevlex ordering grevlex(𝑥) is contained in the ideal ⟨lm𝑥(𝑔) | 𝑔 ∈ 𝒢⟩. Therefore, 𝒢 is a Gröbner basis of ⟨𝑓 ⟩ K .

Hereafter, we denote by 𝒢 the reduced Gröbner basis of ⟨𝑓 ⟩ with respect to the elimination ordering grevlex(𝑥) ≻ grevlex(𝑦). Let ℬ be the set of all monomials in 𝑥 that are not reducible by 𝒢, which is finite by Lemmas 4 and 6. The set ℬ actually forms a basis of the K-vector space K[𝑥]/⟨𝑓 ⟩ K . Then, we denote by ℋ the parametric Hermite matrix associated to 𝑓 with respect to this basis ℬ.

We consider the following assumption on the input system 𝑓 .

Assumption B. For 𝑔 ∈ 𝒢, the leading coefficient lc𝑥(𝑔) does not depend on the parameters 𝑦.

As the computations in the quotient ring 𝐴 K are done through normal form reductions by 𝒢, the lemma below is straight-forward. The next proposition states that Assumption (B) is satisfied by a generic system 𝑓 . It implies that the entries of the parametric Hermite matrix of a generic system with respect to the basis ℬ derived from 𝒢 completely lie in Q[𝑦]. We postpone the proof of Proposition 8 to Subsection 6.1 where we prove a more general result (see Proposition 20). 

Specialization property of parametric Hermite matrices

Recall that 𝒢 is the reduced Gröbner basis of ⟨𝑓 ⟩ with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦) and ℬ is the basis of K[𝑥]/⟨𝑓 ⟩ K derived from 𝒢 as discussed in the previous subsection. Then, ℋ is the parametric Hermite matrix associated to 𝑓 with respect to the basis ℬ.

Let 𝜂 ∈ C 𝑡 and 𝜑𝜂 : C(𝑦)[𝑥] → C[𝑥], 𝑝(𝑦, 𝑥) ↦ → 𝑝(𝜂, 𝑥) be the specialization map that evaluates the parameters 𝑦 at 𝜂. Then 𝑓 (𝜂, •) = (𝜑𝜂(𝑓1), . . . , 𝜑𝜂(𝑓𝑚)). We denote by ℋ(𝜂) the specialization (𝜑𝜂(ℎ𝑖,𝑗)) 1≤𝑖,𝑗≤𝛿 of ℋ at 𝜂.

Recall that, for a polynomial 𝑝 ∈ C(𝑦)[𝑥], the leading coefficient of 𝑝 considered as a polynomial in the variables 𝑥 with respect to the ordering grevlex(𝑥) is denoted by lc𝑥(𝑝). In this subsection, for 𝑝 ∈ C[𝑥], we use lm(𝑝) to denote the leading monomial of 𝑝 with respect to the ordering grevlex(𝑥).

Let 𝒲∞ ⊂ C 𝑡 denote the algebraic set ∪𝑔∈𝒢𝑉 (lc𝑥(𝑔)). In Proposition 10, we prove that, outside 𝒲∞, the specialization ℋ(𝜂) coincides with the classic Hermite matrix of the zero-dimensional ideal 𝑓 (𝜂,

•) ⊂ Q[𝑥]
. This is the main result of this subsection.

Since the operations over the K-vector space 𝐴 K rely on normal form reductions by the Gröbner basis 𝒢 of ⟨𝑓 ⟩ K , the specialization property of ℋ depends on the specialization property of 𝒢. Lemma 9 below, which is a direct consequence of [32, Theorem 3.1], provides the specialization property of 𝒢. We give here a more elementary proof for this lemma than the one in [START_REF] Kalkbrener | On the stability of gröbner bases under specializations[END_REF]. Proof. Since 𝜂 ∈ C 𝑡 ∖ 𝒲∞, the leading coefficient lc𝑥(𝑔) does not vanish at 𝜂 for every 𝑔 ∈ 𝒢. Thus, lm𝑥(𝑔) = lm(𝜑𝜂(𝑔)).

We denote by ℳ the set of all monomials in the variables 𝑥 and

ℳ𝒢 := {𝑚 ∈ ℳ | ∃𝑔 ∈ 𝒢 : lm𝑥(𝑔) divides 𝑚} = {𝑚 ∈ ℳ | ∃𝑔 ∈ 𝒢 : lm(𝜑𝜂(𝑔)) divides 𝑚}.
For any 𝑝 ∈ ⟨𝑓 ⟩ ⊂ Q[𝑥, 𝑦], we prove that lm(𝜑𝜂(𝑓 )) ∈ ℳ𝐺. If 𝑝 is identically zero, there is nothing to prove. So, we assume that 𝑝 ̸ = 0, 𝑝 is then expanded in the form below:

𝑝 = ∑︁ 𝑚∈ℳ 𝐺 𝑐𝑚 • 𝑚 + ∑︁ 𝑚∈ℳ∖ℳ 𝐺 𝑐𝑚 • 𝑚,
where the 𝑐𝑚's are elements of Q[𝑦]. Since 𝑝 is not identically zero, there exists 𝑚 ∈ ℳ𝒢 such that 𝑐𝑚 ̸ = 0.

Since 𝒢 is a Gröbner basis of ⟨𝑓 ⟩ K , any monomial in ℳ𝒢 can be reduced by 𝒢 to a unique normal form in K[𝑥]. These divisions involve denominators, which are products of some powers of the leading coefficients of 𝒢 with respect to the variables 𝑥. We write

NF𝒢(𝑝) = ∑︁ 𝑚∈ℳ 𝒢 𝑐𝑚 • NF𝒢(𝑚) + ∑︁ 𝑚∈ℳ∖ℳ 𝒢 𝑐𝑚 • 𝑚.
As 𝑝 ∈ ⟨𝑓 ⟩ K , we have that NF𝒢(𝑝) = 0, which implies

∑︁ 𝑚∈ℳ∖ℳ 𝒢 𝑐𝑚 • 𝑚 = - ∑︁ 𝑚∈ℳ 𝒢 𝑐𝑚 • NF𝒢(𝑚).
Therefore, we have the identity

𝑝 = ∑︁ 𝑚∈ℳ 𝒢 𝑐𝑚 • (𝑚 -NF𝒢(𝑚))
Since 𝜂 does not cancel any denominator appearing in NF𝒢(𝑚), we can specialize the identity above without any problem:

𝜑𝜂(𝑝) = ∑︁ 𝑚∈ℳ 𝒢 𝜑𝜂(𝑐𝑚) • (𝑚 -𝜑𝜂(NF𝒢(𝑚))).
If at least one of the 𝜑𝜂(𝑐𝑚) does not vanish, then the leading monomial of 𝜑𝜂(𝑓 ) is in ℳ𝒢. Otherwise, if all the 𝜑𝜂(𝑐𝑚) are canceled, then 𝜑𝜂(𝑝) is identically zero, and there is not any new leading monomial appearing either. So, the leading monomial of any 𝑝 ∈ ⟨𝑓𝜂⟩ is contained in ℳ𝒢, which means 𝒢(𝜂, •) is a Gröbner basis of ⟨𝑓 (𝜂, •)⟩ with respect to grevlex(𝑥). We finish this subsection by giving some explanation for what happens above 𝒲∞, where our parametric Hermite matrix ℋ does not have good specialization property. Lemma 12. Let 𝒲∞ defined as above. Then 𝒲∞ contains all the following sets:

• The non-proper points of the restriction of 𝜋 to 𝒱 (see Section 2 for this definition).

• The set of points 𝜂 ∈ C 𝑡 such that the fiber 𝜋 -1 (𝜂) ∩ 𝒱 is infinite.

• The image by 𝜋 of the irreducible components of 𝒱 whose dimensions are smaller than 𝑡.

Proof. The claim for the set of non-properness of the restriction of 𝜋 to 𝒱 is already proven in [START_REF] Lazard | Solving parametric polynomial systems[END_REF]Theorem 2]. We focus on the two remaining sets.

Using the Hermite matrix, we know that for 𝜂 ∈ C 𝑡 ∖ 𝒲∞, the system 𝑓 (𝜂, •) admits a non-empty finite set of complex solutions. On the other hand, for any 𝜂 ∈ C 𝑡 such that 𝜋 -1 (𝜂) ∩ 𝒱 is infinite, 𝑓 (𝜂, •) has infinitely many complex solutions. Therefore, the set of such points 𝜂 is contained in 𝒲∞.

Let 𝒱>𝑡 be the union of irreducible components of 𝒱 of dimension greater than 𝑡. By the fiber dimension theorem [45, Theorem 1.25], the fibers of the restriction of 𝜋 to 𝒱>𝑡 must have dimension at least one. Similarly, the components of dimension 𝑡 whose images by 𝜋 are contained in a Zariski closed subset of C 𝑡 also yield infinite fibers. Therefore, as proven above, all of these components are contained in 𝜋 -1 (𝒲∞).

We now consider the irreducible components of dimension smaller than 𝑡. Let 𝒱 ≥𝑡 and 𝒱<𝑡 be respectively the union of irreducible components of 𝒱 of dimension at least 𝑡 and at most 𝑡 -1. We have that 𝒱 = 𝒱 ≥𝑡 ∪ 𝒱<𝑡. Let 𝐼 ⊂ Q[𝑥, 𝑦] denote the ideal generated by 𝑓 . Using the primary decomposition of 𝐼 (see e.g. [START_REF] Cox | Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]Sec. 4.8]), we have that 𝐼 is the intersection of two ideals 𝐼 ≥𝑡 and 𝐼<𝑡 such that 𝑉 (𝐼 ≥𝑡 ) = 𝒱 ≥𝑡 and 𝑉 (𝐼<𝑡) = 𝒱<𝑡. We write

𝐼 = 𝐼 ≥𝑡 ∩ 𝐼<𝑡.
We denote by 𝑅 the polynomial ring Q(𝑦) [𝑥]. Then, the above identity is transferred into 𝑅:

𝐼 • 𝑅 = (𝐼 ≥𝑡 • 𝑅) ∩ (𝐼<𝑡 • 𝑅).
Since dim(𝜋(𝒱<𝑡)) ≤ 𝑡 -1, then there exists a non-zero polynomial Lemma 6, 𝒢 is a Gröbner basis of 𝐼 • 𝑅, then it is also a Gröbner basis of 𝐼 ≥𝑡 • 𝑅. Therefore, the Hermite matrices associated to 𝐼 and 𝐼 ≥𝑡 (with respect to the basis derived from 𝒢) coincide. So, for 𝜂 ̸ ∈ 𝒲∞, the ranks of those matrices are equal and so are the numbers of complex points in 𝜋 -1 (𝜂) ∩ 𝒱 and 𝜋 -1 (𝜂) ∩ 𝒱 ≥𝑡 . As 𝜋 -1 (𝜂) ∩ 𝒱 ≥𝑡 ⊂ 𝜋 -1 (𝜂) ∩ 𝒱, we have that 𝜋 -1 (𝜂) ∩ 𝒱 = 𝜋 -1 (𝜂) ∩ 𝒱 ≥𝑡 . This leads to

𝑝 ∈ 𝐼<𝑡 ∩ Q[𝑦]. As 𝑝 is a unit in Q(𝑦), the ideal 𝐼<𝑡 • 𝑅 is exactly 𝑅. So, 𝐼 • 𝑅 = 𝐼 ≥𝑡 • 𝑅. Note that, by
𝜋 -1 (C 𝑡 ∖ 𝒲∞) ∩ 𝒱 ≥𝑡 = 𝜋 -1 (C 𝑡 ∖ 𝒲∞) ∩ 𝒱.
Then, 𝜋 -1 (C 𝑡 ∖ 𝒲∞) ∩ 𝒱<𝑡 = ∅ or equivalently, 𝒱<𝑡 ⊂ 𝜋 -1 (𝒲∞), which concludes the proof.

Computing parametric Hermite matrices

Given 𝑓 = (𝑓1, . . . , 𝑓𝑚) ∈ Q[𝑦][𝑥] satisfying Assumption (A). We keep denoting K = Q(𝑦). Let 𝒢 be the reduced Gröbner basis of ⟨𝑓 ⟩ with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦) and ℬ be the set of all monomials in the variables 𝑥 which are not reducible by 𝒢. The set ℬ then forms a basis of the K-vector space K[𝑥]/⟨𝑓 ⟩ K .

In this subsection, we focus on the computation of the parametric Hermite matrix associated to 𝑓 with respect to the basis ℬ.

Note that one can design an algorithm using only the definition of parametric Hermite matrices given in Subsection 4.1. More precisely, for each 𝑏𝑖 • 𝑏𝑗 ∈ ℬ (1 ≤ 𝑖, 𝑗 ≤ 𝛿), one computes the matrix representing ℒ 𝑏 𝑖 •𝑏 𝑗 in the basis ℬ by computing the normal form of every 𝑏𝑖 • 𝑏𝑗 • 𝑏 𝑘 for 1 ≤ 𝑘 ≤ 𝛿. Therefore, in total, this direct algorithm requires 𝑂(𝛿 3 ) normal form reductions of polynomials in K[𝑥].

In Algorithm 1 below, we present another algorithm for computing ℋ. We call to the following subroutines successively:

• GrobnerBasis that takes as input the system 𝑓 and computes the reduced Gröbner basis 𝒢 of ⟨𝑓 ⟩ with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦) and the basis ℬ = {𝑏1, . . . , 𝑏 𝛿 } ⊂ Q[𝑥] derived from 𝒢.

Such an algorithm can be obtained using any general algorithm for computing Gröbner basis, which we refer to F4/F5 algorithms [START_REF] Faugere | A new efficient algorithm for computing Gröbner bases (F4)[END_REF][START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)[END_REF].

• ReduceGB that takes as input the Gröbner basis 𝒢 and outputs a subset 𝒢 ′ of 𝒢 which is still a Gröbner basis of ⟨𝑓 ⟩ K with respect to the ordering grevlex(𝑥).

This subroutine aims to remove the elements in 𝒢 that we do not need. Even though 𝒢 is reduced as a Gröbner basis of ⟨𝑓 ⟩ with respect to grevlex(𝑥) ≻ grevlex(𝑦), it is not necessarily the reduced Gröbner basis of ⟨𝑓 ⟩ K with respect to grevlex(𝑥). Using [12, Lemma 3, Sec. 2.7], we can design ReduceGB to remove all the elements of 𝒢 which have duplicate leading monomials (in 𝑥). We obtain as output a subset 𝒢 ′ of 𝒢 which is also a Gröbner basis 𝒢 ′ for ⟨𝑓 ⟩ K with respect to grevlex(𝑥). Note that this tweak reduces not only the cardinal of the Gröbner basis in use but also the size of the set 𝒲∞ introduced in Subsection 4.3 (as we have less leading coefficients).

• XMatrices that takes as input (𝒢 ′ , ℬ) and computes the matrix representation of the multiplication maps ℒ𝑥 𝑖 (1 ≤ 𝑖 ≤ 𝑛) with respect to ℬ.

This computation is done directly by reducing every

𝑥𝑖 • 𝑏𝑗 (1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝛿) to its normal form in K[𝑥]/⟨𝑓 ⟩ K using 𝒢 ′ .
• BMatrices that takes as input the matrices representing (ℒ𝑥 1 , . . . , ℒ𝑥 𝑛 ) and ℬ and computes the matrices representing the ℒ 𝑏 𝑖 's (1 ≤ 𝑖 ≤ 𝛿) in the basis ℬ.

We design BMatrices in a way that it constructs the matrices of ℒ 𝑏 𝑖 's inductively in the degree of the 𝑏𝑖's as follows.

At the beginning, we have the multiplication matrices of 1 and the 𝑥𝑖's; those are the matrices of the elements of degree zero and one. Note that, for any element 𝑏 of ℬ. At the step of computing the matrix of an element 𝑏 ∈ ℬ, we remark that there exist a variable 𝑥𝑖 and a monomial 𝑏 ′ ∈ ℬ such that 𝑏 = 𝑥𝑖 • 𝑏 ′ and the matrix of 𝑏 ′ is already computed (as deg(𝑏 ′ ) < deg(𝑏). Therefore, we simply multiply the matrices of ℒ𝑥 𝑖 and ℒ 𝑏 ′ to obtain the matrix of ℒ 𝑏 .

• TraceComputing that takes as input the multiplication matrices ℒ 𝑏 1 , . . . , ℒ 𝑏 𝛿 and computes the matrix (trace(ℒ 𝑏 𝑖 •𝑏 𝑗 )) 1≤𝑖≤𝑗≤𝛿 . This matrix is in fact the parametric Hermite matrix ℋ associated to 𝑓 with respect to the basis ℬ. To design this subroutine, we use the following remark given in [START_REF] Rouillier | Solving zero-dimensional systems through the rational univariate representation[END_REF].

Let 𝑝, 𝑞 ∈ K[𝑥]. The normal form 𝑝 of 𝑝 by 𝒢 can be written as 𝑝 = ∑︀ 𝛿 𝑖=1 𝑐𝑖 • 𝑏𝑖 where the 𝑐𝑖's lie in K. Then, we have the identity

trace(ℒ𝑝•𝑞) = 𝛿 ∑︁ 𝑖=1 𝑐𝑖 • trace(ℒ 𝑞•𝑏 𝑖 ),
Hence, by choosing 𝑝 = 𝑏𝑖 • 𝑏𝑗 and 𝑞 = 1, we can compute ℎ𝑖,𝑗 using the normal form 𝑏𝑖 • 𝑏𝑗 and trace(ℒ 𝑏 1 ), . . . , trace(ℒ 𝑏 𝛿 ).

Note that trace(ℒ 𝑏 𝑖 ) is easily computed from the matrix of the map ℒ 𝑏 𝑖 . On the other hand, the normal form 𝑏𝑖 • 𝑏𝑗 can be read off from the 𝑗-th row of the matrix representing ℒ 𝑏 𝑖 , which is already computed at this point.

It is also important to notice that there are many duplicated entries in ℋ. Thus, we should avoid all the unnecessary re-computation. This is done easily be keeping a list for tracking distinct entries of ℋ.

The pseudo-code of Algorithm 1 is presented below. Its correctness follows simply from our definition of parametric Hermite matrices.

Beside the parametric Hermite matrix ℋ, we return a polynomial 𝑤∞ which is the square-free part of lcm𝑔∈𝒢(lc𝑥(𝑔)) for further usage. Note that 𝑉 (𝑤∞) = 𝒲∞.

Algorithm 1: DRL-Matrix

Input: A parametric polynomial system 𝑓 = (𝑓1, . . . , 𝑓𝑚) Output: A parametric Hermite matrix ℋ associated to 𝑓 with respect to the basis ℬ 1 𝒢, ℬ ← GröbnerBasis(𝑓 , grevlex(𝑥) ≻ grevlex(𝑦))

2 𝒢 ′ ← ReduceGB(𝒢) 3 𝑤∞ ← sqfree(lcm𝑔∈𝒢(lc𝑥(𝑔))) 4 (ℒ𝑥 1 , . . . , ℒ𝑥 𝑛 ) ← XMatrices(𝒢 ′ , ℬ) 5 (ℒ 𝑏 1 , . . . , ℒ 𝑏 𝛿 ) ← BMatrices((ℒ𝑥 1 , . . . , ℒ𝑥 𝑛 ), ℬ) 6 ℋ ← TraceComputing(ℒ 𝑏 1 , . . . , ℒ 𝑏 𝛿 ) 7 return [ℋ, 𝑤∞]
Removing denominators Note that, through the computation in the quotient ring 𝐴 K , the entries of our parametric Hermite matrix possibly contains denominators that lie in Q[𝑦]. As the algorithm that we introduce in Section 5 will require us to manipulate the parametric Hermite matrix that we compute, these denominators can be a bottleneck to handle the matrix. Therefore, we introduce an extra subroutine RemoveDenominator that returns a parametric Hermite matrix ℋ ′ of 𝑓 without denominator.

• RemoveDenominator that takes as input the matrix ℋ computed by DRL-Matrix and outputs a matrix ℋ ′ which is the parametric Hermite matrix associated to 𝑓 with respect to a basis ℬ ′ that will be made explicit below.

As we can freely choose any basis of form {𝑐𝑖 • 𝑏𝑖 | 1 ≤ 𝑖 ≤ 𝛿} where the 𝑐𝑖's are elements of Q[𝑦], we should use a basis that leads to a denominator-free matrix. To do this, we choose 𝑐𝑖 as the denominator of trace(ℒ 𝑏 𝑖 ) (which lies in the first row of the matrix ℋ computed by TraceComputing). Then, for the entry of ℋ that corresponds to 𝑏𝑖 and 𝑏𝑗, we can multiply it with 𝑐𝑖 • 𝑐𝑗. The output matrix ℋ ′ is the parametric Hermite matrix associated to 𝑓 with respect to the basis

{𝑐𝑖 • 𝑏𝑖 | 1 ≤ 𝑖 ≤ 𝛿}.
We observe in many examples that this subroutine returns either a denominator-free matrix or a matrix with smaller degree denominators. Thus, it facilitates further computations on the output matrix.

Evaluation & interpolation scheme for generic systems Here we assume that the input system 𝑓 satisfies Assumption (B).

By Lemma 7, the entries of ℋ are polynomials in Q[𝑦]. Suppose that we know beforehand a value Λ that is larger than the degree of any entry of ℋ, we can compute ℋ by an evaluation & interpolation scheme as follows.

We start by choosing randomly a set ℰ of (︀ 𝑡+Λ

𝑡

)︀ distinct points in Q 𝑡 . Then, for each 𝜂 ∈ ℰ, we use DRL-Matrix (Algorithm 1) on the input 𝑓 (𝜂, •) to compute the classic Hermite matrix associated to 𝑓 (𝜂, •) with respect to the ordering grevlex(𝑥). These computations involve only polynomials in Q[𝑥] and not in Q(𝑦) [𝑥]. Finally, we interpolate the parametric Hermite matrix ℋ from its specialized images ℋ(𝜂) computed previously.

Since Assumption (B) holds, then 𝒲∞ is empty. By Proposition 10, the Hermite matrix of 𝑓 (𝜂, •) with respect to grevlex(𝑥) is the image ℋ(𝜂) of ℋ. Therefore, the above scheme computes correctly the parametric Hermite matrix ℋ.

We also remark that, in the computation of the specializations ℋ(𝜂), we can replace the subroutine XMatrices in DRL-Matrix by a linear-algebra-based algorithm described in [START_REF] Faugère | Polynomial systems solving by fast linear algebra[END_REF]. That algorithm constructs the Macaulay matrix and carries out matrix reductions to obtain simultaneously the normal forms that XMatrices requires.

In Section 6, we will estimate the complexity of this evaluation & interpolation scheme when the input system 𝑓 satisfies some generic assumptions.

Algorithms for real root classification

We present in this section two algorithms targeting the real root classification problem through parametric Hermite matrices. The one described in Subsection 5.1 aims to solve the weak version of Problem [START_REF] Alman | A refined laser method and faster matrix multiplication[END_REF]. The second algorithm, given in Subsection 5.2 outputs the semi-algebraic formulas of the cells 𝒮𝑖 that solves Problem (1). Further, in Section 6, we will see that, for a generic sequence 𝑓 , the semi-algebraic formulas computed by this algorithm consist of polynomials of degree bounded by 𝑛(𝑑 -1)𝑑 𝑛 . Up to our knowledge, this improves all previously known bounds.

Throughout this section, our input is a parametric polynomial system 𝑓 = (𝑓1, . . . , 𝑓𝑚) ⊂ Q[𝑦][𝑥]. We require that 𝑓 satisfies Assumptions (A) and that the ideal ⟨𝑓 ⟩ is radical.

Let 𝒢 be the reduced Gröbner basis of the ideal ⟨𝑓 ⟩ ⊂ Q[𝑥, 𝑦] with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦). Let K denote the rational function field Q(𝑦). We recall that ℬ ⊂ Q[𝑥] is the basis of K[𝑥]/⟨𝑓 ⟩ K derived from 𝒢 and ℋ is the parametric Hermite matrix associated to 𝑓 with respect to the basis ℬ.

Algorithm for the weak-version of Problem (1)

From Subsection 4.3, we know that, outside the algebraic set 𝒲∞ := ∪𝑔∈𝒢𝑉 (lc𝑥(𝑔)), the parametric matrix ℋ possesses good specialization property (see Proposition 10). We denote by 𝑤∞ the square-free part of lcm𝑔∈𝒢lc𝑥(𝑔). This polynomial 𝑤∞ is returned as an output of Algorithm 1. Note that 𝑉 (𝑤∞) = 𝒲∞. Lemma 13. When Assumption (A) holds and the ideal ⟨𝑓 ⟩ is radical, the determinant of ℋ is not identically zero.

Proof. Recall that K denotes the rational function field Q(𝑦). We prove that the ideal ⟨𝑓 ⟩ K ⊂ K[𝑥] is radical.

Let 𝑝 ∈ K[𝑥] such that there exists 𝑛 ∈ N satisfying 𝑝 𝑛 ∈ ⟨𝑓 ⟩ K . Therefore, there exists a polynomial 𝑞 ∈ Q[𝑦] such that 𝑞 • 𝑝 𝑛 ∈ ⟨𝑓 ⟩. Then, (𝑞 • 𝑝) 𝑛 ∈ ⟨𝑓 ⟩. As ⟨𝑓 ⟩ is radical, we have that 𝑞 • 𝑝 ∈ ⟨𝑓 ⟩. Thus, 𝑝 ∈ ⟨𝑓 ⟩ K , which concludes that ⟨𝑓 ⟩ K is radical.

By Lemma 4, ⟨𝑓 ⟩ K is a radical zero-dimensional ideal in Q(𝑦). Since ℋ is also a Hermite matrix (in the classic sense) of ⟨𝑓 ⟩ K , ℋ is full rank. Therefore, det(ℋ) is not identically zero.

Let 𝑤ℋ := n/ gcd(n, 𝑤∞) where n is the square-free part of the numerator of det(ℋ). We denote by 𝒲ℋ the vanishing set of 𝑤ℋ. By Lemma 13, 𝒲ℋ is a proper Zariski closed subset of C 𝑡 . Our algorithm relies on the following proposition. Proposition 14. Assume that Assumption (A) holds and the ideal ⟨𝑓 ⟩ is radical. Then, for each connected component 𝒮 of the semi-algebraic set R 𝑡 ∖ (𝒲∞ ∪ 𝒲ℋ), the number of real solutions of 𝑓 (𝜂, •) is invariant when 𝜂 varies over 𝒮.

Proof. By Lemma 12, 𝒲∞ contains the following sets:

• The non-proper points of the restriction of 𝜋 to 𝒱.

• The point 𝜂 ∈ C 𝑡 such that the fiber 𝜋 -1 (𝜂) ∩ 𝒱 is infinite.

• The image by 𝜋 of the irreducible components of 𝒱 whose dimensions are smaller than 𝑡. Now we consider the set 𝐾(𝜋, 𝒱) := sing(𝒱) ∪ crit(𝜋, 𝒱). Let Δ := jac(𝑓 , 𝑥) be the Jacobian matrix of 𝑓 with respect to the variables 𝑥. The ideal generated by the 𝑛 × 𝑛-minors of Δ is denoted by 𝐼Δ. Note that, since 𝑓 is radical, 𝐾(𝜋, 𝒱) is the algebraic set defined by the ideal ⟨𝑓 ⟩ + 𝐼Δ. By Proposition 10, for 𝜂 ∈ C 𝑡 ∖ 𝒲∞, ⟨𝑓 ⟩ is a zero-dimensional ideal and the quotient ring C[𝑥]/⟨𝑓 (𝜂, •)⟩ has dimension 𝛿. Moreover, if 𝜂 ∈ C 𝑡 ∖ (𝒲∞ ∪ 𝒲ℋ), the system 𝑓 (𝜂, •) has 𝛿 distinct complex solutions as the rank of ℋ(𝜂) is 𝛿. Therefore, every complex root of 𝑓 (𝜂, •) is of multiplicity one (we use the definition of multiplicity given in [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Sec. 4.5]). Now we prove that, for such a point 𝜂, the fiber 𝜋 -1 (𝜂) does not intersect 𝐾(𝜋, 𝒱). Assume by contradiction that there exists a point (𝜂, 𝜒) ∈ C 𝑡+𝑛 lying in 𝜋 -1 (𝜂) ∩ 𝐾(𝜋, 𝒱). Note that 𝜒 is a solution of 𝑓 (𝜂, •), i.e., 𝑓 (𝜂, 𝜒) = 0.

As (𝜂, 𝜒) ∈ 𝐾(𝜋, 𝒱), then it is contained in 𝑉 (𝐼Δ). Hence, as the derivation in Δ does not involve 𝑦, 𝜒 cancels all the 𝑛 × 𝑛-minors of the Jacobian matrix jac(𝑓 (𝜂, •), 𝑥). [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Proposition 4.16] implies that 𝜒 has multiplicity greater than one. This contradicts to the claim that 𝑓 (𝜂, •) admits only complex solutions of multiplicity one. Therefore, we conclude that, for 𝜂 ∈ C 𝑡 ∖ (𝒲∞ ∪ 𝒲ℋ), 𝜋 -1 (𝜂) does not intersect 𝐾(𝜋, 𝒱).

So, using what we prove above and Lemma 12, we deduce that, for 𝜂 ∈ R 𝑡 ∖ (𝒲∞ ∪ 𝒲ℋ), then there exists an open neighborhood 𝑂𝜂 of 𝜂 for the Euclidean topology such that 𝜋 -1 (𝑂𝜂) does not intersect 𝐾(𝜋, 𝒱) ∪ 𝜋 -1 (𝒲∞).

Therefore, by Thom's isotopy lemma [START_REF] Coste | s first isotopy lemma: a semialgebraic version, with uniform bounds(real singularities and real algebraic geometry)[END_REF], the projection 𝜋 realizes a locally trivial fibration over R 𝑡 ∖ (𝒲∞ ∪ 𝒲ℋ). So, for any connected component 𝒞 of R 𝑡 ∖ (𝒲∞ ∪ 𝒲ℋ) and any 𝜂 ∈ 𝒞, we have that

𝜋 -1 (𝒞) ∩ 𝒱 ∩ R 𝑡+𝑛 is homeomorphic to 𝒞 × (𝜋 -1 (𝜂) ∩ 𝒱 ∩ R 𝑡+𝑛 ).
As a consequence, the number of distinct real solutions of 𝑓 (𝜂, •) is invariant when 𝜂 varies over each connected component of R 𝑡 ∖ (𝒲∞ ∪ 𝒲ℋ).

To describe Algorithm 2, we need to introduce the following subroutines:

• CleanFactors which takes as input a polynomial 𝑝 ∈ Q[𝑦, 𝑥] and the polynomial 𝑤∞. It computes the square-free part of 𝑝 with all the common factors with 𝑤∞ removed.

• Signature which takes as input a symmetric matrix with entries in Q and evaluates its signature.

• SamplePoints which takes as input a set of polynomials 𝑔1, . . . , 𝑔𝑠 ∈ Q[𝑦] and computes a finite subset ℛ of Q 𝑡 that intersects every connected component of the semi-algebraic set defined by ∧ 𝑠 𝑖=1 𝑔𝑖 ̸ = 0. An explicit description of SamplePoints is given in the proof of Theorem II in Section 3.

The pseudo-code of Algorithm 2 is below. Its proof of correctness follows immediately from Proposition 14 and Corollary 11.

Our algorithm (Algorithm 3) for solving Problem (1) through parametric Hermite matrices is described below. As it depends on the random choice of the matrix 𝐴, Algorithm 3 is probabilistic. One can easily modify it to be a Las Vegas algorithm by detecting the cancellation of the leading principal minors for each choice of 𝐴.

Algorithm 3: RRC-Hermite

Input: A polynomial sequence 𝑓 ⊂ Q[𝑦]
[𝑥] such that the ideal ⟨𝑓 ⟩ is radical and 𝑓 satisfies Assumption (A) Output: The descriptions of a collection of semi-algebraic sets 𝒮𝑖 solving Problem (1) Proof. Note that for 𝜂 ∈ R 𝑡 ∖ 𝒲∞, we have that ℋ𝐴(𝜂) = 𝐴 𝑇 • ℋ(𝜂) • 𝐴. Therefore, the signature of ℋ(𝜂) equals to the signature of ℋ𝐴(𝜂).

1 ℋ, 𝑤∞ ← DRL-Matrix(𝑓 ) 2 Choose randomly a matrix 𝐴 in Q 𝛿×𝛿 3 ℋ𝐴 ← 𝐴 𝑇 • ℋ • 𝐴 4 (𝑀1, . . . , 𝑀 𝛿 ) ← LeadingPrincipalMinors(ℋ𝐴) 5 𝐿 ← SamplePoints (︀ 𝑤∞ ∧ (︀ ∧ 𝛿 𝑖=1 𝑀𝑖 ̸ = 0 )︀)︀ 6 for 𝜂 ∈ 𝐿 do
Let 𝑀1, . . . , 𝑀 𝛿 be the leading principal minors of ℋ𝐴 and 𝒮 be the algebraic set defined by ∧ 𝛿 𝑖=1 𝑀𝑖 ̸ = 0. Over each connected component 𝒮 ′ of 𝒮, the sign of each 𝑀𝑖 is invariant and not zero. Therefore, by Lemma 17, the signature of ℋ𝐴(𝜂), and therefore of ℋ(𝜂), is invariant when 𝜂 varies over 𝒮 ′ ∖ 𝒲∞. As a consequence, by Corollary 11, the number of distinct real roots of 𝑓 (𝜂, •) is also invariant when 𝜂 varies over 𝒮 ′ ∖ 𝒲∞. We finish the proof of correctness of Algorithm 3.

Complexity analysis 6.1 Degree bound of parametric Hermite matrices on generic input

In this subsection, we consider an affine regular sequence 𝑓 = (𝑓1, . . . , 𝑓𝑛) ⊂ Q[𝑦][𝑥] according to the variables 𝑥, i.e., the homogeneous components of largest degree in 𝑥 of the 𝑓𝑖's form a homogeneous regular sequence (see Section 2). Additionally, we require that 𝑓 satisfies Assumptions (A) and (B).

Let 𝑑 be the highest value among the total degrees of the 𝑓𝑖's. Since the homogeneous regular sequences are generic among the homogeneous polynomial sequences (see, e.g., [2, Proposition 1.7.4] or [START_REF] Pardue | Generic sequences of polynomials[END_REF]), the same property of genericity holds for affine regular sequences (thanks to the definition we use).

As in previous sections, 𝒢 denotes the reduced Gröbner basis of ⟨𝑓 ⟩ with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦). Let 𝛿 be the dimension of the K-vector space K[𝑥]/⟨𝑓 ⟩ K where K = Q(𝑦). By Bézout's inequality, 𝛿 ≤ 𝑑 𝑛 . We derive from 𝒢 a basis ℬ = {𝑏1, . . . , 𝑏 𝛿 } of K[𝑥]/⟨𝑓 ⟩ K consisting of monomials in the variables 𝑥. Finally, the parametric Hermite matrix of 𝑓 with respect to ℬ is denoted by ℋ = (ℎ𝑖,𝑗) 1≤𝑖,𝑗≤𝛿 .

For a polynomial 𝑝 ∈ Q[𝑦, 𝑥], we denote by deg(𝑝) the total degree of 𝑝 in (𝑦, 𝑥) and deg 𝑥 (𝑝) the partial degree of 𝑝 in the variables 𝑥.

As Assumption (B) holds, by Lemma 7, the entries of the parametric Hermite matrix ℋ associated to 𝑓 with respect to the basis ℬ are elements of Q[𝑦]. To establish a degree bound on the entries of ℋ, we need to introduce the following assumption. Proof. Let 𝑦𝑡+1 be a new indeterminate. For any polynomial 𝑝 ∈ Q[𝑥, 𝑦], we consider the homogenized polynomial 𝑝 ℎ ∈ Q[𝑥, 𝑦, 𝑦𝑡+1] of 𝑝 defined as follows: )︀ 𝑛 such that the variables 𝑥 is in Noether position with respect to 𝑓 ℎ for every 𝑓 ℎ ∈ F ℎ 𝐷 . For 𝑓 ℎ ∈ F ℎ 𝐷 , let 𝐺 ℎ be the reduced Gröbner basis of 𝑓 ℎ with respect to the grevlex ordering grevlex(𝑥 ≻ 𝑦 ≻ 𝑦𝑡+1). By [3, Proposition 7], if the variables 𝑥 is in Noether position with respect to 𝑓 ℎ , then the leading monomials appearing in 𝐺 ℎ depend only on 𝑥.

𝑝 ℎ = 𝑦 deg(𝑝) 𝑡+1 𝑝 (︂ 𝑥1 
Let 𝑓 and 𝐺 be the image of 𝑓 ℎ and 𝐺 ℎ by substituting 𝑦𝑡+1 = 1. We show that 𝐺 is a Gröbner basis of 𝑓 with respect to the ordering grevlex(𝑥 ≻ 𝑦).

Since 𝐺 ℎ generates ⟨𝑓 ℎ ⟩, 𝐺 is a generating set of ⟨𝑓 ⟩. As the leading monomials of elements in 𝐺 ℎ do not depend on 𝑦𝑡+1, the substitution 𝑦𝑡+1 = 1 does not affect these leading monomials.

For a polynomial 𝑝 ∈ ⟨𝑓 ⟩ ⊂ Q[𝑥, 𝑦], then 𝑝 writes 𝑝 = ∑︀ 𝑛 𝑖=1 𝑐𝑖 • 𝑓𝑖, where the 𝑐𝑖's lie in Q[𝑥, 𝑦].
We homogenize the polynomials 𝑐𝑖 • 𝑓𝑖 on the right hand side to obtain a homogeneous polynomial 𝑃 ℎ ∈ ⟨𝑓 ℎ ⟩. Note that 𝑃 ℎ is not necessarily the homogenization 𝑝 ℎ of 𝑝 but only the product of 𝑝 ℎ with a power of 𝑦𝑡+1. Then, there exists a polynomial 𝑔 ℎ ∈ 𝐺 ℎ such that the leading monomial of 𝑔 ℎ divides the leading monomial of 𝑃 ℎ . Since the leading monomial of 𝑔 ℎ depends only on 𝑥, it also divides the leading monomial of 𝑝 ℎ , which is the leading monomial of 𝑝. So, the leading monomial of the image of 𝑔 ℎ in 𝐺 divides the leading monomial of 𝑝. We conclude that 𝐺 is a Gröbner basis of 𝑓 with respect to the ordering grevlex(𝑥 ≻ 𝑦) and the set of leading monomials in 𝐺 depends only on the variables 𝑥.

Let F𝐷 be the subset of C[𝑥, 𝑦] 𝑛 𝑑 such that for every 𝑓 ∈ F𝐷, its homogenization 𝑓 ℎ is contained in F ℎ 𝐷 . Since the two spaces

(︀ C[𝑥, 𝑦, 𝑦𝑡+1] ℎ 𝑑
)︀ 𝑛 and C[𝑥, 𝑦] 𝑛 𝑑 are both exactly C ( 𝑑+𝑛+𝑡 𝑛+𝑡 )×𝑛 (by considering each monomial coefficient as a coordinate), F𝐷 is also a non-empty Zariski open subset of C[𝑥, 𝑦] 𝑛 𝑑 . Assume now that the polynomial sequence 𝑓 belongs to F𝐷. We consider the two monomial orderings over Q[𝑥, 𝑦] below:

• The elimination ordering grevlex(𝑥) ≻ grevlex(𝑦) is abbreviated by 𝑂1. The leading monomial of 𝑝 ∈ Q[𝑥, 𝑦] with respect to 𝑂1 is denoted by lm1(𝑝). The reduced Gröbner basis of 𝑓 with respect to 𝑂1 is 𝒢.

• The grevlex ordering grevlex(𝑥 ≻ 𝑦) is abbreviated by 𝑂2. The leading monomial of 𝑝 ∈ Q[𝑥, 𝑦] with respect to 𝑂2 is denoted by lm2(𝑝). The reduced Gröbner basis of 𝑓 with respect to 𝑂2 is denoted by 𝒢2.

As proven above, the set {lm2(𝑔2) | 𝑔2 ∈ 𝒢2} does not depend on 𝑦. With this property, we will show, for any 𝑔2 ∈ 𝒢2, there exists a polynomial 𝑔 ∈ 𝒢 such that lm1(𝑔) divides lm2(𝑔2).

By definition, lm2(𝑔2) is greater than any other monomial of 𝑔2 with respect to the ordering 𝑂2. Since lm2(𝑔2) depends only on the variables 𝑥, it is then greater than any monomial of 𝑔2 with respect to the ordering 𝑂1. Hence, lm2(𝑔2) is also lm1(𝑔2).

Consequently, since 𝒢 is a Gröbner basis of 𝑓 with respect to 𝑂1, there exists a polynomial 𝑔 ∈ 𝒢 such that lm1(𝑔) divides lm1(𝑔2) = lm2(𝑔2).

Next, we prove that for every 𝑔 ∈ 𝒢, lm1(𝑔) is also lm2(𝑔). For this, we rely on the fact that 𝒢 is reduced. Assume by contradiction that there exists a polynomial 𝑔 ∈ 𝒢 such that lm1(𝑔) ̸ = lm2(𝑔). Thus, lm2(𝑔) must contain both 𝑥 and 𝑦. Let 𝑡𝑥 be the part in only variables 𝑥 of lm2(𝑔). Note that lm1(𝑔) is greater than 𝑡𝑥 with respect to 𝑂1. There exists an element 𝑔2 ∈ 𝒢2 such that lm2(𝑔2) divides lm2(𝑔). Since lm2(𝑔2) depends only on the variables 𝑥, we have that lm2(𝑔2) divides 𝑡𝑥. Then, by what we proved above, there exists 𝑔 ′ ∈ 𝒢 such that lm1(𝑔) divides lm2(𝑔2), so lm1(𝑔) divides 𝑡𝑥. This implies that 𝒢 is not reduced, which contradicts the definition of 𝒢.

So, lm1(𝑔) = lm2(𝑔) for every 𝑔 ∈ 𝒢 and, consequently, deg(𝑔) = deg 𝑥 (𝑔). We conclude that there exists a non-empty Zariski open subset F𝐷 (as above) of C[𝑥, 𝑦] 𝑛 𝑑 such that Assumption (C) holds for every 𝑓 ∈ F𝐷 ∩ Q[𝑥, 𝑦] 𝑛 . Additionally, one easily notices that Assumption (C) implies Assumption (B). As a consequence, 𝑓 also satisfies Assumption (B) for

any 𝑓 ∈ F𝐷 ∩ Q[𝑥, 𝑦] 𝑛 .
Recall that, when Assumption (B) holds, by Lemma 7, the trace of any multiplication map ℒ𝑝 is a polynomial in

Q[𝑦] where 𝑝 ∈ Q[𝑦][𝑥]
. We now estimate the degree of trace(ℒ𝑝). Since the map 𝑝 ↦ → trace(ℒ𝑝) is linear, it is sufficient to consider 𝑝 as a monomial in the variables 𝑥.

Proposition 21. Assume that Assumption (C) holds. Then, for any monomial 𝑚 in the variables 𝑥, the degree in 𝑦 of trace(ℒ𝑚) is bounded by deg(𝑚). As a consequence, the total degree of the entry ℎ𝑖,𝑗 = trace(ℒ 𝑏 𝑖 •𝑏 𝑗 ) of ℋ is at most the sum of the total degrees of 𝑏𝑖 and 𝑏𝑗, i. Note that this normal form is the remainder of the successive divisions of 𝑏𝑖 • 𝑚 by polynomials in 𝒢. As Assumption (C) holds, Assumption (B) also holds. Therefore, those divisions do not introduce any denominator. So, every term appearing during these normal form reductions are polynomials in

Q[𝑦][𝑥]. Let 𝑝 ∈ Q[𝑦][𝑥].
For any 𝑔 ∈ 𝒢, by Assumption (C), the total degree in (𝑦, 𝑥) of every term of 𝑔 is at most the degree of lm𝑥(𝑔). Thus, a division of 𝑝 by 𝑔 involves only terms of total degree deg(𝑝). Thus, during the polynomial division of 𝑝 to 𝒢, only terms of degree at most deg(𝑝) will appear. Hence the degree of NF𝒢(𝑝) is bounded by deg(𝑝).

Note that trace(ℒ𝑚) = ∑︀ 𝛿 𝑖=1 𝑐𝑖,𝑖. As the degree of 𝑐𝑖,𝑖 • 𝑏𝑖 is bounded by deg(𝑏𝑖) + deg(𝑚), the degree of 𝑐𝑖,𝑖 is at most deg(𝑚). Then, we obtain that deg(trace(ℒ𝑚)) ≤ deg(𝑚). Proof. We expand the minors 𝑀 into terms of the form (-1) sign (𝜎) ℎ 𝑟 1 ,𝜎(𝑐 1 ) . . . ℎ 𝑟 ℓ ,𝜎(𝑐 ℓ ) , where 𝜎 is a permutation of {𝑐1, . . . , 𝑐 ℓ } and sign (𝜎) is its signature. We then bound the degree of each of those terms as follows using Proposition 21:

deg (︃ ℓ ∏︁ 𝑖=1 ℎ 𝑟 𝑖 ,𝜎(𝑐 𝑖 ) )︃ = ℓ ∑︁ 𝑖=1 deg(ℎ 𝑟 𝑖 ,𝜎(𝑐 𝑖 ) ) ≤ ℓ ∑︁ 𝑖=1 (︀ deg(𝑏𝑟 𝑖 ) + deg(𝑏 𝜎(𝑐 𝑖 ) ) )︀ = ℓ ∑︁ 𝑖=1 (deg(𝑏𝑟 𝑖 ) + deg(𝑏𝑐 𝑖 )) .
Hence, taking the sum of all those terms, we obtain the inequality:

deg(𝑀𝑖) ≤ ℓ ∑︁ 𝑖=1 (deg(𝑏𝑟 𝑖 ) + deg(𝑏𝑐 𝑖 )) .
When 𝑀 is taken as the determinant of ℋ, then

deg(det(ℋ)) ≤ 2 𝛿 ∑︁ 𝑖=1 deg(𝑏𝑖).
Proposition 21 implies that, when Assumption (C) holds, the degree pattern of ℋ depends only on the degree of the elements of ℬ = {𝑏1, . . . , 𝑏 𝛿 }. We rearrange ℬ in the increasing order of degree, i. Moreover, using the regularity of 𝑓 , we are able to establish explicit degree bounds for the elements of ℬ and then, for the minors of ℋ.

Lemma 23. Assume that 𝑓 is an affine regular sequence and let ℬ be the basis defined as above. Then the highest degree among the elements of ℬ is bounded by 𝑛(𝑑 -1) and Also, the homogeneous component of largest degree of 𝑝 with respect to the variables 𝑥 is denoted by 𝐻 𝑝. Throughout this proof, we use the following notations:

• 𝐼 = ⟨𝑓 ⟩ K and 𝒢 is the reduced Gröbner basis of 𝐼 w.r.t. grevlex(𝑥1 ≻ • • • ≻ 𝑥𝑛).

• 𝐼 ℎ = ⟨𝑝 ℎ | 𝑝 ∈ 𝑓 ⟩ K and 𝒢 ℎ is the reduced Gröbner basis of 𝐼 ℎ w.r.t. grevlex(𝑥1 ≻ • • • ≻ 𝑥𝑛+1).

The Hilbert series of the homogeneous ideal 𝐼 ℎ writes

HS𝐼 ℎ (𝑧) = ∞ ∑︁ 𝑟=0 (dim K K[𝑥]𝑟 -dim K (𝐼 ℎ ∩ K[𝑥]𝑟)) • 𝑧 𝑟 ,
where 

K[𝑥]𝑟 = {𝑝 | 𝑝 ∈ K[𝑥] : deg 𝑥 (𝑝) = 𝑟} Since 𝑓
HS𝐼 ℎ (𝑧) = ∏︀ 𝑛 𝑖=1 (︁ 1 -𝑧 deg(𝑓 𝑖 ) )︁ (1 -𝑧) 𝑛+1 = ∏︀ 𝑛 𝑖=1 (︁ 1 + . . . + 𝑧 deg(𝑓 𝑖 )-1 )︁ 1 -𝑧 .
On the other hand, as ((𝑓1) ℎ , . . . , (𝑓𝑛) ℎ , 𝑥𝑛+1) is a homogeneous regular sequence, by [START_REF] Bardet | On the complexity of the F5 Gröbner basis algorithm[END_REF]Proposition 7], the leading terms of 𝒢 ℎ w.r.t. grevlex(𝑥1 ≻ • • • ≻ 𝑥𝑛+1) do not depend on the variables 𝑥𝑛+1. Thus, the dehomogenization map 𝛼 does not affect the set of leading terms of 𝒢 ℎ . Besides, 𝛼(𝒢 ℎ ) is a Gröbner basis of 𝐼 with respect to grevlex(𝑥) (see, e.g., the proof of [START_REF] Faugère | On the complexity of the generalized minrank problem[END_REF]Lemma 27]). Hence, the leading terms of 𝒢 ℎ coincides with the leading terms of 𝒢.

As a consequence, the set of monomials in (𝑥1, . . . , 𝑥𝑛+1) which are not contained in the initial ideal of 𝐼 ℎ with respect to grevlex(𝑥1

≻ • • • ≻ 𝑥𝑛+1) is exactly {𝑏 • 𝑥 𝑗 𝑛+1 | 𝑏 ∈ ℬ, 𝑗 ∈ N}. As a consequence, dim K K[𝑥]𝑟 -dim K (𝐼 ℎ ∩ K[𝑥]𝑟) = ∑︀ 𝑟 𝑗=0 |ℬ ∩ K[𝑥]𝑗|. Let 𝐻(𝑧) = ∑︀ ∞ 𝑟=0 |ℬ ∩ K[𝑥]𝑟| • 𝑧 𝑟 . We have that (1 -𝑧) • HS𝐼 ℎ (𝑧) = (1 -𝑧) ∞ ∑︁ 𝑟=0 𝑟 ∑︁ 𝑗=0 |ℬ ∩ K[𝑥]𝑗| • 𝑧 𝑟 = ∞ ∑︁ 𝑟=0 |ℬ ∩ K[𝑥]𝑟| • 𝑧 𝑟 = 𝐻(𝑧).
Then,

𝐻(𝑧) = 𝑛 ∏︁ 𝑖=1 (︁ 1 + . . . + 𝑧 deg(𝑓 𝑖 )-1 )︁ .
As a direct consequence, max 1≤𝑖≤𝛿 deg(𝑏𝑖) is bounded by ∑︀ 𝑛 𝑖=1 deg(𝑓𝑖) -𝑛 ≤ 𝑛(𝑑 -1). Let 𝐺1 and 𝐺2 be two polynomials in Z[𝑧]. We write 𝐺1 ≤ 𝐺2 if and only if for any 𝑟 ≥ 0, the coefficient of 𝑧 𝑟 in 𝐺2 is greater than or equal to the one in 𝐺1.

Since deg(𝑓𝑖) ≤ 𝑑 for every 1 ≤ 𝑖 ≤ 𝑛, then

𝐻(𝑧) = 𝑛 ∏︁ 𝑖=1 (︁ 1 + . . . + 𝑧 deg(𝑓 𝑖 )-1 )︁ ≤ 𝑛 ∏︁ 𝑖=1 (︁ 1 + . . . + 𝑧 𝑑-1 )︁ . As a consequence, 𝐻 ′ (𝑧) = ∑︀ ∞ 𝑟=1 (𝑟 |ℬ ∩ K[𝑥]𝑟|) • 𝑧 𝑟-1 ≤ (︀∏︀ 𝑛 𝑖=1 (︀ 1 + . . . + 𝑧 𝑑-1 )︀)︀ ′ . Expanding 𝐺 ′ (𝑧), we obtain 𝐻 ′ (𝑧) ≤ 𝑛 (︁ ∑︀ 𝑑-1 𝑖=0 𝑧 𝑖 )︁ 𝑛-1 (︁ ∑︀ 𝑑-1 𝑖=0 𝑧 𝑖 -𝑑𝑧 𝑑-1
)︁

1 -𝑧 = 𝑛 (︃ 𝑑-1 ∑︁ 𝑖=0 𝑧 𝑖 )︃ 𝑛-1 𝑑-2 ∑︁ 𝑖=0 𝑧 𝑖 (︁ 1 + . . . + 𝑧 𝑑-𝑖-2
)︁ .

By substituting 𝑧 = 1 in the above inequality, we obtain

𝐻 ′ (1) ≤ 𝑛𝑑 𝑛-1 𝑑-2 ∑︁ 𝑖=0 (𝑑 -𝑖 -1) = 𝑛(𝑑 -1)𝑑 𝑛 2 .
Thus, we have that

∑︀ 𝛿 𝑖=1 deg(𝑏𝑖) = ∑︀ ∞ 𝑟=0 𝑟 |ℬ ∩ K[𝑥]𝑟| = 𝐻 ′ (1) ≤ 𝑛(𝑑-1)𝑑 𝑛 2 .
Corollary 24 below follows immediately from Lemmas 22 and 23.

Corollary 24. Assume that 𝑓 is a regular sequence that satisfies Assumption (C). Then the degree of any minor of ℋ is bounded by 𝑛(𝑑 -1)𝑑 𝑛 .

Remark 25. Note that Assumption (C) requires a condition on the degrees of polynomials in the Gröbner basis 𝒢 of ⟨𝑓 ⟩. We remark that it is possible to establish similar bounds for the degrees of entries of our parametric Hermite matrix and its minors when the system 𝑓 satisfies a weaker property than Assumption (C) (we still keep the regularity assumption).

Indeed, we only need to assume that, for any 𝑔 ∈ 𝒢, the homogeneous component of the highest degree in 𝑥 of 𝑔 does not depend on the parameters 𝑦. Let 𝑑𝑦 be an upper bound of the partial degrees in 𝑦 of elements of 𝒢. Under the change of variables 𝑥𝑖 ↦ → 𝑥 𝑑𝑦 𝑖 , 𝑓 is mapped to a new polynomial sequence that satisfies Assumption (C). Therefore, we easily deduce the two following bounds, which are similar to the ones of Proposition 21 and Corollary 24.

• deg(ℎ𝑖,𝑗) ≤ 𝑑𝑦(deg(𝑏𝑖) + deg(𝑏𝑗));

• The degree of any minor of ℋ is bounded by 𝑑𝑦 𝑛(𝑑 -1)𝑑 𝑛 .

Even though these bounds are not sharp anymore, they still allow us to compute the parametric Hermite matrices using evaluation & interpolation scheme and control the complexity of this computation in the instances where Assumption (C) does not hold.

Complexity analysis of our algorithms

In this subsection, we analyze the complexity of our algorithms on generic systems.

Let 𝑓 = (𝑓1, . . . , 𝑓𝑛) ⊂ Q[𝑥, 𝑦] be a regular sequence, where 𝑦 = (𝑦1, . . . , 𝑦𝑡) and 𝑥 = (𝑥1, . . . , 𝑥𝑛), satisfying Assumptions (A) and (C). To simplify the asymptotic complexity, we assume that 𝑛, 𝑡 and 𝑑 are greater than or equal to 2.

We denote by 𝒢 the reduced Gröbner basis of 𝑓 with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦). The basis ℬ is taken as all the monomials in 𝑥 that are irreducible by 𝒢. Then, ℋ is the parametric Hermite matrix associated of 𝑓 with respect to ℬ.

We start by estimating the arithmetic complexity for computing the parametric Hermite matrix ℋ and its minors. We denote 𝜆 := 𝑛(𝑑 -1) and D := 𝑛(𝑑 -1)𝑑 𝑛 . Proposition 26. Assume that 𝑓 = (𝑓1, . . . , 𝑓𝑛) ⊂ Q[𝑦][𝑥] is a regular sequence that satisfies Assumptions (A) and (C). Let 𝛿 be the dimension of the K-vector space K[𝑥]/⟨𝑓 ⟩ K where K = Q(𝑦). Let ℋ be the parametric Hermite matrix associated to 𝑓 constructed using grevlex(𝑥) ordering. Then, by Lemma The traces of these matrices are then computed using 𝑛𝛿 additions in Q. The subroutine BMatrices consists of essentially 𝛿 multiplication of 𝛿 × 𝛿 matrices (with entries in Q). This leads to an arithmetic complexity 𝑂(𝛿 𝜔+1 ), which is then bounded by 𝑂(𝑑 (𝜔+1)𝑛 ). Next, the computation of each entry ℎ𝑖,𝑗 is simply a vector multiplication of length 𝛿, whose complexity is 𝑂(𝛿). Doing so for 𝛿 2 entries, TraceComputing takes in overall 𝑂(𝛿 3 ) arithmetic operations in Q.

Thus, as 𝛿 ≤ 𝑑 𝑛 , the complexity of the evaluation step lies in

𝑂 (︃(︃ 𝑡 + 2𝜆 𝑡 )︃ (︃ 𝑛 (︃ 𝑑 + 𝑛 + 𝑡 𝑛 + 𝑡 )︃ + 𝑛 𝜔+1 𝑑 𝜔𝑛+1 + 𝑑 (𝜔+1)𝑛
)︃)︃ .

Finally, we interpolate 𝛿 2 entries which are polynomials in Q[𝑦] of degree at most 2𝜆. Using the multivariate interpolation algorithm of [START_REF] Canny | Solving systems of nonlinear polynomial equations faster[END_REF], the complexity of this step therefore lies in 𝑂

(︀ 𝛿 2 (︀ 𝑡+2𝜆 𝑡 )︀ log 2 (︀ 𝑡+2𝜆 𝑡 )︀ log log (︀ 𝑡+2𝜆 𝑡 )︀)︀ .
Summing up the both steps, we conclude that the parametric Hermite matrix ℋ can be obtained within

𝑂 ̃︀ (︃(︃ 𝑡 + 2𝜆 𝑡 )︃ (︃ 𝑛 (︃ 𝑑 + 𝑛 + 𝑡 𝑛 + 𝑡 )︃ + 𝑛 𝜔+1 𝑑 𝜔𝑛+1 + 𝑑 (𝜔+1)𝑛 )︃)︃ arithmetic operations in Q.
Similarly, the minors of ℋ can be computed using the technique of evaluation & interpolation. By Corollary 24, the degree of every minor of ℋ is bounded by D. We specialize ℋ at (︀ 𝑡+D 𝑡 )︀ points in Q 𝑡 and compute the corresponding minor of each specialized Hermite matrix. This step takes

𝑂 (︃(︃ 𝑡 + D 𝑡 )︃ (︃ 𝛿 2 (︃ 𝑡 + 2𝜆 𝑡 )︃ + 𝛿 𝜔 )︃)︃
arithmetic operations in Q. Finally, using the multivariate interpolation algorithm of [START_REF] Canny | Solving systems of nonlinear polynomial equations faster[END_REF], it requires

𝑂 (︃(︃ 𝑡 + D 𝑡 )︃ log 2 (︃ 𝑡 + D 𝑡 )︃ log log (︃ 𝑡 + D 𝑡 )︃)︃
arithmetic operations in Q to interpolate the final minor. Therefore, using 𝛿 ≤ 𝑑 𝑛 , the whole complexity for computing each minor of ℋ lies within

𝑂 ̃︀ (︃(︃ 𝑡 + D 𝑡 )︃ (︃ 𝑑 2𝑛 (︃ 𝑡 + 2𝜆 𝑡 )︃ + 𝑑 𝜔𝑛 )︃)︃ .
We note that the complexity of computing the matrix ℋ in Proposition 26 is also bounded by the complexity of computing its minor. )︀ ≥ D 2 /2 ≥ 𝑑 (𝜔-1)𝑛 . Hence, we obtain

(︃ 𝑡 + 2𝜆 𝑡 )︃ (︃ 𝑛 (︃ 𝑑 + 𝑛 + 𝑡 𝑛 + 𝑡 )︃ + 𝑛 𝜔+1 𝑑 𝜔𝑛+1 + 𝑑 (𝜔+1)𝑛 )︃ ∈ 𝑂 ̃︀ (︃(︃ 𝑡 + 2𝜆 𝑡 )︃(︃ 𝑡 + D 𝑡 )︃ 𝑑 2𝑛
)︃ , which proves our claim above.

Finally, we state our main result, which is Theorem I below. It estimates the arithmetic complexity of Algorithms 2 and 3. Theorem I. Let 𝑓 ⊂ Q[𝑥, 𝑦] be a regular sequence such that the ideal ⟨𝑓 ⟩ is radical and 𝑓 satisfies Assumptions (A) and (C).

Recall that D denotes 𝑛(𝑑 -1)𝑑 𝑛 . Then, we have the following statements:

i) The arithmetic complexity of Algorithm 2 lies in

𝑂 ̃︀ (︃(︃ 𝑡 + D 𝑡 )︃ 2 3𝑡 𝑛 2𝑡+1 𝑑 2𝑛𝑡+𝑛+2𝑡+1 )︃ . 
ii) Algorithm 3, which is probabilistic, computes a set of semi-algebraic descriptions solving Problem (1) within

𝑂 ̃︀ (︃(︃ 𝑡 + D 𝑡 )︃ 2 3𝑡 𝑛 2𝑡+1 𝑑 3𝑛𝑡+2(𝑛+𝑡)+1
)︃ arithmetic operations in Q in case of success.

iii) The semi-algebraic descriptions output by Algorithm 3 consist of polynomials in Q[𝑦] of degree bounded by D.

Proof. As Assumption (C) holds, we have that 𝑤∞ = 1 and 𝑤ℋ is the square-free part of det(ℋ).

Therefore, after computing the parametric Hermite matrix ℋ and its determinant, whose complexity is given by Proposition 26, Algorithm 2 essentially consists of computing sample points of the connected components of the algebraic set R 𝑡 ∖ 𝑉 (det(ℋ)).

By Corollary 24, the degree of det(ℋ) is bounded by D. Applying Corollary 3, we obtain the following arithmetic complexity for this computation of sample points

𝑂 ̃︀ (︃(︃ 𝑡 + D 𝑡 )︃ 2 3𝑡 D 2𝑡+1 )︃ ≃ 𝑂 ̃︀ (︃(︃ 𝑡 + D 𝑡 )︃ 2 3𝑡 𝑛 2𝑡+1 𝑑 2𝑛𝑡+𝑛+2𝑡+1
)︃ .

Also by Corollary 3, the finite subset of Q 𝑡 output by SamplePoints has cardinal bounded by 2 𝑡 D 𝑡 . Thus, evaluating the specializations of ℋ at those points and their signatures costs in total 𝑂 (︁

2 𝑡 D 𝑡 (︁ 𝛿 2 (︀ 2𝜆+𝑡 𝑡 )︀ + 𝛿 𝜔+1/2 )︁)︁ arithmetic operations in Q using [4, Algorithm 8.43].
Therefore, the complexity of SamplePoints dominates the whole complexity of the algorithm. We conclude that Algorithm 2 runs within

𝑂 ̃︀ (︃(︃ 𝑡 + D 𝑡 )︃ 2 3𝑡 𝑛 2𝑡+1 𝑑 2𝑛𝑡+𝑛+2𝑡+1
)︃ arithmetic operations in Q.

For Algorithm 3, we start by choosing randomly a matrix 𝐴 and compute the matrix ℋ𝐴 = 𝐴 𝑇 • ℋ • 𝐴. Then, we compute the leading principal minors 𝑀1, . . . , 𝑀 𝛿 of ℋ𝐴. Using Proposition 26, this step admits the arithmetic complexity bound

𝑂 ̃︀ (︃ 𝛿 (︃ 𝑡 + D 𝑡 )︃ (︃ 𝑑 2𝑛 (︃ 𝑡 + 2𝜆 𝑡 )︃ + 𝑑 𝜔𝑛 )︃)︃ .
Next, Algorithm 3 computes sample points for the connected components of the semi-algebraic set defined by ∧ 𝛿 𝑖=1 𝑀𝑖 ̸ = 0. Since the degree of each 𝑀𝑖 is bounded by D, Corollary 3 gives the arithmetic complexity

𝑂 ̃︀ (︃(︃ 𝑡 + D 𝑡 )︃ 𝑑 𝑛𝑡+𝑛 2 3𝑡 D 2𝑡+1 )︃ ≃ 𝑂 ̃︀ (︃(︃ 𝑡 + D 𝑡 )︃ 2 3𝑡 𝑛 2𝑡+1 𝑑 3𝑛𝑡+2(𝑛+𝑡)+1
)︃ .

It returns a finite subset of Q 𝑡 whose cardinal is bounded by (2𝛿D) 𝑡 . The evaluation of the leading principal minors' sign patterns at those points has the arithmetic complexity lying in 𝑂 (︀

2 𝑡 𝛿 𝑡+1 D 2𝑡 )︀ ≃ 𝑂 (︀ 2 𝑡 𝑛 2𝑡 𝑑 3𝑛𝑡+𝑛+2𝑡 )︀ .
Again, the complexity of SamplePoints dominates the whole complexity of Algorithm 3. The proof of Theorem I is then finished.

Probability aspect

The main probabilistic source of our algorithms 2 and 3 comes from the use of the geometric resolution [START_REF] Giusti | A gröbner free alternative for polynomial system solving[END_REF] in the computation of sample points per connected components described in Section 3. Since the geometric resolution depends on the specialization and lifting procedures, it makes use of various random choices. As explained in [START_REF] Giusti | A gröbner free alternative for polynomial system solving[END_REF], the bad choices are enclosed in strict algebraic subsets of certain affine spaces, which implies that almost any random choice leads to a correct computation. In general, even though one can check whether the points output by geometric resolution are solutions of the input system, some solutions can be missing. Thus, the geometric resolution is not Las Vegas.

Besides, Algorithm 3 depends also on the choice of the matrix 𝑄. By Lemma 18, any choice of 𝑄 from a prescribed dense Zariski open subset of GL(𝑛, C) will work. As the purpose of choosing 𝑄 is to ensure that none of the leading principal minors of 𝑄 𝑇 • ℋ • 𝑄 are identically zero. One can check easily whether a good matrix 𝑄 is found.

7 Practical implementation & Experimental results

Remark on the implementation of Algorithm 3

Recall that Algorithm 3 leads us to compute sample points per connected components of the non-vanishing set of the leading principal minors (𝑀1, . . . , 𝑀 𝛿 ). Comparing to Algorithm 2 in which we only compute sample points for R 𝑡 ∖ 𝑉 (𝑀 𝛿 ), the complexity of Algorithm 3 contains an extra factor of 𝑑 𝑛𝑡 due to the higher number of polynomials given as input to the subroutine SamplePoints.

Even though the complexity bounds of these two algorithms both lie in 𝑑 𝑂 (𝑛𝑡) , the extra factor 𝑑 𝑛𝑡 mentioned above sometimes becomes the bottleneck of Algorithm 3 for tackling practical problems. Therefore, we introduce the following optimization in our implementation of Algorithm 3.

We start by following exactly the steps (1-4) of Algorithm 3 to obtain the leading principal minors (𝑀1, . . . , 𝑀 𝛿 ) and the polynomial 𝑤∞. Then, by calling the subroutine SamplePoints on the input 𝑀 𝛿 ̸ = 0 ∧ 𝑤∞ ̸ = 0, we compute a set of sample points (and -SRES: the timing for computing the subresultant coefficients in the Sturm-based algorithm.

-SP-S: the timing for computing sample points per connected components of the non-vanishing set of the last subresultant coefficient.

-DEG-S: the highest degree among the subresultant coefficients.

We observe that the sum of MAT-H and MIN-H is smaller than the sum of ELIM and SRES. Hence, obtaining the input for the sample point computation in HERMITE strategy is easier than in STURM strategy. We also remark that the degree DEG-H is much smaller than DEG-S, that explains why the computation of sample points using Hermite matrices is faster than using the subresultant coefficients.

We conclude that the parametric Hermite matrix approach outperforms the Sturm-based one both on the timings and the degree of polynomials in the output formulas. where 𝑠 is a complex variable.

𝑡 𝑑

We want to find a matrix 𝑃 such that all the roots of 𝑓 (𝑠, 𝑦) must lie in the open left half-plane. By substituting 𝑠 by 𝑥1 + 𝑖𝑥2, we obtain the following system of real variables (𝑥1, 𝑥2) and parameters (𝑦1, 𝑦2):

⎧ ⎨ ⎩ ℜ(𝑓 (𝑥1 + 𝑖𝑥2, 𝑦)) = 0 ℑ(𝑓 (𝑥1 + 𝑖𝑥2, 𝑦)) = 0 𝑥1 < 0

Note that the total degree of these equations equals ℓ.

We are now interested in solving the weak-version of Problem (1) on the system ℜ(𝑓 ) = ℑ(𝑓 ) = 0. We observe that this system satisfies Assumptions (A) and (B). Let ℋ be the parametric Hermite matrix ℋ of this system with respect to the usual basis we consider in this paper. This matrix ℋ behaves very differently from generic systems.

Computing the determinant of ℋ (which is an element of Q[𝑦]) and taking its square-free part allows us to obtain the same output 𝑤 as DISCRIMINANTVARIETY. However, this direct approach appears to be very inefficient as the determinant appears as a large power of the output polynomial.

For example, for a value ℓ, we observe that the system consists of two polynomials of degree ℓ. The determinant of ℋ appears as 𝑤 2ℓ , where 𝑤 has degree 2(ℓ -1). The bound we establish on the degree of this determinant is 2(ℓ -1)ℓ 2 , which is much larger than what happens in this case. Therefore, we need to introduce the optimization below to adapt our implementation of Algorithm 2 to this problem.

We observe that, on these examples, the polynomial 𝑤 can be extracted from a smaller minor instead of computing the determinant ℋ. To identify such a minor, we reduce ℋ to a matrix whose entries are univariate polynomials with coefficients lying in a finite field Z/𝑝Z as follow.

Let 𝑢 be a new variable. We substitute each 𝑦𝑖 by random linear forms in Q[𝑢] in ℋ and then compute ℋ mod 𝑝. Then, the matrix ℋ is turned into a matrix ℋ𝑢 whose entries are elements of Z/𝑝Z [𝑢]. The computation of the leading principal minors of ℋ𝑢 is much easier than the one of ℋ since it involves only univariate polynomials and does not suffer from the growth of bit-sizes as for the rational numbers.

Next, we compute the sequence of the leading principal minors of ℋ𝑢 in decreasing order, starting from the determinant. Once we obtain a minor, of some size 𝑟, that is not divisible by 𝑤𝑢, we stop and take the index 𝑟 + 1. Then, we compute the square-free part of the (𝑟 + 1) × (𝑟 + 1) leading principal minor of ℋ, which can be done through evaluation-interpolation method. This yields a Monte Carlo implementation that depends on the choice of the random linear forms in Q[𝑢] and the finite field to compute the polynomial 𝑤.

In Fig. ( 4), we report on some computational data for the static output feedback problem. Here we choose the prime 𝑝 to be 65521 so that the elements of the finite field Z/𝑝Z can be represented by a machine word of 32 bits. We consider different values of ℓ and the matrices 𝐴, 𝐵, 𝐶 are chosen randomly. On these examples, our algorithm returns the same output as the one of DISCIMINANTVARIETY. Whereas, BORDERPOLYNOMIAL (BP) returns a list of polynomials which contains our output and other polynomials of higher degree.

The timings of our algorithm are given by the two following columns:

• The column MAT shows the timings for computing parametric Hermite matrices ℋ.

• The column COMP-W shows the timings for computing the polynomials 𝑤 from ℋ using the strategy described as above.

We observe that our algorithm (MAT + COMP-W) wins some constant factor comparing to DISCRIMINANTVARIETY (DV). On the other hand, BORDERPOLYNOMIAL (BP) performs less efficiently than the other two algorithms in these examples.

Since the degrees of the polynomials 𝑤 here (given as DEG-W) are small comparing with the bounds in the generic case. Hence, unlike the generic cases, the computation of the sample points in these problems is negligible as being reported in the column SP. 

Theorem I .

 . Let C[𝑥, 𝑦] 𝑑 be the set of polynomials in C[𝑥, 𝑦] having total degree bounded by 𝑑 and set D = 𝑛(𝑑 -1)𝑑 𝑛 . There exists a non-empty Zariski open set F ⊂ C[𝑥, 𝑦] 𝑛 𝑑 such that for 𝑓 = (𝑓1, . . . , 𝑓𝑛) ∈ F ∩ Q[𝑥, 𝑦] 𝑛 , the following holds: i) There exists an algorithm that computes a solution for the weak-version of Problem (1) within 𝑂 ̃︀ (︃(︃ 𝑡 + D 𝑡 )︃ 2 3𝑡 𝑛 2𝑡+1 𝑑 2𝑛𝑡+𝑛+2𝑡+1

( a )

 a Compute a parametric Hermite matrix ℋ associated to 𝑓 ⊂ Q[𝑦][𝑥].

Lemma 7 .

 7 Under Assumption (B), the entries of the parametric Hermite matrix ℋ are elements of Q[𝑦]. Proof. Since Assumption (B) holds, the leading coefficients lc𝑥(𝑔) do not depend on parameters 𝑦 for 𝑔 ∈ 𝒢. The normal form reduction in 𝐴 K of any polynomial in Q[𝑦][𝑥] returns a polynomial in Q[𝑦][𝑥]. Thus, each normal form can be written as a linear combination of ℬ whose coefficients lie in Q[𝑦]. Hence, the multiplication map ℒ 𝑏 𝑖 •𝑏 𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝛿 can be represented by polynomial matrices in Q[𝑦] with respect to the basis ℬ. As an immediate consequence, the entries of ℋ, as being the traces of those multiplication maps, are polynomials in Q[𝑦].

Proposition 8 .

 8 Let C[𝑥, 𝑦] 𝑑 be the set of polynomials in C[𝑥, 𝑦] having total degree bounded by 𝑑. There exists a non-empty Zariski open subset F𝐶 of C[𝑥, 𝑦] 𝑛 𝑑 such that Assumption (B) is satisfied by any 𝑓 ∈ F𝐶 ∩ Q[𝑥, 𝑦] 𝑛 .

Lemma 9 .

 9 Let 𝜂 ∈ C 𝑡 ∖ 𝒲∞. Then the specialization 𝒢(𝜂, •) := {𝜑𝜂(𝑔) | 𝑔 ∈ 𝒢} is a Gröbner basis of the ideal ⟨𝑓 (𝜂, •)⟩ ⊂ C[𝑥] generated by 𝑓 (𝜂, •) with respect to the ordering grevlex(𝑥).

Proposition 10 .

 10 For any 𝜂 ∈ C 𝑡 ∖ 𝒲∞, the specialization ℋ(𝜂) coincides with the classic Hermite matrix of the zero-dimensional ideal ⟨𝑓 (𝜂,•)⟩ ⊂ C[𝑥].Proof. As a consequence of Lemma 9, each computation in 𝐴 K derives a corresponding one in C[𝑥]/⟨𝑓 (𝜂, •)⟩ by evaluating 𝑦 at 𝜂 in every normal form reduction by 𝒢. This evaluation is allowed since 𝜂 does not cancel any denominator appearing during the computation. Therefore, we deduce immediately the specialization property of the Hermite matrix.Using Proposition 10 and [4, Theorem 4.102], we obtain immediately the following corollary that allows us to use parametric Hermite matrices to count the root of a specialization of a parametric system. Corollary 11. Let 𝜂 ∈ C 𝑡 ∖ 𝒲∞, then the rank of 𝐻(𝜂) is the number of distinct complex roots of 𝑓 (𝜂, •). When 𝜂 ∈ R 𝑡 ∖ 𝒲∞, the signature of 𝐻(𝜂) is the number of distinct real roots of 𝑓 (𝜂, •).Proof. By Proposition 10, ℋ(𝜂) is a Hermite matrix of the zero-dimensional ideal ⟨𝑓 (𝜂, •)⟩. Then,[START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF] Theorem 4.102] implies that the rank (resp. the signature) of ℋ(𝜂) equals to the number of distinct complex (resp. real) solutions of 𝑓 (𝜂, •).

7 𝑟𝜂←

 7 Signature(ℋ(𝜂)) 8 end 9 return {(sign (𝑀1(𝜂), . . . , 𝑀 𝛿 (𝜂)), 𝜂, 𝑟𝜂) | 𝜂 ∈ 𝐿} Proposition 19. Assume that 𝑓 satisfies Assumptions (A) and that the ideal ⟨𝑓 ⟩ is radical. Let 𝐴 be a matrix in GL 𝛿 (Q) such that all of the leading principal minors 𝑀1, . . . , 𝑀 𝛿 of ℋ𝐴 := 𝐴 𝑇 • ℋ • 𝐴 are not identically zero. Then, Algorithm 3 computes correctly a solution for Problem (1).

  Assumption C. For any 𝑔 ∈ 𝒢, we have that deg(𝑔) = deg 𝑥 (𝑔). Proposition 20 below states that Assumption (C) is generic. Its direct consequence is a proof for Proposition 8. Proposition 20. Let C[𝑥, 𝑦] 𝑑 be the set of polynomials in C[𝑥, 𝑦] having total degree bounded by 𝑑. There exists a non-empty Zariski open subset F𝐷 of C[𝑥, 𝑦] 𝑛 𝑑 such that Assumption (C) holds for 𝑓 ∈ F𝐷 ∩ Q[𝑥, 𝑦] 𝑛 . Consequently, for 𝑓 ∈ F𝐷 ∩ Q[𝑥, 𝑦] 𝑛 , 𝑓 satisfies Assumption (B).

  e., deg(ℎ𝑖,𝑗) ≤ deg(𝑏𝑖) + deg(𝑏𝑗). Proof. Let 𝑚 be a monomial in Q[𝑥]. The multiplication matrix ℒ𝑚 is built as follows. For 1 ≤ 𝑖 ≤ 𝛿, the normal form of 𝑏𝑖 • 𝑚 as a polynomial in Q(𝑦)[𝑥] writes NF𝒢(𝑏𝑖 • 𝑚) = 𝛿 ∑︁ 𝑗=1 𝑐𝑖,𝑗 • 𝑏𝑗.

Finally, the degree

  bound of ℎ𝑖,𝑗 follows immediately: deg(ℎ𝑖,𝑗) = deg(trace(ℒ 𝑏 𝑖 •𝑏 𝑗 )) ≤ deg(𝑏𝑖 • 𝑏𝑗) = deg(𝑏𝑖) + deg(𝑏𝑗). Lemma 22. Assume that 𝑓 satisfies Assumption (C). Then the degree of a minor 𝑀 consisting of the rows (𝑟1, . . . , 𝑟 ℓ ) and the columns (𝑐1, . . . , 𝑐 ℓ ) of ℋ is bounded by ℓ ∑︁ 𝑖=1 (deg(𝑏𝑟 𝑖 ) + deg(𝑏𝑐 𝑖 )) . Particularly, the degree of det(ℋ) is bounded by 2 ∑︀ 𝛿 𝑖=1 deg(𝑏𝑖).

  ) ≤ 𝑛(𝑑 -1)𝑑 𝑛 .Proof. For 𝑝 ∈ K[𝑥], let 𝑝 ℎ ∈ K[𝑥1, . . . , 𝑥𝑛+1] be the homogenization of 𝑝 with respect to the variable 𝑥𝑛+1, i.e.,𝑝 ℎ = 𝑥 deg 𝑥 (𝑝) 𝑛+1The dehomogenization map 𝛼 is defined as:𝛼 : K[𝑥1, . . . , 𝑥𝑛+1] → K[𝑥1, . . . , 𝑥𝑛],𝑝(𝑥1, . . . , 𝑥𝑛+1) ↦ → 𝑝(𝑥1, . . . , 𝑥𝑛, 1).
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 32 Figure 3: Kuramoto model for 4 oscillators

Figure 4 :

 4 Figure 4: Static output feedback

  ideal 𝐼 is said to be zero-dimensional if the algebraic set 𝑉 (𝐼) ⊂ F 𝑛 is finite and non-empty. By[START_REF] Cox | Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF] Sec. 5.3, Theorem 6], the quotient ring F[𝑥]/𝐼 is a F-vector space of finite dimension. The dimension of this vector space is also called the algebraic degree of 𝐼; it coincides with the number of points of 𝑉 (𝐼) counted with multiplicities[START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF] Sec. 4.5]. For any Gröbner basis of 𝐼, the set of monomials in F[𝑥] which are irreducible by 𝐺 forms a monomial basis, which we call 𝐵, of this vector space. For any 𝑝 ∈ F[𝑥], the normal form of 𝑝 by 𝐺 can be interpreted as the image of 𝑝 in F[𝑥]/𝐼 and is a linear combination of elements of 𝐵 (with coefficients in F). Therefore, the operations in the quotient algebra F[𝑥]/𝐼 such as vector additions or scalar multiplications can be computed explicitly using the normal form reduction.

	In this article, while working with polynomial systems depending on parameters in Q[𝑦][𝑥], we frequently take F to be the rational
	function field Q(𝑦) and treat polynomials in Q[𝑦][𝑥] as elements of Q(𝑦)[𝑥].
	Zero-dimensional parametrizations A zero-dimensional parametrization R of coefficients in Q consists of (𝑎1, . . . , 𝑎𝑛) ∈ Q 𝑛 and a sequence of polynomials (𝑤, 𝑣1, . . . , 𝑣𝑛) ∈ (Q[𝑢]) 𝑛+1 where 𝑢 = ∑︀ 𝑛 𝑖=1 𝑎𝑖𝑥𝑖 such that 𝑤 is square-free. The solution set of R, defined as
	𝑍(R) =	{︂(︂	𝑣1(𝜗) 𝑤 ′ (𝜗)	, . . . ,	𝑣𝑛(𝜗) 𝑤 ′ (𝜗)

  Let C[𝑥, 𝑦, 𝑦𝑡+1] ℎ 𝑑 be the set of homogeneous polynomials in C[𝑥, 𝑦, 𝑦𝑡+1] whose degrees are exactly 𝑑. By [47, Corollary 1.85], there exists a non-empty Zariski subset F ℎ

	𝐷 of	(︀ C[𝑥, 𝑦, 𝑦𝑡+1] ℎ 𝑑						
		𝑦𝑡+1	, . . . ,	𝑥𝑛 𝑦𝑡+1	,	𝑦1 𝑦𝑡+1	, . . . ,	𝑦𝑡 𝑦𝑡+1	)︂	.

  e., deg(𝑏𝑖) ≤ deg(𝑏𝑗) for 1 ≤ 𝑖 < 𝑗 ≤ 𝛿. So, 𝑏1 = 1 and deg(𝑏1) = 0. The degree bounds of the entries of ℋ are expressed by the matrix below

	⎡	0	deg(𝑏2)	. . .	deg(𝑏 𝛿 )	⎤
	⎢ ⎢ ⎣ deg(𝑏2) . . .	2 deg(𝑏2) . . .	. . . deg(𝑏 𝛿 ) + deg(𝑏2) . . . . . .	⎥ ⎥ ⎦ .
		deg(𝑏 𝛿 ) deg(𝑏 𝛿 ) + deg(𝑏2) . . .	2 deg(𝑏 𝛿 )	

  is an affine regular sequence, by definition (see Section 2), 𝐻 𝑓 = ( 𝐻 𝑓1, . . . , 𝐻 𝑓𝑛) forms a homogeneous regular sequence. Equivalently, by[START_REF] Verron | Regularisation of Gröbner basis computations for weighted and determinantal systems, and application to medical imagery[END_REF] Proposition 1.44], the homogeneous polynomial sequence ((𝑓1) ℎ , . . . , (𝑓𝑛) ℎ , 𝑥𝑛+1) is regular. Particularly, ((𝑓1) ℎ , . . . , (𝑓𝑛) ℎ ) is a homogeneous regular sequence and, by[START_REF] Moreno-Socias | Degrevlex gröbner bases of generic complete intersections[END_REF] Theorem 1.5], we obtain

  7, the entries of the parametric Hermite matrix ℋ lie in Q[𝑦]. Proof. By Lemma 23 and Proposition 21, the highest degree among the entries of ℋ is bounded by 2𝜆 = 2𝑛(𝑑 -1).As the highest degree in the Gröbner basis of 𝑓 (𝜂, •) w.r.t. the grevlex(𝑥) ordering is bounded by 𝑛(𝑑 -1) + 1, the computation of this Gröbner basis can be done within 𝑂 (𝑛𝑑 𝜔𝑛 ) arithmetic operations in Q (see[START_REF] Faugère | Polynomial systems solving by fast linear algebra[END_REF] Theorem 5.1]).Next, we compute the matrices representing the ℒ𝑥 𝑖 's. Using[START_REF] Faugère | Polynomial systems solving by fast linear algebra[END_REF] Algo. 4], we obtain an arithmetic complexity of 𝑂 (︀ 𝑑𝑛 𝜔+1 𝛿 𝜔 )︀ ([START_REF] Faugère | Polynomial systems solving by fast linear algebra[END_REF] Prop. 5]) for computing such 𝑛 matrices, where 𝜔 is the exponential constant for matrix multiplication. Using 𝛿 ≤ 𝑑 𝑛 , we obtain the bound 𝑂 (︀ 𝑛 𝜔+1 𝑑 𝜔𝑛+1 )︀ .

	Using the evaluation & interpolation scheme, one can compute ℋ within
	𝑂 ̃︀	(︃(︃	𝑡 + 2𝜆 𝑡 )︃ (︃	𝑛	(︃ 𝑑 + 𝑛 + 𝑡 )︃ 𝑛 + 𝑡	+ 𝑛 𝜔+1 𝑑 𝜔𝑛+1 + 𝑑 (𝜔+1)𝑛
	Moreover, each minor (including the determinant) of ℋ can be computed using
			𝑂 ̃︀	(︃(︃	𝑡 + D 𝑡 )︃ (︃	𝑑 2𝑛	(︃ 𝑡 + 2𝜆 𝑡	)︃	+ 𝑑 𝜔𝑛	)︃)︃
	arithmetic operations in Q.							
									The evaluation
	& interpolation scheme of Subsection 4.4 requires computing for computing each of those specialized Hermite matrices.	(︀ 𝑡+2𝜆 )︀ 𝑡	specialized Hermite matrices. We first analyze the complexity
	The evaluation of 𝑓 at each point 𝜂 ∈ Q 𝑡 costs 𝑂	(︁ 𝑛	(︀ 𝑑+𝑛+𝑡 𝑛+𝑡	)︀ )︁	arithmetic operations in Q.

)︃)︃ arithmetic operations in Q, where, by Bézout's bound, 𝛿 is bounded by 𝑑 𝑛 .

  solutions are invariant. Moreover, using the minors of parametric Hermite matrices, we can compute semi-algebraic formulas of problems that are out of reach of CELLDECOMPOSITION and REALROOTCLASSIFICATION.

	𝑡 2	𝑑 [2, 2] MAT 2 m	MAT .07 s	DET .01 s DET 1 h	HERMITE SP .3 s .4 s HERMITE total SP 85 h	DEG	DV total 86 h	RF CAD	total DV ∞	BP	RC RRC	BP ∞	total
						HERMITE						STURM	
			MAT	MIN	SP	total	DEG		ELIM	SRES	SP-S	total	DEG-S

real
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As we have seen, Algorithm 2 obtains a polynomial which serves similarly as discriminant varieties [START_REF] Lazard | Solving parametric polynomial systems[END_REF] or border polynomials [START_REF] Yang | Real solution classification for parametric semi-algebraic systems[END_REF] through computing the determinant of parametric Hermite matrices. Whereas, the two latter strategies rely on algebraic elimination based on Gröbner bases to compute the projection of crit(𝜋, 𝒱) on the 𝑦-space. Since it is well-known that the computation of such a Gröbner basis could be heavy, our algorithm has a chance to be more practical. In Section 7, we provide experimental results to support this claim. Remark 16. It is worth noticing that, even though the design of Algorithm 2 employs the grevlex monomial ordering where 𝑥1 ≻ • • • ≻ 𝑥𝑛, we can replace it by any grevlex ordering with another lexicographical order among the 𝑥's. For instance, we can use the monomial ordering grevlex(𝑥𝑛 ≻ • • • ≻ 𝑥1). While every theoretical claim still holds for this ordering, the practical behavior could be different.

Computing semi-algebraic formulas

By Corollary 11, the number of real roots of the system 𝑓 (𝜂, •) for a given point 𝜂 ∈ R 𝑡 ∖ 𝒲∞ can be obtained by evaluating the signature of the parametric Hermite matrix ℋ. We recall that the signature of a matrix can be deduced from the sign pattern of its leading principal minors. More precisely, we recall the following criterion, introduced by [START_REF] Sylvester | A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitution to the form of a sum of positive and negative squares[END_REF] and [START_REF] Jacobi | Uber eine elementare transformation eins in bezug auf jedes von zwei variablen-systemen linearen und homogenen ausdrucks[END_REF] (see [START_REF] Ghys | Signatures in algebra, topology and dynamics[END_REF] for a summary on these works). Lemma 17. [START_REF] Ghys | Signatures in algebra, topology and dynamics[END_REF]Theorem 2.3.6] Let 𝑆 be a 𝛿 × 𝛿 symmetric matrix in R 𝛿×𝛿 and, for 1 ≤ 𝑖 ≤ 𝛿, 𝑆𝑖 be the 𝑖-th leading principal minor of 𝑆, i.e., the determinant of the sub-matrix formed by the first 𝑖 rows and 𝑖 columns of 𝑆. By convention, we denote 𝑆0 = 1.

We assume that 𝑆𝑖 ̸ = 0 for 0 ≤ 𝑖 ≤ 𝛿. Let 𝑘 be the number of sign variations between 𝑆𝑖 and 𝑆𝑖+1. Then, the numbers of positive and negative eigenvalues of 𝑆 are respectively 𝛿 -𝑘 and 𝑘. Thus, the signature of 𝑆 is 𝛿 -2𝑘.

This criterion leads us to the following idea. Assume that none of the leading principal minors of ℋ is identically zero. We consider the semi-algebraic subset of R 𝑡 defined by the non-vanishing of those leading principal minors. Over a connected component 𝒮 ′ of this semi-algebraic set, each leading principal minor is not zero and its sign is invariant. As a consequence, by Lemma 17 and Corollary 11, the number of distinct real roots of 𝑓 (𝜂, •) when 𝜂 varies over 𝒮 ′ ∖ 𝒲∞ is invariant.

However, this approach does not apply directly if one of the leading principle minors of ℋ is identically zero. We bypass this obstacle by picking randomly an invertible matrix 𝐴 ∈ GL 𝛿 (Q) and working with the matrix ℋ𝐴 := 𝐴 𝑇 • ℋ • 𝐴. The lemma below states that, with a generic matrix 𝐴, all of the leading principal minors of ℋ𝐴 are not identically zero. Lemma 18. There exists a Zariski dense subset 𝒜 of GL 𝛿 (Q) such that for 𝐴 ∈ 𝒜, all of the leading principal minors of ℋ𝐴 := 𝐴 𝑇 • ℋ • 𝐴 are not identically zero.

Proof. For 1 ≤ 𝑟 ≤ 𝛿, we denote by M𝑟 the set of all 𝑟 × 𝑟 minors of ℋ.

We prove that there exists a Zariski dense subset 𝒜 of GL 𝛿 (Q) such that, for 𝐴 ∈ 𝒜, all of the leading principal minors of ℋ𝐴(𝜂) are not zero. Then, as an immediate consequence, all the leading principal minors of ℋ𝐴 are not identically zero.

We consider the matrix 𝐴 = (𝑎𝑖,𝑗) 1≤𝑖,𝑗≤𝛿 where 𝑎 = (𝑎𝑖,𝑗) are new variables. Then, the 𝑟-th leading principal minor 𝑀𝑟(𝑎) of 𝐴 𝑇 • ℋ(𝜂) • 𝐴 can be written as

where the 𝑎m's are elements of Q[𝑎].

As ℋ(𝜂) is a full rank symmetric matrix by assumption, there exists a matrix 𝑄 ∈ GL 𝛿 (R) such that 𝑄 𝑇 • ℋ(𝜂) • 𝑄 is a diagonal matrix with no zero on its diagonal. Hence, the evaluation of 𝑎 at the entries of 𝑄 gives 𝑀𝑟(𝑎) a non-zero value. As a consequence, 𝑀𝑟(𝑎) is not identically zero.

Let 𝒜𝑟 be the non-empty Zariski open subset of GL 𝛿 (Q) defined by 𝑀𝑟(𝑎) ̸ = 0. Then, the set of the matrices 𝐴 ∈ 𝒜𝑟 such that the 𝑟 × 𝑟 leading principal minor of 𝐴 𝑇 • ℋ(𝜂) • 𝐴 is not zero.

Taking 𝒜 as the intersection of 𝒜𝑟 for 1 ≤ 𝑟 ≤ 𝛿, then, for 𝐴 ∈ 𝒜, none of the leading principal minors of 𝐴 𝑇 • ℋ(𝜂) • 𝐴 equals zero. Consequently, each leading principal minor of 𝐴 𝑇 • ℋ • 𝐴 is not identically zero.

their corresponding numbers of real roots) {(𝜂1, 𝑟1), . . . , (𝜂 ℓ , 𝑟 ℓ )} that solves the weak-version of Problem [START_REF] Alman | A refined laser method and faster matrix multiplication[END_REF]. We obtain from this output all the possible numbers of real roots that the input system can admit.

For each value 0 ≤ 𝑟 ≤ 𝛿, we define

For 𝜎 ∈ Φ𝑟 and 𝜂 ∈ R 𝑡 ∖ 𝑉 (𝑤∞) such that sign (𝑀𝑖(𝜂)) = 𝜎𝑖 for every 1 ≤ 𝑖 ≤ 𝛿, the signature of ℋ(𝜂) is 𝑟. As a consequence, for any 𝜂 in the semi-algebraic set defined by

)), the system 𝑓 (𝜂, .) has exactly 𝑟 distinct real solutions.

Therefore, (𝒮𝑟 𝑖 ) 1≤𝑖≤ℓ is a collection of semi-algebraic sets solving Problem [START_REF] Alman | A refined laser method and faster matrix multiplication[END_REF]. Then, we can simply return {(Φ𝑟 𝑖 , 𝜂𝑖, 𝑟𝑖) | 1 ≤ 𝑖 ≤ ℓ} as the output of Algorithm 3 without any further computation. Note that, by doing so, we may return sign conditions which are not realizable.

We discuss now about the complexity aspect of the steps described above. For 𝑟 ≡ 𝛿 (mod 2), the cardinal of Φ𝑟 is (︀

In theory, the total cardinal of all the Φ𝑟 𝑖 's (1 ≤ 𝑖 ≤ ℓ) can go up to 2 𝛿-1 , which is doubly exponential in the number of variables 𝑛. However, in the instances that are actually tractable by the current state of the art, 2 𝛿 is still smaller than 𝛿 3𝑡 . And when it is the case, following this approach has better performance than computing the sample points of the semi-algebraic set defined by ∧ 𝛿 𝑖=1 𝑀𝑖 ̸ = 0. Otherwise, when 2 𝛿 exceeds 𝛿 3𝑡 , we switch back to the computation of sample points. This implementation of Algorithm 3 does not change the complexity bound given in Theorem I.

Implementation infrastructure

To implement our algorithm, we need three main ingredients: (i) Gröbner bases computations, in order to obtain monomial basis of quotient algebras that we use to compute our parametrized Hermite matrices, (ii) an implementation of an algorithm computing sample points connected components of semi-algebraic sets, (iii) a computer algebra system to manipulate polynomials and matrices.

In our implementation, we use the MAPLE computer algebra system and its programming language to implement the overall algorithm. We use J.-Ch Faugère's FGB library [START_REF] Faugère | A Library for Computing Gröbner Bases[END_REF], implemented in C, for computing Gröbner bases.

In order to compute sample points per connected components of semi-algebraic sets, we use the RAGLIB [START_REF] Safey El Din | Real alebraic geometry library[END_REF] (Real Algebraic Library) package which is implemented using the MAPLE programming language and the FGB library. The algorithm implemented therein is the one of [START_REF] Faugère | Classification of the perspective-three-point problem, discriminant variety and real solving polynomial systems of inequalities[END_REF] and its complexity remains to be established. Even if they share similar ingredients, it is not the same as the one of Section 3 which provides the state-of-the-art complexity result for this problem. Hence, our implementation might not meet the best promised by complexity results. Still, we see in the experiments below that it already can tackle problems which are out of reach of the current software state-of-the-art.

Experiments

This subsection provides numerical results of several algorithms related to the real root classification. We report on the performance of each algorithm for different test instances.

The computation is carried out on a computer of Intel(R) Xeon(R) CPU E7-4820 2GHz and 1.5 TB of RAM. The timings are given in seconds (s.), minutes (m.) and hours (h.). The symbol ∞ means that the computation cannot finish within 120 hours.

Throughout this subsection, the column HERMITE reports on the computational data of our algorithms based on parametric Hermite matrices described in Section 5. It uses the notations below:

-MAT: the timing for computing a parametric Hermite matrix ℋ.

-DET: the runtime for computing the determinant of ℋ.

-MIN: the timing for computing the leading principal minors of ℋ .

-SP: the runtime for computing at least one points per each connected component of the semi-algebraic set R 𝑡 ∖ 𝑉 (det(ℋ)).

-DEG: the highest degree among the leading principal minors of ℋ.

Generic systems

In this paragraph, we report on the results obtained with generic inputs, i.e., randomly chosen dense polynomials -ELIM: the timing for computing the eliminating polynomial. • The column RF stands for the ROOTFINDING[PARAMETRIC] package. To solve a parametric polynomial systems, it consists of computing a discriminant variety 𝒟 and then computing an open CAD of R 𝑡 ∖ 𝒟. This package does not return explicit semi-algebraic formulas but an encoding based on the real roots of some polynomials. This column contains:

-DV : the runtime of the command DISCRIMINANTVARIETY that computes a set of polynomials defining a discriminant variety 𝒟 associated to the input system. -CAD : the runtime of the command CELLDECOMPOSITION that outputs semi-algebraic formulas by computing an open CAD for the semi-algebraic set R 𝑡 ∖ 𝒟.

• The column RC stands for the REGULARCHAINS[PARAMETRICSYSTEMTOOLS] package of Maple. The algorithms implemented in this package is given in [START_REF] Yang | A complete algorithm for automated discovering of a class of inequality-type theorems[END_REF]. It also contains two sub-columns:

-BP : the runtime of the command BORDERPOLYNOMIAL that returns a set of polynomials.

-RRC : the runtime of the command REALROOTCLASSIFICATION. We call this command with the option output='samples' to compute at least one point per connected component of the complementary of the real algebraic set defined by border polynomials.

Note that, in a strategy for solving the weak-version of Problem (1), DISCRIMINANTVARIETY and BORDERPOLYNOMIAL can be completely replaced by parametric Hermite matrices.

On generic systems, the determinant of our parametric Hermite matrix coincides with the output of DISCRIMINANTVARIETY, which we denote by 𝑤. Whereas, because of the elimination BORDERPOLYNOMIAL returns several polynomials, one of them is 𝑤.

In Fig.

(2), the timings for computing a parametric Hermite matrix is negligible. Comparing the columns DET, DV and BP, we remark that the time taken to obtain 𝑤 through the determinant of parametric Hermite matrices is much smaller than using DISCRIMINANTVARIETY or BORDERPOLYNOMIAL.

For computing the polynomial 𝑤, using parametric Hermite matrices allows us to reach the instances that are out of reach of DISCRIMINANTVARIETY, for example, the instances Therefore, for these generic systems, our algorithm based on parametric Hermite matrices outperforms DISCRIMINANTVARIETY and BORDERPOLYNOMIAL for obtaining a polynomial that defines the boundary of semi-algebraic sets over which the number of 37 h 37 h In what follows, we consider the systems coming from some applications as test instances. These examples allow us to observe the behavior of our algorithms on non-generic systems.

Kuramoto model This application is introduced in [START_REF] Kuramoto | Self-entrainment of a population of coupled non-linear oscillators[END_REF], which is a dynamical system used to model synchronization among some given coupled oscillators. Here we consider only the model constituted by 4 oscillators. The maximum number of real solutions of steady-state equations of this model was an open problem before it is solved in [START_REF] Harris | Smooth points on semi-algebraic sets[END_REF] using numerical homotopy continuation methods. However, to the best of our knowledge, there is no exact algorithm that is able to solve this problem. We present in what follows the first solution using symbolic computation. Moreover, our algorithm can return the semi-algebraic formulas defining the regions over which the number of real solutions is invariant.

As explained in [START_REF] Harris | Smooth points on semi-algebraic sets[END_REF], we consider the system 𝑓 of the following equations

where (𝑠1, 𝑠2, 𝑠3) and (𝑐1, 𝑐2, 𝑐3) are variables and (𝑦1, 𝑦2, 𝑦3) are parameters. We are asked to compute the maximum number of real solutions of 𝑓 (𝜂, .) when 𝜂 varies over R 3 . This leads us to solve the weak version of Problem (1) for this parametric system.

We first construct the parametric Hermite matrix ℋ associated to this system. This matrix is of size 14 × 14. The polynomial 𝑤∞ has the factors 𝑦1 + 𝑦2, 𝑦2 + 𝑦3, 𝑦3 + 𝑦1 and 𝑦1 + 𝑦2 + 𝑦3. The polynomial 𝑤ℋ has degree 48 (c.f. [START_REF] Harris | Smooth points on semi-algebraic sets[END_REF]). We denote by 𝑤 the polynomial 𝑤∞ • 𝑤ℋ.

Note that the polynomial system has real roots only if |𝑦𝑖| ≤ 3 (c.f. [START_REF] Harris | Smooth points on semi-algebraic sets[END_REF]). So we only need to consider the compact connected components of R 3 ∖ 𝑉 (𝑤). Since the polynomial 𝑤 is invariant under any permutation acting on (𝑦1, 𝑦2, 𝑦3), we exploit this symmetry to accelerate the computation of sample points.

Following the critical point method, we compute the critical points of the map (𝑦1, 𝑦2, 𝑦3) ↦ → 𝑦1 + 𝑦2 + 𝑦3 restricted to R 3 ∖ 𝑉 (𝑤); this map is also symmetric. We apply the change of variables (𝑦1, 𝑦2, 𝑦3) ↦ → (𝑒1, 𝑒2, 𝑒3),

where 𝑒1 = 𝑦1 + 𝑦2 + 𝑦3, 𝑒2 = 𝑦1𝑦2 + 𝑦2𝑦3 + 𝑦3𝑦1 and 𝑒3 = 𝑦1𝑦2𝑦3 are elementary symmetric polynomials of (𝑦1, 𝑦2, 𝑦3). This change of variables reduces the number of distinct solutions of zero-dimensional systems involved in the computation and, therefore, reduces the computation time.

From the sample points obtained by this computation, we derive the possible number of real solutions and conclude that the system 𝑓 has at most 10 distinct real solutions when (𝑦1, 𝑦2, 𝑦3) varies over R 3 ∖ 𝑉 (𝑤). This agrees with the result given in [START_REF] Harris | Smooth points on semi-algebraic sets[END_REF]. We show below a list of parameter values such that the system has respectively ]︀ Fig.

(3) reports on the timings for computing the parametric Hermite matrix (MAT), for computing its determinant (DET) and for computing the sample points (SP). We stop both of the commands DISCRIMINANTVARIETY and BORDERPOLYNOMIAL after 240 hours without obtaining the polynomial 𝑤.