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Hybrid non-overshooting set-point pressure
regulation for a wet clutch

Matteo Cocetti, Silvia Donnarumma, Luca De Pascali, Matteo Ragni, Francesco Biral, Fabrizio Panizzolo,
Pier Paolo Rinaldi, Alex Sassaro, and Luca Zaccarian, Fellow, IEEE

Abstract—We propose a control oriented Wiener model for
wet-clutches in filled conditions and we discuss the associated
identification technique. We design a novel hybrid controller,
which ensures zero steady-state error and a fast non-overshooting
response. We show that the controller parameters can be conve-
niently obtained by solving a set of linear matrix inequalities.
Finally, we test the proposed control strategy on the hydro-
mechanical variable transmission developed by Dana-Rexroth
Transmission Systems. The experiments show good performance
and robustness with respect to modeling errors and noise.

Index Terms—Hybrid/reset control, overshoot, switching con-
trol, linear matrix inequalities, wet-clutch, pressure control.

I. INTRODUCTION

The main goals for the next generation of transmission
systems are an improved fuel economy and a better produc-
tivity. Toward these goals the automotive industry has devel-
oped numerous solutions, such as automatic and dual clutch
transmissions, which can automatically shift among different
drive ranges, thus improving both vehicle drivability and fuel
economy. These technologies are now mature enough to be
employed also in the off-highway, agricultural and working
machines industry. However, it is particularly challenging to
adapt these technologies for the off-highway market due to
the rather different requirements. For example, mechanical
continuous variable transmissions are very efficient, but they
operate in a too narrow power range. This problem can
be partially solved using hydrostatic transmissions, but their
efficiency is low. Ideally, the best solution should combine the
efficiency of the mechanical continuous variable transmissions
and the power range of a hydrostatic transmission. This mar-
riage between the hydrostatic and the mechanical world is the
hydro-mechanical variable transmission (HVT) that has been
introduced by Dana-Rexroth Transmission Systems (DRTS) in
[1] and references therein.
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Fig. 1. The hydro-mechanical variable transmission.

In the HVT architecture, see Figure 1, the engine power is
split into two different pathways: the first one is mechanical
and is highly efficient, while the second one is hydrostatic and
preserves the continuous variable transmission characteristic.
The powers coming from each pathway are then combined
by means of a planetary gear. Moreover, in order to extend
the range of possible speeds, the HVT can also shift among
several drive ranges. This shift is performed by coordinating
several wet-clutches, suitably actuated by electro-proportional
valves. Ideally, during a clutch shift, the transmitted torque
should remain constant to ensure a comfortable and smooth
transition.

Clutch control is an active area of research, and numerous
control techniques have been proposed in the literature. In [2],
[3] the authors propose a combination of differential flatness
and feedback linearization, while in [4] a robust sliding-mode
controller is presented. These approaches are rather elegant,
but they are usually hard to implement in a digital form due
to discretization issues or poorly known dynamics. This is
especially true in our setup, where the actuation system of
the HVT is difficult to identify precisely, due to non-linear
effects, hysteresis and dependence on the oil temperature.
Consequently, complex controllers may fail to work properly.
Moreover, in contrast to [2] and [3], we do not assume the
knowledge of the piston position, because for wet clutches it
is technologically very hard to place sensors inside a chamber
with a rotating shaft soaked into oil. For this reason, the only
available measurement for feedback is the oil pressure. A
similar setup has been already considered in [5], where the
authors propose a linear model for a twin-clutch transmission
and they design a pressure feedback controller inducing a
desirable clutch shift.

In this work we follow a similar spirit, but compared to [5],
we consider a more complete model and we propose a novel
hybrid controller. The main differences are highlighted below.
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First, in our setup the clutch shows a non-constant DC gain
and a small variable delay in the actuation. We include these
effects by adding a non-linear invertible map and considering a
non-minimum phase approximation of the delay. The resulting
model is the cascade of a non-minimum phase single input
single output linear time-invariant system and an invertible
non-linear output map, a so-called Wiener model.

Second, since a large amount of power is transmitted by
the HVT, the closed-loop specifications are tight and somehow
conflicting. The step response of the pressure in the chamber
must be fast, non-overshooting, and with zero steady-state
error. However, it has been shown in [6] (see also [7]) that
linear linear controllers with integral action (to ensure zero
steady-state error) combined with a sufficiently slow rise time
(that is, some reasonable bandwidth specification), necessarily
leads to an overshoot. To overcome this limitation, we propose
a novel hybrid controller that combines a switching and a
resetting mechanism, thus providing the desired response. The
controller synthesis is conveniently formulated as a linear
matrix inequality (LMI) problem. A preliminary version of
this work has been presented in [8]. Here we provide an
improved LMI-formulation of the non-overshooting design,
and we introduce the hybrid controller with integral action
which was absent in [8]. Moreover, we study the robustness
properties of the proposed solution considering constant (or
slowly varying) disturbances acting on the model. Finally,
we provide new and more convincing experimental results,
showing the advantages of the proposed controller.

The paper is organized as follows: in Section I we introduce
and we motivate the work. In Section II we introduce the
experimental setup and the closed-loop goals. In Section III
we propose a control-oriented model for wet clutches and the
related identification technique. In Section IV we present the
novel hybrid controller. In Section V we propose an LMI-
based tuning procedure for the proposed controller. Experi-
mental tests are presented and discussed in Section VI. Finally,
conclusions and remarks are offered in Section VII.

For reasons of confidentiality all the units of measure
are normalized and the technological details are omitted.
This does not affect the contribution of the proposed control
design which is fully parametric and has been validated on
five different clutches, differing in mechanical and hydraulic
properties. Indeed, our construction can be implemented on
any exponentially stable second order plant, thereby making
our technique broadly applicable.

II. SETUP DESCRIPTION AND GOALS

In the HVT architecture, wet-clutches are actuated by the
hydraulic circuit sketched in Figure 2. The current in the
valve regulates the oil pressure inside the clutch chamber, and
controls in an indirect way the piston movement. Through
this mechanism we can open and close the clutch, and by
increasing or decreasing the contact force we modulate the
transmitted torque. The standard actuation sequence is as fol-
lows: first, the current in the valve increases opening the orifice
between the clutch chamber and the supply high pressure line.
The oil flows pushing the clutch piston towards the end of
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Fig. 2. Hydraulic actuation scheme.

the stroke, causing the transmission of a small torque due to
drag effects. This phase is known as filling phase, and it is
usually performed in an open-loop fashion. During the filling
phase, the pressure measurements are not reliable due to the
pressure gradient associated to the flow. Secondly, when the
piston reaches the end of the stroke, the gap between the clutch
plates is zero and the flow stops. At this pressure, known as
(mechanical) kiss point [9], the piston remains in equilibrium,
thanks to the balancing between the oil pressure and the force
exerted by the spring. Thirdly, after the kiss point, the plates
push against each other and transmit a considerable amount
of torque. This operating condition is known as modulation
range, and is characterized by an affine relationship between
the oil pressure and the transferred torque.

In order to obtain a smooth clutch shift, the filling phase, the
kiss point, and the modulation range, need to be properly con-
trolled. This translates into three key ingredients: 1) a correct
timing and synchronization of the clutches, 2) a well prepared
on-coming clutch (filled with oil and ready to engage), 3) a
precise oil pressure control in the modulation range. In this
paper we focus on the aspect of controlling the oil pressure
in the modulation range. Because in the modulation range
there is an affine relationship between the oil pressure and the
transmitted torque, the task of controlling the torque is indeed
equivalent to controlling the pressure. Here we assume that
the electrical dynamics of the valve are negligible, i.e., much
faster than the mechanical ones, because a high performance
current control has been implemented [10].

Even under the above simplifying assumptions, precisely
controlling the oil pressure is a challenging task. The nonlinear
interaction between the valve and the oil, and the viscosity that
changes with the temperature, make the task non-trivial.

For this application it is also fundamental that the closed-
loop satisfies the following tight performance goals, whose
motivations are discussed next.

Problem 1 (Control problem). Design an oil pressure con-
troller for the HVT such that the closed-loop response satisfies
the following conditions:

1) Nominal non-overshooting step response.
2) Very small rise time.
3) Zero steady-state error for constant reference signals.

The precise value of the rise time is not specified for
confidentiality reasons. These goals are all equally important
to achieve a smooth clutch-shift because items 2) and 3)
are key to ensuring that the driver does not experience any
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perturbation during the shift operation. Moreover, among all,
the non-overshooting constraint is especially critical. Because,
overshoot in the pressure response causes an excess of dissi-
pated power that could burn the clutch friction discs.

Problem 1 is difficult because requirements 1) and 3) are
conflicting, and 2) imposes to use an aggressive controller.

In addition to the goals defined in Problem 1, it is desirable
that the controller is robust w.r.t. 1) small delays in the loop,
2) possible slow unmodeled dynamics, 3) variations of the oil
temperature and clutch aging. Moreover, due to the limited
electronic hardware in the automotive industry, the proposed
controller must be “easy enough” to be implemented with a
limited computational power.

III. MODELING AND IDENTIFICATION

A. Model selection
In this section we discuss a control-oriented model for wet

clutches in the modulation range. The input is the current in the
valve, the output is the oil pressure inside the clutch chamber.

We performed a series of experiments, using a staircase-like
input current, as shown in Figure 3. The response at the first
step differs from the others due to the presence of flowing oil
(the clutch is still in the filling phase). When the clutch reaches
the modulation range, the oscillating behavior resembles a
second-order linear system with complex poles, however a
closer look reveals some nonlinear effects. First, the DC gain
is not constant, secondly there is a small variable input-output
delay, probably associated to a non-constant computational
time. We capture the non-constant DC gain through a static
output nonlinearity φ, for which we assume the following.

Assumption 1. The output non-linearity φ is a continuous
strictly increasing function on R≥0 := [0,+∞).

For the input delay d, we introduced a non-minimum phase
behavior in the response, which approximates the delay by
way of a small undershoot. This is not surprising since the
first-order Padé approximation of delay d yields,

e−iωd ≈ 1− iωd/2
1 + iωd/2

∀ω � 1/d, (1)

where i is the imaginary unit and ω ∈ R the frequency. This
approximation shows that for a large range of frequencies,
(1/d is large), a small time delay is equivalent to a zero in the
open right-half plane plus a pole in the open left-half. We can
disregard the pole, because it is much faster than the clutch
dynamics, and we keep the zero.

With slight abuse of notation, we mix time and Laplace
domain. Given a signal u(·) defined for t ∈ R≥0, we denote
by u(t) ∈ R the value at time t, and by u(s) ∈ C the value of
its Laplace transform at s ∈ C. Based on the considerations
above, we propose a Wiener model [11], of the following form

y(s) :=

(
1 + a3s

1 + a1s+ a2s2

)
u(s) = H(s)u(s) (2a)

z(t) := φ(y(t)), (2b)

where u ∈ R is the input, z ∈ R is the measured output,
y ∈ R is an equivalent “linear output” and φ : R≥0 → R≥0
an invertible nonlinear map.
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Fig. 3. Experimental pressure response to a staircase input current. z ∈ R is
the pressure and u ∈ R is the input current, while zmax, umax and tmax are
normalization factors.

The transfer function H(s) ∈ C is strictly proper and non-
minimum phase due to the delay approximation in (1).

Remark 1. Without loss of generality we assume that the DC
gain of (2a) is unitary, lims→0H(s) = 1. Indeed, a different
DC gain can be easily absorbed into the nonlinearity φ. y

B. Model identification

Identification of general Hammerstein-Wiener models is a
complex topic, but in this paper thanks to the invertibility of φ
(see Assumption 1) the identification procedure boils down to
a simple two-step procedure. First we identify φ considering
a large set of steady-state input-output pairs {(ui, zi)}Ni=1 ⊂
R2 (where N � 1). Then we identify the remaining linear
dynamics using standard tools. Since the transfer function (2a)
has unitary DC gain, the pairs (ui, zi) are related through φ,
and the identification of the output nonlinearity reduces to an
interpolation problem. The second order polynomial

zi = φ(ui) := p0 + p1u
i + p2(ui)2 + εi, i = 1, . . . , N, (3)

provides a good fitting, see Figure 4. The coefficients
p0, p1, p2 ∈ R can be easily obtained by solving a least squares
problem. Once φ is known, we estimate the coefficients a :=
(a1, a2, a3) ∈ R3 virtually accessing the linear output y as
y = φ−1(z) and using any standard identification techniques
for linear systems, see for example [11]. Notice that general
quadratic functions of the form (3) are not globally invertible,
as required in Assumption 1, however (3) is experimentally
invertible over R≥0 for the identified set of parameters.

C. Balanced realization

In Section V we will describe an LMI-based procedure for
the controller synthesis. Because LMIs are naturally formu-
lated in state space, we consider a minimal realization of (2a)
as follows

Hp :=


ẋp = Axp +Bu+Gw

y = Cxp +Qw

z = φ(y),

(4)
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Fig. 4. Interpolation of the steady-state pairs (top) and residuals (bottom)
normalized with respect to the maximum pressure zmax.

where xp ∈ R2 is the state, and w ∈ R is a disturbance.
Matrices G and Q cannot be directly obtained from (2a),
but can be freely designed to “shape” the effect of the
disturbance w on the measurement and the state. For (4), we
used a balanced realization [12], which guarantees that equally
“important” states have similar magnitude. This improves
numerical stability and makes the LMIs in Section IV better
conditioned from a numerical viewpoint. Moreover, according
to Remark 1, we assume that (4) satisfies the following:

Assumption 2. Matrix A is Hurwitz, the triple (C,A,B) is
minimal, balanced and satisfies −CA−1B = 1.

According to the goal of set-point regulation defined in
Problem 1, we restrict the class of possible reference and
disturbance signals to constant ones.

Assumption 3. The signals r and w are constant.

Remark 2. Assumptions 2, 3 are not restrictive for the exper-
imental system under consideration, and the presence of the
output nonlinearity φ adds no conceptual difficulties, because
thanks to Assumption 1 we can always access y through φ−1.
It is important to stress that an imperfect knowledge of the
output non-linearity φ produces a constant steady-state error
that can be thought of as part of w. Therefore, from this point
over, and especially in Section IV, we consider to have full
access to signal y. y

IV. HYBRID CONTROLLER

In this section we propose a novel hybrid control scheme
solving Problem 1 by switching among two different modes.
The first mode corresponds to a “transient mode” that shapes
the transient providing a fast non-overshooting step response.
The second mode is a “steady-state mode” that activates an
integral action able to zeroing out the steady-state error. We

emphasize that a linear controller simultaneously satisfying
the requirements defined in Problem 1 may not exists. Indeed
the combined action of the non-minimum phase zero and of
the integrator (necessary to ensure zero steady-state error)
considerably reduces the phase margin of the open loop,
thus making the design of a non-overshooting controller a
challenging task. Intrinsic limitations of linear controllers are a
well known subject in the literature [6], [7], and for this reason
we decided to adopt a hybrid controller with a switching mech-
anism. Switching among different controllers has already been
recognized as an effective way to obtain superior performance
[13]. This technique is also popular in the industry, where it
is widely used in the context of gain scheduling. However,
it is well-known that the transients caused by switching may
result in instability of the closed-loop. Motivated by this fact,
many researchers proposed stability conditions for switching
controllers, see for example [14], [15], just to cite a few.

To overcome the problem of destabilizing transients we
equip our controller with a bumpless filter [16], and a prop-
erly designed reset rule. The interplay between the bumpless
dynamics and the resets guarantees stability under arbitrarily
switching. This strong property leaves complete freedom in
the design of the high-level switching logic.

A graphical representation of model (2) in feedback inter-
connection with the hybrid controller is shown in Figure 5.
We may notice that controller Hc requires two inputs: the
“tracking error” e ∈ R and the “feed-forward” control uff ∈ R.
The “feed-forward” control uff is obtained by inverting the
Wiener non-linearity φ as follows

uff := φ−1(r), (6)

where r is the reference signal for z. Because by Assumption 2
the DC gain of (2a) is unitary, uff can be interpreted also as a
reference signal for y and it makes sense to define the tracking
error e as

e := y − uff. (7)

We notice that thanks to Assumption 1, the non-overshooting
requirement for (z − r) can be equivalently considered on e.
The proposed hybrid controller Hc has the following structure:

Hc :=

{
ẋc = Ac(q)xc +Bc(q)uc

x+c = Ec(q)xc + Fc(q)uc
(8)

where xc ∈ R6 is the controller state, uc := (e, uff) ∈ R2

is the controller input, and q ∈ Q := {1, 2} is a logic
variable selecting what mode is currently active. Moreover,
controller (8) is interconnected to (4) through the following
output equation:

u = Cc(q)xc +Dc(q)uc. (9)

The logic value q = 1 is associated to the “transient mode”,
while q = 2 is associated to the “steady-state mode”. Explicit
expressions for the matrices in (8), (9) for each mode are
reported in (5).

Remark 3. Notice that (8) includes a reset mechanism, namely
a discontinuity of the controller state xc. This discontinuity is
imposed when the logic variable q toggles between values 1
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 Ac(1) Bc(1)
Cc(1) Dc(1)
Ec(1) Fc(1)

 : =



A+ LC +BK1 B 0 0 −L 0
0 0 0 0 0 0

B(K2 −K1) −B A+BK2 BKi 0 −(A+BK2)A−1B
0 0 C 0 I I
K1 I 0 0 0 I
I 0 0 0 0 0

K2 −K1 0 K2 −K1 Ki 0 (K1 −K2)A−1B
0 0 I 0 0 −A−1B
0 0 0 I 0 0


(5a)

 Ac(2) Bc(2)
Cc(2) Dc(2)
Ec(2) Fc(2)

 : =



A+ LC +BK2 0 B(K2 −K1) BKi −L 0
0 0 0 0 0 0
0 0 A+BK1 0 0 0
0 0 C 0 I 0
K2 0 K2 −K1 Ki 0 I
I 0 0 0 0 0

K2 −K1 0 K2 −K1 Ki 0 0
0 0 I 0 0 A−1B
0 0 0 I 0 0


(5b)

H(s) +

φ φ−1

+
Hc

Hp

φ−1

u z y

QwGw

e

uff r
−uc

Fig. 5. Block diagram of the model-controller loop. Please notice the presence
of φ−1 and the error feedback hybrid controller.

and 2. The motivation for this reset mechanism will become
apparent in the proof of Theorem 1 where we will include the
logic variable q as a part of the state, so that xc and q are
updated synchronously during jumps. y

Although the structure of Equation (5) may seem compli-
cated, there is a rather intuitive motivation for each block.
Looking at (5) we can split the controller state into 4
different sub-states as follows xc = (xc1, xc2, xc3, xc4) ∈
R2 × R × R2 × R, where we used the shorthand notation
(x1, x2) := [x>1 , x

>
2 ]>. The individual role of each component

of the controller state is clarified below:
1) xc1 is associated to a Luenberger observer that provides

an estimate of the state xp in (4);
2) xc2 introduces a constant input bias that plays the role

of an integral action updated only during jumps;
3) xc3 corresponds to a bumpless filter, inspired by [16],

which guarantees stability under a large class of switch-
ing signals;

4) xc4 implements the integral action of the steady-state
controller (q = 2).

Finally the reset mechanism for (8) is specified by the matrices
Ec(q) and Fc(q). The resets and the switches are designed
to keep the solutions well behaved across jumps and, in
particular, it ensures that the feed-forward signal uff enters
only in the sub-block of the controller relative to the active

mode. This fact ensures that q can switch arbitrarily fast
between the two modes without destabilizing the closed-loop.
Moreover, when switching from q = 2 to q+ = 1, the reset
exploits the information provided by xc3, xc4 to update the
bias generated through xc2 and asymptotically recovers zero
steady-state error also in transient mode (q = 1).

The above properties are more evident when looking at the
interconnection between (4) and (8) through (9) and (7), in a
different set of coordinates. Thanks to Assumption 3 we have
that u̇ff = 0 and we can consider the change of coordinates

x := T (q)(xp, xc) + U(q)uff, (10)

where matrices T (q) ∈ R8×8 and U(q) ∈ R8×1 are reported
below

(T (q), U(q)) :=
(2− q)I 0 0 (1− q)I 0 (2− q)A−1B

0 0 I 0 0 0
I 0 0 I 0 (q − 1)A−1B
0 0 0 0 I 0
−I I 0 0 0 −A−1B

 .
Notice that T (q), U(q) are full rank for all q ∈ Q so that (10)
is always well-defined.

Thanks to (10) the closed-loop takes the simplified expres-
sion

H :=

{
ẋ = Acl(q)x+Gcl(q)w

x+ = Ecl(q)x,
(11)

where Acl(q) ∈ R8×8, Gcl(q) ∈ R8×1, and Ecl(q) ∈ R8×8

are reported in Equation (12). Similarly, the tracking error e
yields

e = Ccl(q)x+Dclw, (12)

where again Ccl(q) ∈ R1×8, Dcl ∈ R1×1 are defined in
Equation (14). It is worth to notice that (14) has a desirable
cascade structure and thus a necessary condition for stability
is to ensure that the diagonal sub-blocks

[A+BK1],

[
A+BK2 BKi

C 0

]
, [A+ LC] (13)
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are Hurwitz. This is not restrictive in our setup, since the triple
(C,A,B) is minimal from Assumption 2. Then it is always
possible to find a set of parameters K1, K2, Ki, L such that the
matrices in (13) are Hurwitz. We illustrate a possible design
procedure in sections V-A,V-B and V-C. Finally, to study the
stability properties of (11) we assume that the switching signal
q satisfy a mild dwell-time and reverse dwell-time condition.
Denoting by tj , j ∈ N≥1 the toggle times, i.e. the times when
the logic variable q changes from q = 1 to q+ = 2 or vice-
versa, we assume the following.

Assumption 4. There exist two positive numbers τmin, τmax ∈
R>0, such that τmin ≤ |tj+1 − tj | ≤ τmax, ∀j ∈ N≥1.

Remark 4. We remark that no constraints on τmin and τmax are
imposed, and that these values are not used in the controller
synthesis presented in Section V. Thus Assumption 4 virtually
allows for all the possible switching sequences that are relevant
from a practical viewpoint. y

What follows is the main result of the paper.

Theorem 1 (Main result). Assume that the gains K1, K2,
Ki, L have been designed so that the matrices in (13) are
Hurwitz. If Assumptions 1, 2, 3, and 4 hold true, then (11)
has the following properties:

1) For w = 0 the origin of (11) is uniformly globally
exponentially stable for all switching sequences.

2) For any constant w the solutions to (11) are globally
bounded and ensure asymptotic convergence to zero of
e.

Theorem 1 provides a strong and desirable result because it
establishes asymptotic tracking and exponential convergence
for any switching signal q satisfying the mild requirements in
Assumption 4.

Proof. To properly describe the class of switching signals
defined in Assumption 4 we develop a hybrid representation
for (11), which includes q and a timer τ as part of the state.
We use the hybrid systems framework presented in [17]. The
following representation is inspired by the construction in [18,
page 747] and can be shown to generate all and no more than
the switching sequences characterized in Assumption 4, see
[18, Prop. 1.1].

The resulting hybrid system has the following structure:

xq
τ

 ∈
 R8

Q
[0, τmax]

 ,
ẋq̇
τ̇

 =

Acl(q)x+Gcl(q)w
0
1


xq
τ

 ∈
 R8

Q
[τmin, τmax]

 ,
x+q+
τ+

 =

Ecl(q)x
3− q

0

 .
(15)

Using the above representation, we proceed to proving the two
items of the theorem.

Proof of item 1). Because we are interested in studying
the stability properties of the origin of (11) and in (15)
we introduced the additional states (q, τ) we consider the
compact attractor A := {0} × Q × [0, τmax] and the distance
function |x|A := infa∈A(|x − a|), so that |(x, q, τ)|A =

|x|, and we equivalently study the stability property of A.
According to the representation in (14) we split the state
x = (x1, . . . , x5) ∈ R×R2 ×R2 ×R×R2 and we apply the
recursive reduction theorem reported in [19, Thm 4] with the
following sets: Γ4 := {(x, q, τ) : x5 = 0}, Γ3 := {(x, q, τ) ∈
Γ4 : (x3, x4) = 0}, Γ2 := {(x, q, τ) ∈ Γ3 : x2 = 0},
Γ1 := {(x, q, τ) ∈ Γ2 : x1 = 0} = A. To apply [19, Thm
4] we first observe that for the case w = 0 (addressed in
item 1), the following holds:
1) Γ4 is asymptotically stable because the flow dynamics of x5
are independent of the other states and governed by a Hurwitz
linear time-invariant flow equation A + LC, see (13), while
the jump equation is the identity. Asymptotic stability of Γ4

then follows from the persistent flowing results of [17, Prop.
3.27] ensured by the fact that jumps are inhibited in (15)
until τ ≥ τmin. The same argument can be repeated to prove
that Γi is asymptotically stable relative to Γi+1, for i = 3, 1,
because both

[
A+BK2 BKi

C 0

]
and A + BK1 are Hurwitz by

assumption, see (13). To prove that Γ2 is asymptotically stable
relative to Γ3, we first project the dynamics on a reduced
state space where x1 = 0 (this is possible due to the upper
triangular structure of Acl and Ecl). Then we observe that this
projection of Γ2 is forward invariant and globally uniformly
attractive (because the persistently flowing solutions from Γ3

converge to zero after the first jump in at most τmax ordinary
time). Using the fact that the projection of Γ2 on the x1 = 0
hyperplane is compact, GAS of Γ2 relative to Γ3 follows from1

[17, Prop. 7.5].
2) All solutions are bounded. Indeed, pick an arbitrary initial
condition and note that a) state x5 is bounded because it does
not change across jumps and converges to zero following a
linear exponentially convergent transient during flows; b) state
(x3, x4) follows analogous dynamics, also being perturbed by
a bounded input during flows, which cannot drive the state
unbounded from bounded input bounded state stability proper-
ties of linear exponentially stable continuous-time dynamics;
c) boundedness of x2 follows from the fact that it remains
constant along flows and jumps to some linear combinations
of bounded quantities (x3, x4, x5) across jumps; d) state x1 is
then bounded by a straightforward application of [20, Lemma
1], because the linear time-invariant dynamics is governed by
an exponentially stable linear time-invariant dynamics along
(persistent) flows (see the assumption on A + BK1 in (13))
and by the identity map across jumps, whereas the forcing
inputs acting along flows and across jumps come as linear
combinations of bounded variables (x1, x2, x3).

The above properties 1) and 2) imply that we can invoke
[19, Thm 4] and global asymptotic stability of A follows.
Proof of item 2). We start proving that there exists a q-
dependent matrix Π(q) ∈ R8×1 that satisfies the following
conditions[

Acl(q) Gcl(q)
Ccl(q) Dcl

] [
Π(q)
I

]
= 0, ∀q ∈ Q (16a)

Π(q+)− Ecl(q)Π(q) = 0, ∀q ∈ Q, (16b)

1The statement in [17, Prop. 7.5] is only local but a global version of it
trivially follows from picking increasingly large values of the scalar µ therein
characterized.
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 Acl(q) Gcl(q)
Ecl(q)
Ccl(q) Dcl(q)

 :=



A+BK1 (2− q)B 0 0 (2− q)BK1 (2− q)G
0 0 0 0 0 0
0 0 A+BK2 BKi BK2 G
0 0 C 0 0 Q
0 0 0 0 A+ LC −G− LQ
I 0 (2q − 3)I 0 0
0 0 K2 −K1 Ki K2 −K1

0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
C 0 (q − 1)C 0 0 Q


(14)

which are a generalization of the classical regulator equations
[21]. The conditions in (16) can be intuitively derived noticing
that x(∞) := Π(q)w(∞), and e(∞) := Ccl(q)x(∞) +
Dclw(∞), so that the flow properties (ẋ(∞), e(∞)) = (0, 0)
can be derived by imposing Π(q+)w(∞) = x(∞)+ =
Ecl(q)x(∞), and where we used the notation (∞) to denote
the asymptotic value.

In order to prove (16) we split the subspace Π(q) ac-
cording to the partitioning in (14) as follows Π(q) :=
(Π1(q),Π2,Π3,Π4,Π5), and considering (16a) we obtain the
following set of equalities

0 = (A+BK1)Π1(q) + (2− q) (BΠ2 +BK1Π5 +G)
(17a)

0 = (A+BK2)Π3 +BKiΠ4 +BK2Π5 +G (17b)
0 = CΠ3 +Q (17c)
0 = (A+LC)Π5−G−LQ, (17d)

where we omitted equations that are trivially satisfied. By the
internal model principle [21] we know that (17b), (17c) and
(17d) are automatically satisfied. Now, we can easily verify
that, with the selection

Π1(q) = (2− q)Π3

Π2 = KiΠ4 + (K2 −K1)(Π3 + Π5),
(18)

equation (17a) reduces to (17b) and it is automatically satisfied
by the internal model principle. It is not hard to check that
with the selection (18) also (16b) is satisfied. Finally, plugging
the change of coordinates x̃ = x−Π(q)w into (15), and using
(16), we obtain a hybrid system equivalent to (15) where w has
been set to zero and whose stability has already been proved,
which concludes the proof.

V. CONTROLLER TUNING

In this section we propose an LMI-based technique to tune
the controller parameters K1, K2, Ki, and L. We remark
that, due to the special cascaded structure of (11), all these
parameters can be tuned independently.

A. Transient mode tuning

We propose to choose K1 following a two-step procedure
generalizing the results of [8]. As a first step we characterize
the maximum achievable convergence rate α ∈ R>0 by
imposing constraints on the aggressiveness of the feedback
gain K1 (a bound on its norm) and on the closed-loop damping

factor. Specifically, we aim to solve the following optimization
problem:

max
W,X,α

α subject to:

W = W> ≥ I (19a)

M +M> ≤ −2αW (19b)[
(M +M>) sin θ (M −M>) cos θ
(M> −M) cos θ (M +M>) sin θ

]
≤ 0 (19c)[

W X>

X Iκ2

]
≥ 0, (19d)

where M := AW + BX ∈ R2×2 and θ ∈ [0, π/2]. We used
the following notation: given a matrix M , M> denotes its
transpose and, for square matrices, M > 0 (M ≥ 0) denotes
positive definiteness (semi-definiteness). The identity matrix
of proper dimensions is denoted by I .

Optimization problem (19) is non convex due to the product
αW , but it can be efficiently solved because it is a quasi-
convex generalized eigenvalue problem [22]. The next propo-
sition establishes a few useful properties for (19).

Proposition 1. Under Assumption 2, for any value of κ ∈
R>0, there exists a large enough θ ∈ [0, π/2] such that (19)
is feasible. Moreover, for any feasible solution to (19) together
with the choice K1 = XW−1, the following properties hold:
i) the norm |K1| ≤ κ, ii) the closed-loop matrix (A + BK1)
has eigenvalues with real part less than −α, iii) the damping
factor of the poles is larger than cos θ.

Proof. Feasibility follows from the fact that, with θ = π/2,
constraint (19c) reduces to M+M> ≤ 0. Then the assumption
that A be Hurwitz implies that X = 0 is a feasible solution
for any non-negative value of κ. To show that |K1| ≤ κ, a
Schur complement on (19d) and X = K1W and (19a) yield

Iκ2 ≥ XW−1X> = K1WK>1 ≥ K1K
>
1 ,

which implies |K1| ≤ κ. The eigenvalues of (A+BK1) having
real part less than −α is a straightforward consequence of
(19b), and the damping factor greater than cos θ is a direct
application of the results in [23, Equation (13)].

The optimization problem (19) provides a convenient way
to trade-off between speed of convergence, imposed by α, and
level of aggressiveness of the arising controller, tuned by κ.

The second step of the proposed synthesis procedure con-
sists in reducing the overshoot associated to the gain selection
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Re(s)

Im(s)

−η−1α−α−ηα

θ

Fig. 6. The shaded conic region represents the region in the complex plane
where the closed-loop poles are constrained.

obtained with (19). Toward this goal we impose the non-
overshooting condition by forcing a small constant of pro-
portionality between the derivative of the tracking error ė and
the partial state x1, when e = 0. We formalize this idea by
imposing the following conservative bound

e = 0 ⇒ |ė| ≤ ρ|x1|, (20)

and we minimize ρ ∈ R>0. When constant ρ is zero, a zero
overshoot is ensured by the forward invariance of the zero error
manifold, (in other words overshoot is impossible with ρ = 0
because crossing the set where e = 0 contradicts (20)), but in
cases where the absence of overshoot cannot be attained due
to intrinsic limitations, a minimized overshoot is conveniently
obtained. Since x1 is the only non-zero element of the state x
whenever e = 0, Equation (20) can be equivalently re-written
in the following way

|C(A+BK1)x1| ≤ ρ|x1|, ∀x1 : Cx1 = 0. (21)

An LMI formulation of (21) is included in the next optimiza-
tion problem minimizing the overshoot metric ρ.

min
W,S,X,ρ2

ρ2 subject to:

M +M> ≤ −η−1αW (22a)

M +M> ≥ −ηαW (22b)2W MC> I
CM ρ2I 0
I 0 I + C>SC

 > 0 (22c)

S = S> > 0 (22d)
(19a), (19c), (19d).

Remark 5. Constraints (22a), (22b) and (19c) force the closed-
loop poles to lie in the shaded gray region of the complex plane
shown in Figure 6. The shape of this region can be adjusted
using parameters η and α. y

Proposition 2. Under Assumption 2, assume that α, θ, κ are
parameters for which (19) is feasible; then there exists a large
enough η ∈ R≥1 such that (22) is feasible as well.

Moreover, for any feasible solution to (22), selecting K1 =
XW−1 the following properties hold: i) the norm |K1| ≤ κ,
ii) the closed-loop matrix (A+BK1) has eigenvalues with real
part less than −αη−1, iii) the damping factor of the poles is
greater than cos θ, iv) the relation in (20) holds.
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Fig. 7. Simulated step responses for increasing values of κ. The time scale
is normalized.

Proof. Feasibility holds because there exists η sufficiently
large such that the shaded region in Figure 6 contains the
positions of the poles obtained by the feasible solution for (19),
assumed in Proposition 2. Then that solution is also feasible
for (22) as long as ρ2 is sufficiently large. Properties i)–iii)
are a straightforward consequence of constraints (19a), (19c),
(19d), which imply the stated properties from Proposition 1.
We finish the proof by showing property (4). Performing a
Schur complement on (22c), and using (22d), we obtain:[

2W − (I + C>SC)−1 M>C>

CM ρ2I

]
> 0, (23)

where I + C>SC is clearly invertible. Consider now the
following inequality

(W−(I+C>SC)−1)>(I+C>SC)(W−(I+C>SC)−1)≥0,

which implies 2W − (I + C>SC)−1 ≤ W (I + C>SC)W .
From (23), pre/post multiplying by diag(W−1, I) and using
M = (A+BK1)W , we obtain[

I + C>SC (A+BK1)>C>

C(A+BK1) ρ2I

]
> 0,

which, after being multiplied by ρ2 and after a Schur comple-
ment, implies:

|C(A+BK1)x1|2 < ρ2|x1|2 + ρ2|
√
SCx1|2.

Finally, when Cx1 = 0, a square root gives (21).

The properties established in Propositions 1 and 2 suggest
that the feedback gain K1 be selected as follows: first a
set of different levels of aggressiveness are fixed, spanning
an experimentally reasonable range. Then for each one of
them we solve the optimization problem in (19), possibly
adjusting the parameter θ if the LMIs are infeasible (feasibility
is guaranteed by Proposition 1 for a large enough θ). This
first step provides a number of values for α, each of them
corresponding to a different selection of κ. As a second step,
optimization (22) is solved for each one of the (κ, α) pairs with
the same value of θ, possibly adjusting parameter η (feasibility
is guaranteed by Proposition 2 for a large enough η).

For the model identified in this work, the values of κ are
shown in Figure 7 with the resulting step responses, confirming
the non-overshooting feature ensured by Proposition 1. The
corresponding values for α have been obtained by applying
optimization (19) after fixing θ = π/4 and η = 5.
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B. Steady-state mode tuning

In this section we provide the details of the synthesis of
the controller gains K2 and Ki. In practice we tuned these
gains, associated with the dynamics of the second matrix in
(13), in such a way that its convergence rate is larger than the
convergence rate α obtained by the optimization problem (22).
In this way, when switching from the transient mode to the
steady-state mode, the integral action associated to state xc4 is
already almost constant. We also remark that, for the steady-
state dynamics, no special non-overshooting requirements are
imposed. Indeed, from (5) we can observe that these gains
have no effect during the transient mode. Consequently, the
convergence rate of this dynamics can be made arbitrarily large
without affecting the non-overshooting features ensured by the
transient mode controller.

C. Observer design

In this section we tune the observer gain L as a convenient
trade-off between convergence rate of the estimation error and
noise rejection capability. For the estimation error dynamics

ẋ5 = (A+ LC)x5 −Gw − LQw, (24)

which emerges from (14), we propose to optimize the observer
gain L in order to reduce the effect of disturbance w on the
estimation error in the L2 sense. Following the well-known
Lyapunov formulations of the bounded real lemma (see, e.g,
[22]), we select L according to the following LMI-based
convex optimization problem, parametrized by β ∈ R>0,

min
P,Y,γ

γ subject to:

P = P> > 0 (25a)

He

PA+ Y C −Y Q− PG 0
0 −γI/2 0
I 0 −γI/2

 < 0 (25b)

He
[
PA+ Y C

]
≤ −2βP, (25c)

with the shortcut notation He (M) := M +M>.

Proposition 3. Given any α ∈ R>0, LMI (25) is feasible
under Assumption 2. Moreover, for any feasible solution to
(25), selecting L := P−1Y it holds that: i) the L2 gain from
w to x5 for (24) is smaller than γ, ii) matrix A + LC has
eigenvalues with real part smaller than or equal to −β.
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Fig. 9. Open-loop vs. closed-loop step response. In green open-loop, in red
closed-loop and in black the reference. On the left a sequence of increasing
amplitude steps and on the right a zoom of the fourth step.

Proof. Feasibility of (25c) follows from standard pole place-
ment theory combined with minimality, see Assumption 2.
The remaining part of the proof is a standard application of
the bounded real lemma and the use of quadratic Lyapunov
functions. In particular, defining V (x5) := x>5 Px5, where
P = P> > 0 by constraint (25a), performing a Schur
complement on (25b), left-right-multiplying by (x5, w) and
substituting Y = PL, we obtain 〈∇V (x5), ẋ5〉 + 1

γx
>
5 x5 −

γw>w < 0.
Integrating both sides, we obtain the desired bound on

the L2 gain from w to x5 (or equivalently on the H∞
norm). Regarding the speed of convergence β, this follows
from noticing that (25c) implies He [P (A+ LC + βI)] < 0,
which only holds with a positive definite P if A + LC has
convergence abscissa smaller than −β.

Proposition 3 emphasizes that the LMI-based design tool
corresponding to (25) can be an effective means for performing
the design of L, while establishing a trade-off between the
guaranteed speed of convergence of the observer dynamics
(corresponding to β) and the level of disturbance rejection γ
from the noise w to the estimation error x5. The suggested
use of this tool is to fix increasing values of β and then
determine the trade-off curve reported in Figure 8. This curve
provides a range of optimal selections of the observer gain L.
For our specific identified model, Figure 8 reports the selected
operating point, corresponding to a black dot. Such a selection
is performed by fixing a sufficiently large convergence rate β
once the state feedback gains have been designed.

VI. EXPERIMENTAL VALIDATION

All the experiments have been conducted on the testing
facilities provided by DRTS. The hybrid controller (8) has
been implemented on a Bosch R© electronic control unit for
rapid prototyping. The code has been generated directly from
TargetLink R© by discretizing the controller with the Tustin
method with a sampling time of 2 ms (this is indeed possible
because the controller is linear along the flow). The reset action
has been coded using the external reset signal readily available
in the Simulink integrator block. Tests have been conducted
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over a range of five different clutches that differ in dimensions,
transmissible torque, stiffness and hydraulic properties. For
each one of these clutches, we performed the identification
procedure described in Section III and the controller tuning
procedure reported in Section V. Several experimental tests
have been performed, providing excellent results for a large
variety of working conditions. Figure 9 shows the comparison
between the closed-loop (in red), and the open loop (in green).
The controller successfully removes the overshoot and ensures
a zero steady state error. The switch among controller 1 and
2 is ruled by the logic variable q reported in Figure 9 as well.

The value of q toggles according to a timer that is reset to
zero at each rising/falling of the reference signal. Therefore
after a time tswitch ∈ R>0 from the last reference change, the
variable q toggles from 1 to 2 and the controller switches from
the transient mode to the steady state one. The time tswitch
can be easily calibrated experimentally through a bisection
procedure. In Figure 10 we show the set of responses obtained
by varying tswitch between 0 and the settling time of the
closed-loop. We can observe that, for a reasonable range of
values around the optimum, the closed-loop response remains
non-overshooting, so that the feature ensured by the transient
mode controller is successfully attained on the experimental
plant also in the presence of imprecise switching. It is also
emphasized that the variable q toggles according to a timer, but

in principle more complicated strategies are possible, thanks
to the stability properties proved in Theorem 1.

Finally, we tested the robustness of the proposed controller
against large perturbations of the model of the nonlinear map
φ, possibly caused by oil aging and temperature variations.
Those perturbations are reported on the left in Figure 11, while
on the right the corresponding step responses are reported. We
notice that for very large variations of φ, the non-overshooting
property is not preserved, but the integral action is still able to
zero out the steady state error. Those perturbation are large as
compared to the ones experienced in practice (roughly three
times larger), and the degradation of performance is graceful.
This shows a desirable level of robustness.

We conclude that the experimental tests have proved the
validity of the proposed control technique for achieving a
non-overshooting and fast pressure response. Moreover, we
experimentally tested robustness with respect to perturbations
of the nonlinear map φ and of the switching time tswitch.

VII. CONCLUSIONS

In this paper developed a control-oriented model for a filled
clutch in the modulation range and we proposed a novel hybrid
controller. The controller can operate in two modes, a transient
mode and a steady-state mode, and may freely switch among
these modes without compromising stability. The transient
mode provides a nice non-overshooting response, while the
steady-state mode compensates for constant disturbances and
unmodeled dynamics. The controller synthesis is conveniently
formulated as an LMI problem. We implemented and tested the
proposed hybrid controller on the HVT developed by DRTS.
Experiments show excellent performance and good robustness
with respect to modeling errors and noise. Future directions
include the design of high-level switching strategies and oil
pressure control in partially filled clutches.
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