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ABSTRACT

We design a new algorithm for solving parametric systems of equations having finitely many complex
solutions for generic values of the parameters. More precisely, let 𝑓 = (𝑓1, . . . , 𝑓𝑚) ⊂ Q[𝑦][𝑥]
with 𝑦 = (𝑦1, . . . , 𝑦𝑡) and 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝒱 ⊂ C𝑡 × C𝑛 be the algebraic set defined by the
simultaneous vanishing of the 𝑓𝑖’s and 𝜋 be the projection (𝑦,𝑥) → 𝑦. Under the assumptions that
𝑓 admits finitely many complex solutions when specializing 𝑦 to generic values and that the ideal
generated by 𝑓 is radical, we solve the following algorithmic problem. On input 𝑓 , we compute
semi-algebraic formulas defining open semi-algebraic sets 𝒮1, . . . ,𝒮ℓ in the parameters’ space R𝑡

such that ∪ℓ
𝑖=1𝒮𝑖 is dense in R𝑡 and, for 1 ≤ 𝑖 ≤ ℓ, the number of real points in 𝒱 ∩ 𝜋−1(𝜂) is

invariant when 𝜂 ranges over 𝒮𝑖.

This algorithm exploits special properties of some well chosen monomial bases in the quotient algebra
Q(𝑦)[𝑥]/𝐼 where 𝐼 ⊂ Q(𝑦)[𝑥] is the ideal generated by 𝑓 in Q(𝑦)[𝑥] as well as the specialization
property of the so-called Hermite matrices which represent Hermite’s quadratic forms. This allows
us to obtain “compact” representations of the semi-algebraic sets 𝒮𝑖 by means of semi-algebraic
formulas encoding the signature of a given symmetric matrix.

When 𝑓 satisfies extra genericity assumptions (such as regularity), we use the theory of Gröbner bases
to derive complexity bounds both on the number of arithmetic operations in Q and the degree of the
output polynomials. More precisely, letting 𝑑 be the maximal degrees of the 𝑓𝑖’s and D = 𝑛(𝑑−1)𝑑𝑛,
we prove that, on a generic input 𝑓 = (𝑓1, . . . , 𝑓𝑛), one can compute those semi-algebraic formulas
using 𝑂 ̃︀(︁(︀𝑡+D

𝑡

)︀
23𝑡 𝑛2𝑡+1𝑑3𝑛𝑡+2(𝑛+𝑡)+1

)︁
arithmetic operations in Q and that the polynomials

involved in these formulas have degree bounded by D.

We report on practical experiments which illustrate the efficiency of this algorithm, both on generic
parametric systems and parametric systems coming from applications since it allows us to solve
systems which were out of reach on the current state-of-the-art.

Keywords Real algebraic geometry; Polynomial system solving; Real root classification; Hermite quadratic forms;
Gröbner bases
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1 Introduction

1.1 Problem statement and motivations

In the whole paper, Q, R and C denote respectively the fields of rational, real and complex numbers.

Let 𝑓 = (𝑓1, . . . , 𝑓𝑚) be a polynomial sequence in Q[𝑦][𝑥] where the indeterminates 𝑦 = (𝑦1, . . . , 𝑦𝑡) are considered as
parameters and 𝑥 = (𝑥1, . . . , 𝑥𝑛) are considered as variables. We denote by 𝒱 ⊂ C𝑡 × C𝑛 the (complex) algebraic set defined by
𝑓1 = · · · = 𝑓𝑚 = 0 and by 𝒱R its real trace 𝒱 ∩ R𝑡+𝑛. We consider also the projection on the parameter space 𝑦

𝜋 :
C𝑡 × C𝑛 → C𝑡,

(𝑦,𝑥) ↦→ 𝑦.

Further, we say that 𝑓 satisfies Assumption (A) when the following holds.

Assumption A. There exists a non-empty Zariski open subset 𝒪 ⊂ C𝑡 such that 𝜋−1(𝜂) ∩ 𝒱 is non-empty and finite for any 𝜂 ∈ 𝒪.

In other words, assuming (A) ensures that, for a generic value 𝜂 of the parameters, the sequence 𝑓(𝜂, ·) defines a finite algebraic
set and hence finitely many real points. Note that, it is easy to prove that one can choose 𝒪 in a way that the number of complex
solutions to the entries of 𝑓(𝜂, ·) is invariant when 𝜂 ranges over𝒪 (e.g. using the theory of Gröbner basis). This is no more the case
when considering real solutions whose number may vary when 𝜂 ranges over 𝒪.

By Hardt’s triviality theorem [27], there exists a real algebraic proper subsetℛ of R𝑡 such that, for any non-empty connected open
set 𝒰 of R𝑡 ∖ ℛ and 𝜂 ∈ 𝒰 , 𝜋−1(𝜂)× 𝒰 is homeomorphic with 𝜋−1(𝒰).

This leads us to consider the following real root classification problem.

Problem 1 (Real root classification). On input 𝑓 satisfying Assumption (A), compute semi-algebraic formulas (i.e. finitely many
disjunctions of conjunctions of polynomial inequalities) defining semi-algebraic sets 𝒮1, . . . ,𝒮ℓ such that

(i) The number of real points in 𝒱 ∩ 𝜋−1(𝜂) is invariant when 𝜂 ranges over 𝒮𝑖, for 1 ≤ 𝑖 ≤ ℓ;

(ii) The union of the 𝒮𝑖’s is dense in R𝑡;

as well as at least one sample point 𝜂𝑖 in each 𝒮𝑖 and the corresponding number of real points in 𝒱 ∩ 𝜋−1(𝜂𝑖).

A collection of semi-algebraic formulas sets is said to solve Problem (1) for the input 𝑓 if it defines a collection of semi-algebraic
sets 𝒮𝑖 satisfies the above properties (i) and (ii).

Our output will have the form {(Φ𝑖, 𝜂𝑖, 𝑟𝑖) | 1 ≤ 𝑖 ≤ ℓ} where Φ𝑖 is a semi-algebraic formula defining the set 𝒮𝑖, 𝜂𝑖 ∈ Q𝑡 is a
sample point of 𝒮𝑖 and 𝑟𝑖 is the corresponding number of real roots.

A weak version of Problem (1) would be to compute only a set {𝜂1, . . . , 𝜂ℓ} of sample points for a collection of semi-algebraic sets
𝒮𝑖 solving Problem (1) and their corresponding numbers of real points in 𝒱 ∩ 𝜋−1(𝜂𝑗).

Problem (1) appears in many areas of engineering sciences such as robotics or medical imagery (see, e.g., [50, 10, 51, 19, 6]).

In this paper, we design a new algorithm whose arithmetic complexity improves the previously known bounds and reports on practical
experiments showing that its practical behaviour outperforms the current software state-of-the-art.

Before going further with a description of the prior works and our contributions, we introduce the complexity model which we use.
We measure only the arithmetic complexity of algorithms, i.e., the number of arithmetic operations +,−,×,÷, in the base field Q,
hence, without taking into account the cost of real root isolation. We use the Landau notation:

• Let 𝑓 : Rℓ
+ ↦→ R+ be a positive function. We let 𝑂(𝑓) denote the class of functions 𝑔 : Rℓ

+ → R+ such that there exist
𝐶,𝐾 ∈ R+ such that for all ‖𝑥‖ ≥ 𝐾, 𝑔(𝑥) ≤ 𝐶𝑓(𝑥), where ‖ · ‖ is a norm of Rℓ.

• The notation 𝑂̃︀denotes the class of functions 𝑔 : Rℓ
+ → R+ such that 𝑔 ∈ 𝑂(𝑓 log𝜅(𝑓)) for some 𝜅 > 0.

Further, the notation 𝜔 always stands for the exponent constant of the matrix multiplication, i.e., the smallest positive number such
that the product of two matrices in Q𝑁×𝑁 can be done using 𝑂 (𝑁𝜔) arithmetic operations in Q. The value of 𝜔 can be bounded
from above by 2.37286, which is established in [1].

1.2 Prior works

A first approach to Problem (1) would be to compute a cylindrical algebraic decomposition (CAD) of R𝑡×R𝑛 adapted to 𝑓 using e.g.
Collins’ algorithm (and its more recent improvements) ; see [9]. While, up to our knowledge, there is no clear reference for this fact,
the cylindrical structure of the cells of the CAD will imply that their projection on the parameters’ space R𝑡 define semi-algebraic
sets enjoying the properties needed to solve Problem (1). However, the doubly exponential complexity of CAD both in terms of
runtime and output size [14, 7] makes it difficult to use in practice.
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A more popular approach consists in computing polynomials ℎ1, . . . , ℎ𝑟 in Q[𝑦] such that ∪𝑟
𝑖=1𝑉 (ℎ𝑖) ∩ R𝑡 contains the boundaries

of semi-algebraic sets 𝒮1, . . . ,𝒮ℓ enjoying the properties required to solve Problem (1). Next, one needs to compute semi-algebraic
descriptions of the connected components of R𝑡 ∖ ∪𝑟

𝑖=1𝑉 (ℎ𝑖) as well as sample points in these connected components. This is
basically the approach followed by [49] (the ℎ𝑖’s are called border polynomials) and [35] (the set ∪𝑟

𝑖=1𝑉 (ℎ𝑖) is called discriminant
variety) under the assumption that ⟨𝑓⟩ is a radical ideal. Note that both [49] and [35] provide algorithms that can handle variants of
Problem (1) allowing inequalities. In this paper, we focus on the situation where we only have equations in our input parametric
system.

When ⟨𝑓⟩ is radical and the restriction of 𝜋 to 𝒱 ∩R𝑡 ×R𝑛 is proper, one can easily prove using a semi-algebraic version of Thom’s
isotopy lemma [11] that one can choose ∪𝑟

𝑖=1𝑉 (ℎ𝑖) to be the set of critical values of the restriction of 𝜋 to 𝒱 (see e.g. [6]). If 𝑓 is a
regular sequence (hence 𝑚 = 𝑛), the critical set of the restriction of 𝜋 to 𝒱 is defined as the intersection of 𝒱 with the hypersurface
defined by the vanishing of the determinant of the Jacobian matrix of 𝑓 with respect to the variables 𝑥. When 𝑑 dominates the
degrees of the entries of 𝑓 , Bézout’s theorem allows us to state that the degree of this set is bounded above by 𝑛(𝑑− 1)𝑑𝑛.

It is worth noticing that, usually, this approach is used only to solve the aforementioned weak version of Problem (1) as getting a
semi-algebraic description of the connected components of R𝑡 ∖∪𝑟

𝑖=1𝑉 (ℎ𝑖) through CAD is too expensive when 𝑡 ≥ 4 (still, because
of the doubly exponential complexity of CAD). Under the above assumptions and notation, the output degree of the polynomials in
such formulas would be bounded by (𝑛(𝑑− 1)𝑑𝑛)2

𝑂(𝑡)

.

An alternative would be to use parametric roadmap algorithms to do such computations using e.g. [4, Chap. 16] to compute
semi-algebraic representations of the connected components of R𝑡 ∖ ∪𝑟

𝑖=1𝑉 (ℎ𝑖). Under the above extra assumptions, this would
result in output formulas involving polynomials of degree bounded by (𝑛(𝑑− 1)𝑑𝑛)𝑂(𝑡3) using (𝑛(𝑑− 1)𝑑𝑛)𝑂(𝑡4) arithmetic
operations (see [4, Theorem 16.13]). Note that the output degrees are by several orders of magnitude larger than 𝑛(𝑑− 1)𝑑𝑛 which
bounds the degree of the set of critical values of the restriction of 𝜋 to 𝒱 .

Hence, one topical algorithmic issue is to design an efficient algorithm for solving Problem (1) which would output semi-algebraic
formulas of degree bounded by 𝑛(𝑑− 1)𝑑𝑛 (using a number of arithmetic operations polynomial in this quantity). At this stage of
our exposition, this is not clear that it is doable. Actually, admittedly “folklore” algorithms in symbolic computation already allow
one to achieve such a result.

Using the (probabilistic) algorithm of [44], one can compute a rational parametrization of 𝒱 = 𝑉 (𝑓) with respect to the 𝑥-variables,
i.e. a sequence of polynomials (𝑤, 𝑣1, . . . , 𝑣𝑛) in Q(𝑦)[𝑢] where 𝑢 is a new variable, such that the constructible set 𝒵 ⊂ C𝑡 × C𝑛

of every point (︂
𝜂,

𝑣1
𝜕𝑤/𝜕𝑢

(𝜂, 𝜗), . . . ,
𝑣𝑛

𝜕𝑤/𝜕𝑢
(𝜂, 𝜗)

)︂
,

where (𝜂, 𝜗) ∈ C𝑡 × C such that 𝑤(𝜂, 𝜗) = 0 and 𝜂 does not cancel 𝜕𝑤/𝜕𝑢 and any denominator of (𝑤, 𝑣1, . . . , 𝑣𝑛), is Zariski
dense in 𝒱 , i.e., the Zariski closure of 𝒵 coincides with 𝒱 .

The bi-rational equivalence between𝒵 and its projection on the (𝑢,𝑦)-space implies that semi-algebraic formulas solving Problem (1)
can be obtained through the computation of the subresultant sequence associated to

(︀
𝑤, 𝜕𝑤

𝜕𝑢

)︀
(see e.g. [4, Chap. 4]). Combining the

complexity results of [44] to compute a rational parametrization of 𝒱 with those of [4, Chap. 4] for computing subresultants we
obtain that this algorithm uses

𝑂̃︀(︃(︃𝑡+ 2𝑑2𝑛

𝑡

)︃
25𝑡 𝑑5𝑛𝑡+3𝑛

)︃
arithmetic operations in Q, and that the semi-algebraic formulas computed by this algorithm involve polynomials in Q[𝑦] of degree
bounded by 2𝑑2𝑛. Recall that the degree of the critical locus of the restriction of 𝜋 to 𝒱 is bounded by 𝑛(𝑑−1)𝑑𝑛. Hence, computing
semi-algebraic formulas solving Problem (1) involving polynomials of degrees in 𝑂(𝑑𝑛) through an efficient algorithm reflecting
this complexity gain is still an open problem.

1.3 Main results

Basically, our main result is to provide a new algorithm solving Problem (1) when ⟨𝑓⟩ is radical and assumption (A) holds. Under
some genericity assumptions, we prove that it outputs formulas involing polynomials of degree in 𝑂(𝑑𝑛) with a better arithmetic
complexity than what was previously known.

Theorem I. Let C[𝑥,𝑦]𝑑 be the set of polynomials in C[𝑥,𝑦] having total degree bounded by 𝑑 and set D = 𝑛(𝑑− 1)𝑑𝑛.

There exists a non-empty Zariski open set F ⊂ C[𝑥,𝑦]𝑛𝑑 such that for 𝑓 = (𝑓1, . . . , 𝑓𝑛) ∈ F ∩Q[𝑥,𝑦]𝑛, the following holds:

i) There exists an algorithm that computes a solution for the weak-version of Problem (1) within

𝑂̃︀(︃(︃𝑡+D

𝑡

)︃
23𝑡 𝑛2𝑡+1𝑑2𝑛𝑡+𝑛+2𝑡+1

)︃
.

arithmetic operations in Q.
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ii) There exists a probabilistic algorithm that returns the formulas of a collection of semi-algebraic sets solving Problem (1)
within

𝑂̃︀(︃(︃𝑡+D

𝑡

)︃
23𝑡 𝑛2𝑡+1𝑑3𝑛𝑡+2(𝑛+𝑡)+1

)︃
arithmetic operations in Q in case of success.

iii) The semi-algebraic descriptions output by the above algorithm involves polynomials in Q[𝑦] of degree bounded by D.

We note that the binomial coefficient
(︀
𝑡+D
𝑡

)︀
is bounded from above by D𝑡 ≃ 𝑛𝑡𝑑𝑛𝑡+𝑡. Therefore, the complexities given in the

items i) and ii) of Theorem I can be bounded by 𝑂̃︀(︀23𝑡 𝑛3𝑡𝑑3𝑛𝑡
)︀

and 𝑂̃︀(︀23𝑡 𝑛3𝑡𝑑4𝑛𝑡
)︀

respectively.

We also implemented this algorithm to illustrate its practical behaviour and compare it with the state-of-the-art software within the
MAPLE packages ROOTFINDING[PARAMETRIC] and REGULARCHAINS[PARAMETRICSYSTEMTOOLS]. We report on experiments
showing that our implementation outperforms these packages, which is justified by our complexity result.

The key ingredient on which one relies to obtain these results is a set of well-known properties of Hermite quadratic forms to count
the real roots of zero-dimensional ideals. The use of such quadratic forms for counting the number of real solutions was introduced
in [30] and then later on generalized by [38] and used in [39]. We refer to [4, Theorem 4.102] for the explicit relation between the
number of real roots of a zero-dimensional algebraic set and the signature of these quadratic forms and to [4, Algo. 8.43] for an
algorithm computing these signatures.

We first slightly extend the definition of Hermite’s quadratic forms and Hermite’s matrices to the context of parametric systems;
we call them parametric Hermite quadratic forms and parametric Hermite matrices. This is easily done since the ideal of Q(𝑦)[𝑥]
generated by 𝑓 , considering Q(𝑦) as the base field, has dimension zero. We also establish natural specialization properties for these
parametric Hermite matrices.

Hence, a parametric Hermite matrix, similar to its zero-dimensional counterpart, allows one to count respectively the number of
distinct real and complex roots at any parameters outside a strict algebraic sets of R𝑡 by evaluating the signature and rank of its
specialization.

Based on this specialization property, we design two algorithms for solving Problem (1) and also its weak version for the input
system 𝑓 which satisfies Assumption (A) and generates a radical ideal.

Our algorithm for the weak version of Problem (1) reduces to the following main steps.

(a) Compute a parametric Hermite matrixℋ associated to 𝑓 ⊂ Q[𝑦][𝑥].

(b) Compute a set of sample points {𝜂1, . . . , 𝜂ℓ} in the connected components of the semi-algebraic set of R𝑡 defined by
𝑤 ̸= 0 where 𝑤 is derived fromℋ.
This is done through the so-called critical point method (see e.g. [4, Chap. 12] and references therein) which are adapted
to obtain practically fast algorithms following [41]. We will explain in detail this step in Section 3.
This algorithm takes as input 𝑠 polynomials of degree 𝐷 involving 𝑡 variables and computes sample points per connected
components in the semi-algebraic set defined by the non-vanishing of these polynomials using

𝑂̃︀(︃(︃𝐷 + 𝑡

𝑡

)︃
𝑠𝑡+123𝑡𝐷2𝑡+1

)︃
.

(c) Compute the number 𝑟𝑖 of real points in 𝒱 ∩ 𝜋−1(𝜂𝑖) for 1 ≤ 𝑖 ≤ ℓ.
This is done by simply evaluating the signature of the specialization ofℋ at each 𝜂𝑖.

It is worth noting that, in the algorithm above, we obtain through parametric Hermite matrices a polynomial 𝑤 that plays the same
role as the discriminant varieties of [35] or the border polynomials of [48]. We will see in the section reporting experiments that our
approach outperforms the other two on every example we consider.

To return semi-algebraic formulas, our routine is basically the same except instead of computing sample points in the set {𝑤 ̸= 0},
one needs to consider all principal minors of the matrixℋ and compute sample points outside the union of the vanishing sets of all
these polynomials.

Another contribution of this paper is to make clear how to perform the step (a). For this, we rely on the theory of Gröbner bases. More
precisely, we use specialization properties of Gröbner bases, similar to those already proven in [32]. This leaves some freedom when
running the algorithm: since we rely on Gröbner bases, one may choose monomial orderings which are more convenient for practical
computations. In particular, the monomial basis of the quotient ring Q(𝑦)[𝑥]/𝐼 where 𝐼 is the ideal generated by 𝑓 in Q(𝑦)[𝑥]
depends on the choice of the monomial ordering used for Gröbner bases computations. We describe the behavior of our algorithm
when choosing the graded reverse lexicographical ordering whose interest for practical computations is explained in [5]. Further, we
denote by grevlex(𝑥) the graded reverse lexicographical ordering applied to the sequence of the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛) (with
𝑥1 ≻ · · · ≻ 𝑥𝑛). Further, we also denote by ≻𝑙𝑒𝑥 the lexicographical ordering.
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We report, at the end of the paper, on the practical behavior of this algorithm. We compare with two Maple packages ROOTFIND-
ING[PARAMETRIC] and REGULARCHAINS[PARAMETRICSYSTEMTOOLS] which respectively implement the algorithms of [35]
and [49]. In particular, our algorithm allows us to solve instances of Problem (1) which were not tractable by the state-of-the-art as
well as the actual degrees of the polynomials in the output formula which are bounded by 𝑛(𝑑− 1)𝑑𝑛.

We actually prove such a statement under some generic assumptions. Our main complexity result is stated below. Its proof is given in
Subsection 6.2, where the generic assumptions in use are given explicitly.

Organization of the paper Section 2 reviews fundamental notions of algebraic geometry and the theory of Gröbner bases that
we use further. Next, we present a dedicated algorithm for computing at least one point per connected component of a semi-algebraic
defined by a list of inequations in Section 3. Section 4 lies the definition and some useful properties of parametric Hermite matrices.
In Section 5, we describe our algorithm for solving the real root classification problem using this parametric Hermite matrix. The
complexity analysis of the algorithms mentioned above is given in Section 6. Finally, in Section 7, we report on the practical behavior
of our algorithms and illustrate its practical capabilities.

2 Preliminaries

In the first paragraph, we fix some notations on ideals and algebraic sets and recall the definition of critical points associated to a
given polynomial map. Next, we give the definitions of regular sequences, Hilbert series, Noether position and proper maps, which
are used later in Subsection 6.1. The fourth paragraph recalls some basic properties of Gröbner bases and quotient algebras of
zero-dimensional ideals. We refer to [12] for an introductory study on the algorithmic theory of Gröbner bases. In the last paragraphs,
we recall respectively the definitions of zero-dimensional parametrizations and rational parametrizations which go back to [33] and is
widely used in computer algebra (see e.g. [24, 26, 25]) to represent finite algebraic sets.

Algebraic sets and critical points We consider a sub-field F of C. Let 𝐼 be a polynomial ideal of F[𝑥1, . . . , 𝑥𝑛], the algebraic
subset of C𝑛 at which the elements of 𝐼 vanish is denoted by 𝑉 (𝐼). Conversely, for an algebraic set 𝒱 ⊂ C𝑛, we denote by
𝐼(𝒱) ⊂ C[𝑥1, . . . , 𝑥𝑛] the radical ideal associated to 𝒱 . Given any subset 𝒜 of C𝑛, we denote by 𝒜 the Zariski closure of 𝒜, i.e.,
the smallest algebraic set containing 𝒜.

A map 𝜙 between two algebraic sets 𝒱 ⊂ C𝑛 and𝒲 ⊂ C𝑠 is a polynomial map if there exist 𝜙1, . . . , 𝜙𝑡 ∈ C[𝑥1, . . . , 𝑥𝑛] such that
the 𝜙(𝜂) = (𝜙1(𝜂), . . . , 𝜙𝑠(𝜂)) for 𝜂 ∈ 𝒱 .

An algebraic set 𝒱 is equi-dimensional of dimension 𝑡 if it is the union of irreducible algebraic sets of dimension 𝑡. Let 𝜙 be a
polynomial map from 𝒱 to another algebraic set𝒲 . The morphism 𝜙 is dominant if and only if the image of every irreducible
component 𝒱 ′ of 𝒱 by 𝜙 is Zariski dense in𝒲 , i.e. 𝜙(𝒱 ′) =𝒲 .

Let 𝜑 ∈ C[𝑥1, . . . , 𝑥𝑛] which defines the polynomial function

𝜑 :
C𝑛 → C,

(𝑥1, . . . , 𝑥𝑛) ↦→ 𝜑(𝑥1, . . . , 𝑥𝑛)

and 𝒱 ⊂ C𝑛 be a smooth equi-dimensional algebraic set. We denote by crit(𝜑,𝒱) the set of critical points of the restriction of 𝜑 to
𝒱 . If 𝑐 is the codimension of 𝒱 and (𝑓1, . . . , 𝑓𝑚) generates the vanishing ideal associated to 𝒱 , then crit(𝜑,𝒱) is the subset of 𝒱 at
which the Jacobian matrix associated to (𝑓1, . . . , 𝑓𝑚, 𝜑) has rank less than or equal to 𝑐 (see, e.g., [42, Subsection 3.1]).

Regular sequences & Hilbert series Let F be a field and (𝑓1, . . . , 𝑓𝑚) ⊂ F[𝑥] where 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑚 ≤ 𝑛 be a
homogeneous polynomial sequence. We say that (𝑓1, . . . , 𝑓𝑚) ⊂ F[𝑥] is a regular sequence if for any 𝑖 ∈ {1, . . . ,𝑚}, 𝑓𝑖 is not a
zero-divisor in F[𝑥]/⟨𝑓1, . . . , 𝑓𝑖−1⟩.

The notion of regular sequences is the algebraic analogue of complete intersection. In this paper, we focus particularly on the Hilbert
series of homogeneous regular sequences, which are recalled below.

Let 𝐼 ⊂ F[𝑥] be a homogeneous ideal. We denote by F[𝑥]𝑟 the set of every homogeneous polynomial whose degree is equal to
𝑟. Then F[𝑥]𝑟 and 𝐼 ∩ F[𝑥]𝑟 are two F-vector spaces of dimensions dimF(F[𝑥]𝑟) and dimF(𝐼 ∩ F[𝑥]𝑟) respectively. The Hilbert
series of 𝐼 is defined as

HS𝐼(𝑧) =

∞∑︁
𝑟=0

(dimF(F[𝑥]𝑟)− dimF(𝐼 ∩ F[𝑥]𝑟)) · 𝑧𝑟.

We now consider the affine polynomial sequences. Note that one can define affine regular sequences by simply removing the
homogeneity assumption of (𝑓1, . . . , 𝑓𝑚) from the above definition. However, as explained in [2, Sec 1.7], many important properties
that hold for homogeneous regular sequences are no longer valid for the affine ones. Therefore, in this paper, we use [2, Definition
1.7.2] of affine regular sequences, which is more restrictive but allows us to preserve similar results as the homogeneous case. We
recall that definition below.

For 𝑝 ∈ F[𝑥1, . . . , 𝑥𝑛], we denote by 𝐻𝑝 the homogeneous component of largest degree of 𝑝. A polynomial sequence (𝑓1, . . . , 𝑓𝑚) ⊂
F[𝑥1, . . . , 𝑥𝑛], not necessarily homogeneous, is called a regular sequence if and only if (𝐻𝑓1, . . . ,

𝐻𝑓𝑚) is a homogeneous regular
sequence.
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Noether position & Properness Let F be a field and 𝑓 = (𝑓1, . . . , 𝑓𝑛) ⊂ F[𝑥1, . . . , 𝑥𝑛+𝑡]. The variables (𝑥1, . . . , 𝑥𝑛) are in
Noether position with respect to the ideal ⟨𝑓⟩ if their canonical images in the quotient algebra F[𝑥1, . . . , 𝑥𝑛+𝑡]/⟨𝑓⟩ are algebraic
integers over F[𝑥𝑛+1, . . . , 𝑥𝑛+𝑡] and, moreover, F[𝑥𝑛+1, . . . , 𝑥𝑛+𝑡] ∩ ⟨𝑓⟩ = ⟨0⟩.

From a geometric point of view, Noether position is strongly related to the notion of proper map below (see [3]).

Let 𝒱 be the algebraic set defined by 𝑓 ∈ R[𝑦1, . . . , 𝑦𝑡, 𝑥1, . . . , 𝑥𝑛]. The restriction of the projection 𝜋 : (𝑦,𝑥) ↦→ 𝑦 to 𝒱 ∩ R𝑡+𝑛

is said to be proper if the inverse image of every compact subset of 𝜋(𝒱 ∩R𝑡+𝑛) is compact. If the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛) is in
Noether position with respect to ⟨𝑓⟩, then the projection 𝜋 : 𝒱 ∩ R𝑡+𝑛 → R𝑡, (𝑦,𝑥) ↦→ 𝑦 is proper.

A point 𝜂 ∈ R𝑡 is a non-proper point of the restriction of 𝜋 to 𝒱 if and only 𝜋−1(𝒰) ∩ 𝒱 ∩ R𝑡+𝑛 is not compact for any compact
neighborhood 𝒰 of 𝜂 in R𝑡.

Gröbner bases and zero-dimensional ideals Let F be a field and F be its algebraic closure. We denote by F[𝑥] the
polynomial algebra in the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛). We fix an admissible monomial ordering ≻ (see Section 2.2, [12]) over F[𝑥].
For a polynomial 𝑝 ∈ F[𝑥], the leading monomial of 𝑝 with respect to ≻ is denoted by lm≻(𝑝).

Given an ideal 𝐼 ⊂ F[𝑥], the initial ideal of 𝐼 with respect to the ordering ≻ is the ideal ⟨lm≻(𝑝) | 𝑝 ∈ 𝐼⟩. A Gröbner basis 𝐺 of 𝐼
with respect to the ordering ≻ is a generating set of 𝐼 such that the set of leading monomials {lm≻(𝑔) | 𝑔 ∈ 𝐺} generates the initial
ideal ⟨lm≻(𝑝) | 𝑝 ∈ 𝐼⟩.

For any polynomial 𝑝 ∈ F[𝑥], the remainder of the division of 𝑝 by 𝐺 using the monomial ordering≻ is uniquely defined. It is called
the normal form of 𝑝 with respect to 𝐺 and is denoted by NF𝐺(𝑝). A polynomial 𝑝 is reduced by 𝐺 if 𝑝 coincides with its normal
form in 𝐺. A Gröbner basis 𝐺 is said to be reduced if, for any 𝑔 ∈ 𝐺, all terms of 𝑔 are reduced modulo the leading terms of 𝐺.

An ideal 𝐼 is said to be zero-dimensional if the algebraic set 𝑉 (𝐼) ⊂ F𝑛
is finite and non-empty. By [12, Sec. 5.3, Theorem 6], the

quotient ring F[𝑥]/𝐼 is a F-vector space of finite dimension. The dimension of this vector space is also called the algebraic degree of
𝐼; it coincides with the number of points of 𝑉 (𝐼) counted with multiplicities [4, Sec. 4.5]. For any Gröbner basis of 𝐼 , the set of
monomials in F[𝑥] which are irreducible by 𝐺 forms a monomial basis, which we call 𝐵, of this vector space. For any 𝑝 ∈ F[𝑥], the
normal form of 𝑝 by 𝐺 can be interpreted as the image of 𝑝 in F[𝑥]/𝐼 and is a linear combination of elements of 𝐵 (with coefficients
in F). Therefore, the operations in the quotient algebra F[𝑥]/𝐼 such as vector additions or scalar multiplications can be computed
explicitly using the normal form reduction.

In this article, while working with polynomial systems depending on parameters in Q[𝑦][𝑥], we frequently take F to be the rational
function field Q(𝑦) and treat polynomials in Q[𝑦][𝑥] as elements of Q(𝑦)[𝑥].

Zero-dimensional parametrizations A zero-dimensional parametrization R of coefficients in Q consists of (𝑎1, . . . , 𝑎𝑛) ∈
Q𝑛 and a sequence of polynomials (𝑤, 𝑣1, . . . , 𝑣𝑛) ∈ (Q[𝑢])𝑛+1 where 𝑢 =

∑︀𝑛
𝑖=1 𝑎𝑖𝑥𝑖 such that 𝑤 is square-free. The solution

set of R, defined as

𝑍(R) =

{︂(︂
𝑣1(𝜗)

𝑤′(𝜗)
, . . . ,

𝑣𝑛(𝜗)

𝑤′(𝜗)

)︂
∈ C𝑛 | 𝜗 ∈ C such that 𝑤(𝜗) = 0

}︂
,

is finite.

A finite algebraic set 𝒱 ∈ C𝑛 is said to be represented by a zero-dimensional parametrization R if and only if 𝒱 coincides with 𝑍(R).
Note that the cardinality of 𝒱 is the same as the degree of 𝑤 ; we also call it the degree of the zero-dimensional parametrization.

Note that it is possible to retrieve a polynomial parametrization by inverting the derivative 𝑤′ modulo 𝑤. Still, this rational
parametrization whose denominator is the derivative of 𝑤 is known to be better for practical computations as it usually involves
coefficients with smaller bit size (see [13]).

3 Computing sample points in semi-algebraic sets defined by the non-vanishing of
polynomials

In this section, we study the following algorithmic problem. Given (𝑔1, . . . , 𝑔𝑠) in Q[𝑦1, . . . , 𝑦𝑡], compute at least one sample point
per connected component of the semi-algebraic set 𝒮 ⊂ R𝑡 defined by

𝑔1 ̸= 0, . . . , 𝑔𝑠 ̸= 0.

Such sample points will be encoded with zero-dimensional parametrizations which we described in Section 2.

The main result of this section which will be used in the sequel of this paper is the following.

Theorem II. Let (𝑔1, . . . , 𝑔𝑠) in Q[𝑦1, . . . , 𝑦𝑡] with 𝐷 ≥ max1≤𝑖≤𝑠 deg(𝑔𝑖) and 𝒮 ⊂ R𝑡 be the semi-algebraic set defined by

𝑔1 ̸= 0, . . . , 𝑔𝑠 ̸= 0.

There exists a probabilistic algorithm which on input (𝑔1, . . . , 𝑔𝑠) outputs a finite family of zero-dimensional parametrizations
R1, . . . ,R𝑘, all of them of degree bounded by (2𝐷)𝑡, which encode at most (2𝑠𝐷)𝑡 points such that ∪𝑘

𝑖=1𝑍(R𝑖) meets every
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connected component of 𝒮 using

𝑂̃︀(︃(︃𝐷 + 𝑡

𝑡

)︃
𝑠𝑡+123𝑡𝐷2𝑡+1

)︃
.

arithmetic operations in Q.

The rest of this section is devoted to the proof of this theorem.

Proof. By [19, Lemma 1], there exists a non-empty Zariski open set 𝒜 × ℰ ⊂ C𝑠 × C such that for (𝑎 = (𝑎1, . . . , 𝑎𝑠), 𝑒) ∈
𝒜 × ℰ ∩ R𝑠 × R, the following holds. For ℐ = {𝑖1, . . . , 𝑖ℓ} ⊂ {1, . . . , 𝑠} and 𝜎 = (𝜎1, . . . , 𝜎𝑠) ∈ {−1, 1}𝑠, the algebraic sets
𝑉 ℐ,𝜎
𝑎,𝑒 ⊂ C𝑡 defined by

𝑔𝑖1 + 𝜎𝑖1𝑎𝑖1𝑒 = · · · = 𝑔𝑖ℓ + 𝜎𝑖ℓ𝑎𝑖ℓ𝑒 = 0

are, either empty, or (𝑡− ℓ)-equidimensional and smooth, and the ideal generated by their defining equations is radical.

Note that by the transfer principle, one can choose instead of a scalar 𝑒 an infinitesimal 𝜀 so that the algebraic sets 𝑉 ℐ,𝜎
𝑎,𝜀 and their

defining set of equations satisfy the above properties. When, in the above equations, one leaves 𝜀 as a variable, one obtains equations
defining an algebraic set in C𝑡+1. We denote by Vℐ,𝜎

𝑎,𝜀 the union of the (𝑡+ 1− ℓ)-equidimensional components of this algebraic set.

Further we also assume that the 𝑎𝑖’s are chosen positive.

Denote by 𝒮(𝜀) the extension of the semi-algebraic set 𝒮 to R⟨𝜀⟩𝑡 ; similarly, the extension of any connected component 𝐶 of 𝒮 to
R⟨𝜀⟩𝑡 is denoted by 𝐶(𝜀).

Now, remark that any connected component 𝐶(𝜀) of 𝒮(𝜀) contains a connected component of the semi-algebraic set 𝒮(𝜀)
𝑎 defined by:

(−𝑎1𝜀 ≥ 𝑔1 ∨ 𝑔1 ≥ 𝑎1𝜀) ∧ · · · ∧ (−𝑎𝑠𝜀 ≥ 𝑔𝑠 ∨ 𝑔𝑠 ≥ 𝑎𝑠𝜀)

Hence, we are led to compute sample points per connected component of 𝒮(𝜀)
𝑎 . These will be encoded with zero-dimensional

parametrizations with coefficients in Q[𝜀].

By [4, Proposition 13.1], in order to compute sample points per connected component in 𝒮(𝜀)
𝑎 , it suffices to compute sample points in

the real algebraic sets 𝑉 ℐ,𝜎
𝑎,𝜀 ∩ R𝑡. To do that, since the algebraic sets 𝑉 ℐ,𝜎

𝑎,𝜀 satisfy the above regularity properties, we can use the
algorithm and geometric results of [41]. To state these results, one needs to introduce some notation.

Let Q be a real field, R be a real closure of Q and C be an algebraic closure of R. For an algebraic set 𝑉 ⊂ C𝑡 defined by
ℎ1 = · · · = ℎℓ = 0 (ℎ𝑖 ∈ Q[𝑦] with 𝑦 = (𝑦1, . . . , 𝑦𝑡)) and 𝑀 ∈ GL𝑡(R), we denote by 𝑉 𝑀 the set {𝑀−1 · 𝑥 | 𝑥 ∈ 𝑉 } and,
for 1 ≤ 𝑖 ≤ ℓ, by ℎ𝑖

𝑀 the polynomial ℎ𝑖(𝑀 · 𝑦) and by 𝜋𝑖 the canonical projection (𝑦1, . . . , 𝑦𝑡) ↦→ (𝑦1, . . . , 𝑦𝑖) (𝜋0 will simply
denote (𝑦1, . . . , 𝑦𝑡) ↦→ {∙}). By slightly abusing notation, we will also denote by 𝜋𝑖 projections from Vℐ,𝜎

𝑎,𝜀 to the first 𝑖 coordinates
(𝑦1, . . . , 𝑦𝑖).

We will consider the set of critical points of the restriction of 𝜋𝑖 to 𝑉 and will denote this set by crit(𝜋𝑖, 𝑉 ) for 1 ≤ 𝑖 ≤ ℓ. By
[41, Theorem 2], for a generic choice of 𝑀 ∈ GL𝑡(R), the union of 𝑉 𝑀 ∩ 𝜋−1

𝑡−ℓ(0) with the sets crit(𝜋𝑖, 𝑉
𝑀 ) ∩ 𝜋−1

𝑖−1(0) (for
1 ≤ 𝑖 ≤ 𝑡 − ℓ) is finite and meets all connected components of 𝑉 𝑀 ∩ R𝑡. Because 𝑉 satisfies the aforementioned regularity
assumptions, crit(𝜋𝑖, 𝑉

𝑀 ) ∩ 𝜋−1
𝑖−1(0) is defined as the projection on the 𝑦-space of the solution set to the polynomials

ℎ𝑀 , (𝜆1, . . . , 𝜆ℓ).𝑗𝑎𝑐(ℎ
𝑀 , 𝑖), 𝑢1𝜆1 + · · ·+ 𝑢ℓ𝜆ℓ = 1, 𝑦1 = · · · = 𝑦𝑖−1 = 0,

where ℎ = (ℎ1, . . . , ℎℓ), 𝜆1, . . . , 𝜆ℓ are new variables (called Lagrange multipliers), 𝑗𝑎𝑐(ℎ𝑀 , 𝑖) is the Jacobian matrix associated
to ℎ𝑀 truncated by forgetting its first first 𝑖 columns and the 𝑢𝑖’s are generically chosen (see also [42, App. B]).

Assume that 𝐷 is the maximum degree of the ℎ𝑗’s and let 𝐸 be the length of a straight-line program evaluating ℎ. Observe now
that, setting the 𝑦𝑗’s to 0 (for 1 ≤ 𝑗 ≤ 𝑖− 1), and using [43, Theorem 1] combined with the degree estimates in [43, Section 5], we
obtain that such systems can be solved using

𝑂

(︃(︃(︃
𝑡− 𝑖

ℓ

)︃
𝐷ℓ(𝐷 − 1)𝑡−(𝑖−1)−ℓ

)︃2

(𝐸 + (𝑡+ ℓ)𝐷 + (𝑡+ ℓ)2)(𝑡+ ℓ)

)︃
arithmetic operations in Q and have at most (︃

𝑡− 𝑖

ℓ

)︃
𝐷ℓ(𝐷 − 1)𝑡−(𝑖−1)−ℓ

solutions.

Going back to our initial problem, one then needs to solve polynomial systems which encode the set crit(𝜋𝑖, 𝑉
ℐ,𝜎
𝑎,𝜀 ) of critical points

of the restriction of 𝜋𝑖 to 𝑉 ℐ,𝜎
𝑎,𝜀 . Note that these systems have coefficients in Q[𝜀]. To solve such systems, we rely on [44], which

consists in specializing 𝜀 to a generic value 𝑣 ∈ Q and compute a zero-dimensional parametrization of the solution set to the obtained
system (within the above arithmetic complexity over Q) and next use Hensel lifting and rational reconstruction to deduce from this

7



parametrization a zero-dimensional parametrization with coefficients in Q(𝜀). By [44, Corollary 1] and multi-homogeneous bounds
on the degree of the critical points of 𝜋𝑖 to Vℐ,𝜎

𝑎,𝜀 as in [43, Section 5], this lifting step has a cost

𝑂̃︀(︃((𝑡+ ℓ)4 + (𝑡+ ℓ+ 1)𝐸)

(︃(︃
𝑡− 𝑖

ℓ

)︃
𝐷ℓ(𝐷 − 1)𝑡−(𝑖−1)−ℓ

)︃2)︃
.

Hence, all in all computing one zero-dimensional parametrization for one critical locus uses

𝑂̃︀(︃((𝑡+ ℓ)4𝐷 + (𝑡+ ℓ+ 1)𝐸)

(︃(︃
𝑡− 𝑖

ℓ

)︃
𝐷ℓ(𝐷 − 1)𝑡−(𝑖−1)−ℓ

)︃2)︃
arithmetic operations in Q. Note that, following [44], the degrees in 𝜀 of the numerators and denominators of the coefficients of these
parametrizations are bounded by

(︀
𝑡
ℓ

)︀
𝐷ℓ(𝐷 − 1)𝑡−ℓ.

Summing up for all critical loci and using
𝑡−ℓ∑︁
𝑖=0

(︃
𝑡− 𝑖

ℓ

)︃
=

(︃
𝑡+ 1

ℓ+ 1

)︃
,

the computation for a fixed 𝑉 ℐ,𝜎
𝑎,𝜀 uses

𝑂̃︀(︃((𝑡+ ℓ)4𝐷 + (𝑡+ ℓ+ 1)𝐸)

(︃
𝑡+ 1

ℓ+ 1

)︃2 (︁
𝐷ℓ(𝐷 − 1)𝑡−ℓ

)︁2)︃
arithmetic operations in Q. Also, the number of points computed this way is dominated by(︃

𝑡+ 1

ℓ+ 1

)︃(︁
𝐷ℓ(𝐷 − 1)𝑡−ℓ

)︁
.

Note that the above quantity is upper bounded by (2𝐷)𝑡 and bounds the degree of the output zero-dimensional parametrizations.

Taking the sum for all possible algebraic sets 𝑉 ℐ,𝜎
𝑎,𝜀 and remarking that

• the sum of number of indices of cardinality ℓ for 0 ≤ ℓ ≤ 𝑡 is bounded by 𝑠𝑡;

• the number of sets 𝜎 for a given ℓ is bounded by 2𝑡;

• the sum
∑︀𝑡

ℓ=0

(︀
𝑡+1
ℓ+1

)︀2
equals 2

(︀
2𝑡+1

𝑡

)︀
− 1

one deduces that all these zero-dimensional parametrizations can be computed within

𝑂̃︀(︃𝑠𝑡2𝑡(︃2𝑡+ 1

𝑡

)︃(︀
(2𝑡)4𝐷 + (2𝑡+ 1)Γ

)︀
𝐷2𝑡

)︃
arithmetic operations in Q (recall that Γ bounds the length of a straight line program evaluating all the polynomials defining our
semi-algebraic set 𝒮) which we simplify to

𝑂̃︀(︀Γ 𝑠𝑡 23𝑡 𝐷2𝑡+1)︀ .
Similarly, using the above simplifications, the total number of points encoded by these zero-dimensional parametrizations is bounded
above by (2𝑠𝐷)𝑡.

At this stage, we have just obtained zero-dimensional parametrizations with coefficients in Q(𝜀).

The above bound on the number of returned points is done but it remains to show how to specialize 𝜀 in order to get sample points
per connected components in 𝒮. To do that, given a parametrization R𝜀 = (𝑤, 𝑣1, . . . , 𝑣𝑡) ⊂ Q(𝜀)[𝑢]𝑡+1, we need to find a
specialization value 𝑒 for 𝜀 to obtain a parametrization R𝑒 such that

• the number of real roots of the zero set associated to R𝑒 is the same as the number of real roots of the zero set associated
to R𝜀;

• when 𝜂 ranges over the interval ]0, 𝑒] the signs of the 𝑔𝑖’s at the zero set associated to 𝜂 does not vary.

To do that, it suffices to choose 𝑒 such that it is smaller than the smallest positive root of the resultant associated to
(︀
𝑤, 𝜕𝑤

𝜕𝑢

)︀
and

the smallest positive roots of the resultant associated to 𝑤 and 𝑔𝑖
(︁

𝑣1
𝜕𝑤/𝜕𝑢

, . . . , 𝑣𝑡
𝜕𝑤/𝜕𝑢

)︁
. The algebraic cost (i.e. the resultant

computations) are dominated by the complexity estimates of the previous step.
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Finally, note that Γ can be bounded by 𝑠
(︀
𝐷+𝑡
𝑡

)︀
when the 𝑔𝑖’s are given in an expanded form in the monomial basis. Therefore, the

arithmetic complexity for computing sample points of the semi-algebraic set defined by 𝑔1 ̸= 0, . . . , 𝑔𝑠 ̸= 0 can be bounded by

𝑂̃︀(︃(︃𝐷 + 𝑡

𝑡

)︃
𝑠𝑡+1 23𝑡 𝐷2𝑡+1

)︃
.

Remark 2. Observe that since the coefficients of the rational parametrizations with coefficients in Q[𝜀] have bit size depending both
on the maximum bit size 𝜏 of the coefficients of the input polynomials 𝑔1, . . . , 𝑔𝑠 and the bit size of the generically chosen 𝑎𝑖’s.

When substituting 𝜀 by a small enough rational number 𝑒, one obtains zero-dimensional parametrizations with coefficients in Q of
bit size depending on the one of 𝑒 also. Admissible values for 𝑒 depend on the magnitude of the real roots of the univariate resultant
we exhibit in the above proof. Because we start with rational parametrizations of degree bounded by 𝑂(𝐷)𝑡, assuming that the
bit size of the 𝑎𝑖’s is bounded by 𝑂(𝐷)𝑡 (following reasonings like the one in [15]), one could show using standard quantitative
results that the bit size of 𝑒 may be 𝜏 𝐷𝑂(𝑡) (because 𝑒 is obtained through the isolation of real roots of a univariate polynomial of
degree 𝐷𝑂(𝑡)). However, this is a worst case analysis and most of the time, we observe in practice that one can choose for 𝑒 values
of reasonable bit size.

We end this section with a Corollary which is a consequence of the proof of [4, Theorem 13.18]. Basically, once we have the
parametrizations computed by the algorithm on which Theorem II relies, one can compute sample points per connected components
of the semi-algebraic set 𝒮 within the same arithmetic complexity bounds. The idea is just to evaluate the 𝑔𝑖’s at these rational
parametrizations and use bounds on the minimal distance between two roots of a univariate polynomial such as [4, Prop. 10.22].
Hence, the proof of the corollary below follows mutatis mutandis the same steps as the one of [4, Theorem 13.18].

Corollary 3. Let (𝑔1, . . . , 𝑔𝑠) in Q[𝑦1, . . . , 𝑦𝑡] with 𝐷 ≥ max1≤𝑖≤𝑠 deg(𝑔𝑖) and 𝒮 ⊂ R𝑡 be the semi-algebraic set defined by

𝑔1 ̸= 0, . . . , 𝑔𝑠 ̸= 0.

There exists a probabilistic algorithm which on input (𝑔1, . . . , 𝑔𝑠) outputs a finite set of points P in Q𝑡 of cardinality at most
(2𝑠𝐷)𝑡 points such that P meets every connected component of 𝒮 using

𝑂̃︀(︃(︃𝐷 + 𝑡

𝑡

)︃
𝑠𝑡+123𝑡𝐷2𝑡+1

)︃
.

arithmetic operations in Q.

Note that the main difference, by contrast with Theorem II, the above Corollary shows how to obtain output points with coordinates
in Q.

4 Parametric Hermite matrices

In this section, we adapt the construction encoding Hermite’s quadratic forms, also known as Hermite matrices to the context of
parametric systems and describe an algorithm for computing those parametric Hermite matrices.

4.1 Definition

Let K be a field and 𝐼 ⊂ K[𝑥] be a zero-dimensional ideal. Recall that the quotient ring 𝐴K = K[𝑥]/𝐼 is a K-vector space of finite
dimension [12, Section 5.3, Theorem 6]. For 𝑝 ∈ K[𝑥], we denote by ℒ𝑝 the multiplication map 𝑞 ∈ 𝐴K ↦→ 𝑝 · 𝑞,∈ 𝐴K.

Note that the map ℒ𝑝 is an endomorphism of 𝐴K as a K-vector space. The Hermite quadratic form associated to 𝐼 is defined as the
bilinear form that sends (𝑝, 𝑞) ∈ 𝐴K ×𝐴K to the trace of ℒ𝑝·𝑞 as an endomorphism of 𝐴K.

We refer to [4, Chap. 4] for more details about Hermite quadratic forms.

Now, let 𝑓 = (𝑓1, . . . , 𝑓𝑚) be a polynomial sequence in Q[𝑦][𝑥]. We take the rational function field Q(𝑦) as the base field K and
denote by ⟨𝑓⟩K the ideal generated by 𝑓 in K[𝑥]. We require that the system 𝑓 satisfies Assumption (A).

This leads to the following well-known lemma, which is the foundation for the construction of our parametric Hermite matrices.

Lemma 4. Assume that 𝑓 satisfies Assumption (A). Then the ideal ⟨𝑓⟩K is zero-dimensional.

Proof. Assume that there exists a coordinate 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛 such that ⟨𝑓⟩ ∩C[𝑦, 𝑥𝑖] = ⟨0⟩. We denote respectively by 𝜋𝑖 and 𝜋̃𝑖

the projections (𝑦,𝑥) ↦→ (𝑦, 𝑥𝑖) and (𝑦, 𝑥𝑖) ↦→ 𝑦. By the assumption above, 𝜋𝑖(𝒱) is the whole space C𝑡+1. Then, we have the
identity

C𝑡+1 =
(︀
𝜋𝑖

−1(𝒪) ∪ 𝜋𝑖
−1(C𝑡 ∖ 𝒪)

)︀
∩ 𝜋𝑖(𝒱),

where 𝒪 be the dense Zariski open subset of C𝑡 required in Assumption (A).
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Since 𝜋̃𝑖 is a map from C𝑡+1 to C𝑡, its fibers are of dimension at most 1. Therefore, we have that dim𝜋𝑖
−1(C𝑡 ∖ 𝒪) ≤

1 + dim(C𝑡 ∖ 𝒪) ≤ 𝑡. As Assumption (A) holds and dim 𝜋̃−1
𝑖 (C𝑡 ∖ 𝒪) ≤ 𝑡, we have that dim𝜋𝑖

−1(𝒪) ∩ 𝜋𝑖(𝒱) = 𝑡. This
contradicts to the identity above. We conclude that, for 1 ≤ 𝑖 ≤ 𝑛, ⟨𝑓⟩ ∩ C[𝑦, 𝑥𝑖] ̸= ⟨0⟩.

On the other hand, by Assumption (A), the Zariski-closure of 𝜋(𝒱) is the whole parameter space C𝑡. Thus, we have that
⟨𝑓⟩ ∩C[𝑦] = ⟨0⟩. Since ⟨𝑓⟩ ∩C[𝑦] = (⟨𝑓⟩ ∩C[𝑦, 𝑥𝑖])∩C[𝑦] for every 1 ≤ 𝑖 ≤ 𝑛, there exists a polynomial 𝑝𝑖 ∈ ⟨𝑓⟩ ∩C[𝑦, 𝑥𝑖]

whose degree with respect to 𝑥𝑖 is non-zero. Clearly, 𝑝𝑖 is an element of the ideal ⟨𝑓⟩K. Thus, there exists 𝑑𝑖 such that 𝑥𝑑𝑖
𝑖 is a

leading term in ⟨𝑓⟩K. Hence, ⟨𝑓⟩K is a zero-dimensional ideal.

Lemma 4 allows us to apply the construction of Hermite matrices described in [4, Chap. 4] to parametric systems as follows.

Since the ideal ⟨𝑓⟩K is zero-dimensional by Lemma 4, its associated quotient ring 𝐴K = K[𝑥]/⟨𝑓⟩K is a finite dimensional K-vector
space. Let 𝛿 denote the dimension of 𝐴K as a K-vector space.

We consider a basis 𝐵 = {𝑏1, . . . , 𝑏𝛿} of 𝐴K, where the 𝑏𝑖’s are taken as monomials in the variables 𝑥. Such a basis can be derived
from Gröbner bases as follows. We fix an admissible monomial ordering≻ over the set of monomials in the variables 𝑥 and compute
a Gröbner basis 𝐺 with respect to the ordering ≻ of the ideal ⟨𝑓⟩K. Then, the monomials that are not divisible by any leading
monomial of elements of 𝐺 form a basis of 𝐴K.

Recall that, for an element 𝑝 ∈ K[𝑥], we denote by 𝑝 the class of 𝑝 in the quotient ring 𝐴K. A representative of 𝑝 can be derived by
computing the normal form of 𝑝 by the Gröbner basis 𝐺, which results in a linear combination of elements of 𝐵 with coefficients in
Q(𝑦).

Assume now the basis 𝐵 of 𝐴K is fixed. For any 𝑝 ∈ K[𝑥], the multiplication map ℒ𝑝 is an endomorphism of 𝐴K. Therefore, it
admits a matrix representation with respect to 𝐵, whose entries are elements in Q(𝑦). The trace of ℒ𝑝 can be computed as the trace
of the matrix representing it. Similarly, the Hermite’s quadratic form of the ideal ⟨𝑓⟩K can be represented by a matrix with respect to
𝐵. This leads to the following definition.

Definition 5. Given a parametric polynomial system 𝑓 = (𝑓1, . . . , 𝑓𝑚) ⊂ Q[𝑦][𝑥] satisfying Assumption (A). We fix a basis
𝐵 = {𝑏1, . . . , 𝑏𝛿} of the vector space K[𝑥]/⟨𝑓⟩K. The parametric Hermite matrix associated to 𝑓 with respect to the basis 𝐵 is
defined as the symmetric matrix 𝐻 = (ℎ𝑖,𝑗)1≤𝑖,𝑗≤𝛿 where ℎ𝑖,𝑗 = trace(ℒ𝑏𝑖·𝑏𝑗 ).

It is important to note that the definition of parametric Hermite matrices depends both on the input system 𝑓 and the choice of the
monomial basis 𝐵.

4.2 Gröbner bases and parametric Hermite matrices

In the previous subsection, we have defined parametric Hermite matrices assuming one knows a Gröbner basis 𝐺 with respect to
some monomial ordering of the ideal ⟨𝑓⟩K where K = Q(𝑦) and ⟨𝑓⟩K is the ideal of K[𝑥] generated by 𝑓 .

Computing such a Gröbner basis may be costly as this would require to perform arithmetic operations over the field Q(𝑦) (or
Z/𝑝Z(𝑦) where 𝑝 is a prime when tackling this computational task through modular computations). In this paragraph, we show that
one can obtain parametric Hermite matrices by considering some Gröbner bases of the ideal ⟨𝑓⟩ ⊂ Q[𝑦,𝑥] (hence, enabling the use
of efficient implementations of Gröbner bases such as the 𝐹4/𝐹5 algorithms [17, 18]).

Since the graded reverse lexicographical ordering (grevlex for short) is known for yielding Gröbner bases of relatively small degree
comparing to other orders, we prefer using this ordering to construct our parametric Hermite matrices. Further, we will use the
notation grevlex(𝑥) for the grevlex ordering among the variables 𝑥 (with 𝑥1 ≻ · · · ≻ 𝑥𝑛) and grevlex(𝑥) ≻ grevlex(𝑦) (with
𝑦1 ≻ · · · ≻ 𝑦𝑡) for the elimination ordering. We denote respectively by lm𝑥(𝑝) and lc𝑥(𝑝) the leading monomial and the leading
coefficient of 𝑝 ∈ K[𝑥] with respect to the ordering grevlex(𝑥).

Lemma 6. Let 𝒢 be the reduced Gröbner basis of ⟨𝑓⟩ with respect to the elimination ordering grevlex(𝑥) ≻ grevlex(𝑦). Then 𝒢
is also a Gröbner basis of ⟨𝑓⟩K with respect to the ordering grevlex(𝑥).

Proof. Since 𝒢 is a Gröbner basis of the ideal ⟨𝑓⟩, every polynomial 𝑓𝑖 of 𝑓 can be written as 𝑓𝑖 =
∑︀

𝑔∈𝒢 𝑐𝑔 ·𝑔 where 𝑐𝑔 ∈ Q[𝑥,𝑦].
Therefore, any element of ⟨𝑓⟩K can also be written as a combination of elements of 𝒢 with coefficients in Q(𝑦)[𝑥]. In other words,
𝒢 is a set of generators of ⟨𝑓⟩K.

Let 𝑝 be a polynomial in K[𝑥], 𝑝 is contained in ⟨𝑓⟩K if and only if there exists a polynomial 𝑞 ∈ Q[𝑦] such that 𝑞 · 𝑝 ∈ ⟨𝑓⟩.
Thus, the leading monomial of 𝑝 as an element of K[𝑥] with respect to the grevlex ordering grevlex(𝑥) is contained in the ideal
⟨lm𝑥(𝑔) | 𝑔 ∈ 𝒢⟩. Therefore, 𝒢 is a Gröbner basis of ⟨𝑓⟩K.

Hereafter, we denote by 𝒢 the reduced Gröbner basis of ⟨𝑓⟩ with respect to the elimination ordering grevlex(𝑥) ≻ grevlex(𝑦). Let
ℬ be the set of all monomials in 𝑥 that are not reducible by 𝒢, which is finite by Lemmas 4 and 6. The set ℬ actually forms a basis
of the K-vector space K[𝑥]/⟨𝑓⟩K. Then, we denote byℋ the parametric Hermite matrix associated to 𝑓 with respect to this basis ℬ.

We consider the following assumption on the input system 𝑓 .

Assumption B. For 𝑔 ∈ 𝒢, the leading coefficient lc𝑥(𝑔) does not depend on the parameters 𝑦.

10



As the computations in the quotient ring 𝐴K are done through normal form reductions by 𝒢, the lemma below is straight-forward.

Lemma 7. Under Assumption (B), the entries of the parametric Hermite matrixℋ are elements of Q[𝑦].

Proof. Since Assumption (B) holds, the leading coefficients lc𝑥(𝑔) do not depend on parameters 𝑦 for 𝑔 ∈ 𝒢. The normal form
reduction in 𝐴K of any polynomial in Q[𝑦][𝑥] returns a polynomial in Q[𝑦][𝑥]. Thus, each normal form can be written as a linear
combination of ℬ whose coefficients lie in Q[𝑦]. Hence, the multiplication map ℒ𝑏𝑖·𝑏𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝛿 can be represented by
polynomial matrices in Q[𝑦] with respect to the basis ℬ. As an immediate consequence, the entries ofℋ, as being the traces of those
multiplication maps, are polynomials in Q[𝑦].

The next proposition states that Assumption (B) is satisfied by a generic system 𝑓 . It implies that the entries of the parametric
Hermite matrix of a generic system with respect to the basis ℬ derived from 𝒢 completely lie in Q[𝑦]. We postpone the proof of
Proposition 8 to Subsection 6.1 where we prove a more general result (see Proposition 20).

Proposition 8. Let C[𝑥,𝑦]𝑑 be the set of polynomials in C[𝑥,𝑦] having total degree bounded by 𝑑. There exists a non-empty Zariski
open subset F𝐶 of C[𝑥,𝑦]𝑛𝑑 such that Assumption (B) is satisfied by any 𝑓 ∈ F𝐶 ∩Q[𝑥,𝑦]𝑛.

4.3 Specialization property of parametric Hermite matrices

Recall that 𝒢 is the reduced Gröbner basis of ⟨𝑓⟩ with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦) and ℬ is the basis of
K[𝑥]/⟨𝑓⟩K derived from 𝒢 as discussed in the previous subsection. Then,ℋ is the parametric Hermite matrix associated to 𝑓 with
respect to the basis ℬ.

Let 𝜂 ∈ C𝑡 and 𝜑𝜂 : C(𝑦)[𝑥] → C[𝑥], 𝑝(𝑦,𝑥) ↦→ 𝑝(𝜂,𝑥) be the specialization map that evaluates the parameters 𝑦 at 𝜂. Then
𝑓(𝜂, ·) = (𝜑𝜂(𝑓1), . . . , 𝜑𝜂(𝑓𝑚)). We denote byℋ(𝜂) the specialization (𝜑𝜂(ℎ𝑖,𝑗))1≤𝑖,𝑗≤𝛿 ofℋ at 𝜂.

Recall that, for a polynomial 𝑝 ∈ C(𝑦)[𝑥], the leading coefficient of 𝑝 considered as a polynomial in the variables 𝑥 with respect to
the ordering grevlex(𝑥) is denoted by lc𝑥(𝑝). In this subsection, for 𝑝 ∈ C[𝑥], we use lm(𝑝) to denote the leading monomial of 𝑝
with respect to the ordering grevlex(𝑥).

Let𝒲∞ ⊂ C𝑡 denote the algebraic set ∪𝑔∈𝒢𝑉 (lc𝑥(𝑔)). In Proposition 10, we prove that, outside𝒲∞, the specialization ℋ(𝜂)
coincides with the classic Hermite matrix of the zero-dimensional ideal 𝑓(𝜂, ·) ⊂ Q[𝑥]. This is the main result of this subsection.

Since the operations over the K-vector space 𝐴K rely on normal form reductions by the Gröbner basis 𝒢 of ⟨𝑓⟩K, the specialization
property ofℋ depends on the specialization property of 𝒢. Lemma 9 below, which is a direct consequence of [32, Theorem 3.1],
provides the specialization property of 𝒢. We give here a more elementary proof for this lemma than the one in [32].

Lemma 9. Let 𝜂 ∈ C𝑡 ∖𝒲∞. Then the specialization 𝒢(𝜂, ·) := {𝜑𝜂(𝑔) | 𝑔 ∈ 𝒢} is a Gröbner basis of the ideal ⟨𝑓(𝜂, ·)⟩ ⊂ C[𝑥]
generated by 𝑓(𝜂, ·) with respect to the ordering grevlex(𝑥).

Proof. Since 𝜂 ∈ C𝑡 ∖𝒲∞, the leading coefficient lc𝑥(𝑔) does not vanish at 𝜂 for every 𝑔 ∈ 𝒢. Thus, lm𝑥(𝑔) = lm(𝜑𝜂(𝑔)).

We denote byℳ the set of all monomials in the variables 𝑥 and

ℳ𝒢 := {𝑚 ∈ℳ | ∃𝑔 ∈ 𝒢 : lm𝑥(𝑔) divides 𝑚} = {𝑚 ∈ℳ | ∃𝑔 ∈ 𝒢 : lm(𝜑𝜂(𝑔)) divides 𝑚}.

For any 𝑝 ∈ ⟨𝑓⟩ ⊂ Q[𝑥,𝑦], we prove that lm(𝜑𝜂(𝑓)) ∈ℳ𝐺. If 𝑝 is identically zero, there is nothing to prove. So, we assume that
𝑝 ̸= 0, 𝑝 is then expanded in the form below:

𝑝 =
∑︁

𝑚∈ℳ𝐺

𝑐𝑚 ·𝑚+
∑︁

𝑚∈ℳ∖ℳ𝐺

𝑐𝑚 ·𝑚,

where the 𝑐𝑚’s are elements of Q[𝑦]. Since 𝑝 is not identically zero, there exists 𝑚 ∈ℳ𝒢 such that 𝑐𝑚 ̸= 0.

Since 𝒢 is a Gröbner basis of ⟨𝑓⟩K, any monomial inℳ𝒢 can be reduced by 𝒢 to a unique normal form in K[𝑥]. These divisions
involve denominators, which are products of some powers of the leading coefficients of 𝒢 with respect to the variables 𝑥. We write

NF𝒢(𝑝) =
∑︁

𝑚∈ℳ𝒢

𝑐𝑚 ·NF𝒢(𝑚) +
∑︁

𝑚∈ℳ∖ℳ𝒢

𝑐𝑚 ·𝑚.

As 𝑝 ∈ ⟨𝑓⟩K, we have that NF𝒢(𝑝) = 0, which implies∑︁
𝑚∈ℳ∖ℳ𝒢

𝑐𝑚 ·𝑚 = −
∑︁

𝑚∈ℳ𝒢

𝑐𝑚 ·NF𝒢(𝑚).

Therefore, we have the identity
𝑝 =

∑︁
𝑚∈ℳ𝒢

𝑐𝑚 · (𝑚−NF𝒢(𝑚))
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Since 𝜂 does not cancel any denominator appearing in NF𝒢(𝑚), we can specialize the identity above without any problem:

𝜑𝜂(𝑝) =
∑︁

𝑚∈ℳ𝒢

𝜑𝜂(𝑐𝑚) · (𝑚− 𝜑𝜂(NF𝒢(𝑚))).

If at least one of the 𝜑𝜂(𝑐𝑚) does not vanish, then the leading monomial of 𝜑𝜂(𝑓) is inℳ𝒢 . Otherwise, if all the 𝜑𝜂(𝑐𝑚) are
canceled, then 𝜑𝜂(𝑝) is identically zero, and there is not any new leading monomial appearing either. So, the leading monomial of
any 𝑝 ∈ ⟨𝑓𝜂⟩ is contained inℳ𝒢 , which means 𝒢(𝜂, ·) is a Gröbner basis of ⟨𝑓(𝜂, ·)⟩ with respect to grevlex(𝑥).

Proposition 10. For any 𝜂 ∈ C𝑡 ∖𝒲∞, the specializationℋ(𝜂) coincides with the classic Hermite matrix of the zero-dimensional
ideal ⟨𝑓(𝜂, ·)⟩ ⊂ C[𝑥].

Proof. As a consequence of Lemma 9, each computation in 𝐴K derives a corresponding one in C[𝑥]/⟨𝑓(𝜂, ·)⟩ by evaluating 𝑦 at
𝜂 in every normal form reduction by 𝒢. This evaluation is allowed since 𝜂 does not cancel any denominator appearing during the
computation. Therefore, we deduce immediately the specialization property of the Hermite matrix.

Using Proposition 10 and [4, Theorem 4.102], we obtain immediately the following corollary that allows us to use parametric
Hermite matrices to count the root of a specialization of a parametric system.
Corollary 11. Let 𝜂 ∈ C𝑡 ∖ 𝒲∞, then the rank of 𝐻(𝜂) is the number of distinct complex roots of 𝑓(𝜂, ·). When 𝜂 ∈ R𝑡 ∖ 𝒲∞,
the signature of 𝐻(𝜂) is the number of distinct real roots of 𝑓(𝜂, ·).

Proof. By Proposition 10,ℋ(𝜂) is a Hermite matrix of the zero-dimensional ideal ⟨𝑓(𝜂, ·)⟩. Then, [4, Theorem 4.102] implies that
the rank (resp. the signature) ofℋ(𝜂) equals to the number of distinct complex (resp. real) solutions of 𝑓(𝜂, ·).

We finish this subsection by giving some explanation for what happens above𝒲∞, where our parametric Hermite matrixℋ does not
have good specialization property.
Lemma 12. Let𝒲∞ defined as above. Then𝒲∞ contains all the following sets:

• The non-proper points of the restriction of 𝜋 to 𝒱 (see Section 2 for this definition).

• The set of points 𝜂 ∈ C𝑡 such that the fiber 𝜋−1(𝜂) ∩ 𝒱 is infinite.

• The image by 𝜋 of the irreducible components of 𝒱 whose dimensions are smaller than 𝑡.

Proof. The claim for the set of non-properness of the restriction of 𝜋 to 𝒱 is already proven in [35, Theorem 2]. We focus on the
two remaining sets.

Using the Hermite matrix, we know that for 𝜂 ∈ C𝑡 ∖𝒲∞, the system 𝑓(𝜂, ·) admits a non-empty finite set of complex solutions.
On the other hand, for any 𝜂 ∈ C𝑡 such that 𝜋−1(𝜂) ∩ 𝒱 is infinite, 𝑓(𝜂, ·) has infinitely many complex solutions. Therefore, the set
of such points 𝜂 is contained in𝒲∞.

Let 𝒱>𝑡 be the union of irreducible components of 𝒱 of dimension greater than 𝑡. By the fiber dimension theorem [45, Theorem 1.25],
the fibers of the restriction of 𝜋 to 𝒱>𝑡 must have dimension at least one. Similarly, the components of dimension 𝑡 whose images by
𝜋 are contained in a Zariski closed subset of C𝑡 also yield infinite fibers. Therefore, as proven above, all of these components are
contained in 𝜋−1(𝒲∞).

We now consider the irreducible components of dimension smaller than 𝑡. Let 𝒱≥𝑡 and 𝒱<𝑡 be respectively the union of irreducible
components of 𝒱 of dimension at least 𝑡 and at most 𝑡−1. We have that 𝒱 = 𝒱≥𝑡∪𝒱<𝑡. Let 𝐼 ⊂ Q[𝑥,𝑦] denote the ideal generated
by 𝑓 . Using the primary decomposition of 𝐼 (see e.g. [12, Sec. 4.8]), we have that 𝐼 is the intersection of two ideals 𝐼≥𝑡 and 𝐼<𝑡

such that 𝑉 (𝐼≥𝑡) = 𝒱≥𝑡 and 𝑉 (𝐼<𝑡) = 𝒱<𝑡. We write

𝐼 = 𝐼≥𝑡 ∩ 𝐼<𝑡.

We denote by 𝑅 the polynomial ring Q(𝑦)[𝑥]. Then, the above identity is transferred into 𝑅:

𝐼 ·𝑅 = (𝐼≥𝑡 ·𝑅) ∩ (𝐼<𝑡 ·𝑅).

Since dim(𝜋(𝒱<𝑡)) ≤ 𝑡− 1, then there exists a non-zero polynomial 𝑝 ∈ 𝐼<𝑡 ∩Q[𝑦]. As 𝑝 is a unit in Q(𝑦), the ideal 𝐼<𝑡 ·𝑅 is
exactly 𝑅. So,

𝐼 ·𝑅 = 𝐼≥𝑡 ·𝑅.

Note that, by Lemma 6, 𝒢 is a Gröbner basis of 𝐼 ·𝑅, then it is also a Gröbner basis of 𝐼≥𝑡 ·𝑅. Therefore, the Hermite matrices
associated to 𝐼 and 𝐼≥𝑡 (with respect to the basis derived from 𝒢) coincide. So, for 𝜂 ̸∈ 𝒲∞, the ranks of those matrices are equal
and so are the numbers of complex points in 𝜋−1(𝜂) ∩ 𝒱 and 𝜋−1(𝜂) ∩ 𝒱≥𝑡. As 𝜋−1(𝜂) ∩ 𝒱≥𝑡 ⊂ 𝜋−1(𝜂) ∩ 𝒱 , we have that
𝜋−1(𝜂) ∩ 𝒱 = 𝜋−1(𝜂) ∩ 𝒱≥𝑡. This leads to

𝜋−1(C𝑡 ∖𝒲∞) ∩ 𝒱≥𝑡 = 𝜋−1(C𝑡 ∖𝒲∞) ∩ 𝒱.

Then, 𝜋−1(C𝑡 ∖𝒲∞) ∩ 𝒱<𝑡 = ∅ or equivalently, 𝒱<𝑡 ⊂ 𝜋−1(𝒲∞), which concludes the proof.
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4.4 Computing parametric Hermite matrices

Given 𝑓 = (𝑓1, . . . , 𝑓𝑚) ∈ Q[𝑦][𝑥] satisfying Assumption (A). We keep denoting K = Q(𝑦). Let 𝒢 be the reduced Gröbner basis
of ⟨𝑓⟩ with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦) and ℬ be the set of all monomials in the variables 𝑥 which are not
reducible by 𝒢. The set ℬ then forms a basis of the K-vector space K[𝑥]/⟨𝑓⟩K.

In this subsection, we focus on the computation of the parametric Hermite matrix associated to 𝑓 with respect to the basis ℬ.

Note that one can design an algorithm using only the definition of parametric Hermite matrices given in Subsection 4.1. More
precisely, for each 𝑏𝑖 · 𝑏𝑗 ∈ ℬ (1 ≤ 𝑖, 𝑗 ≤ 𝛿), one computes the matrix representing ℒ𝑏𝑖·𝑏𝑗 in the basis ℬ by computing the normal
form of every 𝑏𝑖 · 𝑏𝑗 · 𝑏𝑘 for 1 ≤ 𝑘 ≤ 𝛿. Therefore, in total, this direct algorithm requires 𝑂(𝛿3) normal form reductions of
polynomials in K[𝑥].

In Algorithm 1 below, we present another algorithm for computingℋ. We call to the following subroutines successively:

∙ GrobnerBasis that takes as input the system 𝑓 and computes the reduced Gröbner basis 𝒢 of ⟨𝑓⟩ with respect to the
ordering grevlex(𝑥) ≻ grevlex(𝑦) and the basis ℬ = {𝑏1, . . . , 𝑏𝛿} ⊂ Q[𝑥] derived from 𝒢.

Such an algorithm can be obtained using any general algorithm for computing Gröbner basis, which we refer to F4/F5
algorithms [17, 18].

∙ ReduceGB that takes as input the Gröbner basis 𝒢 and outputs a subset 𝒢′ of 𝒢 which is still a Gröbner basis of ⟨𝑓⟩K
with respect to the ordering grevlex(𝑥).

This subroutine aims to remove the elements in 𝒢 that we do not need. Even though 𝒢 is reduced as a Gröbner basis
of ⟨𝑓⟩ with respect to grevlex(𝑥) ≻ grevlex(𝑦), it is not necessarily the reduced Gröbner basis of ⟨𝑓⟩K with respect
to grevlex(𝑥). Using [12, Lemma 3, Sec. 2.7], we can design ReduceGB to remove all the elements of 𝒢 which have
duplicate leading monomials (in 𝑥). We obtain as output a subset 𝒢′ of 𝒢 which is also a Gröbner basis 𝒢′ for ⟨𝑓⟩K with
respect to grevlex(𝑥). Note that this tweak reduces not only the cardinal of the Gröbner basis in use but also the size of
the set𝒲∞ introduced in Subsection 4.3 (as we have less leading coefficients).

∙ XMatrices that takes as input (𝒢′,ℬ) and computes the matrix representation of the multiplication maps ℒ𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛)
with respect to ℬ.

This computation is done directly by reducing every 𝑥𝑖 · 𝑏𝑗 (1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝛿) to its normal form in K[𝑥]/⟨𝑓⟩K
using 𝒢′.

∙ BMatrices that takes as input the matrices representing (ℒ𝑥1 , . . . ,ℒ𝑥𝑛) and ℬ and computes the matrices representing
the ℒ𝑏𝑖 ’s (1 ≤ 𝑖 ≤ 𝛿) in the basis ℬ.

We design BMatrices in a way that it constructs the matrices of ℒ𝑏𝑖 ’s inductively in the degree of the 𝑏𝑖’s as follows.

At the beginning, we have the multiplication matrices of 1 and the 𝑥𝑖’s; those are the matrices of the elements of degree
zero and one. Note that, for any element 𝑏 of ℬ. At the step of computing the matrix of an element 𝑏 ∈ ℬ, we remark
that there exist a variable 𝑥𝑖 and a monomial 𝑏′ ∈ ℬ such that 𝑏 = 𝑥𝑖 · 𝑏′ and the matrix of 𝑏′ is already computed (as
deg(𝑏′) < deg(𝑏). Therefore, we simply multiply the matrices of ℒ𝑥𝑖 and ℒ𝑏′ to obtain the matrix of ℒ𝑏.

∙ TraceComputing that takes as input the multiplication matrices ℒ𝑏1 , . . . ,ℒ𝑏𝛿 and computes the matrix
(trace(ℒ𝑏𝑖·𝑏𝑗 ))1≤𝑖≤𝑗≤𝛿 . This matrix is in fact the parametric Hermite matrix ℋ associated to 𝑓 with respect to the
basis ℬ. To design this subroutine, we use the following remark given in [39].

Let 𝑝, 𝑞 ∈ K[𝑥]. The normal form 𝑝 of 𝑝 by 𝒢 can be written as 𝑝 =
∑︀𝛿

𝑖=1 𝑐𝑖 · 𝑏𝑖 where the 𝑐𝑖’s lie in K. Then, we have
the identity

trace(ℒ𝑝·𝑞) =

𝛿∑︁
𝑖=1

𝑐𝑖 · trace(ℒ𝑞·𝑏𝑖),

Hence, by choosing 𝑝 = 𝑏𝑖 · 𝑏𝑗 and 𝑞 = 1, we can compute ℎ𝑖,𝑗 using the normal form 𝑏𝑖 · 𝑏𝑗 and
trace(ℒ𝑏1), . . . , trace(ℒ𝑏𝛿 ).

Note that trace(ℒ𝑏𝑖) is easily computed from the matrix of the map ℒ𝑏𝑖 . On the other hand, the normal form 𝑏𝑖 · 𝑏𝑗 can
be read off from the 𝑗-th row of the matrix representing ℒ𝑏𝑖 , which is already computed at this point.

It is also important to notice that there are many duplicated entries in ℋ. Thus, we should avoid all the unnecessary
re-computation. This is done easily be keeping a list for tracking distinct entries ofℋ.

The pseudo-code of Algorithm 1 is presented below. Its correctness follows simply from our definition of parametric Hermite
matrices.

Beside the parametric Hermite matrixℋ, we return a polynomial 𝑤∞ which is the square-free part of lcm𝑔∈𝒢(lc𝑥(𝑔)) for further
usage. Note that 𝑉 (𝑤∞) =𝒲∞.
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Algorithm 1: DRL-Matrix
Input: A parametric polynomial system 𝑓 = (𝑓1, . . . , 𝑓𝑚)
Output: A parametric Hermite matrixℋ associated to 𝑓 with respect to the basis ℬ

1 𝒢,ℬ ← GröbnerBasis(𝑓 , grevlex(𝑥) ≻ grevlex(𝑦))
2 𝒢′ ← ReduceGB(𝒢)
3 𝑤∞ ← sqfree(lcm𝑔∈𝒢(lc𝑥(𝑔)))
4 (ℒ𝑥1 , . . . ,ℒ𝑥𝑛)← XMatrices(𝒢′,ℬ)
5 (ℒ𝑏1 , . . . ,ℒ𝑏𝛿 )← BMatrices((ℒ𝑥1 , . . . ,ℒ𝑥𝑛),ℬ)
6 ℋ ← TraceComputing(ℒ𝑏1 , . . . ,ℒ𝑏𝛿 )
7 return [ℋ,𝑤∞]

Removing denominators Note that, through the computation in the quotient ring 𝐴K, the entries of our parametric Hermite
matrix possibly contains denominators that lie in Q[𝑦]. As the algorithm that we introduce in Section 5 will require us to manipulate
the parametric Hermite matrix that we compute, these denominators can be a bottleneck to handle the matrix. Therefore, we introduce
an extra subroutine RemoveDenominator that returns a parametric Hermite matrixℋ′ of 𝑓 without denominator.

∙ RemoveDenominator that takes as input the matrixℋ computed by DRL-Matrix and outputs a matrixℋ′ which is the
parametric Hermite matrix associated to 𝑓 with respect to a basis ℬ′ that will be made explicit below.

As we can freely choose any basis of form {𝑐𝑖 · 𝑏𝑖 | 1 ≤ 𝑖 ≤ 𝛿} where the 𝑐𝑖’s are elements of Q[𝑦], we should use a
basis that leads to a denominator-free matrix. To do this, we choose 𝑐𝑖 as the denominator of trace(ℒ𝑏𝑖) (which lies in the
first row of the matrixℋ computed by TraceComputing). Then, for the entry ofℋ that corresponds to 𝑏𝑖 and 𝑏𝑗 , we can
multiply it with 𝑐𝑖 · 𝑐𝑗 . The output matrixℋ′ is the parametric Hermite matrix associated to 𝑓 with respect to the basis
{𝑐𝑖 · 𝑏𝑖 | 1 ≤ 𝑖 ≤ 𝛿}.

We observe in many examples that this subroutine returns either a denominator-free matrix or a matrix with smaller degree
denominators. Thus, it facilitates further computations on the output matrix.

Evaluation & interpolation scheme for generic systems Here we assume that the input system 𝑓 satisfies Assumption (B).
By Lemma 7, the entries ofℋ are polynomials in Q[𝑦]. Suppose that we know beforehand a value Λ that is larger than the degree of
any entry ofℋ, we can computeℋ by an evaluation & interpolation scheme as follows.

We start by choosing randomly a set ℰ of
(︀
𝑡+Λ
𝑡

)︀
distinct points in Q𝑡. Then, for each 𝜂 ∈ ℰ , we use DRL-Matrix (Algorithm 1)

on the input 𝑓(𝜂, ·) to compute the classic Hermite matrix associated to 𝑓(𝜂, ·) with respect to the ordering grevlex(𝑥). These
computations involve only polynomials in Q[𝑥] and not in Q(𝑦)[𝑥]. Finally, we interpolate the parametric Hermite matrixℋ from
its specialized imagesℋ(𝜂) computed previously.

Since Assumption (B) holds, then𝒲∞ is empty. By Proposition 10, the Hermite matrix of 𝑓(𝜂, ·) with respect to grevlex(𝑥) is the
imageℋ(𝜂) ofℋ. Therefore, the above scheme computes correctly the parametric Hermite matrixℋ.

We also remark that, in the computation of the specializationsℋ(𝜂), we can replace the subroutine XMatrices in DRL-Matrix by a
linear-algebra-based algorithm described in [16]. That algorithm constructs the Macaulay matrix and carries out matrix reductions to
obtain simultaneously the normal forms that XMatrices requires.

In Section 6, we will estimate the complexity of this evaluation & interpolation scheme when the input system 𝑓 satisfies some
generic assumptions.

5 Algorithms for real root classification

We present in this section two algorithms targeting the real root classification problem through parametric Hermite matrices. The one
described in Subsection 5.1 aims to solve the weak version of Problem (1). The second algorithm, given in Subsection 5.2 outputs
the semi-algebraic formulas of the cells 𝒮𝑖 that solves Problem (1). Further, in Section 6, we will see that, for a generic sequence
𝑓 , the semi-algebraic formulas computed by this algorithm consist of polynomials of degree bounded by 𝑛(𝑑− 1)𝑑𝑛. Up to our
knowledge, this improves all previously known bounds.

Throughout this section, our input is a parametric polynomial system 𝑓 = (𝑓1, . . . , 𝑓𝑚) ⊂ Q[𝑦][𝑥]. We require that 𝑓 satisfies
Assumptions (A) and that the ideal ⟨𝑓⟩ is radical.

Let 𝒢 be the reduced Gröbner basis of the ideal ⟨𝑓⟩ ⊂ Q[𝑥,𝑦] with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦). Let K
denote the rational function field Q(𝑦). We recall that ℬ ⊂ Q[𝑥] is the basis of K[𝑥]/⟨𝑓⟩K derived from 𝒢 andℋ is the parametric
Hermite matrix associated to 𝑓 with respect to the basis ℬ.
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5.1 Algorithm for the weak-version of Problem (1)

From Subsection 4.3, we know that, outside the algebraic set𝒲∞ := ∪𝑔∈𝒢𝑉 (lc𝑥(𝑔)), the parametric matrix ℋ possesses good
specialization property (see Proposition 10). We denote by 𝑤∞ the square-free part of lcm𝑔∈𝒢 lc𝑥(𝑔). This polynomial 𝑤∞ is
returned as an output of Algorithm 1. Note that 𝑉 (𝑤∞) =𝒲∞.

Lemma 13. When Assumption (A) holds and the ideal ⟨𝑓⟩ is radical, the determinant ofℋ is not identically zero.

Proof. Recall that K denotes the rational function field Q(𝑦). We prove that the ideal ⟨𝑓⟩K ⊂ K[𝑥] is radical.

Let 𝑝 ∈ K[𝑥] such that there exists 𝑛 ∈ N satisfying 𝑝𝑛 ∈ ⟨𝑓⟩K. Therefore, there exists a polynomial 𝑞 ∈ Q[𝑦] such that
𝑞 · 𝑝𝑛 ∈ ⟨𝑓⟩. Then, (𝑞 · 𝑝)𝑛 ∈ ⟨𝑓⟩. As ⟨𝑓⟩ is radical, we have that 𝑞 · 𝑝 ∈ ⟨𝑓⟩. Thus, 𝑝 ∈ ⟨𝑓⟩K, which concludes that ⟨𝑓⟩K is
radical.

By Lemma 4, ⟨𝑓⟩K is a radical zero-dimensional ideal in Q(𝑦). Sinceℋ is also a Hermite matrix (in the classic sense) of ⟨𝑓⟩K,ℋ
is full rank. Therefore, det(ℋ) is not identically zero.

Let 𝑤ℋ := n/ gcd(n,𝑤∞) where n is the square-free part of the numerator of det(ℋ). We denote by𝒲ℋ the vanishing set of 𝑤ℋ.
By Lemma 13,𝒲ℋ is a proper Zariski closed subset of C𝑡. Our algorithm relies on the following proposition.

Proposition 14. Assume that Assumption (A) holds and the ideal ⟨𝑓⟩ is radical. Then, for each connected component 𝒮 of the
semi-algebraic set R𝑡 ∖ (𝒲∞ ∪𝒲ℋ), the number of real solutions of 𝑓(𝜂, ·) is invariant when 𝜂 varies over 𝒮.

Proof. By Lemma 12,𝒲∞ contains the following sets:

• The non-proper points of the restriction of 𝜋 to 𝒱 .

• The point 𝜂 ∈ C𝑡 such that the fiber 𝜋−1(𝜂) ∩ 𝒱 is infinite.

• The image by 𝜋 of the irreducible components of 𝒱 whose dimensions are smaller than 𝑡.

Now we consider the set 𝐾(𝜋,𝒱) := sing(𝒱) ∪ crit(𝜋,𝒱). Let Δ := jac(𝑓 ,𝑥) be the Jacobian matrix of 𝑓 with respect to the
variables 𝑥. The ideal generated by the 𝑛× 𝑛-minors of Δ is denoted by 𝐼Δ. Note that, since 𝑓 is radical, 𝐾(𝜋,𝒱) is the algebraic
set defined by the ideal ⟨𝑓⟩+ 𝐼Δ.

By Proposition 10, for 𝜂 ∈ C𝑡 ∖ 𝒲∞, ⟨𝑓⟩ is a zero-dimensional ideal and the quotient ring C[𝑥]/⟨𝑓(𝜂, ·)⟩ has dimension 𝛿.
Moreover, if 𝜂 ∈ C𝑡 ∖ (𝒲∞ ∪𝒲ℋ), the system 𝑓(𝜂, ·) has 𝛿 distinct complex solutions as the rank ofℋ(𝜂) is 𝛿. Therefore, every
complex root of 𝑓(𝜂, ·) is of multiplicity one (we use the definition of multiplicity given in [4, Sec. 4.5]).

Now we prove that, for such a point 𝜂, the fiber 𝜋−1(𝜂) does not intersect 𝐾(𝜋,𝒱). Assume by contradiction that there exists a
point (𝜂, 𝜒) ∈ C𝑡+𝑛 lying in 𝜋−1(𝜂) ∩𝐾(𝜋,𝒱). Note that 𝜒 is a solution of 𝑓(𝜂, ·), i.e., 𝑓(𝜂, 𝜒) = 0.

As (𝜂, 𝜒) ∈ 𝐾(𝜋,𝒱), then it is contained in 𝑉 (𝐼Δ). Hence, as the derivation in Δ does not involve 𝑦, 𝜒 cancels all the 𝑛×𝑛-minors
of the Jacobian matrix jac(𝑓(𝜂, ·),𝑥). [4, Proposition 4.16] implies that 𝜒 has multiplicity greater than one. This contradicts to the
claim that 𝑓(𝜂, ·) admits only complex solutions of multiplicity one.

Therefore, we conclude that, for 𝜂 ∈ C𝑡 ∖ (𝒲∞ ∪𝒲ℋ), 𝜋−1(𝜂) does not intersect 𝐾(𝜋,𝒱).

So, using what we prove above and Lemma 12, we deduce that, for 𝜂 ∈ R𝑡 ∖ (𝒲∞ ∪𝒲ℋ), then there exists an open neighborhood
𝑂𝜂 of 𝜂 for the Euclidean topology such that 𝜋−1(𝑂𝜂) does not intersect 𝐾(𝜋,𝒱) ∪ 𝜋−1(𝒲∞).

Therefore, by Thom’s isotopy lemma [11], the projection 𝜋 realizes a locally trivial fibration over R𝑡 ∖ (𝒲∞ ∪ 𝒲ℋ). So, for
any connected component 𝒞 of R𝑡 ∖ (𝒲∞ ∪ 𝒲ℋ) and any 𝜂 ∈ 𝒞, we have that 𝜋−1(𝒞) ∩ 𝒱 ∩ R𝑡+𝑛 is homeomorphic to
𝒞 × (𝜋−1(𝜂) ∩ 𝒱 ∩ R𝑡+𝑛).

As a consequence, the number of distinct real solutions of 𝑓(𝜂, ·) is invariant when 𝜂 varies over each connected component of
R𝑡 ∖ (𝒲∞ ∪𝒲ℋ).

To describe Algorithm 2, we need to introduce the following subroutines:

∙ CleanFactors which takes as input a polynomial 𝑝 ∈ Q[𝑦,𝑥] and the polynomial 𝑤∞. It computes the square-free part
of 𝑝 with all the common factors with 𝑤∞ removed.

∙ Signature which takes as input a symmetric matrix with entries in Q and evaluates its signature.

∙ SamplePoints which takes as input a set of polynomials 𝑔1, . . . , 𝑔𝑠 ∈ Q[𝑦] and computes a finite subset ℛ of Q𝑡

that intersects every connected component of the semi-algebraic set defined by ∧𝑠
𝑖=1𝑔𝑖 ̸= 0. An explicit description of

SamplePoints is given in the proof of Theorem II in Section 3.

The pseudo-code of Algorithm 2 is below. Its proof of correctness follows immediately from Proposition 14 and Corollary 11.
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Algorithm 2: Weak-RRC-Hermite
Input: A polynomial sequence 𝑓 ∈ Q[𝑦][𝑥] such that ⟨𝑓⟩ is radical and Assumptions (A) holds.
Output: A set of sample points and the corresponding numbers of real solutions solving the weak version of Problem (1)

1 [ℋ,𝑤∞]← DRL-Matrix(𝑓)
2 𝑤ℋ ← CleanFactors(numer(det(ℋ)),𝑤∞)
3 𝐿← SamplePoints(𝑤ℋ ̸= 0 ∧𝑤∞ ̸= 0)
4 for 𝜂 ∈ 𝐿 do
5 𝑟𝜂 ← Signature(ℋ(𝜂))
6 end
7 return {(𝜂, 𝑟𝜂) | 𝜂 ∈ 𝐿}

Remark 15. As we have seen, Algorithm 2 obtains a polynomial which serves similarly as discriminant varieties [35] or border
polynomials [49] through computing the determinant of parametric Hermite matrices. Whereas, the two latter strategies rely on
algebraic elimination based on Gröbner bases to compute the projection of crit(𝜋,𝒱) on the 𝑦-space. Since it is well-known that
the computation of such a Gröbner basis could be heavy, our algorithm has a chance to be more practical. In Section 7, we provide
experimental results to support this claim.
Remark 16. It is worth noticing that, even though the design of Algorithm 2 employs the grevlex monomial ordering where
𝑥1 ≻ · · · ≻ 𝑥𝑛, we can replace it by any grevlex ordering with another lexicographical order among the 𝑥’s. For instance, we
can use the monomial ordering grevlex(𝑥𝑛 ≻ · · · ≻ 𝑥1). While every theoretical claim still holds for this ordering, the practical
behavior could be different.

5.2 Computing semi-algebraic formulas

By Corollary 11, the number of real roots of the system 𝑓(𝜂, ·) for a given point 𝜂 ∈ R𝑡 ∖𝒲∞ can be obtained by evaluating the
signature of the parametric Hermite matrixℋ. We recall that the signature of a matrix can be deduced from the sign pattern of its
leading principal minors. More precisely, we recall the following criterion, introduced by [46] and [31] (see [23] for a summary on
these works).
Lemma 17. [23, Theorem 2.3.6] Let 𝑆 be a 𝛿 × 𝛿 symmetric matrix in R𝛿×𝛿 and, for 1 ≤ 𝑖 ≤ 𝛿, 𝑆𝑖 be the 𝑖-th leading principal
minor of 𝑆, i.e., the determinant of the sub-matrix formed by the first 𝑖 rows and 𝑖 columns of 𝑆. By convention, we denote 𝑆0 = 1.

We assume that 𝑆𝑖 ̸= 0 for 0 ≤ 𝑖 ≤ 𝛿. Let 𝑘 be the number of sign variations between 𝑆𝑖 and 𝑆𝑖+1. Then, the numbers of positive
and negative eigenvalues of 𝑆 are respectively 𝛿 − 𝑘 and 𝑘. Thus, the signature of 𝑆 is 𝛿 − 2𝑘.

This criterion leads us to the following idea. Assume that none of the leading principal minors ofℋ is identically zero. We consider
the semi-algebraic subset of R𝑡 defined by the non-vanishing of those leading principal minors. Over a connected component 𝒮 ′

of this semi-algebraic set, each leading principal minor is not zero and its sign is invariant. As a consequence, by Lemma 17 and
Corollary 11, the number of distinct real roots of 𝑓(𝜂, ·) when 𝜂 varies over 𝒮 ′ ∖𝒲∞ is invariant.

However, this approach does not apply directly if one of the leading principle minors ofℋ is identically zero. We bypass this obstacle
by picking randomly an invertible matrix 𝐴 ∈ GL𝛿(Q) and working with the matrixℋ𝐴 := 𝐴𝑇 · ℋ ·𝐴. The lemma below states
that, with a generic matrix 𝐴, all of the leading principal minors ofℋ𝐴 are not identically zero.
Lemma 18. There exists a Zariski dense subset 𝒜 of GL𝛿(Q) such that for 𝐴 ∈ 𝒜, all of the leading principal minors of
ℋ𝐴 := 𝐴𝑇 · ℋ ·𝐴 are not identically zero.

Proof. For 1 ≤ 𝑟 ≤ 𝛿, we denote by M𝑟 the set of all 𝑟 × 𝑟 minors ofℋ.

Let 𝜂 ∈ Q𝑡 ∖𝒲∞ ∪𝒲ℋ. We have thatℋ(𝜂) is a full rank matrix in Q𝛿×𝛿 and, for 𝐴 ∈ GL𝛿(R),ℋ𝐴(𝜂) = 𝐴𝑇 · ℋ(𝜂) ·𝐴.

We prove that there exists a Zariski dense subset 𝒜 of GL𝛿(Q) such that, for 𝐴 ∈ 𝒜, all of the leading principal minors ofℋ𝐴(𝜂)
are not zero. Then, as an immediate consequence, all the leading principal minors ofℋ𝐴 are not identically zero.

We consider the matrix 𝐴 = (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝛿 where 𝑎 = (𝑎𝑖,𝑗) are new variables. Then, the 𝑟-th leading principal minor 𝑀𝑟(𝑎) of
𝐴𝑇 · ℋ(𝜂) ·𝐴 can be written as

𝑀𝑟(𝑎) =
∑︁

m∈M𝑟

𝑎m ·m(𝜂),

where the 𝑎m’s are elements of Q[𝑎].

Asℋ(𝜂) is a full rank symmetric matrix by assumption, there exists a matrix 𝑄 ∈ GL𝛿(R) such that 𝑄𝑇 · ℋ(𝜂) ·𝑄 is a diagonal
matrix with no zero on its diagonal. Hence, the evaluation of 𝑎 at the entries of 𝑄 gives 𝑀𝑟(𝑎) a non-zero value. As a consequence,
𝑀𝑟(𝑎) is not identically zero.

Let 𝒜𝑟 be the non-empty Zariski open subset of GL𝛿(Q) defined by 𝑀𝑟(𝑎) ̸= 0. Then, the set of the matrices 𝐴 ∈ 𝒜𝑟 such that
the 𝑟 × 𝑟 leading principal minor of 𝐴𝑇 · ℋ(𝜂) ·𝐴 is not zero.

Taking 𝒜 as the intersection of 𝒜𝑟 for 1 ≤ 𝑟 ≤ 𝛿, then, for 𝐴 ∈ 𝒜, none of the leading principal minors of 𝐴𝑇 · ℋ(𝜂) ·𝐴 equals
zero. Consequently, each leading principal minor of 𝐴𝑇 · ℋ ·𝐴 is not identically zero.
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Our algorithm (Algorithm 3) for solving Problem (1) through parametric Hermite matrices is described below. As it depends on the
random choice of the matrix 𝐴, Algorithm 3 is probabilistic. One can easily modify it to be a Las Vegas algorithm by detecting the
cancellation of the leading principal minors for each choice of 𝐴.

Algorithm 3: RRC-Hermite
Input: A polynomial sequence 𝑓 ⊂ Q[𝑦][𝑥] such that the ideal ⟨𝑓⟩ is radical and 𝑓 satisfies Assumption (A)
Output: The descriptions of a collection of semi-algebraic sets 𝒮𝑖 solving Problem (1)

1 ℋ,𝑤∞ ← DRL-Matrix(𝑓)
2 Choose randomly a matrix 𝐴 in Q𝛿×𝛿

3 ℋ𝐴 ← 𝐴𝑇 · ℋ ·𝐴
4 (𝑀1, . . . ,𝑀𝛿)← LeadingPrincipalMinors(ℋ𝐴)

5 𝐿← SamplePoints
(︀
𝑤∞ ∧

(︀
∧𝛿

𝑖=1𝑀𝑖 ̸= 0
)︀)︀

6 for 𝜂 ∈ 𝐿 do
7 𝑟𝜂 ← Signature(ℋ(𝜂))
8 end
9 return {(sign (𝑀1(𝜂), . . . ,𝑀𝛿(𝜂)), 𝜂, 𝑟𝜂) | 𝜂 ∈ 𝐿}

Proposition 19. Assume that 𝑓 satisfies Assumptions (A) and that the ideal ⟨𝑓⟩ is radical. Let 𝐴 be a matrix in GL𝛿(Q) such that
all of the leading principal minors 𝑀1, . . . ,𝑀𝛿 ofℋ𝐴 := 𝐴𝑇 · ℋ ·𝐴 are not identically zero. Then, Algorithm 3 computes correctly
a solution for Problem (1).

Proof. Note that for 𝜂 ∈ R𝑡 ∖𝒲∞, we have thatℋ𝐴(𝜂) = 𝐴𝑇 · ℋ(𝜂) ·𝐴. Therefore, the signature ofℋ(𝜂) equals to the signature
ofℋ𝐴(𝜂).

Let 𝑀1, . . . ,𝑀𝛿 be the leading principal minors ofℋ𝐴 and 𝒮 be the algebraic set defined by ∧𝛿
𝑖=1𝑀𝑖 ̸= 0. Over each connected

component 𝒮 ′ of 𝒮, the sign of each 𝑀𝑖 is invariant and not zero. Therefore, by Lemma 17, the signature ofℋ𝐴(𝜂), and therefore
ofℋ(𝜂), is invariant when 𝜂 varies over 𝒮 ′ ∖𝒲∞. As a consequence, by Corollary 11, the number of distinct real roots of 𝑓(𝜂, ·) is
also invariant when 𝜂 varies over 𝒮 ′ ∖𝒲∞. We finish the proof of correctness of Algorithm 3.

6 Complexity analysis

6.1 Degree bound of parametric Hermite matrices on generic input

In this subsection, we consider an affine regular sequence 𝑓 = (𝑓1, . . . , 𝑓𝑛) ⊂ Q[𝑦][𝑥] according to the variables 𝑥, i.e., the
homogeneous components of largest degree in 𝑥 of the 𝑓𝑖’s form a homogeneous regular sequence (see Section 2). Additionally, we
require that 𝑓 satisfies Assumptions (A) and (B).

Let 𝑑 be the highest value among the total degrees of the 𝑓𝑖’s. Since the homogeneous regular sequences are generic among the
homogeneous polynomial sequences (see, e.g., [2, Proposition 1.7.4] or [37]), the same property of genericity holds for affine regular
sequences (thanks to the definition we use).

As in previous sections, 𝒢 denotes the reduced Gröbner basis of ⟨𝑓⟩ with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦). Let 𝛿
be the dimension of the K-vector space K[𝑥]/⟨𝑓⟩K where K = Q(𝑦). By Bézout’s inequality, 𝛿 ≤ 𝑑𝑛. We derive from 𝒢 a basis
ℬ = {𝑏1, . . . , 𝑏𝛿} of K[𝑥]/⟨𝑓⟩K consisting of monomials in the variables 𝑥. Finally, the parametric Hermite matrix of 𝑓 with
respect to ℬ is denoted byℋ = (ℎ𝑖,𝑗)1≤𝑖,𝑗≤𝛿 .

For a polynomial 𝑝 ∈ Q[𝑦,𝑥], we denote by deg(𝑝) the total degree of 𝑝 in (𝑦,𝑥) and deg𝑥(𝑝) the partial degree of 𝑝 in the
variables 𝑥.

As Assumption (B) holds, by Lemma 7, the entries of the parametric Hermite matrixℋ associated to 𝑓 with respect to the basis ℬ
are elements of Q[𝑦]. To establish a degree bound on the entries ofℋ, we need to introduce the following assumption.

Assumption C. For any 𝑔 ∈ 𝒢, we have that deg(𝑔) = deg𝑥(𝑔).

Proposition 20 below states that Assumption (C) is generic. Its direct consequence is a proof for Proposition 8.

Proposition 20. Let C[𝑥,𝑦]𝑑 be the set of polynomials in C[𝑥,𝑦] having total degree bounded by 𝑑. There exists a non-empty
Zariski open subset F𝐷 of C[𝑥,𝑦]𝑛𝑑 such that Assumption (C) holds for 𝑓 ∈ F𝐷 ∩Q[𝑥,𝑦]𝑛.

Consequently, for 𝑓 ∈ F𝐷 ∩Q[𝑥,𝑦]𝑛, 𝑓 satisfies Assumption (B).

Proof. Let 𝑦𝑡+1 be a new indeterminate. For any polynomial 𝑝 ∈ Q[𝑥,𝑦], we consider the homogenized polynomial 𝑝ℎ ∈
Q[𝑥,𝑦, 𝑦𝑡+1] of 𝑝 defined as follows:

𝑝ℎ = 𝑦
deg(𝑝)
𝑡+1 𝑝

(︂
𝑥1

𝑦𝑡+1
, . . . ,

𝑥𝑛

𝑦𝑡+1
,

𝑦1
𝑦𝑡+1

, . . . ,
𝑦𝑡

𝑦𝑡+1

)︂
.
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Let C[𝑥,𝑦, 𝑦𝑡+1]
ℎ
𝑑 be the set of homogeneous polynomials in C[𝑥,𝑦, 𝑦𝑡+1] whose degrees are exactly 𝑑. By [47, Corollary 1.85],

there exists a non-empty Zariski subset Fℎ
𝐷 of

(︀
C[𝑥,𝑦, 𝑦𝑡+1]

ℎ
𝑑

)︀𝑛
such that the variables 𝑥 is in Noether position with respect to 𝑓ℎ

for every 𝑓ℎ ∈ Fℎ
𝐷 .

For 𝑓ℎ ∈ Fℎ
𝐷 , let 𝐺ℎ be the reduced Gröbner basis of 𝑓ℎ with respect to the grevlex ordering grevlex(𝑥 ≻ 𝑦 ≻ 𝑦𝑡+1). By [3,

Proposition 7], if the variables 𝑥 is in Noether position with respect to 𝑓ℎ, then the leading monomials appearing in 𝐺ℎ depend only
on 𝑥.

Let 𝑓 and 𝐺 be the image of 𝑓ℎ and 𝐺ℎ by substituting 𝑦𝑡+1 = 1. We show that 𝐺 is a Gröbner basis of 𝑓 with respect to the
ordering grevlex(𝑥 ≻ 𝑦).

Since 𝐺ℎ generates ⟨𝑓ℎ⟩, 𝐺 is a generating set of ⟨𝑓⟩. As the leading monomials of elements in 𝐺ℎ do not depend on 𝑦𝑡+1, the
substitution 𝑦𝑡+1 = 1 does not affect these leading monomials.

For a polynomial 𝑝 ∈ ⟨𝑓⟩ ⊂ Q[𝑥,𝑦], then 𝑝 writes 𝑝 =
∑︀𝑛

𝑖=1 𝑐𝑖 · 𝑓𝑖, where the 𝑐𝑖’s lie in Q[𝑥,𝑦]. We homogenize the polynomials
𝑐𝑖 · 𝑓𝑖 on the right hand side to obtain a homogeneous polynomial 𝑃ℎ ∈ ⟨𝑓ℎ⟩. Note that 𝑃ℎ is not necessarily the homogenization
𝑝ℎ of 𝑝 but only the product of 𝑝ℎ with a power of 𝑦𝑡+1. Then, there exists a polynomial 𝑔ℎ ∈ 𝐺ℎ such that the leading monomial of
𝑔ℎ divides the leading monomial of 𝑃ℎ. Since the leading monomial of 𝑔ℎ depends only on 𝑥, it also divides the leading monomial
of 𝑝ℎ, which is the leading monomial of 𝑝. So, the leading monomial of the image of 𝑔ℎ in 𝐺 divides the leading monomial of 𝑝. We
conclude that 𝐺 is a Gröbner basis of 𝑓 with respect to the ordering grevlex(𝑥 ≻ 𝑦) and the set of leading monomials in 𝐺 depends
only on the variables 𝑥.

Let F𝐷 be the subset of C[𝑥,𝑦]𝑛𝑑 such that for every 𝑓 ∈ F𝐷 , its homogenization 𝑓ℎ is contained in Fℎ
𝐷 . Since the two spaces(︀

C[𝑥,𝑦, 𝑦𝑡+1]
ℎ
𝑑

)︀𝑛
and C[𝑥,𝑦]𝑛𝑑 are both exactly C(

𝑑+𝑛+𝑡
𝑛+𝑡 )×𝑛 (by considering each monomial coefficient as a coordinate), F𝐷 is

also a non-empty Zariski open subset of C[𝑥,𝑦]𝑛𝑑 .

Assume now that the polynomial sequence 𝑓 belongs to F𝐷 . We consider the two monomial orderings over Q[𝑥,𝑦] below:

• The elimination ordering grevlex(𝑥) ≻ grevlex(𝑦) is abbreviated by 𝑂1. The leading monomial of 𝑝 ∈ Q[𝑥,𝑦] with
respect to 𝑂1 is denoted by lm1(𝑝). The reduced Gröbner basis of 𝑓 with respect to 𝑂1 is 𝒢.

• The grevlex ordering grevlex(𝑥 ≻ 𝑦) is abbreviated by 𝑂2. The leading monomial of 𝑝 ∈ Q[𝑥,𝑦] with respect to 𝑂2 is
denoted by lm2(𝑝). The reduced Gröbner basis of 𝑓 with respect to 𝑂2 is denoted by 𝒢2.

As proven above, the set {lm2(𝑔2) | 𝑔2 ∈ 𝒢2} does not depend on 𝑦. With this property, we will show, for any 𝑔2 ∈ 𝒢2, there exists
a polynomial 𝑔 ∈ 𝒢 such that lm1(𝑔) divides lm2(𝑔2).

By definition, lm2(𝑔2) is greater than any other monomial of 𝑔2 with respect to the ordering 𝑂2. Since lm2(𝑔2) depends only
on the variables 𝑥, it is then greater than any monomial of 𝑔2 with respect to the ordering 𝑂1. Hence, lm2(𝑔2) is also lm1(𝑔2).
Consequently, since 𝒢 is a Gröbner basis of 𝑓 with respect to 𝑂1, there exists a polynomial 𝑔 ∈ 𝒢 such that lm1(𝑔) divides
lm1(𝑔2) = lm2(𝑔2).

Next, we prove that for every 𝑔 ∈ 𝒢, lm1(𝑔) is also lm2(𝑔). For this, we rely on the fact that 𝒢 is reduced. Assume by contradiction
that there exists a polynomial 𝑔 ∈ 𝒢 such that lm1(𝑔) ̸= lm2(𝑔). Thus, lm2(𝑔) must contain both 𝑥 and 𝑦. Let 𝑡𝑥 be the part in only
variables 𝑥 of lm2(𝑔). Note that lm1(𝑔) is greater than 𝑡𝑥 with respect to 𝑂1. There exists an element 𝑔2 ∈ 𝒢2 such that lm2(𝑔2)
divides lm2(𝑔). Since lm2(𝑔2) depends only on the variables 𝑥, we have that lm2(𝑔2) divides 𝑡𝑥. Then, by what we proved above,
there exists 𝑔′ ∈ 𝒢 such that lm1(𝑔) divides lm2(𝑔2), so lm1(𝑔) divides 𝑡𝑥. This implies that 𝒢 is not reduced, which contradicts
the definition of 𝒢.

So, lm1(𝑔) = lm2(𝑔) for every 𝑔 ∈ 𝒢 and, consequently, deg(𝑔) = deg𝑥(𝑔). We conclude that there exists a non-empty Zariski
open subset F𝐷 (as above) of C[𝑥,𝑦]𝑛𝑑 such that Assumption (C) holds for every 𝑓 ∈ F𝐷 ∩Q[𝑥,𝑦]𝑛.

Additionally, one easily notices that Assumption (C) implies Assumption (B). As a consequence, 𝑓 also satisfies Assumption (B) for
any 𝑓 ∈ F𝐷 ∩Q[𝑥,𝑦]𝑛.

Recall that, when Assumption (B) holds, by Lemma 7, the trace of any multiplication map ℒ𝑝 is a polynomial in Q[𝑦] where
𝑝 ∈ Q[𝑦][𝑥]. We now estimate the degree of trace(ℒ𝑝). Since the map 𝑝 ↦→ trace(ℒ𝑝) is linear, it is sufficient to consider 𝑝 as a
monomial in the variables 𝑥.

Proposition 21. Assume that Assumption (C) holds. Then, for any monomial 𝑚 in the variables 𝑥, the degree in 𝑦 of trace(ℒ𝑚)
is bounded by deg(𝑚). As a consequence, the total degree of the entry ℎ𝑖,𝑗 = trace(ℒ𝑏𝑖·𝑏𝑗 ) of ℋ is at most the sum of the total
degrees of 𝑏𝑖 and 𝑏𝑗 , i.e.,

deg(ℎ𝑖,𝑗) ≤ deg(𝑏𝑖) + deg(𝑏𝑗).

Proof. Let 𝑚 be a monomial in Q[𝑥]. The multiplication matrix ℒ𝑚 is built as follows. For 1 ≤ 𝑖 ≤ 𝛿, the normal form of 𝑏𝑖 ·𝑚 as
a polynomial in Q(𝑦)[𝑥] writes

NF𝒢(𝑏𝑖 ·𝑚) =
𝛿∑︁

𝑗=1

𝑐𝑖,𝑗 · 𝑏𝑗 .
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Note that this normal form is the remainder of the successive divisions of 𝑏𝑖 ·𝑚 by polynomials in 𝒢. As Assumption (C) holds,
Assumption (B) also holds. Therefore, those divisions do not introduce any denominator. So, every term appearing during these
normal form reductions are polynomials in Q[𝑦][𝑥].

Let 𝑝 ∈ Q[𝑦][𝑥]. For any 𝑔 ∈ 𝒢, by Assumption (C), the total degree in (𝑦,𝑥) of every term of 𝑔 is at most the degree of lm𝑥(𝑔).
Thus, a division of 𝑝 by 𝑔 involves only terms of total degree deg(𝑝). Thus, during the polynomial division of 𝑝 to 𝒢, only terms of
degree at most deg(𝑝) will appear. Hence the degree of NF𝒢(𝑝) is bounded by deg(𝑝).

Note that trace(ℒ𝑚) =
∑︀𝛿

𝑖=1 𝑐𝑖,𝑖. As the degree of 𝑐𝑖,𝑖 · 𝑏𝑖 is bounded by deg(𝑏𝑖) + deg(𝑚), the degree of 𝑐𝑖,𝑖 is at most deg(𝑚).
Then, we obtain that deg(trace(ℒ𝑚)) ≤ deg(𝑚).

Finally, the degree bound of ℎ𝑖,𝑗 follows immediately:

deg(ℎ𝑖,𝑗) = deg(trace(ℒ𝑏𝑖·𝑏𝑗 )) ≤ deg(𝑏𝑖 · 𝑏𝑗) = deg(𝑏𝑖) + deg(𝑏𝑗).

Lemma 22. Assume that 𝑓 satisfies Assumption (C). Then the degree of a minor 𝑀 consisting of the rows (𝑟1, . . . , 𝑟ℓ) and the
columns (𝑐1, . . . , 𝑐ℓ) ofℋ is bounded by

ℓ∑︁
𝑖=1

(deg(𝑏𝑟𝑖) + deg(𝑏𝑐𝑖)) .

Particularly, the degree of det(ℋ) is bounded by 2
∑︀𝛿

𝑖=1 deg(𝑏𝑖).

Proof. We expand the minors 𝑀 into terms of the form (−1)sign (𝜎)ℎ𝑟1,𝜎(𝑐1) . . . ℎ𝑟ℓ,𝜎(𝑐ℓ), where 𝜎 is a permutation of {𝑐1, . . . , 𝑐ℓ}
and sign (𝜎) is its signature. We then bound the degree of each of those terms as follows using Proposition 21:

deg

(︃
ℓ∏︁

𝑖=1

ℎ𝑟𝑖,𝜎(𝑐𝑖)

)︃
=

ℓ∑︁
𝑖=1

deg(ℎ𝑟𝑖,𝜎(𝑐𝑖)) ≤
ℓ∑︁

𝑖=1

(︀
deg(𝑏𝑟𝑖) + deg(𝑏𝜎(𝑐𝑖))

)︀
=

ℓ∑︁
𝑖=1

(deg(𝑏𝑟𝑖) + deg(𝑏𝑐𝑖)) .

Hence, taking the sum of all those terms, we obtain the inequality:

deg(𝑀𝑖) ≤
ℓ∑︁

𝑖=1

(deg(𝑏𝑟𝑖) + deg(𝑏𝑐𝑖)) .

When 𝑀 is taken as the determinant ofℋ, then

deg(det(ℋ)) ≤ 2

𝛿∑︁
𝑖=1

deg(𝑏𝑖).

Proposition 21 implies that, when Assumption (C) holds, the degree pattern ofℋ depends only on the degree of the elements of
ℬ = {𝑏1, . . . , 𝑏𝛿}. We rearrange ℬ in the increasing order of degree, i.e., deg(𝑏𝑖) ≤ deg(𝑏𝑗) for 1 ≤ 𝑖 < 𝑗 ≤ 𝛿. So, 𝑏1 = 1 and
deg(𝑏1) = 0. The degree bounds of the entries ofℋ are expressed by the matrix below⎡⎢⎢⎣

0 deg(𝑏2) . . . deg(𝑏𝛿)
deg(𝑏2) 2 deg(𝑏2) . . . deg(𝑏𝛿) + deg(𝑏2)

...
...

. . .
...

deg(𝑏𝛿) deg(𝑏𝛿) + deg(𝑏2) . . . 2 deg(𝑏𝛿)

⎤⎥⎥⎦ .

Moreover, using the regularity of 𝑓 , we are able to establish explicit degree bounds for the elements of ℬ and then, for the minors of
ℋ.

Lemma 23. Assume that 𝑓 is an affine regular sequence and let ℬ be the basis defined as above. Then the highest degree among the
elements of ℬ is bounded by 𝑛(𝑑− 1) and

2

𝛿∑︁
𝑖=1

deg(𝑏𝑖) ≤ 𝑛(𝑑− 1)𝑑𝑛.

Proof. For 𝑝 ∈ K[𝑥], let 𝑝ℎ ∈ K[𝑥1, . . . , 𝑥𝑛+1] be the homogenization of 𝑝 with respect to the variable 𝑥𝑛+1, i.e.,

𝑝ℎ = 𝑥
deg𝑥(𝑝)
𝑛+1 𝑝

(︂
𝑥1

𝑥𝑛+1
, . . . ,

𝑥𝑛

𝑥𝑛+1

)︂
.
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The dehomogenization map 𝛼 is defined as:

𝛼 : K[𝑥1, . . . , 𝑥𝑛+1]→ K[𝑥1, . . . , 𝑥𝑛],

𝑝(𝑥1, . . . , 𝑥𝑛+1) ↦→ 𝑝(𝑥1, . . . , 𝑥𝑛, 1).

Also, the homogeneous component of largest degree of 𝑝 with respect to the variables 𝑥 is denoted by 𝐻𝑝. Throughout this proof,
we use the following notations:

• 𝐼 = ⟨𝑓⟩K and 𝒢 is the reduced Gröbner basis of 𝐼 w.r.t. grevlex(𝑥1 ≻ · · · ≻ 𝑥𝑛).

• 𝐼ℎ = ⟨𝑝ℎ | 𝑝 ∈ 𝑓⟩K and 𝒢ℎ is the reduced Gröbner basis of 𝐼ℎ w.r.t. grevlex(𝑥1 ≻ · · · ≻ 𝑥𝑛+1).

The Hilbert series of the homogeneous ideal 𝐼ℎ writes

HS𝐼ℎ(𝑧) =

∞∑︁
𝑟=0

(dimK K[𝑥]𝑟 − dimK(𝐼ℎ ∩K[𝑥]𝑟)) · 𝑧𝑟,

where K[𝑥]𝑟 = {𝑝 | 𝑝 ∈ K[𝑥] : deg𝑥(𝑝) = 𝑟}

Since 𝑓 is an affine regular sequence, by definition (see Section 2), 𝐻𝑓 = (𝐻𝑓1, . . . ,
𝐻𝑓𝑛) forms a homogeneous regular sequence.

Equivalently, by [47, Proposition 1.44], the homogeneous polynomial sequence ((𝑓1)ℎ, . . . , (𝑓𝑛)ℎ, 𝑥𝑛+1) is regular. Particularly,
((𝑓1)ℎ, . . . , (𝑓𝑛)ℎ) is a homogeneous regular sequence and, by [36, Theorem 1.5], we obtain

HS𝐼ℎ(𝑧) =

∏︀𝑛
𝑖=1

(︁
1− 𝑧deg(𝑓𝑖)

)︁
(1− 𝑧)𝑛+1 =

∏︀𝑛
𝑖=1

(︁
1 + . . .+ 𝑧deg(𝑓𝑖)−1

)︁
1− 𝑧

.

On the other hand, as ((𝑓1)ℎ, . . . , (𝑓𝑛)ℎ, 𝑥𝑛+1) is a homogeneous regular sequence, by [3, Proposition 7], the leading terms of 𝒢ℎ
w.r.t. grevlex(𝑥1 ≻ · · · ≻ 𝑥𝑛+1) do not depend on the variables 𝑥𝑛+1. Thus, the dehomogenization map 𝛼 does not affect the set
of leading terms of 𝒢ℎ. Besides, 𝛼(𝒢ℎ) is a Gröbner basis of 𝐼 with respect to grevlex(𝑥) (see, e.g., the proof of [20, Lemma 27]).
Hence, the leading terms of 𝒢ℎ coincides with the leading terms of 𝒢.

As a consequence, the set of monomials in (𝑥1, . . . , 𝑥𝑛+1) which are not contained in the initial ideal of 𝐼ℎ with respect to
grevlex(𝑥1 ≻ · · · ≻ 𝑥𝑛+1) is exactly

{𝑏 · 𝑥𝑗
𝑛+1 | 𝑏 ∈ ℬ, 𝑗 ∈ N}.

As a consequence, dimK K[𝑥]𝑟 − dimK(𝐼ℎ ∩K[𝑥]𝑟) =
∑︀𝑟

𝑗=0 |ℬ ∩K[𝑥]𝑗 |. Let 𝐻(𝑧) =
∑︀∞

𝑟=0 |ℬ ∩K[𝑥]𝑟| · 𝑧𝑟 . We have that

(1− 𝑧) ·HS𝐼ℎ(𝑧) = (1− 𝑧)

∞∑︁
𝑟=0

𝑟∑︁
𝑗=0

|ℬ ∩K[𝑥]𝑗 | · 𝑧𝑟 =

∞∑︁
𝑟=0

|ℬ ∩K[𝑥]𝑟| · 𝑧𝑟 = 𝐻(𝑧).

Then,

𝐻(𝑧) =

𝑛∏︁
𝑖=1

(︁
1 + . . .+ 𝑧deg(𝑓𝑖)−1

)︁
.

As a direct consequence, max1≤𝑖≤𝛿 deg(𝑏𝑖) is bounded by
∑︀𝑛

𝑖=1 deg(𝑓𝑖)− 𝑛 ≤ 𝑛(𝑑− 1).

Let 𝐺1 and 𝐺2 be two polynomials in Z[𝑧]. We write 𝐺1 ≤ 𝐺2 if and only if for any 𝑟 ≥ 0, the coefficient of 𝑧𝑟 in 𝐺2 is greater
than or equal to the one in 𝐺1.

Since deg(𝑓𝑖) ≤ 𝑑 for every 1 ≤ 𝑖 ≤ 𝑛, then

𝐻(𝑧) =

𝑛∏︁
𝑖=1

(︁
1 + . . .+ 𝑧deg(𝑓𝑖)−1

)︁
≤

𝑛∏︁
𝑖=1

(︁
1 + . . .+ 𝑧𝑑−1

)︁
.

As a consequence, 𝐻 ′(𝑧) =
∑︀∞

𝑟=1(𝑟 |ℬ ∩K[𝑥]𝑟|) · 𝑧𝑟−1 ≤
(︀∏︀𝑛

𝑖=1

(︀
1 + . . .+ 𝑧𝑑−1

)︀)︀′
. Expanding 𝐺′(𝑧), we obtain

𝐻 ′(𝑧) ≤
𝑛
(︁∑︀𝑑−1

𝑖=0 𝑧𝑖
)︁𝑛−1 (︁∑︀𝑑−1

𝑖=0 𝑧𝑖 − 𝑑𝑧𝑑−1
)︁

1− 𝑧
= 𝑛

(︃
𝑑−1∑︁
𝑖=0

𝑧𝑖
)︃𝑛−1 𝑑−2∑︁

𝑖=0

𝑧𝑖
(︁
1 + . . .+ 𝑧𝑑−𝑖−2

)︁
.

By substituting 𝑧 = 1 in the above inequality, we obtain

𝐻 ′(1) ≤ 𝑛𝑑𝑛−1
𝑑−2∑︁
𝑖=0

(𝑑− 𝑖− 1) =
𝑛(𝑑− 1)𝑑𝑛

2
.

Thus, we have that
∑︀𝛿

𝑖=1 deg(𝑏𝑖) =
∑︀∞

𝑟=0 𝑟 |ℬ ∩K[𝑥]𝑟| = 𝐻 ′(1) ≤ 𝑛(𝑑−1)𝑑𝑛

2
.
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Corollary 24 below follows immediately from Lemmas 22 and 23.

Corollary 24. Assume that 𝑓 is a regular sequence that satisfies Assumption (C). Then the degree of any minor ofℋ is bounded by
𝑛(𝑑− 1)𝑑𝑛.

Remark 25. Note that Assumption (C) requires a condition on the degrees of polynomials in the Gröbner basis 𝒢 of ⟨𝑓⟩. We remark
that it is possible to establish similar bounds for the degrees of entries of our parametric Hermite matrix and its minors when the
system 𝑓 satisfies a weaker property than Assumption (C) (we still keep the regularity assumption).

Indeed, we only need to assume that, for any 𝑔 ∈ 𝒢, the homogeneous component of the highest degree in 𝑥 of 𝑔 does not depend on
the parameters 𝑦. Let 𝑑𝑦 be an upper bound of the partial degrees in 𝑦 of elements of 𝒢. Under the change of variables 𝑥𝑖 ↦→ 𝑥

𝑑𝑦
𝑖 ,

𝑓 is mapped to a new polynomial sequence that satisfies Assumption (C). Therefore, we easily deduce the two following bounds,
which are similar to the ones of Proposition 21 and Corollary 24.

• deg(ℎ𝑖,𝑗) ≤ 𝑑𝑦(deg(𝑏𝑖) + deg(𝑏𝑗));

• The degree of any minor ofℋ is bounded by 𝑑𝑦 𝑛(𝑑− 1)𝑑𝑛.

Even though these bounds are not sharp anymore, they still allow us to compute the parametric Hermite matrices using evaluation &
interpolation scheme and control the complexity of this computation in the instances where Assumption (C) does not hold.

6.2 Complexity analysis of our algorithms

In this subsection, we analyze the complexity of our algorithms on generic systems.

Let 𝑓 = (𝑓1, . . . , 𝑓𝑛) ⊂ Q[𝑥,𝑦] be a regular sequence, where 𝑦 = (𝑦1, . . . , 𝑦𝑡) and 𝑥 = (𝑥1, . . . , 𝑥𝑛), satisfying Assumptions
(A) and (C). To simplify the asymptotic complexity, we assume that 𝑛, 𝑡 and 𝑑 are greater than or equal to 2.

We denote by 𝒢 the reduced Gröbner basis of 𝑓 with respect to the ordering grevlex(𝑥) ≻ grevlex(𝑦). The basis ℬ is taken as all
the monomials in 𝑥 that are irreducible by 𝒢. Then,ℋ is the parametric Hermite matrix associated of 𝑓 with respect to ℬ.

We start by estimating the arithmetic complexity for computing the parametric Hermite matrix ℋ and its minors. We denote
𝜆 := 𝑛(𝑑− 1) and D := 𝑛(𝑑− 1)𝑑𝑛.

Proposition 26. Assume that 𝑓 = (𝑓1, . . . , 𝑓𝑛) ⊂ Q[𝑦][𝑥] is a regular sequence that satisfies Assumptions (A) and (C). Let 𝛿
be the dimension of the K-vector space K[𝑥]/⟨𝑓⟩K where K = Q(𝑦). Let ℋ be the parametric Hermite matrix associated to 𝑓
constructed using grevlex(𝑥) ordering. Then, by Lemma 7, the entries of the parametric Hermite matrixℋ lie in Q[𝑦].

Using the evaluation & interpolation scheme, one can computeℋ within

𝑂̃︀(︃(︃𝑡+ 2𝜆

𝑡

)︃(︃
𝑛

(︃
𝑑+ 𝑛+ 𝑡

𝑛+ 𝑡

)︃
+ 𝑛𝜔+1𝑑𝜔𝑛+1 + 𝑑(𝜔+1)𝑛

)︃)︃
arithmetic operations in Q, where, by Bézout’s bound, 𝛿 is bounded by 𝑑𝑛.

Moreover, each minor (including the determinant) ofℋ can be computed using

𝑂̃︀(︃(︃𝑡+D

𝑡

)︃(︃
𝑑2𝑛
(︃
𝑡+ 2𝜆

𝑡

)︃
+ 𝑑𝜔𝑛

)︃)︃
arithmetic operations in Q.

Proof. By Lemma 23 and Proposition 21, the highest degree among the entries ofℋ is bounded by 2𝜆 = 2𝑛(𝑑− 1). The evaluation
& interpolation scheme of Subsection 4.4 requires computing

(︀
𝑡+2𝜆

𝑡

)︀
specialized Hermite matrices. We first analyze the complexity

for computing each of those specialized Hermite matrices.

The evaluation of 𝑓 at each point 𝜂 ∈ Q𝑡 costs 𝑂
(︁
𝑛
(︀
𝑑+𝑛+𝑡
𝑛+𝑡

)︀)︁
arithmetic operations in Q.

As the highest degree in the Gröbner basis of 𝑓(𝜂, ·) w.r.t. the grevlex(𝑥) ordering is bounded by 𝑛(𝑑− 1) + 1, the computation of
this Gröbner basis can be done within 𝑂 (𝑛𝑑𝜔𝑛) arithmetic operations in Q (see [16, Theorem 5.1]).

Next, we compute the matrices representing the ℒ𝑥𝑖 ’s. Using [16, Algo. 4], we obtain an arithmetic complexity of 𝑂
(︀
𝑑𝑛𝜔+1𝛿𝜔

)︀
([16, Prop. 5]) for computing such 𝑛 matrices, where 𝜔 is the exponential constant for matrix multiplication. Using 𝛿 ≤ 𝑑𝑛, we
obtain the bound 𝑂

(︀
𝑛𝜔+1𝑑𝜔𝑛+1

)︀
.

The traces of these matrices are then computed using 𝑛𝛿 additions in Q. The subroutine BMatrices consists of essentially 𝛿
multiplication of 𝛿 × 𝛿 matrices (with entries in Q). This leads to an arithmetic complexity 𝑂(𝛿𝜔+1), which is then bounded by
𝑂(𝑑(𝜔+1)𝑛). Next, the computation of each entry ℎ𝑖,𝑗 is simply a vector multiplication of length 𝛿, whose complexity is 𝑂(𝛿).
Doing so for 𝛿2 entries, TraceComputing takes in overall 𝑂(𝛿3) arithmetic operations in Q.
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Thus, as 𝛿 ≤ 𝑑𝑛, the complexity of the evaluation step lies in

𝑂

(︃(︃
𝑡+ 2𝜆

𝑡

)︃(︃
𝑛

(︃
𝑑+ 𝑛+ 𝑡

𝑛+ 𝑡

)︃
+ 𝑛𝜔+1𝑑𝜔𝑛+1 + 𝑑(𝜔+1)𝑛

)︃)︃
.

Finally, we interpolate 𝛿2 entries which are polynomials in Q[𝑦] of degree at most 2𝜆. Using the multivariate interpolation algorithm
of [8], the complexity of this step therefore lies in 𝑂

(︀
𝛿2
(︀
𝑡+2𝜆

𝑡

)︀
log2

(︀
𝑡+2𝜆

𝑡

)︀
log log

(︀
𝑡+2𝜆

𝑡

)︀)︀
.

Summing up the both steps, we conclude that the parametric Hermite matrixℋ can be obtained within

𝑂̃︀(︃(︃𝑡+ 2𝜆

𝑡

)︃(︃
𝑛

(︃
𝑑+ 𝑛+ 𝑡

𝑛+ 𝑡

)︃
+ 𝑛𝜔+1𝑑𝜔𝑛+1 + 𝑑(𝜔+1)𝑛

)︃)︃
arithmetic operations in Q.

Similarly, the minors ofℋ can be computed using the technique of evaluation & interpolation. By Corollary 24, the degree of every
minor of ℋ is bounded by D. We specialize ℋ at

(︀
𝑡+D
𝑡

)︀
points in Q𝑡 and compute the corresponding minor of each specialized

Hermite matrix. This step takes

𝑂

(︃(︃
𝑡+D

𝑡

)︃(︃
𝛿2
(︃
𝑡+ 2𝜆

𝑡

)︃
+ 𝛿𝜔

)︃)︃
arithmetic operations in Q. Finally, using the multivariate interpolation algorithm of [8], it requires

𝑂

(︃(︃
𝑡+D

𝑡

)︃
log2

(︃
𝑡+D

𝑡

)︃
log log

(︃
𝑡+D

𝑡

)︃)︃
arithmetic operations in Q to interpolate the final minor. Therefore, using 𝛿 ≤ 𝑑𝑛, the whole complexity for computing each minor
ofℋ lies within

𝑂̃︀(︃(︃𝑡+D

𝑡

)︃(︃
𝑑2𝑛
(︃
𝑡+ 2𝜆

𝑡

)︃
+ 𝑑𝜔𝑛

)︃)︃
.

We note that the complexity of computing the matrixℋ in Proposition 26 is also bounded by the complexity of computing its minor.
Indeed, we have that (︃

𝑑+ 𝑛+ 𝑡

𝑛+ 𝑡

)︃
=

(𝑑+ 𝑛+ 𝑡) . . . (𝑑+ 𝑛+ 1)(𝑑+ 𝑛) . . . (𝑑+ 1)

(𝑛+ 𝑡)!

≤ (𝑑+ 𝑛+ 𝑡) . . . (𝑑+ 𝑛+ 1)

𝑡!

(𝑑+ 𝑛) . . . (𝑑+ 1)

𝑛!

≤ (D+ 𝑡) . . . (D+ 1)

𝑡!
(2𝑑𝑛) =

(︃
D+ 𝑡

𝑡

)︃
(2𝑑𝑛).

Asymptotically, 𝑛𝜔𝑑𝜔𝑛+1 is bounded by 𝑂̃︀(︁𝑑(𝜔+1)𝑛
)︁

. For 𝑡 ≥ 2,
(︀
𝑡+D
𝑡

)︀
≥ D2/2 ≥ 𝑑(𝜔−1)𝑛. Hence, we obtain(︃

𝑡+ 2𝜆

𝑡

)︃(︃
𝑛

(︃
𝑑+ 𝑛+ 𝑡

𝑛+ 𝑡

)︃
+ 𝑛𝜔+1𝑑𝜔𝑛+1 + 𝑑(𝜔+1)𝑛

)︃
∈ 𝑂̃︀(︃(︃𝑡+ 2𝜆

𝑡

)︃(︃
𝑡+D

𝑡

)︃
𝑑2𝑛
)︃
,

which proves our claim above.

Finally, we state our main result, which is Theorem I below. It estimates the arithmetic complexity of Algorithms 2 and 3.
Theorem I. Let 𝑓 ⊂ Q[𝑥,𝑦] be a regular sequence such that the ideal ⟨𝑓⟩ is radical and 𝑓 satisfies Assumptions (A) and (C).
Recall that D denotes 𝑛(𝑑− 1)𝑑𝑛. Then, we have the following statements:

i) The arithmetic complexity of Algorithm 2 lies in

𝑂̃︀(︃(︃𝑡+D

𝑡

)︃
23𝑡 𝑛2𝑡+1𝑑2𝑛𝑡+𝑛+2𝑡+1

)︃
.

ii) Algorithm 3, which is probabilistic, computes a set of semi-algebraic descriptions solving Problem (1) within

𝑂̃︀(︃(︃𝑡+D

𝑡

)︃
23𝑡 𝑛2𝑡+1𝑑3𝑛𝑡+2(𝑛+𝑡)+1

)︃
arithmetic operations in Q in case of success.
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iii) The semi-algebraic descriptions output by Algorithm 3 consist of polynomials in Q[𝑦] of degree bounded by D.

Proof. As Assumption (C) holds, we have that 𝑤∞ = 1 and 𝑤ℋ is the square-free part of det(ℋ).

Therefore, after computing the parametric Hermite matrix ℋ and its determinant, whose complexity is given by Proposition 26,
Algorithm 2 essentially consists of computing sample points of the connected components of the algebraic set R𝑡 ∖ 𝑉 (det(ℋ)).

By Corollary 24, the degree of det(ℋ) is bounded by D. Applying Corollary 3, we obtain the following arithmetic complexity for
this computation of sample points

𝑂̃︀(︃(︃𝑡+D

𝑡

)︃
23𝑡D2𝑡+1

)︃
≃ 𝑂̃︀(︃(︃𝑡+D

𝑡

)︃
23𝑡 𝑛2𝑡+1𝑑2𝑛𝑡+𝑛+2𝑡+1

)︃
.

Also by Corollary 3, the finite subset of Q𝑡 output by SamplePoints has cardinal bounded by 2𝑡D𝑡. Thus, evaluating the
specializations ofℋ at those points and their signatures costs in total 𝑂

(︁
2𝑡D𝑡

(︁
𝛿2
(︀
2𝜆+𝑡

𝑡

)︀
+ 𝛿𝜔+1/2

)︁)︁
arithmetic operations in Q

using [4, Algorithm 8.43].

Therefore, the complexity of SamplePoints dominates the whole complexity of the algorithm. We conclude that Algorithm 2 runs
within

𝑂̃︀(︃(︃𝑡+D

𝑡

)︃
23𝑡 𝑛2𝑡+1𝑑2𝑛𝑡+𝑛+2𝑡+1

)︃
arithmetic operations in Q.

For Algorithm 3, we start by choosing randomly a matrix 𝐴 and compute the matrix ℋ𝐴 = 𝐴𝑇 · ℋ · 𝐴. Then, we compute the
leading principal minors 𝑀1, . . . ,𝑀𝛿 ofℋ𝐴. Using Proposition 26, this step admits the arithmetic complexity bound

𝑂̃︀(︃𝛿 (︃𝑡+D

𝑡

)︃(︃
𝑑2𝑛
(︃
𝑡+ 2𝜆

𝑡

)︃
+ 𝑑𝜔𝑛

)︃)︃
.

Next, Algorithm 3 computes sample points for the connected components of the semi-algebraic set defined by ∧𝛿
𝑖=1𝑀𝑖 ̸= 0. Since

the degree of each 𝑀𝑖 is bounded by D, Corollary 3 gives the arithmetic complexity

𝑂̃︀(︃(︃𝑡+D

𝑡

)︃
𝑑𝑛𝑡+𝑛 23𝑡 D2𝑡+1

)︃
≃ 𝑂̃︀(︃(︃𝑡+D

𝑡

)︃
23𝑡 𝑛2𝑡+1𝑑3𝑛𝑡+2(𝑛+𝑡)+1

)︃
.

It returns a finite subset of Q𝑡 whose cardinal is bounded by (2𝛿D)𝑡. The evaluation of the leading principal minors’ sign patterns at
those points has the arithmetic complexity lying in 𝑂

(︀
2𝑡𝛿𝑡+1D2𝑡

)︀
≃ 𝑂

(︀
2𝑡𝑛2𝑡𝑑3𝑛𝑡+𝑛+2𝑡

)︀
.

Again, the complexity of SamplePoints dominates the whole complexity of Algorithm 3. The proof of Theorem I is then
finished.

Probability aspect The main probabilistic source of our algorithms 2 and 3 comes from the use of the geometric resolution [26]
in the computation of sample points per connected components described in Section 3. Since the geometric resolution depends on
the specialization and lifting procedures, it makes use of various random choices. As explained in [26], the bad choices are enclosed
in strict algebraic subsets of certain affine spaces, which implies that almost any random choice leads to a correct computation.
In general, even though one can check whether the points output by geometric resolution are solutions of the input system, some
solutions can be missing. Thus, the geometric resolution is not Las Vegas.

Besides, Algorithm 3 depends also on the choice of the matrix 𝑄. By Lemma 18, any choice of 𝑄 from a prescribed dense Zariski
open subset of GL(𝑛,C) will work. As the purpose of choosing 𝑄 is to ensure that none of the leading principal minors of 𝑄𝑇 ·ℋ·𝑄
are identically zero. One can check easily whether a good matrix 𝑄 is found.

7 Practical implementation & Experimental results

7.1 Remark on the implementation of Algorithm 3

Recall that Algorithm 3 leads us to compute sample points per connected components of the non-vanishing set of the leading principal
minors (𝑀1, . . . ,𝑀𝛿). Comparing to Algorithm 2 in which we only compute sample points for R𝑡 ∖ 𝑉 (𝑀𝛿), the complexity of
Algorithm 3 contains an extra factor of 𝑑𝑛𝑡 due to the higher number of polynomials given as input to the subroutine SamplePoints.
Even though the complexity bounds of these two algorithms both lie in 𝑑𝑂(𝑛𝑡), the extra factor 𝑑𝑛𝑡 mentioned above sometimes
becomes the bottleneck of Algorithm 3 for tackling practical problems. Therefore, we introduce the following optimization in our
implementation of Algorithm 3.

We start by following exactly the steps (1-4) of Algorithm 3 to obtain the leading principal minors (𝑀1, . . . ,𝑀𝛿) and the polynomial
𝑤∞. Then, by calling the subroutine SamplePoints on the input 𝑀𝛿 ̸= 0 ∧𝑤∞ ̸= 0, we compute a set of sample points (and
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their corresponding numbers of real roots) {(𝜂1, 𝑟1), . . . , (𝜂ℓ, 𝑟ℓ)} that solves the weak-version of Problem (1). We obtain from this
output all the possible numbers of real roots that the input system can admit.

For each value 0 ≤ 𝑟 ≤ 𝛿, we define

Φ𝑟 = {𝜎 = (𝜎1, . . . , 𝜎𝛿) ∈ {−1, 1}𝛿 | the sign variation of 𝜎 is (𝛿 − 𝑟)/2}.

If 𝑟 ̸≡ 𝛿 (mod 2), Φ𝑟 = ∅.

For 𝜎 ∈ Φ𝑟 and 𝜂 ∈ R𝑡 ∖ 𝑉 (𝑤∞) such that sign (𝑀𝑖(𝜂)) = 𝜎𝑖 for every 1 ≤ 𝑖 ≤ 𝛿, the signature ofℋ(𝜂) is 𝑟. As a consequence,
for any 𝜂 in the semi-algebraic set defined by

(𝑤∞ ̸= 0) ∧ (∨𝜎∈Φ𝑟 (∧
𝛿
𝑖=1sign (𝑀𝑖) = 𝜎𝑖)),

the system 𝑓(𝜂, .) has exactly 𝑟 distinct real solutions.

Therefore, (𝒮𝑟𝑖)1≤𝑖≤ℓ is a collection of semi-algebraic sets solving Problem (1). Then, we can simply return {(Φ𝑟𝑖 , 𝜂𝑖, 𝑟𝑖) | 1 ≤
𝑖 ≤ ℓ} as the output of Algorithm 3 without any further computation. Note that, by doing so, we may return sign conditions which
are not realizable.

We discuss now about the complexity aspect of the steps described above. For 𝑟 ≡ 𝛿 (mod 2), the cardinal of Φ𝑟 is
(︀

𝛿
(𝛿−𝑟−2)/2

)︀
.

In theory, the total cardinal of all the Φ𝑟𝑖 ’s (1 ≤ 𝑖 ≤ ℓ) can go up to 2𝛿−1, which is doubly exponential in the number of variables 𝑛.
However, in the instances that are actually tractable by the current state of the art, 2𝛿 is still smaller than 𝛿3𝑡. And when it is the case,
following this approach has better performance than computing the sample points of the semi-algebraic set defined by ∧𝛿

𝑖=1𝑀𝑖 ̸= 0.
Otherwise, when 2𝛿 exceeds 𝛿3𝑡, we switch back to the computation of sample points.

This implementation of Algorithm 3 does not change the complexity bound given in Theorem I.

7.2 Implementation infrastructure

To implement our algorithm, we need three main ingredients: (i) Gröbner bases computations, in order to obtain monomial basis of
quotient algebras that we use to compute our parametrized Hermite matrices, (ii) an implementation of an algorithm computing
sample points connected components of semi-algebraic sets, (iii) a computer algebra system to manipulate polynomials and matrices.

In our implementation, we use the MAPLE computer algebra system and its programming language to implement the overall
algorithm. We use J.-Ch Faugère’s FGB library [21], implemented in C, for computing Gröbner bases.

In order to compute sample points per connected components of semi-algebraic sets, we use the RAGLIB [40] (Real Algebraic
Library) package which is implemented using the MAPLE programming language and the FGB library. The algorithm implemented
therein is the one of [19] and its complexity remains to be established. Even if they share similar ingredients, it is not the same as the
one of Section 3 which provides the state-of-the-art complexity result for this problem. Hence, our implementation might not meet
the best promised by complexity results. Still, we see in the experiments below that it already can tackle problems which are out of
reach of the current software state-of-the-art.

7.3 Experiments

This subsection provides numerical results of several algorithms related to the real root classification. We report on the performance
of each algorithm for different test instances.

The computation is carried out on a computer of Intel(R) Xeon(R) CPU E7-4820 2GHz and 1.5 TB of RAM. The timings are given
in seconds (s.), minutes (m.) and hours (h.). The symbol∞ means that the computation cannot finish within 120 hours.

Throughout this subsection, the column HERMITE reports on the computational data of our algorithms based on parametric Hermite
matrices described in Section 5. It uses the notations below:

- MAT: the timing for computing a parametric Hermite matrixℋ.

- DET: the runtime for computing the determinant ofℋ.

- MIN: the timing for computing the leading principal minors ofℋ .

- SP: the runtime for computing at least one points per each connected component of the semi-algebraic set R𝑡 ∖𝑉 (det(ℋ)).
- DEG: the highest degree among the leading principal minors ofℋ.

Generic systems In this paragraph, we report on the results obtained with generic inputs, i.e., randomly chosen dense polynomials
(𝑓1, . . . , 𝑓𝑛) ⊂ Q[𝑦1, . . . , 𝑦𝑡][𝑥1, . . . , 𝑥𝑛]. The total degrees of input polynomials are given as a list 𝑑 = [deg(𝑓1), . . . , deg(𝑓𝑛)].

We first compare the algorithms using Hermite matrices (Section 5) with the folklore Sturm-based algorithm sketched in the
introduction for solving Problem (1). The column STURM of Fig. (1) shows the experimental results of the Sturm-based algorithm. It
contains the following sub-columns:

- ELIM: the timing for computing the eliminating polynomial.
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- SRES: the timing for computing the subresultant coefficients in the Sturm-based algorithm.

- SP-S: the timing for computing sample points per connected components of the non-vanishing set of the last subresultant
coefficient.

- DEG-S: the highest degree among the subresultant coefficients.

We observe that the sum of MAT-H and MIN-H is smaller than the sum of ELIM and SRES. Hence, obtaining the input for the sample
point computation in HERMITE strategy is easier than in STURM strategy. We also remark that the degree DEG-H is much smaller than
DEG-S, that explains why the computation of sample points using Hermite matrices is faster than using the subresultant coefficients.

We conclude that the parametric Hermite matrix approach outperforms the Sturm-based one both on the timings and the degree of
polynomials in the output formulas.

𝑡 𝑑 HERMITE STURM
MAT MIN SP total DEG ELIM SRES SP-S total DEG-S

2 [2, 2] .07 s .01 s .3 s .4 s 8 .01 s .1 s 2 s 2.2 s 12
2 [3, 2] .1 s .12 s 4.8 s 5 s 18 .05 s .5 s 15 s 16 s 30
2 [2, 2, 2] .3 s .3 s 33 s 34 s 24 .08 s 2 s 8 m 8 m 56
2 [3, 3] .3 s .8 s 3 m 3 m 36 .1 s 3 s 20 m 20 m 72

3 [2, 2] .1 s .02 s 26 s 27 s 8 .07 s .1 s 40 s 40 s 12
3 [3, 2] .2 s .2 s 3 h 3 h 18 .1 s 1 s ∞ ∞ 30
3 [2, 2, 2] .5 s 7 s 32 h 32 h 24 .15 s 10 m ∞ ∞ 56
3 [4, 2] .6 s 12 s 90 h 90 h 32 .2 s 12 m ∞ ∞ 56
3 [3, 3] 1 s 27 s ∞ ∞ 36 .2 s 15 m ∞ ∞ 72

Figure 1: Generic random dense systems

In Fig. (2), we compare our algorithm using parametric Hermite matrices with two Maple packages for solving parametric polynomial
systems: ROOTFINDING[PARAMETRIC] [22] and REGULARCHAINS[PARAMETRICSYSTEMTOOLS] [48]. The new notations used
in Fig. (2) are explained below.

• The column RF stands for the ROOTFINDING[PARAMETRIC] package. To solve a parametric polynomial systems, it
consists of computing a discriminant variety 𝒟 and then computing an open CAD of R𝑡 ∖ 𝒟. This package does not return
explicit semi-algebraic formulas but an encoding based on the real roots of some polynomials.
This column contains:

- DV : the runtime of the command DISCRIMINANTVARIETY that computes a set of polynomials defining a discriminant
variety 𝒟 associated to the input system.

- CAD : the runtime of the command CELLDECOMPOSITION that outputs semi-algebraic formulas by computing an
open CAD for the semi-algebraic set R𝑡 ∖ 𝒟.

∙ The column RC stands for the REGULARCHAINS[PARAMETRICSYSTEMTOOLS] package of Maple. The algorithms
implemented in this package is given in [48]. It also contains two sub-columns:

- BP : the runtime of the command BORDERPOLYNOMIAL that returns a set of polynomials.
- RRC : the runtime of the command REALROOTCLASSIFICATION. We call this command with the option
output=‘samples’ to compute at least one point per connected component of the complementary of the real
algebraic set defined by border polynomials.

Note that, in a strategy for solving the weak-version of Problem (1), DISCRIMINANTVARIETY and BORDERPOLYNOMIAL can be
completely replaced by parametric Hermite matrices.

On generic systems, the determinant of our parametric Hermite matrix coincides with the output of DISCRIMINANTVARIETY, which
we denote by 𝑤. Whereas, because of the elimination BORDERPOLYNOMIAL returns several polynomials, one of them is 𝑤.

In Fig. (2), the timings for computing a parametric Hermite matrix is negligible. Comparing the columns DET, DV and BP,
we remark that the time taken to obtain 𝑤 through the determinant of parametric Hermite matrices is much smaller than using
DISCRIMINANTVARIETY or BORDERPOLYNOMIAL.

For computing the polynomial 𝑤, using parametric Hermite matrices allows us to reach the instances that are out of reach of
DISCRIMINANTVARIETY, for example, the instances {𝑡 = 3, 𝑑 = [2, 2, 2]}, {𝑡 = 3 𝑑 = [4, 2]}, {𝑡 = 3, 𝑑 = [3, 3]} and
{𝑡 = 4, 𝑑 = [2, 2]} in Fig. (2) below. Moreover, we succeed to compute the semi-algebraic formulas for {𝑡 = 3, 𝑑 = [2, 2, 2]},
{𝑡 = 3 𝑑 = [4, 2]} and {𝑡 = 4, 𝑑 = [2, 2]}. Using the implementation in Subsection 7.1, we obtain the semi-algebraic formulas of
degrees bounded by deg(𝑤).

Therefore, for these generic systems, our algorithm based on parametric Hermite matrices outperforms DISCRIMINANTVARIETY
and BORDERPOLYNOMIAL for obtaining a polynomial that defines the boundary of semi-algebraic sets over which the number of
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real solutions are invariant. Moreover, using the minors of parametric Hermite matrices, we can compute semi-algebraic formulas of
problems that are out of reach of CELLDECOMPOSITION and REALROOTCLASSIFICATION.

𝑡 𝑑 HERMITE RF RC
MAT DET SP total DEG DV CAD total BP RRC total

2 [2, 2] .07 s .01 s .3 s .4 s 8 .1 s .3 s .4 s .1 s 1 s 1.1 s
2 [3, 2] .1 s .2 s 4.8 s 5 s 18 1 m 5 s 1 m .3 s 12 s 12 s
2 [2, 2, 2] .3 s .3 s 33 s 34 s 24 17m 32 s 17m 23 s 2 m 2 m
2 [3, 3] .3 s .8 s 3 m 3 m 36 2 h 4 m 2 h 8 s 4 m 4 m

3 [2, 2] .1 s .02 s 26 s 27 s 8 1 s 35 s 36 s .2 s 12m 12m
3 [3, 2] .2 s .2 s 3 h 3 h 18 2 h 84 h 86 h 3 s 37 h 37 h
3 [2, 2, 2] .5 s 7 s 32 h 32 h 24 ∞ ∞ ∞ 20m ∞ ∞
3 [4, 2] .6 s 12 s 90 h 90 h 32 ∞ ∞ ∞ 12m ∞ ∞
3 [3, 3] .7 s 27 s ∞ ∞ 36 ∞ ∞ ∞ 15m ∞ ∞
4 [2, 2] .2 s .1 s 8 m 8 m 8 4 s ∞ ∞ 1 s ∞ ∞

Figure 2: Generic random dense systems

In what follows, we consider the systems coming from some applications as test instances. These examples allow us to observe the
behavior of our algorithms on non-generic systems.

Kuramoto model This application is introduced in [34], which is a dynamical system used to model synchronization among
some given coupled oscillators. Here we consider only the model constituted by 4 oscillators. The maximum number of real solutions
of steady-state equations of this model was an open problem before it is solved in [28] using numerical homotopy continuation
methods. However, to the best of our knowledge, there is no exact algorithm that is able to solve this problem. We present in what
follows the first solution using symbolic computation. Moreover, our algorithm can return the semi-algebraic formulas defining the
regions over which the number of real solutions is invariant.

As explained in [28], we consider the system 𝑓 of the following equations{︂
𝑦𝑖 −

∑︀4
𝑗=1(𝑠𝑖𝑐𝑗 − 𝑠𝑗𝑐𝑖) = 0

𝑠2𝑖 + 𝑐2𝑖 = 1
for 1 ≤ 𝑖 ≤ 3,

where (𝑠1, 𝑠2, 𝑠3) and (𝑐1, 𝑐2, 𝑐3) are variables and (𝑦1, 𝑦2, 𝑦3) are parameters. We are asked to compute the maximum number of
real solutions of 𝑓(𝜂, .) when 𝜂 varies over R3. This leads us to solve the weak version of Problem (1) for this parametric system.

We first construct the parametric Hermite matrixℋ associated to this system. This matrix is of size 14× 14. The polynomial 𝑤∞
has the factors 𝑦1 + 𝑦2, 𝑦2 + 𝑦3, 𝑦3 + 𝑦1 and 𝑦1 + 𝑦2 + 𝑦3. The polynomial 𝑤ℋ has degree 48 (c.f. [28]). We denote by 𝑤 the
polynomial 𝑤∞ ·𝑤ℋ.

Note that the polynomial system has real roots only if |𝑦𝑖| ≤ 3 (c.f. [28]). So we only need to consider the compact connected
components of R3 ∖ 𝑉 (𝑤). Since the polynomial 𝑤 is invariant under any permutation acting on (𝑦1, 𝑦2, 𝑦3), we exploit this
symmetry to accelerate the computation of sample points.

Following the critical point method, we compute the critical points of the map (𝑦1, 𝑦2, 𝑦3) ↦→ 𝑦1 + 𝑦2 + 𝑦3 restricted to R3 ∖ 𝑉 (𝑤);
this map is also symmetric. We apply the change of variables

(𝑦1, 𝑦2, 𝑦3) ↦→ (𝑒1, 𝑒2, 𝑒3),

where 𝑒1 = 𝑦1 + 𝑦2 + 𝑦3, 𝑒2 = 𝑦1𝑦2 + 𝑦2𝑦3 + 𝑦3𝑦1 and 𝑒3 = 𝑦1𝑦2𝑦3 are elementary symmetric polynomials of (𝑦1, 𝑦2, 𝑦3). This
change of variables reduces the number of distinct solutions of zero-dimensional systems involved in the computation and, therefore,
reduces the computation time.

From the sample points obtained by this computation, we derive the possible number of real solutions and conclude that the system
𝑓 has at most 10 distinct real solutions when (𝑦1, 𝑦2, 𝑦3) varies over R3 ∖ 𝑉 (𝑤). This agrees with the result given in [28]. We show
below a list of parameter values such that the system has respectively 2, 4, 6, 8 and 10 distinct real solutions.

Number of solutions (𝑦1, 𝑦2, 𝑦3)

2 solutions [−2,−0.03, 0.22]
4 solutions [1,−0.09, 0.16]
6 solutions [0,−0.7,−0.48]
8 solutions [0.08,−0.03, 0.22]
10 solutions

[︀
274945023031
2199023255552

, −68723139707
549755813888

, −549808278091
4398046511104

]︀
Fig. (3) reports on the timings for computing the parametric Hermite matrix (MAT), for computing its determinant (DET) and for
computing the sample points (SP). We stop both of the commands DISCRIMINANTVARIETY and BORDERPOLYNOMIAL after 240
hours without obtaining the polynomial 𝑤.
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HERMITE DV BP
MAT DET SP total
2 m 1 h 85 h 86 h ∞ ∞

Figure 3: Kuramoto model for 4 oscillators

Static output feedback The second non-generic example comes from the problem of static output feedback [29]. Given the

matrices 𝐴 ∈ Rℓ×ℓ, 𝐵 ∈ Rℓ×2, 𝐶 ∈ R1×ℓ and a parameter vector 𝑃 =

[︂
𝑦1
𝑦2

]︂
∈ R2, the characteristic polynomial of 𝐴+ 𝐵𝑃𝐶

writes
𝑓(𝑠,𝑦) = det(𝑠𝐼𝑙 −𝐴−𝐵𝐾𝐶) = 𝑓0(𝑠) + 𝑦1𝑓1(𝑠) + 𝑦2𝑓2(𝑠),

where 𝑠 is a complex variable.

We want to find a matrix 𝑃 such that all the roots of 𝑓(𝑠,𝑦) must lie in the open left half-plane. By substituting 𝑠 by 𝑥1 + 𝑖𝑥2, we
obtain the following system of real variables (𝑥1, 𝑥2) and parameters (𝑦1, 𝑦2):⎧⎨⎩ ℜ(𝑓(𝑥1 + 𝑖𝑥2,𝑦)) = 0

ℑ(𝑓(𝑥1 + 𝑖𝑥2,𝑦)) = 0
𝑥1 < 0

Note that the total degree of these equations equals ℓ.

We are now interested in solving the weak-version of Problem (1) on the system ℜ(𝑓) = ℑ(𝑓) = 0. We observe that this system
satisfies Assumptions (A) and (B). Let ℋ be the parametric Hermite matrix ℋ of this system with respect to the usual basis we
consider in this paper. This matrixℋ behaves very differently from generic systems.

Computing the determinant ofℋ (which is an element of Q[𝑦]) and taking its square-free part allows us to obtain the same output
𝑤 as DISCRIMINANTVARIETY. However, this direct approach appears to be very inefficient as the determinant appears as a large
power of the output polynomial.

For example, for a value ℓ, we observe that the system consists of two polynomials of degree ℓ. The determinant ofℋ appears as
𝑤2ℓ, where 𝑤 has degree 2(ℓ− 1). The bound we establish on the degree of this determinant is 2(ℓ− 1)ℓ2, which is much larger
than what happens in this case. Therefore, we need to introduce the optimization below to adapt our implementation of Algorithm 2
to this problem.

We observe that, on these examples, the polynomial 𝑤 can be extracted from a smaller minor instead of computing the determinant
ℋ. To identify such a minor, we reduceℋ to a matrix whose entries are univariate polynomials with coefficients lying in a finite field
Z/𝑝Z as follow.

Let 𝑢 be a new variable. We substitute each 𝑦𝑖 by random linear forms in Q[𝑢] inℋ and then computeℋ mod 𝑝. Then, the matrix
ℋ is turned into a matrix ℋ𝑢 whose entries are elements of Z/𝑝Z[𝑢]. The computation of the leading principal minors of ℋ𝑢 is
much easier than the one ofℋ since it involves only univariate polynomials and does not suffer from the growth of bit-sizes as for
the rational numbers.

Next, we compute the sequence of the leading principal minors ofℋ𝑢 in decreasing order, starting from the determinant. Once we
obtain a minor, of some size 𝑟, that is not divisible by 𝑤𝑢, we stop and take the index 𝑟 + 1. Then, we compute the square-free part
of the (𝑟 + 1)× (𝑟 + 1) leading principal minor of ℋ, which can be done through evaluation-interpolation method. This yields
a Monte Carlo implementation that depends on the choice of the random linear forms in Q[𝑢] and the finite field to compute the
polynomial 𝑤.

In Fig. (4), we report on some computational data for the static output feedback problem. Here we choose the prime 𝑝 to be
65521 so that the elements of the finite field Z/𝑝Z can be represented by a machine word of 32 bits. We consider different values
of ℓ and the matrices 𝐴,𝐵,𝐶 are chosen randomly. On these examples, our algorithm returns the same output as the one of
DISCIMINANTVARIETY. Whereas, BORDERPOLYNOMIAL (BP) returns a list of polynomials which contains our output and other
polynomials of higher degree.

The timings of our algorithm are given by the two following columns:

• The column MAT shows the timings for computing parametric Hermite matricesℋ.

• The column COMP-W shows the timings for computing the polynomials 𝑤 fromℋ using the strategy described as above.

We observe that our algorithm (MAT + COMP-W) wins some constant factor comparing to DISCRIMINANTVARIETY (DV). On the
other hand, BORDERPOLYNOMIAL (BP) performs less efficiently than the other two algorithms in these examples.

Since the degrees of the polynomials 𝑤 here (given as DEG-W) are small comparing with the bounds in the generic case. Hence,
unlike the generic cases, the computation of the sample points in these problems is negligible as being reported in the column SP.

Acknowledgments We thank the anonymous reviewers for their comments which helped to improve a lot the initial submission.

27



ℓ HERMITE DV BP SP DEG-W
MAT COMP-W total

5 2 s 1 s 3 s 30 s 1.5 m .2 s 8
6 12 s 5 s 17 s 90 s 30 m .4 s 10
7 1 m 6 m 7 m 16 m 4 h 1 s 12
8 4 m 50 m 1 h 1.5 h 34 h 3 s 14

Figure 4: Static output feedback

References
[1] ALMAN, J., AND WILLIAMS, V. V. A refined laser method and faster matrix multiplication. In Proceedings of the Thirty-

Second Annual ACM-SIAM Symposium on Discrete Algorithms (USA, 2021), SODA ’21, Society for Industrial and Applied
Mathematics, p. 522–539.

[2] BARDET, M. Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie. Theses,
Université Pierre et Marie Curie - Paris VI, Dec. 2004.

[3] BARDET, M., FAUGÈRE, J.-C., AND SALVY, B. On the complexity of the F5 Gröbner basis algorithm. Journal of Symbolic
Computation 70 (2015), 49–70.

[4] BASU, S., POLLACK, R., AND ROY, M.-F. Algorithms in Real Algebraic Geometry (Algorithms and Computation in
Mathematics). Springer-Verlag, Berlin, Heidelberg, 2006.

[5] BAYER, D., AND STILLMAN, M. A theorem on refining division orders by the reverse lexicographic order. Duke Math. J. 55,
2 (06 1987), 321–328.

[6] BONNARD, B., FAUGÈRE, J.-C., JACQUEMARD, A., SAFEY EL DIN, M., AND VERRON, T. Determinantal sets, singularities
and application to optimal control in medical imagery. In Proceedings of the ACM on International Symposium on Symbolic
and Algebraic Computation (2016), pp. 103–110.

[7] BROWN, C. W., AND DAVENPORT, J. H. The complexity of quantifier elimination and cylindrical algebraic decomposition.
In Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation (New York, NY, USA, 2007),
ISSAC ’07, Association for Computing Machinery, p. 54–60.

[8] CANNY, J. F., KALTOFEN, E., AND YAGATI, L. Solving systems of nonlinear polynomial equations faster. In Proceedings
of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation (New York, NY, USA, 1989),
ISSAC ’89, Association for Computing Machinery, p. 121–128.

[9] COLLINS, G. E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition: a synopsis. ACM SIGSAM
Bulletin 10, 1 (1976), 10–12.

[10] CORVEZ, S., AND ROUILLIER, F. Using computer algebra tools to classify serial manipulators. In International Workshop on
Automated Deduction in Geometry (2002), Springer, pp. 31–43.

[11] COSTE, M., AND SHIOTA, M. Thom’s first isotopy lemma: a semialgebraic version, with uniform bounds(real singularities
and real algebraic geometry). RIMS Kokyuroku 815 (dec 1992), 176–189.

[12] COX, D. A., LITTLE, J., AND O’SHEA, D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic
Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-Verlag, Berlin, Heidelberg, 2007.

[13] DAHAN, X., AND SCHOST, É. Sharp estimates for triangular sets. In Symbolic and Algebraic Computation, International
Symposium ISSAC 2004, Santander, Spain, July 4-7, 2004, Proceedings (2004), J. Gutierrez, Ed., ACM, pp. 103–110.

[14] DAVENPORT, J. H., AND HEINTZ, J. Real quantifier elimination is doubly exponential. J. Symb. Comput. 5, 1–2 (Feb. 1988),
29–35.

[15] ELLIOTT, J., GIESBRECHT, M., AND SCHOST, É. On the bit complexity of finding points in connected components of a
smooth real hypersurface. In ISSAC ’20: International Symposium on Symbolic and Algebraic Computation, Kalamata, Greece,
July 20-23, 2020 (2020), I. Z. Emiris and L. Zhi, Eds., ACM, pp. 170–177.

[16] FAUGÈRE, J., GAUDRY, P., HUOT, L., AND RENAULT, G. Polynomial systems solving by fast linear algebra. CoRR
abs/1304.6039 (2013).

[17] FAUGERE, J.-C. A new efficient algorithm for computing Gröbner bases (F4). Journal of pure and applied algebra 139, 1-3
(1999), 61–88.

[18] FAUGÈRE, J. C. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In Proceedings of the
2002 international symposium on Symbolic and algebraic computation (2002), pp. 75–83.

[19] FAUGÈRE, J.-C., MOROZ, G., ROUILLIER, F., AND SAFEY EL DIN, M. Classification of the perspective-three-point problem,
discriminant variety and real solving polynomial systems of inequalities. In Proceedings of the twenty-first international
symposium on Symbolic and algebraic computation (2008), pp. 79–86.

28



[20] FAUGÈRE, J.-C., SAFEY EL DIN, M., AND SPAENLEHAUER, P.-J. On the complexity of the generalized minrank problem.
Journal of Symbolic Computation 55 (2013), 30–58.

[21] FAUGÈRE, J.-C. FGb: A Library for Computing Gröbner Bases. In Mathematical Software - ICMS 2010 (Berlin, Heidelberg,
September 2010), K. Fukuda, J. Hoeven, M. Joswig, and N. Takayama, Eds., vol. 6327 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 84–87.

[22] GERHARD, J., JEFFREY, D. J., AND MOROZ, G. A package for solving parametric polynomial systems. ACM Commun.
Comput. Algebra 43, 3/4 (June 2010), 61–72.

[23] GHYS, É., AND RANICKI, A. Signatures in algebra, topology and dynamics. Ensaios Matemáticos 30 (2016), 1 – 173.

[24] GIANNI, P. M., AND TEO MORA, T. Algebraic solution of systems of polynomial equations using Gröebner bases. In Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes, 5th International Conference, AAECC-5, Menorca, Spain, June
15-19, 1987, Proceedings (1987), pp. 247–257.

[25] GIUSTI, M., HEINTZ, J., MORAIS, J. E., AND PARDO, L. M. When polynomial equation systems can be "solved" fast? In
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC-11, Paris, France,
July 17-22, 1995, Proceedings (1995), pp. 205–231.

[26] GIUSTI, M., LECERF, G., AND SALVY, B. A gröbner free alternative for polynomial system solving. Journal of complexity
17, 1 (2001), 154–211.

[27] HARDT, R. M. Semi-algebraic local-triviality in semi-algebraic mappings. American Journal of Mathematics 102, 2 (1980),
291–302.

[28] HARRIS, K., HAUENSTEIN, J. D., AND SZANTO, A. Smooth points on semi-algebraic sets, 2020.

[29] HENRION, D., AND SEBEK, M. Plane geometry and convexity of polynomial stability regions. In Proceedings of the
Twenty-First International Symposium on Symbolic and Algebraic Computation (New York, NY, USA, 2008), ISSAC ’08,
Association for Computing Machinery, p. 111–116.

[30] HERMITE, C. Sur le nombre des racines d’une équation algébrique comprises entre des limites données. extrait d’une lettre á
m. borchardt. J. Reine Angew. Math. 52 (1856), 39–51.

[31] JACOBI, C. G. Uber eine elementare transformation eins in bezug auf jedes von zwei variablen-systemen linearen und
homogenen ausdrucks. Journal fur die reine und angewandte Mathematik 53. (1857), 265 – 270.

[32] KALKBRENER, M. On the stability of gröbner bases under specializations. Journal of Symbolic Computation 24, 1 (1997),
51–58.

[33] KRONECKER, L. Grundzüge einer arithmetischen theorie der algebraischen grössen. Journal für die reine und angewandte
Mathematik 92 (1882), 1–122.

[34] KURAMOTO, Y. Self-entrainment of a population of coupled non-linear oscillators. In International Symposium on Mathemati-
cal Problems in Theoretical Physics (Berlin, Heidelberg, 1975), H. Araki, Ed., Springer Berlin Heidelberg, pp. 420–422.

[35] LAZARD, D., AND ROUILLIER, F. Solving parametric polynomial systems. Journal of Symbolic Computation 42, 6 (2007),
636–667.

[36] MORENO-SOCIAS, G. Degrevlex gröbner bases of generic complete intersections. Journal of Pure and Applied Algebra 180,
3 (2003), 263 – 283.

[37] PARDUE, K. Generic sequences of polynomials. Journal of Algebra 324, 4 (2010), 579 – 590.

[38] PEDERSEN, P., ROY, M.-F., AND SZPIRGLAS, A. Counting real zeros in the multivariate case. In Computational Algebraic
Geometry (Boston, MA, 1993), F. Eyssette and A. Galligo, Eds., Birkhäuser Boston, pp. 203–224.

[39] ROUILLIER, F. Solving zero-dimensional systems through the rational univariate representation. Appl. Algebra Eng. Commun.
Comput. 9, 5 (1999), 433–461.

[40] SAFEY EL DIN, M. Real alebraic geometry library, raglib (version 3.4), 2017.

[41] SAFEY EL DIN, M., AND SCHOST, E. Polar varieties and computation of one point in each connected component of a smooth
real algebraic set. In Proc. of the 2003 Int. Symp. on Symb. and Alg. Comp. (NY, USA, 2003), ISSAC ’03, ACM, p. 224–231.

[42] SAFEY EL DIN, M., AND SCHOST, É. A nearly optimal algorithm for deciding connectivity queries in smooth and bounded
real algebraic sets. J. ACM 63, 6 (Jan. 2017), 48:1–48:37.

[43] SAFEY EL DIN, M., AND SCHOST, E. Bit complexity for multi-homogeneous polynomial system solving—application to
polynomial minimization. Journal of Symbolic Computation 87 (2018), 176 – 206.

[44] SCHOST, É. Computing parametric geometric resolutions. Applicable Algebra in Engineering, Communication and Computing
13, 5 (2003), 349–393.

[45] SHAFAREVICH, I. R. Basic Algebraic Geometry 1: Varieties in Projective Space. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[46] SYLVESTER, J. J. A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal
substitution to the form of a sum of positive and negative squares. Philosophical Magazine IV. (1852), 138 – 142.

29



[47] VERRON, T. Regularisation of Gröbner basis computations for weighted and determinantal systems, and application to
medical imagery. Theses, Université Pierre et Marie Curie - Paris VI, Sept. 2016.

[48] YANG, L., HOU, X., AND XIA, B. A complete algorithm for automated discovering of a class of inequality-type theorems.
Science in China Series F Information Sciences 44, 1 (2001), 33–49.

[49] YANG, L., AND XIA, B. Real solution classification for parametric semi-algebraic systems. In Algorithmic Algebra and Logic.
Proceedings of the A3L 2005, April 3-6, Passau, Germany; Conference in Honor of the 60th Birthday of Volker Weispfenning
(2005), A. Dolzmann, A. Seidl, and T. Sturm, Eds., pp. 281–289.

[50] YANG, L., AND ZENG, Z. Equi-cevaline points on triangles. In Computer Mathematics: Proceedings of the Fourth Asian
Symposium (ASCM 2000) (2000), World Scientific Publishing Company Incorporated, p. 130.

[51] YANG, L., AND ZENG, Z. An open problem on metric invariants of tetrahedra. In Proceedings of the 2005 International
Symposium on Symbolic and Algebraic Computation (New York, NY, USA, 2005), ISSAC ’05, Association for Computing
Machinery, p. 362–364.

30


	Introduction
	Problem statement and motivations
	Prior works
	Main results

	Preliminaries
	Computing sample points in semi-algebraic sets defined by the non-vanishing of polynomials
	Parametric Hermite matrices
	Definition
	Gröbner bases and parametric Hermite matrices
	Specialization property of parametric Hermite matrices
	Computing parametric Hermite matrices

	Algorithms for real root classification
	Algorithm for the weak-version of Problem (1)
	Computing semi-algebraic formulas

	Complexity analysis
	Degree bound of parametric Hermite matrices on generic input
	Complexity analysis of our algorithms

	Practical implementation & Experimental results
	Remark on the implementation of Algorithm 3
	Implementation infrastructure
	Experiments


