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We merge computational mechanics’ definition of causal states (predictively-equivalent histories) with
reproducing-kernel Hilbert space (RKHS) representation inference. The result is a widely-applicable method
that infers causal structure directly from observations of a system’s behaviors whether they are over discrete
or continuous events or time. A structural representation—a finite- or infinite-state kernel ϵ-machine—is
extracted by a reduced-dimension transform that gives an efficient representation of causal states and their
topology. In this way, the system dynamics are represented by a stochastic (ordinary or partial) differential
equation that acts on causal states. We introduce an algorithm to estimate the associated evolution operator.
Paralleling the Fokker-Plank equation, it efficiently evolves causal-state distributions and makes predictions in
the original data space via an RKHS functional mapping. We demonstrate these techniques, together with their
predictive abilities, on discrete-time, discrete-value infinite Markov-order processes generated by finite-state
hidden Markov models with (i) finite or (ii) uncountably-infinite causal states and (iii) continuous-time,
continuous-value processes generated by thermally-driven chaotic flows. The method robustly estimates causal
structure in the presence of varying external and measurement noise levels and for very high dimensional data.

Computational mechanics is a mathematical
framework for pattern discovery that describes
how information is stored, structured, and
transformed in a physical process. Its
constructive application to observed data has
been demonstrated for some time. Until
now, though, success was limited by the need
to strongly discretize observations or discover
state-space generating partitions for correct
symbolic dynamics. Exploiting modern machine-
learning foundations in functional analysis, we
broadly extend computational mechanics to
inferring models of many distinct classes of
structured process, going beyond fully-discrete
data to processes with continuous data and
those measured by heterogeneous instruments.
Equations of motion for the evolution of process
states can also be reconstructed from data. The
method successfully recovers a process’s causal
states and its dynamics in both discrete and
continuous cases, including the recovery of noisy,
high-dimensional chaotic attractors.

a)Electronic mail: nicolas.brodu@inria.fr
b)Electronic mail: chaos@ucdavis.edu

I. INTRODUCTION

At root, the physical sciences and engineering turn on
successfully modeling the behavior of a physical system
from observations. Noting that they have been successful
in this is an understatement, at best. That success begs
a deep question, though—one requiring careful reflection.
How, starting only from measurements, does one construct
a model for behavioral evolution consistent with the given
data?
Not surprisingly, dynamical-model inference has been
tackled via a variety of theoretical frameworks. However,
most approaches make strong assumptions about the
internal organization of the data-generating process:
Fourier analysis assumes a collection of exactly-periodic
oscillators; Laplace transforms, a collection of exponential
relaxation processes; feed-forward neural networks,
linearly-coupled threshold units. We are all familiar with
the results: A method is very successful when the data
generator is in the assumed model class. The question
begged in this is that one must know something—for
some process classes, quite a lot— about the data before
starting a successful analysis. And, if the wrong model
class is assumed, this strategy tells one vanishingly little
or nothing about how to find the correct one. This form
of model inference is what we call pattern recognition:
Does the assumed model class fairly represent the data
and, in particular, the generator’s organization?
At some level of abstraction, one cannot escape these
issues. Yet, the assumptions required by our framework
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are sufficiently permissive that we can attempt pattern
discovery, in contrast with pattern recognition. Can
we learn new structures, not assumed? Can we extract
efficient representations of the data and their evolution?
Do these yield optimal predictions?
Framed this way, it is not surprising that contemporary
model inference is an active research area—one in which
success is handsomely rewarded. Indeed, it is becoming
increasingly important in our current era of massive data
sets and cloud computing.
The following starts from and then extends computational
mechanics1,2—a mathematical framework that lays out
the foundations for pattern discovery. The core
idea is to statistically describe a system’s evolution
in terms of causally-equivalent states—effective states,
built only from given data, that lead to the same
consequences in a system’s future. Its theorems state
that causal states and their transition dynamic can be
reconstructed from data, giving the minimal, optimally-
predictive model.3 Constructively, for discrete-event,
discrete-time or continuous-time processes computational
mechanics delineates the minimal causal representations—
their ϵ-machines.4,5 This leaves open, for example,
ϵ-machines for the rather large and important class of
continuous-value, continuous-time processes and also
related spatiotemporal processes. The practical parallel
to these remaining challenges is that currently there is no
single algorithm that reconstructs ϵ-machines from data
in a reasonable time and without substantial discrete
approximations.6–8

Thus, one goal of the following is to extend computational
mechanics beyond its current domains to continuous
time and arbitrary data. This results in a new class of
inference algorithm for kernel ϵ-machines that, notably,
can be less resource-demanding than their predecessors.
At the very least, the algorithms work with a set of
weaker assumptions about the given data, extending
computational mechanics’ structural representations to
previously inaccessible applications with continuous data.
One of the primary motivations for using ϵ-machine
representations in the first place is not modeling. Rather,
once in hand, their mathematical properties allow
direct and efficient estimation of a range of statistical,
information-theoretic, and thermodynamic properties of
a process. This latter benefit, however, is not the focus of
the following; rather those goals are the target of sequels.
In the new perspective, kernel ϵ-machines are analogous
to models associated with Langevin dynamics, that act on
a set of state variables representing system configurations.
The new continuous kernel ϵ-machines can also be written
in the form of a stochastic differential equation (SDE)
that acts instead on the predictively-equivalent causal

states. Similarly, a Fokker-Planck equation describing
the evolution of a distribution over causal states can be
defined. It is then used to infer the evolution from an
initial probability distribution over the model’s internal
states (be it a real distribution induced by uncertainty or
a delta function), which is then used to make predictions
in the original data space.
The next Section recalls the minimal set of computational
mechanics required for the full development. Section III B
establishes that the space of causal states has a natural
metric and a well-defined measure using reproducing
kernel Hilbert spaces. This broadly extends computational
mechanics to many kinds of process, from discrete-value
and -time to continuous-value and -time and everywhere in
between, including spatiotemporal and network dynamical
systems. Section IV then presents the evolution equations
and discusses how to infer from empirical data the
evolution operator for system-state distributions. Section
VI demonstrates how to apply the algorithm to discover
optimal models from realizations of discrete-time, discrete-
value infinite Markov-order process generated by finite-
state hidden Markov models of varying complexity and
continuous-time, continuous-value processes generated by
thermally-driven deterministic chaotic flows.

II. COMPUTATIONAL MECHANICS: A SYNOPSIS

We first describe the main objects of study in
computational mechanics—stochastic processes. Then
we define the effective or causal states and their transition
dynamics directly in terms of predicting a process’
realizations.

A. Processes

Though targeted to discover a stochastic process’ intrinsic
structure, computational mechanics takes the task of
predicting a process as its starting point. To describe
how a process’ structure is discovered within a purely
predictive framework, we introduce the following setup.
Consider a system of interest whose behaviors we observe
over time t. We describe the set of behaviors as a
stochastic process P. We require that the process is
nonanticipatory: There exists a natural filtration—i.e.,
an ordered (discrete or continuous) set of indices t ∈ T
associated to time—such that the observed behaviors of
the system of interest only depend on past times.
P ’s observed behaviors are described by random variables
X, indexed by t and denoted by a capital letter. A
particular realization Xt = x ∈ X is denoted via lowercase
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letter. We assume X is defined on the measurable space(
X ,BX , νX ), where the domain X of X’s values could be a

discrete alphabet or a continuous set. X is endowed with a
reference measure νX over its Borel sets BX . In particular,
P’s measure νX applies to time blocks: {Pr(Xa<t≤b) :
a < b, a, b ∈ T }.

The process (Xt)t∈T is the main object of study. We
associate the present to a specific time t ∈ T that we map
to 0, without loss of generality. We refer to a process’
past Xt≤0 and its future Xt>0. In particular, we allow
T = R and infinite past or future sequences.

Beyond the typical setting in which an observation x is a
simple scalar, here realizations Xt=0 = x can encode, for
example, a vector x = [(mi)t≤0]i=1...M of M measured
time series (mi)t≤0, each from a different sensor mi, up to
t = 0. Often, though, there are reasons to truncate such
observation templates to a fixed-length past. Take, for
example, the case of exponentially decaying membrane
potentials where x measures a neuron’s electric activity9

or a lattice of spins with decaying spatial correlations.
After several decay epochs, the templates can often be
profitably truncated.

To emphasize, this contrasts with related works—e.g.,
Ref. 10—in that we need not consider Xt to be only the
presently-observed value nor, for that matter, Yt = Xt+1
to be its successor in a time series. Rather, Xt could be
the full set of observations up to time t. This leads to a
substantial conceptual broadening, the consequences of
which are detailed in Refs. 1–3.

B. Predictions

As just argued, we consider that random variable Xt

contains information available from observing a system
up to time t. At this stage, we just have given data and we
have made no assumptions about its utility for prediction.
Consider another random variable Y that describes system
observations we wish to predict from X. A common
example would be future sequences (possibly truncated,
as just noted) that occur at times t > 0. We also assume
Y is defined on a measurable space

(
Y,BY , νY

)
.

A prediction then is the distribution of outcomes Y

given observed system configuration X = x at time t,
denoted Pr (Y |Xt = x). The same definition extends
to nontemporal predictive settings by changing t to the
relevant quantity over which observations are collected;
e.g., indices for pixels in an image.

C. Process Types

A common restriction on processes is that they are
stationary—the same realization xt at different times
t occurs with the same probability.

Definition 1 (Stationarity). A process (Xt)t∈T is
stationary if, at all times t′ ̸= t, the same distribution
of its values is observed: Pr (Xt′ = x) ≡ Pr (Xt = x), for
all x ∈ X and except possibly on a null-measure set.

The following, in contrast with this common assumption,
does not require (Xt)t∈T to be stationary. In point of
fact, such an assumption rather begs the question. Part
of discovering a process’s structure requires determining
from data if such a property holds. However, we assume
the following from realization to realization.

Definition 2 (Conditional Stationarity). A process
(Xt)t∈T is conditionally stationary if, at all times t′ ̸= t,
the same conditional distribution of next values Y is
observed: Pr (Y |Xt′ = x) ≡ Pr (Y |Xt = x), for all x ∈ X
and except possibly on a null-measure set.

That is, conditional stationarity allows marginals Pr (Xt)
to depend on time. But at any given time, for each
realization of the process where the same x is observed,
then the same conditional distribution is also observed.
In a spatially extended context, the hypothesis could also
encompass realizations at different locations for which the
same X = x is observed.

When multiple realizations of the same process are
not available, we will instead consider a limited form
of ergodicity: except for measure zero sets, any one
realization, measured over a long enough period, reveals
the process’ full statistics. In that case, observations of the
same X = x can be collected at multiple times to build a
unique distribution Pr (Y |X = x), now invariant by time-
shifting. It may be that the system undergoes structural
changes: for example, a volcanic chamber slowly evolving
over the course of a few months or weather patterns
evolving as the general long-term climate changes. Then,
we will only assume that the Pr (Y |X = x) distribution
is stable over a long enough time window to allow its
meaningful inference from data. It may slowly evolve over
longer time periods.

If multiple realizations of the same process are available,
this hypothesis may not be needed. Then, only Def. 2’s
conditional stationarity is required for building the system
states according to the method we now introduce.



4

D. Causal states

Finally, we come to the workhorse of computational
mechanics that forms the basis on which a process’
structure is identified.

Definition 3 (Predictive equivalence). Realizations
x and x′ that lead to the same predictions (outcome
distributions) are then gathered into classes ϵ(·) defined
by the predictive equivalence relation ∼ϵ:

ϵ(x) = {x′ ∈ X : Pr (Y |X = x′) ≡ Pr (Y |X = x)} . (1)

In other words, observing two realizations x and x′

means the process is in the same effective state—same
equivalence class—if they lead to the same predictions:

x ∼ϵ x
′ ⇐⇒ Pr (Y |X = x) ≡ Pr (Y |X = x′) . (2)

Speaking in terms of pure temporal processes, two
observed pasts x and x′ that belong to the same predictive
class ϵ(·) are operationally indistinguishable. Indeed, by
definition of the conditional distribution over futures Y ,
no new observation can help discriminate whether the
causal state arose from past x′ or x. For all practical
purposes, these pasts are equivalent, having brought the
process to the same condition regarding future behaviors.

Definition 4 (Causal states1). Since the classes {ϵ(·) :
x ∈ X } induce the same consequences—in particular, the
same behavior distribution Pr (Y |X = x) = Pr (Y |ϵ(x))—
they capture a process’ internal causal dependencies. They
are a process’ causal states σ ∈ S.

Predictive equivalence can then be summarized as the
same causes lead to the same consequences. Thanks to it,
grouping a process’ behaviors X under the equivalence
relation ∼ϵ also gives the minimal partition required for
optimal predictions: further refining the classes of pasts
is useless, as just argued. While, at the same time, each
class is associated to a unique distribution of possible
outcomes.
This setup encompasses both deterministic observations,
where Y = f(X) is fixed and Pr(Y |X = x) becomes a
Dirac distribution with support f(x), as well as stochastic
observations. The source of stochasticity need not be
specified: fundamental laws of nature, lack of infinite
precision in measurements of a chaotic system, and so on.
Beyond identifying a process’ internal structure, predictive
equivalence is important for practical purposes: it ensures
that the partition induced by ∼ϵ on X is stable through
time. Hence, data observed at different times ti may
be exploited to estimate the causal states. In practice,

if the longterm dynamic changes, we assume predictive
equivalence holds over a short time window.
While causal states are rigorously defined as above,
in empirical circumstances one does not know all of
a system’s realizations and so one cannot extract its
causal states. Practically, we assume that the given data
consists of a set of N observations (xi, yi, ti)i=1...N . These
data encode, for each configuration xi at time ti, what
subsequent configuration yi was then observed. The goal
is to recover from such data an approximate set of causal
states that model the system evolution; see, e.g., Refs. 11
and 12.

E. Causal-State Dynamic for Discrete Sequences

For now, assume that the data x ∈ X is a past—a
sequence x =

(
v−LX <t≤0

)
of discrete past values vt ∈ V at

discrete times t ≤ 0. This discrete setting helps introduce
several important concepts, anticipating generalizations
that follow shortly. Indices t are now discrete observation
times, ranging from LX in the past up to the present at
t = 0. We allow LX = ∞ when calculating causal states
analytically on known systems. Similarly, we take y ∈ Y
to be a future—a sequence

(
v0<t≤LY

)
of discrete future

values v ∈ Y that may also be truncated at time LY in
the future.
For discrete-value processes, V becomes an alphabet of
symbols v and X and Y both become semi-infinite (or
truncated) sequences over that alphabet. The transition
from time t0 to time t1 is associated with the observation
of a new symbol v ∈ V.
It should be noted that a surrogate space V can always be
obtained from continuous-value data if regularly sampled
at times ti, for ti+1 = ti + ∆t with a fixed ∆t. In this
case, pairs (xi, xi+1) are equivalent to observing transition
symbols v. There are at most |V| such possible transitions
from the current causal state σ0 = ϵ (x0) to which x0 =
(vt≤0) belongs.
Conditional symbol-emission probabilities Pr (v ∈ V|σ)
are defined (and can be empirically estimated) for each
causal state σ and for each emitted symbol v ∈ V3. Since
σ ∈ S encodes all past influence, by construction state-to-
state transitions do not depend on previous states. That
is, causal states are Markovian in this sense. The dynamic
over causal states is then specified by a set of symbol-
labeled causal-state transition matrices {T (v)

σ,σ′ : σ, σ′ ∈
S, x ∈ V}.
Diagrammatically, the causal states σ form the nodes of
a directed graph whose edges are labeled by elements of
v ∈ V with associated transition probabilities Pr (v|σ).
Moreover, the transitions are unifilar : the current state
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FIG. 1. (Left) State-emitting Hidden Markov models: State
transition probabilities Pr(si|sj) are specified independently
from the symbol-emission probabilities q(a|si) and q(b|sj).
(Right) ϵ-Machines: Symbols are emitted on transitions and
the (causal) states capture dependencies. Unfortunately, for
state-emitting HMMs the number of hidden states is a poor
proxy for structural complexity and is often a meta-parameter
with low interpretability. Since ϵ-machine is unique, so it
directly represents a stochastic process’ intrinsic properties,
such as generated randomness (Shannon entropy rate) and
structural complexity (memory).

σ0 and next symbol ν0 uniquely determine the next state
σ1 = f(σ0, ν0).

F. ϵ-Machines

Taken altogether, the set of causal states and their
transition dynamic define the ϵ-machine.1 Graphically,
they specify the state-transition diagram of an edge-
emitting, unifilar hidden Markov model (HMM). These
differ in several crucial ways from perhaps-more-familiar
state-emitting HMMs.13 For example, symbol emission
in the latter depends on the state and is independent of
state-to-state transition probabilities; see Fig. 1.
The principle reason for using an ϵ-machine is that it
is a process’ optimally-predictive model.3 Specifically,
an ϵ-machine is the minimal, unifilar, and unique edge-
emitting HMM that generates the process.
Notably, ϵ-machines’ Markov property is derived from
the predictive equivalence relation, thanks to the latter’s
conditioning on pasts. More generally, the causal states
are an intrinsic property of a process. They do not reflect a
choice of representation, in contrast to how state-emitting
HMMs are often deployed; again see Fig. 1. The same
holds for state transitions and symbol emissions, all of
which are uniquely inferred from the process.
Given that they make markedly fewer and less restrictive
assumptions, it is not surprising that reconstruction
algorithms for estimating ϵ-machines from data are
more demanding and costly to estimate7,8,14,15 than
performing a standard expectation-maximum estimate
for an hypothesized HMM.16 Most ϵ-machine algorithms
rely on a combination of clustering empirically-estimated
sequence probability distributions Pr (Y |X) together with

splitting the candidate causal states when required for
consistency (unifilarity) of unique emissions Pr(v ∈ V|σ ∈
S).6,17 To date, though, Bayesian inference for ϵ-machines
provides the most reliable estimation and works well on
small data sets.11

We mentioned that ϵ-machines are unifilar edge-emitting
HMMs. Smaller nonunifilar HMMs can exist that are
not predictive, but rather generate data with the same
statistical properties as the given process. However,
one cost in using these smaller HMMs is the loss of
determinacy for which state a process is in, based on
observations. The practical consequence is that the
processes generated by nonunifilar HMMs typically have
an uncountable infinity of causal states. This forces one
to use probabilistic mixed states, which are distributions
over the states of the generating HMM. References 18–
20 develop the theory of mixed states for nonunifilar,
generative HMMs. For simplicity, the following focuses on
processes with finite “predictive” models—the ϵ-machines.
That said, Sec. VI B below analyzes an inference
experiment using a process with an uncountable infinity
of mixed states to probe the algorithm’s performance.

G. Patterns Captured by ϵ-Machines

An ϵ-machine’s hidden states and transitions have a
definite meaning and allow for proper definitions of process
structure and organization—indicators of a process’
complexity.2 For example, we can calculate in closed-
form various information-theoretic measures to quantify
the information conveyed from the past to the future or
that stored in the present.21 In this way, ϵ-machines give
a very precise picture of a process’ information processing
abilities.22,23

More specifically, each causal state’s surprisal can be used
to build powerful data filters.8,24–27 The entropy of the
causal states—the cost of coding them, the statistical
complexity—can be used in entropy-complexity surveys
of whole process families to discriminate purely random
from chaotic data.2 Recent advances in signal processing28

show how processes with arbitrarily complex causal
structures can still exhibit a flat power spectrum, since the
spectrum is the Fourier transform of only the two-point
autocorrelation function. This demonstrates the benefit of
inferring process structure using the full setup presented
above—consider Xt encompassing all information up to
time t and not restricting Xt to a present observation.23,28

However, these benefits have been circumscribed. Many
previous ϵ-machine inference methods work with symbolic
(discrete value) data in discrete time. However, in
practice often we monitor continuous physical processes



6

at arbitrary sampling rates and these measurements can
take a continuum of data values within a range V. In
these cases, estimation algorithms rely on clustering of
causal states by imposing arbitrary boundaries between
discretized groups. However, there may be a fractal set
or continuum of causal states.29 More recent approaches
consider continuous time but keep discrete events, such
as renewal and semi-Markov processes.5,30,31

The method introduced below is, to our knowledge, the
first that is able to estimate causal states for essentially
arbitrary data types and to represent their dynamic
in continuous time. This approach offers alternative
algorithms that provide a radically different set of
assumptions and algorithmic complexity than previous
approaches. While it is also applicable to the discrete
case (see Sec. VI A), it vastly expands computational
mechanics’ applicability to process classes that were
previously inaccessible.

III. CONSTRUCTING CAUSAL STATES USING
REPRODUCING KERNELS

The predictive-equivalence relation implicates conditional
distributions with expressing a process’ structure. To
work directly with conditional distributions, this section
recalls the main results concerning the geometric view
of probability distributions as points in a reproducing-
kernel Hilbert space. Following the method from
Refs. 32 and 33, we describe both unconditional
and conditional distributions. Both are needed in
computational mechanics. Once they are established
in the RKHS setting, we then describe the geometry of
causal states.

A. Distributions as Points in a Reproducing Kernel Hilbert
Space

Consider a function kX of two arguments, defined on
X × X → R (resp., C). Fixing one argument to x ∈ X
and leaving the second free, we consider kX(x, ·) as a
function in the Hilbert space HX from X to R (resp.,
C). If kX is a positive symmetric (resp., sesquilinear)
definite function34, then the reproducing property holds:
For any function f ∈ HX and for all x ∈ X , we have
⟨f, k(x, ·)⟩HX = f(x). Here, ⟨·, ·⟩HX is the inner product
in HX or a completion of HX ; see Ref. 34. HX is known
as the reproducing-kernel Hilbert space (RKHS) associated
with kernel kX .
Kernel functions kX are easy to construct and so have
been defined for a wide variety of data types, including

vectors, strings, graphs, and so on. A product of kernels
corresponds to the direct product of the associated Hilbert
spaces34. Thus, products maintain the reproducing
property. Due to this, it is possible to compose kernels
when working with heterogeneous data types.
Kernels are widely used in machine learning. A
common use is to convert a given linear algorithm, such
as estimating support vector machines, into nonlinear
algorithms.35 Indeed, when a linear algorithm can be
written entirely in terms of inner products, scalings, and
sums of observations x, then it is easy to replace the inner
products in the original space X by inner products in the
Hilbert space HX . The kX(x, ·) functions are then called
feature maps and HX the feature space.
Returning to the original space X , the algorithm now
works with kernel evaluations kX (x1, x2) whenever an
inner product

〈
kX (x1, ·) , kX (x2, ·)

〉
HX is encountered.

In this way, the linear algorithm in HX has been converted
to a nonlinear algorithm in the original space X . Speaking
simply, what was nonlinear in the original space is
linearized in the associated Hilbert space. This powerful
“kernel trick” is at the root of the probability distribution
mapping that we now recall from Ref. 32.

1. Unconditional distributions

Consider a probability distribution Pr(X) of the random
variable X. Then, the average map α ∈ HX of the kernel
evaluations in the RKHS is given by α = EX

[
kX(x, ·)

]
.

Note that for any f ∈ HX :

⟨α, f⟩ =
〈
EX

[
kX(x, ·)

]
, f
〉

= EX

[〈
kX(x, ·), f

〉]
= EX [f(x)] .

An estimator for this average map can be computed simply
as α̂ = 1

N

∑N
i=1 k

X(xi, ·). This estimator is consistent32

and so converges to α in the limit of N → ∞.
Consider now the two-sample test problem: We are given
two sets of samples taken from a priori distinct random
variables A and B, both valued in X but with possibly
different distributions Pr(A) = PA and Pr(B) = PB . Do
these distributions match: PA = PB? This scenario
is a classical statistics problem and many tests were
designed to address it, including the Chi-square and the
Kolmogorov-Smirnov tests.
Using the RKHS setup and the average map, a new test36

is simply to compute the distance between the average
maps using the Hilbert space norm:

∥∥αA − αB
∥∥

HX .
Under suitable mild conditions on the kernel, it can be
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shown36 that
∥∥αA − αB

∥∥
HX = 0 if, and only if, PA = PB

up to a set of points with null measure in X .

This maximum mean discrepancy (MMD) test is
consistent and accurate. Moreover, confidence levels can
be obtained through bootstrapping or other techniques
described in36. In practice, for samples {ai}i=1..N and
{bj}j=1..M ,

∥∥α̂A − α̂B
∥∥

HX can be computed via:

∥∥α̂A − α̂B
∥∥2

HX =
〈
α̂A − α̂B , α̂A − α̂B

〉
=
〈
α̂A, α̂A

〉
+
〈
α̂B , α̂B

〉
− 2

〈
α̂A, α̂B

〉
,

where inner products between α̂A = 1
N

∑N
i=1 k

X(xi, ·)
and α̂B = 1

M

∑M
j=1 k

X(xj , ·) can easily be developed into
sums of kernels evaluations kX(xi, xj).

This test makes it possible to compare two distributions
without density estimation and directly from data. For
all practical purposes, under mild technical conditions,37

a distribution Pr(X) of random variable X can then
be represented as a point in the RKHS HX , consistently
estimated by the mean mapping α̂. The RKHS norm then
becomes a true distance between probability distributions.

2. Conditional distributions

Consider random variables X and Y with the same
notations as above. The joint variable (X,Y ) leads to a
direct product Hilbert space HX ⊗HY ,34 with the product
kernel:

kX,Y ((x, y), ·) = kX(x, ·)kY (y, ·) .

For functions f ∈ HX and g ∈ HY , a covariance operator
CY X : HX → HY can be defined such that:

⟨g, CY Xf⟩HY = E [f(X)g(Y )] .

Similarly, for CXX in the case Y = X.

Then, under strong conditions on the kernel,33,38 we can
relate the conditional mean map in HY to the conditioning
point in HX using:

EY

[
kY (y, ·)|X = x

]
= CY XC

−1
XXk

X (x, ·) .

The strong conditions can be relaxed to allow the use of a
wide range of kernels by considering a regularized version:

EY,ε

[
kY (y, ·)|X = x

]
= CY X (CXX + εI)−1

kX (x, ·) .

This is a consistent estimator of the unregularized version
when computed empirically from samples.39

As for the unconditional case,

sY |X=x = EY

[
kY (y, ·)|X = x

]
can be seen as uniquely representing the distribution
Pr(Y |X = x), up to a null measure set.
The set S =

{
sY |X=x

}
x∈X ⊂ HY traces out all possible

conditional distributions Pr(Y |X = x), for all x ∈ X . It
inherits the RKHS norm from HY : ∥s1 − s2∥HY is well-
defined for any s1, s2 ∈ S. Note that sY |X=x = ς(x) can
be also be interpreted as a injective function ς : X → S,
selecting points in the RKHS HY for each x.
The connection with the regression problem for estimating
ŝY |X=x from data,38,40 together with the representer
theorem,41 ensure that ŝY |X=x lies in the data span:

ŝY |X=x =
N∑

i=1
ωi(x)kY (yi, ·)

with N the number of samples. For all practical purposes,
then, dimension N is sufficient when working with S ⊂
HY . This is in contrast to working with the infinite
dimension of the underlying HY . The unconditional case
shown in the previous section can be understood when
ωi(x) = 1/N , in which case no dependency on x remains.
A regularized and consistent estimator33,38,39 is given by:

ω(x) =
(
GX + εI

)−1
K(x) ,

with GX
ij = kX (xi, xj) the Gram matrix of the X samples

and K(x) a column vector such that Ki(x) = kX(x, xi).
Thanks to Ref. 40, ε can be set by cross-validation.
In practice, it is more efficient to equivalently solve the
linear system: (

GX + εI
)
ω(x) = K(x) (3)

to find the vector ω(x). Note that, for an invertible matrix
and without regularization, ω(x) is simply the vector with
the only nonnull entry ωi = 1 for x = xi. In practice,
there may be duplicate entries (e.g., for discrete data)
or nearby values for which the regularization becomes
necessary.
In this way, employing a suitable kernel and regularization,
a conditional probability distribution Pr (Y |X = x) is
represented in the RKHS HY as a point:

ŝY |X=x =
N∑

i=1
ωi(x)kY (yi, ·) ,

with a reasonably easy way to estimate the coefficients
ω(x) from data.
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In this light, the full Ω matrix obtained via:(
GX + εI

)
Ω = GX

can also be seen as a way to “spread” the influence of
the (xi, yi) observations to nearby xi values, so that all
duplicate xi effectively belong to the same estimated
conditional distribution.

It is also possible to convert a conditional embedding
back into a true density over X using RKHS preimage
techniques;42 the most advanced one to date is Ref. 43.

B. RKHS Causal States

Section II D defined a process’ causal states σ ∈ S via
the predictive equivalence relation:

ϵ(x) = {w ∈ X : Pr (Y |X = w) = Pr (Y |X = x)} .

This is exactly the preimage E = ς−1 (sY |x
)

⊂ X of
the unique point sY |E ∈ HY , with sY |E = sY |w for all
w ∈ E = ϵ (x). Therefore, we can refer equivalently to
one or the other concept: we refer to the set in X by the
equivalence class and the point in the RKHS as s ∈ HY .

In short, the set S =
{
sY |X=x

}
x∈X ⊂ HY , for x ∈ X ,

is the set S of causal states. Note that S is a subset of
all possible conditional probability-distribution mappings
in HY . It consists of only the mappings that actually
correspond to some x in the domain of interest. We now
drop referring to S and refer only to causal states σ ∈ S
with random variable S.

Let B be the Borel sets over S. For any set β ∈ B, its
preimage in X is defined by:

ς−1(β) =
⋃

σ∈β

{
x ∈ ς−1(σ)

}
.

Recall that, by definition, the causal states form a
partition of X . Hence, each x belongs to a unique
preimage ς−1(σ), when the union is taken over σ ∈ β

in the preceding definition.

Recall that νX is the reference measure on X , in terms
of which probability distribution Pr(X) is defined. A
natural, push-forward measure µ is defined on (S,B) by:

µ (β ∈ B) = ν(ς−1(β)) .

If Pr(X) admits a probability density function p =
dPr(X)/dνX—the Radon–Nikodym derivative of Pr(x)
with respect to νX—then we can similarly push-forward

the density on X to define a density of causal states:

q (σ) =
∫

x∈ς−1(σ)
p (x) dνX .

The distribution Q of states over S is then defined by:

Q (β ∈ B) =
∫

σ∈β

q(σ)dµσ

=
∫

σ∈β

(∫
x∈ς−1(σ)

p (x) dνX

)
dµσ .

Note that the measure µ is defined on (and restricted to)
S and that no equivalent of the Lebesgue measure exists
for the whole infinite-dimensional space HY .
The net consequence is that causal states are to be viewed
simultaneously as:

• Sets of points in X , using the predictive equivalence
relation ∼ϵ, with equivalence classes forming a
partition of X . Though this is the original definition,
presented in Section II D, it is still very useful in the
RKHS setup to define the push-forward measure.

• Conditional probability distributions of possible
outcomes Y given observed system configurations
X. This view is used in clustering algorithms7,15 to
identify causal states. These algorithms directly
map to the RKHS setting by using the MMD
test instead of other statistical tests for clustering
conditional distributions.

• Points in the RKHS HY : More specifically, points in
the subset S =

{
σY |X=x

}
x∈X . The subset S (and

only S, not the rest of HY ) is endowed with a push-
forward measure µ. Thus, we can properly define
probability distributions and densities of causal
states in this Hilbert space setting.

Compared to previous works, this third alternate view
offers several advantages:

• (Nearly-)arbitrary data types can be handled
though the use of reproducing kernels. We are no
longer limited to discrete alphabets V of symbolic
values. Adequate kernels exist for many data types
and can even be composed to work directly with
heterogeneous data types.

• The distance ∥·∥HY can serve as the basis for
clustering similar states together. Thanks to the
MMD test introduced in Section III A 1, algorithms
need not rely on estimating the conditional densities
Pr(Y |X = x) for clustering states.
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IV. DYNAMICS OF RKHS CAUSAL STATES

The preceding constructed causal states σ ∈ S statically.
Computational mechanics aims at modeling a process’
behaviors, though, not just describing its constituents. A
process’ dynamic induces trajectories over S. The next
sections describe them and then define a new class of
predictive models—the kernel ϵ-machines—and explain
how to use them for computing statistics of the given
data, how to simulate new “data”, and how to predict a
process.

A. Causality and Continuity

Consider a series of causal states . . . σt−1σtσt+1 . . ..
Distinct pasts x ∈ σ0 and w ∈ σ0 both contain the
same information concerning the process dynamics, since
they induce the same distribution of futures Pr (Y |σ0).
However, σ0 does not contain the information about which
past is responsible for arriving at it: whether x or w or
any other past led to the same state σ0.
So, what kind of causality is entailed by causal states?
Causal states capture the same global information needed
to describe how the future is impacted by the present,
and they consist of all possible ways that information
was organized in the past. Unifilarity can now be
understood as a change of state δσ uniquely determined
by the information gain. In contrast, the equivalent of
nonunifilarity would be that despite having all useful
knowledge about the past (previous state) and having
all possible information about the change of system
configuration (either δx or δw, and so on), the model
states are still not defined unequivocally. This is not the
case with the definition of the causal states, but would be
with other generative models, for which only a distribution
of states can be inferred from data.29

The continuity of causal state trajectories can be
understood from an information-theoretic perspective.
The relative information dKL (xt+dt||xt) (Kullback-
Leibler divergence) between xt and its evolution after
an infinitesimal time t + dt is simply the change of
information we have on x. Assuming that information
comes only at finite velocity, then dKL (xt+dt||xt) → 0 as
dt → 0. However, it is known that dKL (xt+dt||xt) → 0
implies ∥xt+dt − xt∥HX → 0.37 Using Sec. III A 2’s
construction of conditional distributions, we find that
∥σt+dt − σt∥HY → 0 as dt → 0 with continuous kernels
and positive definite operators. Hence, causal-state
trajectories are continuous.
In practice, assumptions leading to continuous trajectories
need not be respected:

• For practical reasons, it is rarely possible to work
with infinite series. Truncating the past and the
future can be necessary. In these cases, there is
information not fully contained in x̂—the truncated
estimate of x. Truncation can be justified when the
causal influence of past system configurations onto
the present decays sufficiently fast with time; then
we ignore old configurations with negligible impact.
(And, similarly for the future.) This amounts to
saying there are no long-range correlations, that
no useful information for prediction is lost when
ignoring these past configurations. Hence, that
Pr(Y |X) is unchanged by the truncation. This
hypothesis mail fail, of course, with the consequence
that truncating the past or future may introduce
jumps in the estimated trajectories of the causal
states in S—a jump induced by the sudden loss or
gain of information.

• When using continuous kernel functions, the
associated RKHS norm is also continuous in its
arguments:

∥∥σY |X=x1 − σY |X=x2

∥∥
HY → 0 as

x1 → x2. Hence, continuity in data trajectories
also implies continuity in causal-state trajectories.
However, when data are truly discrete in nature, the
situation of Sec. II E is recovered. An alternate view
is that, at a fundamental level, information comes
in small packets: these are the symbols induced by
the data changes in this discrete scenario.

• It may also be that measurements are performed
at a finite time scale τ . Then, the information
gained between two consecutive measurements can
be arbitrarily large, but still appear instantaneously
at the scale at which data is measured. This leads
to apparent discontinuities.

Here, we discuss only the elements needed to address
causal states in continuous time with nearly arbitrary
data; i.e., for which a reproducing kernel exists. A full
treatment of discontinuities is beyond the present scope
and best left for the future.

B. Continuous Causal-State Trajectories

From here on, assume that trajectories of causal states σ ∈
S are continuous. Recall, though, that S ⊂ HY —a metric
space. This guarantees the existence of a reference Wiener
measure ω on the space of trajectories defined over a time
interval [0, t < T ] (possibly T = ∞) with a canonical
Wiener process W . With σt being a state-continuous
Markov process, we posit that its actual trajectories evolve
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under an Itô diffusion—a stochastic differential equation
(SDE) of the form:

dσt = a (σt) dt+ b (σt) dWt , (4)

where a (σt) is a (deterministic) drift and b (σt) a diffusion.
Both depend on the current state σt, hence this Itô
diffusion is inhomogeneous in state space. However,
the coefficients are stable in time a(σt, t) = a(σt) and
b(σt, t) = b(σt) if the (possibly limited) ergodicity
assumption is made in addition to the conditional
stationarity assumption of Sec. II D. And so, the diffusion
is homogeneous in time. This SDE is the equivalent of the
ϵ-machine’s causal-state-to-state transition probabilities
introduced in the discrete case (Sec. II E). The evolution
equation encodes, for each causal state σt, how the process
evolves to nearby states at t+ dt.
The causal state behavior arises from integrating over
time:

σt = σ0 +
∫ t

0
a (στ ) dτ +

∫ t

0
b (στ ) dWτ

for any state σ0 being the trajectory’s initial condition.
As for the evolution of the causal-state distribution,
consider a unit probability mass initially concentrated
on δ (σ0). Then the states σt reached at time t define
a probability distribution Pr (β ∈ B|σ0, t) on S, with
associated density p (σt|σ0). (Recall that the latter
is defined as p = dPr(·)/dµ with µ the push-forward
measure from X ; see Sec. III B.) This distribution encodes
the state-to-state transition probabilities at any time t,
parallel to iterating an ϵ-machine in the discrete case.
The evolution of probability densities p other than δ (σ0) is
governed by a Fokker-Planck equation. The infinitesimal
generator Γ of the process σt is:

Γf (σ0) = lim
t→0

E [f (σt) |σ0, t] − f (σ0)
t

,

where Γ is an operator applied on a suitable class
of functions f .44 For a state distribution Q, with
associated density q = dQ/dµ, the Fokker-Planck
equation corresponding to the Itô diffusion can be written
in terms of the generator’s adjoint Γ∗:

∂q

∂t
(σ, t) = Γ∗q (σ, t) . (5)

Restricting to the data span in S (see Sec. III A 2), using
the representer theorem, and the samples as a pseudo-
basis,41 the operator Γ can be represented using a vector
equation in a construction similar to classical euclidean
RN state spaces, see Ref. 45, p. 103. There are, however,
practical difficulties associated with estimating coefficients

a and b (using tangent spaces) at each observed state σt

in RKHS.
As an alternative, we represent the generator in a suitable
functional basis, on which q is also represented as a set of
coefficients. Then the state distribution evolves directly
under:

q(σ, t) = e(t−t0)Γ∗
q (σ, t0) . (6)

The evolution operator E (t) = e(t−t0)Γ∗ can also be
inferred from data for standard SDE over RN , as detailed
in46. The next section summarizes the method and adapts
it to the RKHS setting.
Every Itô diffusion also admits a limit distribution
L (σ ∈ S) as t → ∞, with associated density ℓ = dL/dµ.
By definition of the limit distribution, ℓ is the eigenvector
of E associated to eigenvalue 1: E (t) [ℓ] = ℓ.
The limit distribution can also be useful to compute
how “complex” or “uncommon” a state is, using its self-
information h(σ) = − log ℓ(σ). This is the equivalent of
how the statistical complexity is defined in the discrete
case3. And, it can be used for similar purposes (e.g.,
building filters8,24,26,27). That said, this differential
entropy should be interpreted with caution.

C. Diffusion Maps and the Intrinsic Geometry of Causal
States

The representer theorem41 allows us to develop causal-
state estimates σ̂ in the span of the data kernel functions
kY (yi, ·), used as a pseudo-basis; see Sec. III A 1. Since
the span dimension grows with the number of samples,
estimation algorithms are impractical. However, the
causal states are an intrinsic property of the system,
independent of how they are coordinatized. And so, when
working with data acquired from physical processes, S
will appear as the dominant structure. The question then
becomes how to work with it.
The following assumes S is of small finite dimension M

compared to the number of observations N .47 Residing on
top of the dominant structure, the statistical inaccuracies
in the MMD test appear as much smaller contributions.
The following, thus, introduces the tools needed to work
directly on S, whether for visualizing the causal states
using reduced coordinates or for representing evolution
operators on S instead of using Eq. (4) on HY .
To do this, we exploit the methodology introduced for
diffusion maps.48 These maps are especially relevant when
data lie on a curved manifold, where the embedding’s high-
dimensional distance between two data points does not
reflect the manifold’s geometry. In contrast, diffusion
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maps, and their variable-bandwidth cousin49, easily
recover the Laplace-Beltrami operator for functions
defined on the manifold. Assuming S is a smooth
Riemannian manifold, then, the diffusion coordinates
cleanly recover S’s intrinsic geometry (a static property)
independent of the observed local sampling density (a
dynamic property, linked to trajectories as in Sec. IV).48

The original diffusion maps method artificially builds
a proximity measure for data points using a localizing
kernel; i.e., one that takes nonnegligible values only for
near neighbors. Path lengths are computed from these
neighborhood relations. Two points are deemed “close” if
there is a large number of short paths connecting them,
and “far” if there are only a few paths, or paths with long
distances, connecting them. See Ref. 48 for details, which
also shows that the diffusion distance is a genuine metric.
That said, in the present context, there already is a notion
of proximity between causal states σ ∈ S. Indeed, reusing
notation from Sec. III A 2, the state estimates in RKHS
are of the form:

σ̂Y |X=x =
N∑

α=1
ωα(x)kY (yα, ·) .

And so, a Gram matrix GS of their inner products can
be defined easily:

GS
ij =

〈
σ̂Y |X=xi

, σ̂Y |X=xj

〉
GS

iji =
〈

N∑
α=1

ωα(xi)kY (yα, ·),
N∑

β=1
ωβ(xj)kY (yβ , ·)

〉

GS
ij =

N∑
α=1

N∑
β=1

ωα(xi)ωβ(xj)kY (yα, yβ) , (7)

where kY (yα, yβ) = GY
αβ is the Gram matrix of the Y

observations. The determination of the ω coefficients for
each x relies on the GX gram matrix, as detailed in Sec.
III A 1.
It turns out that diffusion maps can be built from
kernels with exponential decay.50 The original fixed-
bandwidth diffusion maps48 also use exponential kernels
for building the proximity relation. Such kernels are
reproducing and they are also characteristic, fulfilling
the assumptions needed for representing conditional
distributions.39. Hence, when using the exponential
kernel, the RKHS Gram matrix is also exactly a similarity
matrix that can be used for building a diffusion map.
(This was already made explicit in Ref. 51). Moreover,
Eq. (7) explicitly represents GS

ij as a weighted sum
of exponentially decaying kernels and, hence, is itself
exponentially decaying. Thus, GS can be directly used
as a similarity matrix to reconstruct S’s geometry via

diffusion maps.
Notice, though, that here data is already scaled by the
reproducing kernel. So, for example, using a Gaussian
kernel:

kX (x1, x2) = exp
(

− ∥x1 − x2∥2
X /ξ2

)
,

ξ specifies the scale at which differences in the X norm are
relevant. Similarly for kY and Y. Since that scale ξ can
be set by cross-validation,40 we exploit this fact shortly
in Sec. VI C’s experiments when an objective measure is
provided; e.g., prediction accuracy.
In practice, a large range of ξ can produce good results and
an automated method for selecting ξ has been proposed.52

Varying the analyzing scale to coarse-grain the manifold
S is also possible. Using the method from Ref. 53, this
is similar, in a way, to wavelet analysis.
Once the data scale is properly set and the similarity
matrix built, the diffusion map algorithm can be
parametrized to cleanly recover S’s Riemannian geometry,
doing so independently from how densely sampled S
is. This is explained in Ref. 48, Fig.4 and it is exactly
what is needed need here: separate S’s static causal-
state geometric structure from the dynamical properties
(trajectories) that induce the density on S. This is
achieved by normalizing the similarity matrix GS to
remove the influence of the sampling density, then
applying a spectral decomposition to the nonsymmetric
normalized matrix; see Ref. 48.
The result is a representation of the form:

σi ≡ (λ1ψi,1, . . . , λNψi,N ) , (8)

where each ψα, α = 1 . . . N , is a right eigenvector and
each λα is the associated eigenvalue. Note that coefficients
σi,j = λjψi,j are also weights for the conjugate left
eigenvectors Φj=1...N , which are themselves functions of
the RKHS. (Hence, they are represented in practice by
the N values they take at each sample.)
The first eigenvalue is 1 and it is associated with
constant right eigenvector coordinates.48 The conjugate
left eigenvector coefficients yield an estimate of the limit
density ℓ (σ̂i), with respect to the reference measure µ
in our case. Hence, Φ1 and ψ1 can be normalized so
that

∑
j Φ1,j = 1 and ψ1,j = 1 for all j. With these

conventions, λ1ψ1,j = 1 is constant and can be ignored,
all the while respecting the bi-orthogonality ⟨ψ1,Φ1⟩ = 1.
The other eigenvalues are all positive 1 > λα > 0 and we
can choose the indexing α so they are sorted by decreasing
order.
When S is a low-dimensional manifold, as assumed
here, a spectral gap should be observed. Then, it is
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sufficient to retain only the M ≪ N first components.
Otherwise, M can be set so that the residual distance∑

α>M λ2
α (ψi,α − ψj,α) remains below some threshold

θ. Since the diffusion distance is a true metric in the
embedding space HY , θ can also be set below a prescribed
significance level for the MMD test (Sec. III A 1), if so
desired. The residual components are then statistically
irrelevant.
Taking stock, the preceding established that:

1. The causal-state manifold S can be represented in
terms of a functional basis {Φ}m=1...M in HY of
reduced dimension M . This is in contrast to using
the full data span

{
kY

i (yi, ·)
}

HY of size N . The
remaining components are irrelevant.

2. The functional basis {Φ}m=1...M can be defined in
such a way that the induced representation of S
does not depend on the density at which various
regions of S are sampled. This, cleanly recovers S’s
geometry.

3. Each causal state σ is represented as a set of
coefficients in that basis.

Taken altogether, the RKHS causal states and diffusion-
map equations of motion define a new structural
model class—the kernel ϵ-machines. The constituents
inherit the desirable properties of optimality, minimality,
and uniqueness of ϵ-machines generally and provide a
representation for determining quantitative properties
and deriving analytical results. That said, establishing
these requires careful investigation that we leave to the
future.

V. DEPLOYING KERNEL ϵ-MACHINES

As with ϵ-machines generally, kernel ϵ-machines can be
used in a number of ways. The following describes how
to compute statistics and how to make predictions.

A. Computing Functions of Given Data

To recover the expected values of functions of data a
functional can be defined on the reduced basis. Recall
that, thanks to the reproducing property:

⟨σ, f⟩ = EP (Y |σ) [f(x ∈ σ)] ,

for any f ∈ HX . Such functions f are represented in
practice by the values they take on each of the observed
N samples, with the reproducing property only achieved

for N → ∞ samples (and otherwise approximated). One
such is fτ that, for each observed past x associates the
entry of a future time series y matching time τ . This
function can be fit from observed data. It is easy to
generalize to spatially-extended or network systems or to
any function of the (xi, yi) data pairs. However, ⟨σ, f⟩ can
be expressed equally well in the reduced basis {Φ}m=1..M .
Then, fτ is simply projected fm =⟨fτ ,Φm⟩ onto each
eigenvector.
This leads to an initial way to make predictions:

1. For each data sample, represent the function f by
the value it takes for that sample. For example, for
vector time series of dimension D, x is a past series
ending at present time t0 and y a future series. fτ

is then the D values observed at time t0 + τ in the
data set, for each sample, yielding a N ×D matrix.

2. Project the function f to the reduced basis by
computing fm = ⟨fτ ,Φm⟩ for each left eigenvector
m ≤ M . This yields a M×D matrix representation
f̂ .

3. Compute f̂ [σi] for a state σi, itself represented as a
set of M coefficients in the reduced basis (Eq. (8)).
This yields a D-dimensional vector in the original
data space X in this example. This can be compared
to the actual value from yi at time τ .

B. Representing New Data Values

A model is useful for prediction if its states can be
computed on newly acquired data xnew, for which future
values y are not available. In the case of kernel methods
and diffusion maps, Nyström extension54 is a well-
established method that yields a reasonable state estimate
σ̂new if xnew lies within a dense region of data. That said,
it is known to be inaccurate in sparsely sampled regions.
Given the Fokker-Planck evolution equation solutions
(Eq. (6)) and the evolution operator estimation methods
described shortly, we may estimate a distribution q̂new (σ)
over S, encoding the probability that the causal state
associated to xnew is at location σ ∈ S. Then, a single
approximation σ̂new = E [q̂new (σ)] could be obtained, if
desired. We can also allow the distribution to degenerate
to the Dirac δ distribution and yield effectively a single
estimate. This could occur, for example, when the
evolution is applied to one of the original samples xnew =
xi used for estimating the model.
To estimate a distribution q̂new (σ), we employ the
kernel moment matching,55 adapted to our context.
The similarity of the new data observation xnew to
each reference data xi=1...N is computed using kernel
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evaluations K (xnew) =
{
kX (xnew, xi)

}
i=1...N

. Applying
Eq. (3) to the new vector K (xnew):

ωnew = argminω

∣∣(GX + εI
)
ω −K (xnew)

∣∣2 ,

subject to ωnew
i ≥ 0 for i = 1, . . . , N .

Compared to Eq. (3) this adds a positivity constraint,
similar to kernel moment matching55. This also implies
ωnew

i ≤ (1 + ξ) / (1 + ε), where ξ is the tolerance of the
argmin solver. Proof: We know R = GX + εI has 1 + ε

on the diagonal. Both GX and K (xnew) have positive
entries. Then, (1 + ε)ωi+

∑
j ̸=i Rijωj = kX (xnew, xi)±e,

where e < ξ is the error of the argmin solver. However,∑
j ̸=i Rijωj ≥ 0, since GX

ij > 0 and ωj ≥ 0 by constraint.
kX (xnew, xi) ≤ 1 by construction. Hence, (1 + ε)ωi ≤
1 + ξ and ωi ≤ (1 + ξ) / (1 + ε).

ωnew is thus the closest solution to
(
GX + εI

)−1
K (xnew),

so that the estimated state:

σ̂new =
N∑

i=1
ωnew

i kY (yi, ·)

remains in the convex set in HY of the data kY (yi, ·), up
to a good approximation (1 + ξ) / (1 + ε) ≈ 1. Currently,
lacking a formal justification for convexity, we found that
better results are obtained with it than with Nyström
extensions – these use possibly negative ωnew

i values due
to the unbounded matrix inverse, yielding estimates that
can wander arbitrarily (depending on ε) far away in HY

–. Normalizing, we get a probability distribution in the
form:

q̂new (σi) = ωnew
i∑

j ω
new
j

,

where, as usual in RKHS settings, the function q̂new is
expressed as the values it takes on every reference data
sample, σi=1...N in this case.
Compared to kernel moment matching55, we used the
kernels kY (yi, ·) as the basis for expressing the density
estimation, with coefficients that encode the similarity
of the new sample to each reference sample in X . An
alternative would be to adapt the method from43 and
express q̂new on reference samples drawn from the limit
distribution ℓ over S; see Sec. IV B.
When data is projected on a reduced basis {Φ}m=1..M ,
the distribution q̂new can be applied to the reference state
coordinates σi,m = λmψi,m, so that an estimated state
σ̂new = E [q̂new (σ)] can be computed with:

σ̂new
m =

(
λm

∑
i

q̂new
i ψi,m

)
m=1...M

.

C. Prediction with the Evolution Operator

Section V A’s method allows predicting any arbitrary
future time τ , provided that the future is sufficiently well
represented in the variable y ∈ Y . In practice, this means
that the future look ahead LY needs to be larger than
τ and that sufficient data is captured to ensure a good
reproducing capability for the kernel kY . However, for
some systems, the autocorrelation decreases exponentially
fast and there is no practical way to collect enough data
for good predictions at large τ .
An alternative employs the Fokker-Planck equation to
evolve state distributions over time. This, in turn, yields
an estimate:

EQ(σ,t|t0)
[
EPr(Y |σ) [f(x ∈ σ)]

]
.

Q here is the state distribution reached at time t > t0,
whose density is given by Eq. (6). This method exploits
S’s full structure, its Markovian properties, and the
generator described in Sec. IV B.
This allows reaching longer times t > τ , while using look
aheads LY (Sec. II E) that match the natural decrease of
autocorrelation. If the variable y ∈ Y captures sufficient
information about the system’s immediate future for a
given x ∈ X , then the causal structure is consistently
propagated to longer times by exploiting the causal-
state dynamics given by the evolution operator E (t) =
e(t−t0)Γ∗ .
Thanks to expressing S in the basis {Φ}m=1...M , it is
possible to explicitly represent the coefficients a (σt) and
b (σt) of Eq. (4) in a traditional vector representation,
with established SDE coefficient estimation methods45,56.
However, recent results suggest that working directly with
the evolution operator is more reliable43,46,57 for similar
models working directly in data space—instead of, as here,
causal-state space.
Assuming states are estimated from observations acquired
at regularly sampled intervals, so that σi+1 and σi are
separated by time increment ∆t, then, in the functional
basis {Φ}m=1...M , the coefficients ψi+1,m are related
to the coefficients ψi,m by the action of the evolution
operator E (∆t) on the state si. Hence, this time-shifting
operator from t0 to time t = t0 + ∆t can be estimated
with:

Ê (∆t) ∝ ψT
2:N Φ1:N−1 , (9)

where ψ2:N is the set of M right eigenvectors, restricted
to times t ≥ t0 +∆t and Φ1:N−1 are the corresponding M
left eigenvectors, restricted to times t ≤ t0 + (N − 1) ∆t.
Normalization can be performed a posteriori: Ê (∆t) [σ̂]
should have the constant 1 as the first coefficient (Sec.
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IV C). So, it is straightforward to divide Ê (∆t) [σ̂] by its
first coefficient for normalization. The estimator Ê (∆t)
is efficiently represented by a M × M matrix. For a
similar operator working in data space X , instead in S,
the estimator is consistent in the limit of N → ∞, with
an error growing as O

(√
∆t/N

)
.46

Predictions for values at future times n∆t, obtained by
operator exponentiation:

E (n∆t) = en∆tΓ∗

=
(
e∆tΓ∗

)n

,

are simply estimated with their matrix counterpart
Ê (n∆t) = Ê (∆t)n. Thanks to the bi-orthogonality of
the left and right eigenvectors, this last expression can be
computed efficiently with:

Ê (n∆t) ∝ ψT
n:N Φ1:N−n

and a posteriori normalization. Though this estimator
is statistically consistent in the limit of N → ∞, in
practice, when n ≥ N the method clearly fails. This is
counterbalanced in some cases by a convergence towards
the limit distribution in n ≪ N steps, so the problem
does not appear. This is the case for experiments in Sec.
VI C using a chaotic flow. Yet, the general case is a topic
for future research.
To synopsize, prediction is achieved with the following
steps:

1. Represent a function f , defined on X , by the values
it takes for each observed data pair (xi, yi), with
the method described in Sec. V A. This gives an
estimate f̂ .

2. Build the evolution operator Ê (∆t) as described
above or powers of it Ê (n∆t) for predictions n steps
in the future.

3. Compute the function Ê (n∆t)
[
f̂
]
. This amounts

to a matrix multiplication in the reduced basis
representation, together with an a posteriori
normalization.

4. When a new data sample xnew becomes available at
the present time t0, estimate a distribution Q over
the training samples that best represents xnew. Q
is expressed by its density q̂new in the reduced basis
{Φ}m=1..M as detailed in see Section V B.

5. Apply the evolved function Ê (n∆t)
[
f̂
]

to q̂new to obtain the expected value
EQ(σ,t0+n∆t)

[
EP (Y |σ) [f(x ∈ σ)]

]
that f takes

at future time t0 + n∆t.

Section VI C applies this to a concrete example.

FIG. 2. Even Process state-transition diagram: An HMM that
generates a binary process over outputs v ∈ {0, 1}. Transitions
are labeled with the symbol, followed by the probability to
take this transition. The Even Process has infinite Markov
order—emitted 1s occur in even blocks (of arbitrary length)
bounded by 0s. The process is stationary when starting with
state distribution Pr(S = σ0,S = σ1) = (2/3, 1/3). This
HMM is an ϵ-machine.

VI. VALIDATION AND EXAMPLES

The following illustrates reconstructing kernel ϵ-machines
from data in three complementary cases: (i) an infinite
Markov-order binary process generated by a two-state
hidden Markov model, (ii) a binary process generated by
an HMM with an uncountable infinity of causal states,
and (iii) thermally-driven continuous-state deterministic-
chaotic flows. In each case, the hidden causal structure
is discovered assuming only that the processes are
conditionally stationary.

A. Infinite-range Correlation: The Even Process

The Even Process is generated by a two-state, unifilar,
edge-emitting Markov model that emits discrete data
values v ∈ {0, 1}. Figure 2 displays the ϵ-machine
HMM state-transition diagram—states and transition
probabilities.
Realizations x = (vt)−LX <t≤0 and y = (vt)0<t≤LY

consist of sequences in which blocks of even number
of 1s are bounded by any number of 0s; e.g.,
01101111000011001111110 . . .. An infinite-past look
ahead LX is required to correctly predict these
realizations. Indeed, truncation generates ambiguities
when only 1s are observed.
For example, with LX = 4 the observed series 1111 could
be part of a larger group . . . 011111, in which case the
next symbol is necessarily a 1, or larger groups of the
form . . . 111111 or . . . 001111 or . . . 101111, in which
case the next symbol is either 0 or 1 with probability
1/2. However, with a limited look ahead of LX = 4, a
prediction has no way to encode that the next symbol
is necessarily a 1 in the first case. One implication is
that there does not exist any finite Markov chain that
generates the process.
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FIG. 3. Even Process: Reconstructed-state coordinates ψ1
on the first reduced-basis eigenvector Φ1, together with a
graphical representation of the transitions inferred between
the colored clusters.

Despite its simplicity—only two internal states—and
compared to processes generated by HMMs with finite
Markov order, the Even Process is a helpfully challenging
benchmark for testing the reconstruction capabilities of
kernel ϵ-machine estimation on discrete data.
Reconstruction is performed using product kernels:

kX (x, ·) =
LX −1∏

i=0
kV (x−i, ·)

γ i

LX −1 and

kY (y, ·) =
LY∏
i=1

kV (yi, ·)
γ i−1

LY −1 ,

with a decay parameter γ setting the relative influence
of the most distant past (future) symbol x−LX +1 (yLY ).
We use the exponential kernel:

kV (a, b) = e−(a−b)2/2ξ2
,

where a, b ∈ {0, 1} are the symbols in the series.
Figure 3 presents the results for LX = 10 and LY = 5 for
a typical run with N = 30, 000 sample (x, y) pairs, with
a decay γ = 0.01 and a bandwidth ξ = 1.
The eigenvalue spectrum of the reduced basis decreases
rapidly: λ0 = 1 (as expected), λ1 ≈ 10−2, and all
other eigenvalues λj≥2 < 10−4. We therefore project
the causal states on the only relevant eigenvector Φ1 and
build the histogram shown in Fig. 3. Colors match labels
automatically found by a clustering algorithm.58

Figure 3 summarizes the cluster probabilities and their
transitions.59 They match the original Even Process
together with a transient causal state. By inspection,
one sees this state represents the set of sequences of all 1s
mentioned above—the source of ambiguity. Its probability,

for LX = 10, is that of jumping 5 consecutive times
from state σ0 to state σ1 in the generating Even Process.
Hence, 1/25 ≈ 0.03, which is the value we observe. From
that transient state, the ambiguity cannot be resolved
so transitions follow the (1/3, 2/3) proportions of the
symbols in the series. Note that unifilarity is broken,
since there are two paths for the symbol v = 1 starting
from state σ1, also reflecting the ambiguity induced by
the finite truncation.

B. Infinite state complexity: An uncountable causal-state
process

The Even Process is a case where ambiguity arises from
incomplete knowledge, due to finite-range truncation.
However, even for discrete finite data alphabets V,
there are process whose causal states are irreducibly
infinite. This occurs generically for processes generated
by nonunifilar HMMs. In this case, knowledge of the
observed data is insufficient to determine the generative
model’s internal state. Only distributions over those
states—the mixed states29—are predictive.
In the limit LX → ∞, the causal states then correspond
to unique mixed-state distributions21 and there can
be infinitely many (countable or uncountable) causal
states, even for a simple finite generative HMMs. This
arises from nonunifilarity since the same observed symbol
allows transitions to two distinct internal states. In
contrast, the predictive-equivalence determines that the
same information (newly observed symbol), starting
from the same current state (equivalence class ϵ(X) of
pasts X ∈ X ), induces the same consequences (possible
futures Y , with a fixed distribution Pr (Y |ϵ(X))). Thus,
nonunifilar models can be more compact generators. This
can be beneficial, but it comes at the cost of being
markedly-worse predictors than unifilar HMMs.
Consider the nonunifilar mess3 HMM introduced in Ref.
29, represented graphically in Fig. 4.
Mess3 uses 3 symbols V = {0, 1, 2} and consists of 3
generative states s0, s1, and s2. The state-transition
diagram is symmetric and each state has the same
transition structure. Consider the state si for i = 0, 1, 2
and modulo arithmetic so that i− 1 = 2 when i = 0 and
i+ 1 = 0 when i = 2. Then, the transitions are:

1. From state si to itself, for a total probability p =
α = ay+2bx, symbols are emitted as Pr(v = i) = ay

and Pr(v = i− 1) = Pr(v = i+ 1) = bx.
2. From state si to state si+1, for a total probability
p = (1 − α)/2, symbols are emitted as Pr(v = i) =
ax, Pr(v = i− 1) = bx, and Pr(v = i+ 1) = by.
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S2 S1

S0

p=α

p=(1-α)/2

p=αp=α

p=
(1

-α
)/2

p=(1-α)/2
FIG. 4. Nonunifilar generative HMM mess3: Only transition
probabilities are depicted; emitted symbols are described in
the main text.

3. From state si to state si−1, for a total probability
p = (1 − α)/2, symbols are emitted as Pr(v = i) =
ax, Pr(v = i− 1) = by, and Pr(v = i+ 1) = bx.

In this, a = 0.6, b = (1 − a)/2 = 0.2, x = 0.15, y =
1 − 2x = 0.7.
The generated process is known to give uncountably-
infinite causal states. Their ensemble S forms a Sierpinski
gasket in the mixed-state simplex29. The probability to
observe states at subdivisions decreases exponentially,
though. With limited samples, only a few self-similar
subdivisions of the main gasket triangle can be observed.
Reconstructing S is performed using LX = 15 and LY =
1. The same product exponential kernel is used as above,
with a decay γ = 0.01 and a bandwidth ξ = 0.1. N =
25, 000 sample (x, y) pairs are sufficient to reconstruct the
first self-similar subdivisions.
The eigenvalue spectrum is λ0 = 1, λ1 = 0.999, λ2 =
0.999 and λi≥3 < 1.2 × 10−15. The algorithm thus finds
only two components, of equal significance. Figure 5
shows a scatter plot of the inferred causal states using
coordinates in the reduced basis {Φ1,Φ2}. The states are
very well clustered on the main vertices of the Sierpinski
Gasket. (The inset shows that 4 orders of magnitude
are needed to see a spread within each cluster, compared
to the main triangle size.) The triangle is remarkably
equilateral and its center even lies on ≈ (0, 0), reflecting
the symmetry of the original HMM. To our knowledge, no
other algorithm is currently able to correctly recover the
causal states purely from data from such a challenging,
complex process.

8313

8303

8348

16

10

10

FIG. 5. Projection of the mess3’s causal states on the reduced
basis {Φ1,Φ2}. The number of samples stacked on each point
is indicated.

The number of samples at each triangle node is indicated.
The nodes at the first subdivision are about 800 times less
populated than the main nodes. While theory predicts
that states appear on all subdivisions of the Sierpinski
Gasket, the sample size needed to observe enough such
states is out of reach computationally.

C. Thermally-driven Continuous Processes: Chaotic Lorenz
attractors

The first two examples demonstrated that kernel
ϵ-machine reconstruction works well on discrete-valued
data, even when states are expected to appear on a
complicated fractal structure or when the time series has
infinite-range correlations. The next step, and a central
point of the development, is to reconstruct a continuous
infinity of causal states from sampled data. The following
example processes also serve to demonstrate time-series
prediction using the estimated kernel ϵ-machine, recalling
the method introduced in Sec. IV B.
We first use the chaotic Lorenz ordinary differential
equations from 1963 with the usual parameters
(σ, ρ, β) = (10, 28, 8/3).60 We add isotropic stochastic
noise components dW at amplitude η to model thermal
fluctuations driving the three main macroscopic fluid
modes the ODEs were crafted to capture:

du = −σ (u− v) dt+ ηdW

dv = (ρu− v − uw) dt+ ηdW

dw = (−βw + uv) dt+ ηdW .

A random initial condition (u0, v0, w0) is drawn in the
region near the attractor and a sufficiently long transient



17

FIG. 6. Lorenz attractor (left) and its estimated kernel ϵ-machine (right) at various thermal η and measurement ν noise levels.

is discarded before collecting data (ut, vt, wt). SDE
integration is performed using dt = 0.01, yielding samples
(ut, vt, wt)0≤t<T up to a maximal time T corresponding
to N = 20, 000 (past, future) pairs.
In addition to the thermal fluctuations, we also model
systematic measurement error by adding a centered
Gaussian process Γ =

(
γ0, γ1, γ2) with isotropic variance

ν2. The result is the observed series (u′
t, v

′
t, w

′
t) =(

ut + γ0
t , vt + γ1

t , wt + γ2
t

)
used to estimate a kernel

ϵ-machine and perform a sensitivity analysis.

1. Kernel ϵ-Machine reconstruction in the presence of
noise and error

When η = 0 and ν = 0 the deterministic ODEs’
trajectories do not cross and are uniquely determined
by the initial condition (ut, vt, wt) at t = 0. Hence, each
state on the attractor is its own causal state. Retaining
information from the past is moot, but only if (u, v, w) is

known with infinite precision, due to the ODEs’ chaotic
solutions, that amplify fluctuations exponentially fast.
This is never the case in practice. So, considering
small values of LX and LY may still be useful to better
determine the causal states. We use LX = LY = 5 in the
reconstructions.
Figure 6 shows the projections (right) with
coordinates (ψ1, ψ2, ψ3), together with the original
(pre-reconstruction) attractor data (left) for different
noise combinations. Figure 6(top row) displays the
results of kernel ϵ-machine estimation from the noiseless
data (ν = 0 and η = 0). The second row shows the effects
of pure measurement noise (ν = 1 and η = 0) on the raw
data (left) and on the estimated kernel ϵ-machine (right).
Similarly, the last row shows the effect of pure thermal
noise (ν = 0 and η = 1 .)
As expected, the structure is well recovered when no
noise is added. A slight distortion is observed. In
practice, the causal states are unaffected by coordinate
transforms and reparametrizations of X and Y which
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do not change equivalence in conditional distributions
P (Y |X = x1) ≡ P (Y |X = x2), so the algorithm could
very well have found another parametrization of the
Lorenz-63 attractor. See also Section VI D. The causal
states of the original data series are also well recovered
even when that series is severely corrupted by strong
measurement noise at ν = 1 in Fig. 6(middle row).
To appreciate these results recall that, in the noiseless
case, if x1 and x2 are in the same causal state
x2 ∈ ϵ (x1) of the original series, then by definition
Pr (Y |X = x1) = Pr (Y |X = x2). Measurement noise
(ν > 0), independent at each time step, does not change
this. Since measurement noise is added to each and every
time step independently, noisy series x′ ending with the
same noisy triplet (u′, v′, w′) at the current time t = t0
end up in the same causal state of the noisy system. This
is reduced to the current triplet (u′, v′, w′), itself a specific
causal state of the deterministic system. Hence, the causal
states of the deterministic ODEs are subsets of those
of kernel ϵ-machine estimated from the noisy-measured
series. We arrive at the important conclusion that, at
least for deterministic chaotic systems, the uniqueness and
continuity of ODE solutions guarantee that causal states
are unaffected by measurement noise. This is generally
not true for many-to-one maps and other functional state-
space transforms that merge states.
In contrast to measurement noise, thermal noise (η >
0) modifies the equations of motion and the resulting
trajectories reflect the accumulated perturbations. Since
each state on the (deterministic) attractor is its own state,
the estimated causal states are modified.
Let’s probe the robustness of kernel ϵ-machine estimation.
With the parameters detailed below, we obtain an
eigenvalue spectrum shown in Fig. 7. There is an inflection
point after the first three components. The eigenvalues
are remarkably insensitive to a strong measurement noise
level ν = 1. They are also very robust to the thermal
noise η = 1, which induces only some minor eigenvalue
changes.
Thus, kernel ϵ-machine estimation achieves a form
of denoising beneficial for random dynamical systems.
However, the reconstructed causal states reflect the
thermal noise induced by η = 1, as can be seen in the
fine details of the bottom row of Fig. 6. Note that the
algorithm is able to strongly reduce the measurement
noise, and do so even while the attractor is very corrupted,
while the apparently minor thermal noise is preserved.

2. Kernel ϵ-Machine prediction and sensitivity

In Ref. 46, a prediction experiment is performed using an
evolution operator computed directly in (u, v, w) space

FIG. 7. Eigenvalues for the Lorenz-63 attractor estimated
kernel ϵ-machines at various thermal and measurement noise
levels.

instead of in S, as here; recall Sec. V C. That study
focuses on how the error due to a small perturbation
propagates with the number of prediction steps.
Here, we use a more typical approach to first learn the
model—i.e., compute the states, the basis Φ, the evolution
operator, ...—on a data set of N = 20, 000 samples. Then,
however, we estimate the prediction error on a completely
separate “test” set. This data set is generated with the
same parameters as for the training set, but starting from
another randomly drawn initial condition. P = 100 test
samples are selected after the transient, each separated
by a large subsampling interval so as to reduce their
correlation. Unlike the examples in the previous sections,
this produces an objective error function—the prediction
accuracy—useful for cross-validating the relevant meta-
parameters.
Due to the computational cost involved with grid searches,
we only cross-validate the data kernel kV bandwidth on a
reduced data set in preliminary experiments. In Ref. 46,
an arbitrary variance was chosen for the distribution used
to project (u, v, w) triplets onto the operator eigenbasis.
We also cross-validate it to improve the results, for a fair
comparison with kernel ϵ-machine reconstruction.
Figure 8 presents the results. Forecasts are produced at
every ∆t = 0.05 interval and operator exponentiation is
used in between, as detailed in Sec. V C. This allows a
comparison of trajectories over 500 elementary integration
steps, which is large enough for the trajectory to switch
between the attractor main lobes several times. Such
trajectories are computed starting from each of the 100
test samples.
In the noiseless case η = ν = 0, the average
discrepancy ⟨∥(u, v, w) − (up, vp, wp)∥⟩ measures how
predicted triplets (up, vp, wp) differ from data triplets
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FIG. 8. Predictions on the Lorenz-63 attractor.

(u, v, w), averaged at each prediction step over the 100
trajectories.
In the noisy cases, it make little sense to test the
algorithm’s ability to reproduce noisy data. We instead
test its ability to predict accurately the noiseless
series (u, v, w)t>t0

based on noisy past observations
(u′, v′, w′)t≤t0

. This is easily done for measurement noise
ν > 0, for which the original noiseless series is available
by construction.
For simulated thermal noise η > 0, all we have is a
particular realization of an SDE, but no clean reference.
Starting from the current noisy values at each prediction
point (u′, v′, w′), we evolve a noiseless trajectory with the
basic Lorenz ODE equations. Since we use an isotropic
centered ηdW Wiener process, that trajectory is also
the ensemble average over many realizations of the SDE,
starting from that same (u′, v′, w′) point. It makes more
sense to predict that ensemble average, from the current
noisy causal-state estimate, rather than a particular SDE
trajectory realization.
The results in Fig. 8 show a clear gain in precision when
using the RKHS method, both in the unperturbed data
case and when data is perturbed by measurement noise
ν = 1. This gain persists until the trajectory becomes
completely uncorrelated with the original prediction point.
The situation is less favorable for thermal noise η = 1.
Figure 9 presents a sensitivity analysis that focuses on
predictions after 50 time steps. For lower noise levels
η < 1, the RKHS method still improves the prediction
error, while the operator in data space does not seem to
be sensitive to η. We note (not shown here) that, for
longer time scales, the RKHS method may produce worse
results on average. The handling of measurement noise
ν < 1 is also in favor of the RKHS method, consistent
with above results.

FIG. 9. Sensitivity when predicting trajectories along the
Lorenz-63 attractor: Reconstruction error dependency on noise
levels. Data for the ν = η = 0 noiseless case is shown as
markers on the vertical axis.

FIG. 10. Eigenvalues for the reconstruction of Lorenz-
96 attractor, randomly projected in dimension 1000, with
added high-dimensional noise, for N = 10000 samples. The
dimension in the legend refers to the original parametrization
of Lorenz-96 attractor, which is recovered by the algorithm
in the form of a spectral gap when reconstructed from the
1000-dimensional noisy time series. Values after the gap are
very low and given in Table I, together with the gap itself.

D. Behavior with high-dimensional data and attractors

This is all well and good, but do attractor reconstruction
and denoising capabilities hold in higher dimensions? In
fact, it has been known for decades61 that the Lorenz-63
system is special and very easily reconstructed. This is
due to its high state-space volume contraction rate and
its simple and smooth vectorfield that sports only two
nonlinear terms.
To address these issues, we employ the Lorenz 1996
model,62 with tuneable dimension parameter D, defined
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FIG. 11. (Top left) First 3 components of the Lorenz-96 D = 5-dimensional attractor, with N = 5000 samples. (Top middle)
Same, back projected into the original space from the noisy 1000-dimensional random embedding. (Top right) First 3 coordinates
of the causal states set S reconstruction. (Bottom row) same plots for the D = 100-dimensional Lorenz-96 formulation. The
reconstructed coordinates can be equivalent reparametrizations of the original variables and need not match those 1 to 1. In
each case the noise has been greatly reduced, as in Fig. 6. Colors correspond to 10 time series, each starting from a distinct
random location on the basin of attraction, taken after a sufficiently long transient.

Dim. D 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
100 λD+1

λ1
0.31 0.23 0.26 0.24 0.24 0.24 0.22 0.25 0.26 0.21 0.23 0.23 0.23 0.22 0.23 0.26 0.24 0.20 0.25 0.21

λD

λD+1
60.3 64.1 51.2 49.3 42.2 35.2 34.9 30.8 26.8 26.4 25.1 24.1 22.0 20.7 18.5 18.1 15.8 14.3 14.5 13.9

TABLE I. Top row: Dimension of the Lorenz-96 ODE system; that is, before trajectories on the attractor undergo random
projection and adding noise. Middle row: Eigenvalue after the spectral gap, expressed in % of the first eigenvalue. Bottom row:
Spectral gaps, relative to the value after the gap. Results for N = 10000 samples are graphically presented in Fig. 10.

N = 5000 N = 10000 N = 20000
Dim. D 90 95 100 90 95 100 90 95 100
100 λD+1

λ1
0.22 0.18 0.21 0.20 0.25 0.21 0.21 0.20 0.21

λD

λD+1
6.3 5.8 5.0 14.3 14.5 13.9 26.1 25.6 26.5

TABLE II. Spectral gap dependency on the number N of
samples: Eigenvalues after the gap do not change in magnitude.
Spectral gaps themselves, though, are much better resolved
for larger N , especially in higher dimensions D.

for i = 1 . . . D by dui/dt = −ui−2ui−1+ui−1ui+1−ui+F ,
with modulo arithmetic on the indices. We use F =
8, which yields chaotic dynamics. In order to better

cover all of the attractor, series are generated from 10
different starting points taken at random on the bassin of
attraction, after discarding a sufficiently long transient.
N samples of (x, y) pairs are collected from these series,
using history lengths of LX = LY = 5 values of vectors u.
The projection of these series along the first 3 dimensions
of the attractors for D = 5 and D = 100 are shown on
the left part of Fig. 11.
To test the algorithm’s reconstruction performance, we
embed the time series in a 1000-dimensional space using
random projections: V = UR with R a matrix of random
components of size D × 1000, taken from a normal
distribution of standard deviation 1/D. U holds the
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collected samples, organized in a matrix of size N ×D. In
practice, in such high dimension, the projection directions
in R are nearly orthogonal. In addition, Gaussian noise
with variance ν2 = 1/D is added to each component of V ,
similar to the setup in Section VI C 1. We use the resulting
data W = V + noise as input to the algorithm: Truly
1000-dimensional data, now leaking into all dimensions
thanks to the added noise, while retaining the overall
lower D-dimensional structure of the Lorenz-96 attractor.
This experiment seeks to reconstruct this hidden D-
dimensional structure, solely from noisy 1000-dimensional
time series.
The middle panes of Fig. 11 show the corrupted W data,
projected back into the original space using the pseudo-
inverse pinv (R), for D = 5 and D = 100. The scaling of
the noise variance makes it so the strength of the noise is
similar irrespective of D.
The right panel of Fig. 11 shows the well-reconstructed
attractor. Moreover, the denoising for chaotic attractors
observed in Section VI C 1 is also well reproduced in
this markedly more complicated setting. Interestingly,
the first 3 coordinates of the reconstructed attractor
do not, and need not, match that of the original U
series. Indeed, the causal states are equivalence classes
of conditional distributions and, as such, are invariant by
reparametrizations of the original data that preserve these
equivalence classes; such as, coordinate transformations.
We see that the algorithm finds a parametrization where
each added coordinate best encodes the conditional
distributions in the low-dimensional coordinate
representation, as explained in Section IV C. Yet,
that parametrization encodes each and every initial
D component, even though it is presented with 1000-
dimensional noisy time series of lengths LX = LY = 5.
This is shown in Fig. 10 and Table I, which clearly
demonstrate spectral gaps at exactly D reconstructed
components. These spectral gaps are more pronounced
as the number of samples N increases, as shown in Table
II. As expected, a larger number of samples N is required
for properly capturing the spectral gaps as the dimension
D increases.

VII. CONCLUSION

We introduced kernel ϵ-machine reconstruction—a first-
principles approach to empirically discovering causal
structure. The main step was to represent computational
mechanics’ causal states in reproducing kernel Hilbert
spaces. This gave a mathematically-principled method
for estimating optimal predictors of minimal size and so
for discovering causal structure in data series of wide-
ranging types.

Practically, it extends computational mechanics to nearly
arbitrary data types. (At least, those for which a
characteristic reproducing kernel exists.) Section III A
showed, though, that this includes heterogeneous data
types via kernel compositions.
Based on this, we presented theoretical arguments
and analyzed cases for which causal-state trajectories
are continuous. In this setting, the kernel ϵ-machine
is equivalent to an Itô diffusion acting on the
structured set of causal states—a time-homogeneous,
state-heterogeneous diffusion. The generator of that
diffusion and its evolution operator can be estimated
directly from data. This allows efficiently evolving causal-
state distributions in a way similar to a Fokker-Plank
equation. This, in turn, facilitates predicting a process
in its original data space in a new way; one particularly
suited to time series analysis.
Future efforts will address the introduction of
discontinuities, which may arise for reasons mentioned
in Sec. IV A. This will be necessary to properly handle
cases where data sampling has occurred above the scale at
which time and causal-state trajectories can be considered
continuous. Similarly, when the characteristic scale of
the observed system dynamics is much larger than the
sampling scale, a model reproducing the dynamics of the
sampled data may simply not be relevant. Extensions
of the current approach are thus needed, possibly
incorporating jump components to properly account for a
measured system’s dynamics at different scales. This, of
course, will bring us back to the computational mechanics
of renewal and semi-Markov processes.5

Another future challenge is to extend kernel ϵ-machine
reconstruction to spatiotemporal systems, where temporal
evolution depends not only on past times but also
on spatially-nearby state values.8,27,63,64 An archetypal
example of these systems is found with cellular automata.
In fact, any numerical finite elements simulation
performed on discrete grids also falls into this category,
including reaction-diffusion chemical oscillations and
hydrodynamic flows. Spacetime complicates the definition
of the evolution operator, compared to that of time
series. However, the applicability of kernel ϵ-machine
reconstruction would be greatly expanded to a large
category of empirical data sets.
Last, but not least, are the arenas of information
thermodynamics and stochastic thermodynamics. In
short, it is time to translate recent results on information
engines and their nonequilibrium thermodynamics21–23,28

to this broadened use of computational mechanics. This,
in addition to stimulating theoretical advances, has
great potential for providing new and powerful tools for
analyzing complex physical and biological systems, not
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only their dynamics and statistics, but also their energy
use and dissipation.

DATA AND CODE AVAILABILITY

The source code for the method described in this
document is provided as free/libre software and is
available from this page: https://team.inria.fr/comcausa/

continuous-causal-states/. Experiments in sections VI A,
VI B and VI C can be reproduced by retrieving the
tagged version “first_arxiv” from the GIT archive, the
experiment in Section VI D with the tagged version
“chaos_submission”.
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