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Integral ISS-based cascade stabilization for
vectored-thrust UAVs

Davide Invernizzi1, Marco Lovera1 and Luca Zaccarian2

Abstract—We address stabilization of vectored-thrust Un-
manned Aerial Vehicles (UAVs): a challenging task due to the
peculiar nonlinear underactuated dynamics. According to a well-
established approach based on the selection of suitable error
variables, the error dynamics is described as a pseudo cascade
connection where the attitude subsystem indirectly stabilizes the
position dynamics. Unlike existing works, we address stability
of this cascade using integral Input to State Stability (iISS).
With this extension it is possible to employ a quasi time-optimal
control law to achieve global asymptotic stabilization of any
desired position, thus improving the transient performance with
respect to existing control designs. A simulation example shows
the performance improvement in comparison with a nested
saturations stabilizer.

Index Terms—UAVs, integral ISS,

I. INTRODUCTION

VECTORED-THRUST Unmanned Aerial Vehicles
(UAVs) are platforms endowed with a propulsive system

that can deliver a torque in any direction of the aircraft frame
but a force only along a fixed axis: the thrust vector. Due to
this underactuation, the position dynamics can be stabilized
only through suitable attitude motions. There is a significant
body of literature, well surveyed in [1], dealing with the
stabilization problem for vectored-thrust UAVs as formulated
in this paper, which is challenging also because it evolves on
a nonlinear manifold corresponding to the set of rigid body
motions. Early works on the subject date back to [2] and [3],
while recent approaches are presented in [4], [5], [6].

The goal of this paper is to propose a control design which
overcomes the limitations, in terms of transient performance,
of modern strategies developed to globally stabilize the posi-
tion of underactuated UAVs. In particular, the control designs
proposed in [4], [5] as well as in our previous works [6],
[7] ensure stability of the intrinsic cascade via a reduction
approach [8] assessing the necessary property of ”boundedness
of solutions” by requiring the position stabilizer to possess
Input to State Stabiliy (ISS) with respect to small inputs
[9]. This small-signal ISS property is typically guaranteed by
employing nested saturations-based stabilizers [5]: although
very robust, this solution is known to yield poor transient
performance [10].
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In this paper, we propose a hierarchical control design that
extends the class of allowable position stabilizers to solu-
tions having less stringent robustness requirements, thereby
allowing for a more aggressive behavior. In particular, after
introducing the UAV dynamics and the control problem in
Section II, we borrow tools from stability analysis of integral
ISS cascades [11], [12], and we propose in Section III a control
architecture inducing an autonomous pseudo-cascade structure
of the closed-loop error dynamics while giving freedom in
the selection of the attitude and position stabilizers and in
the shape of the interconnection term, as long as they satisfy
certain properties always ensuring boundedness of solutions.
Then in Section IV, we select these three basic components
using high performance strategies. In particular, we suggest
using an exponential attitude stabilizer [13] and a Quasi Time-
Optimal (QTO) stabilizer [14] and we prove that this choice
makes the UAV position dynamics integral ISS. The QTO
stabilizer is the prototypical example of aggressive solutions,
achieving excellent transient performance, which cannot be
included in existing designs, notably [4], [5], [6], since proving
(the previously required) small-signal ISS property is hard if
not impossible. A simulation example discussed in Section V
highlights the advantage of the proposed solution with respect
to a nested saturations approach in a scenario characterized by
a significant initial configuration error.

Notation. R(R>0,R≥0) denotes the set of (positive, nonnega-
tive) real numbers, Rn denotes the n-dimensional Euclidean space
and Rm×n the set of m× n real matrices. The canonical basis in
Rn is denoted as ei := (0, . . . , 1, . . . , 0) for i ∈ {1, ..., n} and the
identity matrix in Rn×n is denoted as In := [e1 · · ·ei · · ·en]. Given
x = (x1, . . . , xn) ∈ Rn, ‖x‖ :=

√
x2

1 + . . .+ x2
n is the Euclidean norm

while for a matrix A ∈ Rn×n, ‖A‖F :=
√

tr(AT A) is the Frobenius
norm and skew(A) := A−AT

2 is the skew-symmetric part of A. The
set SO(3) := {R ∈ R3×3 : RT R = I3,det(R) = 1} denotes the third-
order Special Orthogonal group while Sn := {q ∈ Rn+1 : ‖q‖ = 1}
denotes the n-dimensional unit sphere. where the normalized distance
with respect to I3, induced by the Frobenius norm, is denoted as
‖R‖SO(3) := 1

8‖R− I3‖F =
√

1
4 tr(I3−R) ∈ [0,1]. Given ω ∈ R3, the

hat map ·̂ : R3→ so(3) := {Ω ∈R3×3 : Ω =−ΩT } is such that ω̂y =
ω×y, ∀y∈R3 and × represents the cross product in R3. The inverse
of the hat map is the vee map, denoted as (·)∨ : so(3)→R3. We use
standard comparison functions from [15]: function α : R≥0 → R≥0
is of class K if it is zero at zero, strictly increasing, and continuous.
It is of class K∞ if it is also unbounded. β : R≥0×R≥0→R≥0 is of
class KL if it is of class K in the first argument and nonincreasing
and converging to zero as its second argument tends to +∞.



II. DYNAMICAL MODEL AND CONTROL PROBLEM

The configuration of a UAV is globally and uniquely de-
scribed by the pair (R,x) ∈ SO(3)×R3, where R and x are,
respectively, the rotation matrix and the position vector of a
body-fixed frame FB = (OB,{b1,b2,b3}) with respect to an
inertial frame FI = (OI ,{i1, i2, i3}). A reasonable model for
control design is described by the following set of differential
equations [1]:

ẋ = v mv̇ =−mge3 +R fc (1)
Ṙ = Rω̂ Jω̇ =−ω× Jω =−ω̂Jω + τc, (2)

where ω ∈ R3 is the body angular velocity, v ∈ R3 is the
translational velocity of the center of mass, resolved in FI ,
m ∈R>0 and J = JT ∈R3×3

>0 are the mass and the body inertia
matrix of the UAV, respectively, and g = 9.81m/s2 represents
the gravitational acceleration. Finally, fc ∈ R3 is the control
force and τc ∈R3 the control torque, both resolved in FB. The
propulsive system of vectored-thrust UAVs allows to produce
a (bounded) control force directed only along the positive
direction of b3, i.e., the components of fc in the body frame
must satisfy

fc = Tce3, 0 < Tc ≤ TM ∈ R>0, (3)

where Tc is the overall thrust that can be assigned by properly
modulating the thrust delivered by each propeller. It is assumed
that the control torque τc spans R3, i.e., that the rotational
dynamics (2) is fully actuated.

In this paper we exploit a cascade-based design for the
attitude dynamics and consider ωc := ω as a control input,
under the assumption that the attitude dynamics in equation (2)
can be made sufficiently fast in tracking ωc by a suitable
selection of τc (for a discussion about this approximation, see
[1]). In this case, the model for control design reduces to:

ẋ = v (4)
mv̇ =−mge3 +TcRe3 (5)

Ṙ = Rω̂c (6)

where the attitude motion (6) is independent of the transla-
tional one (4),(5). This structure is exploited in the hierarchical
control strategy presented in the next section.

This work focuses on the stabilization of the underactuated
model (4)-(6). According to this model, it is either possible to
stabilize a desired attitude and altitude or a desired position
and rotation about the gravity axis e3. This paper addresses
the latter problem under the following standard assumption.

Assumption 1: 1) the desired trajectory is a constant refer-
ence (xd ,0,Rd)∈R3×R3×SO(3) such that Rde3 = e3; 2) the
maximum available thrust TM is larger than the UAV weight,
i.e., TM > mg; 3) the state of the system (x,v,R) is available
for feedback.
While the first part of the assumption is necessary to account
for the platform underactuation when constraint (3) is included
in the dynamical model, the second part is necessary control
authority requirement to have a solvable control problem. In
view of Assumption 1, the control problem can be formally
stated as follows.

Problem 1: Consider the dynamical model described by
equations (4)-(6) and assume that the control thrust Tc is
bounded as 0 < Tc ≤ TM for a strictly positive scalar TM . Find
a state feedback control law for u := (Tc,ωc) ∈ (0,TM]×R3

such that any constant set point (xd ,0,Rd) ∈R3×R3×SO(3)
satisfying Assumption 1, is asymptotically stable.

III. CONTROL DESIGN AND STABILITY ANALYSIS

This section is devoted to presenting the control design and
the corresponding stability analysis. In [4], [5], [6] a small-
signal ISS property was the basic requirement for the position
stabilizer to ensure stability of the closed-loop system. Here
we relax this requirement and enlarge the class of allowable
position stabilizers towards solutions capable of superior per-
formance. To this end, we invoke recent results on stabilization
of nonlinear cascades, based on integral ISS arguments (see
equation (24) below, and [11] for additional details about
iISS). The formulation that we propose leaves the door open
for different selections of stabilizers of the nominal position
and attitude dynamics, therefore parametrizing a family of
solutions to Problem 1.

A. Control law and closed-loop dynamics

We propose an attitude planner paradigm, similar to the
one presented in our previous work [6], to tackle the system
underactuation. Let us first introduce the stabilization error

ex := x− xd , ev := v, Re := RT
p (ex,ev,Rd)R, (7)

where Rp : R3×R3×SO(3)→ SO(3) is the reference attitude
provided by the attitude planner (see Figure 1) defined as:

Rp(ex,ev,Rd) :=
[

bp3×Rde1
‖bp3×Rde1‖

×bp3

bp3×Rde1
‖bp3×Rde1‖

bp3

]
, (8)

where bp3 := fd(ex,ev)
‖ fd(ex,ev)‖ and

fd(ex,ev) := γp (ex, ev)+mge3 (9)

is guaranteed to never vanish by design. Based on (8)-(9) we
select the inputs of dynamics (4)-(6) as

Tc = c(Re)eT
3 RT

p (ex,ev,Rd) fd(ex,ev) (10)

ωc = γR(Re)+RT
e ωp(ex,ev,Rd), (11)

where γp : R3×R3→R3 and γR : SO(3)→R3 are static state
feedback stabilizers, c(·) is an interconnection term, to be
selected, and ωp(ex,ev,Rd) := (RT

p Ṙp)
∨ is the angular velocity

reference computed by the attitude planner (see [6], [7] for
details).

Proposition 1: Consider dynamics (4)-(6) with the stabi-
lization errors in (7) and controller (10)-(11). If fd(ex,ev) 6= 0
∀(ex,ev) ∈ R6, then the closed-loop dynamics reads:

ėx = ev (12)
mėv = γp (ex, ev)+∆R(Re,ex,ev,Rd) fd(ex,ev) (13)

Ṙe = Reγ̂R(Re) (14)

where

∆R(Re,ex,ev,Rd) := c(Re)Rp(ex,ev,Rd)ReRT
p (ex,ev,Rd)− I3.

(15)



Figure 1. Cascade structure of the error dynamics (equations (12)-(14)).

Proof. We start by inspecting the position dynamics in (4), (5)
and refer to the position and velocity errors defined in (7). By
taking their time derivative along (4)-(5), we get

ėx = ev (16)
mėv = m(v̇− v̇d) =−mge3 +TcRe3. (17)

By noting that Tce3 = c(Re)RT
p fd , equation (17) becomes

mėv =−mge3 + c(Re)RRT
p fd . (18)

The velocity error dynamics can be further rewritten as

mėv =−mge3 + c(Re)RpRT
p RRT

p fd

=−mge3 + c(Re)RpReRT
p fd . (19)

Finally, adding and subtracting fd from equation (9), we get

mėv = γp (ex, ev)+
(
c(Re)RpReRT

p − I3
)

fd , (20)

corresponding to ∆R(Re,ex,ev,Rd) in (15). For the attitude
dynamics, using the definition of Re in (7), we get:

Ṙe = ṘT
p R+RpṘ =−ω̂pRT

p R+RT
p Rω̂ (21)

= RT
p R(ω̂c− (RpR)T

ω̂pRT
p R) = Re(ω̂c−RT

e ω̂pRe). (22)

Finally, using controller (11) and using property
(Reωp)

∧ = RT
e ω̂pRe, the closed-loop (12)-(14) is obtained. �

Remark 1: The position error (12)-(13) is affected by the
attitude error through the term ∆R fd , which weighs the mis-
match between the desired force fd in (9) and the control force
resolved in FI , i.e., R fc. As shown in [6], the interconnection
function c(·) in (15) helps improving the transient performance
by shaping the mismatch term. y

B. Cascade stability analysis and stabilizers

Control law (10)-(11) induces a pseudo cascade structure
of the closed-loop dynamics (Figure 1) while leaving freedom
in the selection of the attitude and position stabilizers γR(·)
and γp(·, ·), as well as in the selection of the connection term
∆R, which depends upon the scaling function c(·). Clearly,
their selection must guarantee asymptotic stabilization of the
equilibrium (Re,ex,ev) = (I3,0,0). The following definition
[12] will be used to characterize the admissible iISS gains
when the speed of convergence of the perturbing subsystem is
exponential.

Definition 1: A function η(·) is said to be of class-HI if it
is of class-K and satisfies

∫ 1
0

η(s)
s ds < ∞.

The following result is a slightly modified version of [12,
Corollary 2], adapted to our system evolving on R6×SO(3).

Lemma 1: Let x ∈ R6 and R ∈ SO(3) and consider the
cascade ẋ= f (x,R), Ṙ=Q(R) where f :R6×SO(3)→R6 and
Q : SO(3)→ T SO(3) are smooth vector fields with f (0, I3) = 0
and Q(I3) = 0. Suppose that the equilibrium R = I3 is locally

exponentially stable (LES) for Ṙ = Q(R), namely there exist
cR, λR ∈R>0 and ` ∈ (0,1) such that ‖R(0)‖SO(3) ≤ ` implies

‖R(t)‖SO(3) ≤ cR‖R(0)‖SO(3) exp(−λRt), t ≥ 0. (23)

If the dynamics ẋ= f (x,R) is iISS with respect to input R with
a class-HI gain, namely, if there exist a class-K∞ function α(·),
a class-KL function β (·), and a class-HI gain η(·) such that,
for all t ≥ 0,

α(‖x(t)‖)≤ β (‖x(0)‖, t)+
∫ t

0
η(‖R(τ)‖SO(3))dτ, (24)

then (x,R) = (0, I3) is locally asymptotically
stable with domain of attraction including the set{
(x,R) : x ∈ R6, R ∈ SO(3), ‖R‖SO(3) ≤ `

}
.

Proof. The proof hinges upon the iISS property guaranteed
by inequality (24). In particular, from (23) we have that
‖R(0)‖SO(3) ≤ ` implies∫

∞

0
η(‖R(τ)‖SO(3))dτ ≤

∫
∞

0
η
(
cR‖R(0)‖SO(3) exp(−λRτ)

)
dτ

=
1

λR

∫ cR‖R(0)‖SO(3)

0

η(s)
s

ds (25)

where we used s := cR‖R(0)‖SO(3) exp(−λRτ). Then, because
η(·) is of class-HI , the function

ν(s̄) :=
1

λR

∫ s̄

0

η(s)
s

ds (26)

is well-defined for all s̄ ∈ R≥0 and it is of class-K because
ν(0) = 0 and η(s)

s > 0 for all s > 0. Thus, from property (24),
we can write:

α(‖x(t)‖)≤ β (‖x(0)‖, t)+ν(cR‖R(0)‖SO(3)). (27)

This proves that all solutions are bounded. Furthermore,
since

∫
∞

0 η(‖R(τ)‖SO(3))dτ is bounded, (24) implies that
x(t)→ 0 as t→∞ following the arguments in [11, Prop. 6]. �

System (12)-(14) can be written as in Lemma 1 by defining
ep := (ex,ev) ∈R6 and R := Re ∈ SO(3). Therefore, the stabi-
lization of the cascade (12)-(14) is possible if one can provide
a suitable attitude stabilizer γR(·) in (14) guaranteeing (local)
exponential stability1 of the equilibrium Re = I3, a position
stabilizer γp(·, ·) and a scaling function c(·) for which the
position error dynamics (12)-(13) is iISS with respect to input
Re in the sense of (24). In this spirit, we define the following
properties.

Property 1: The attitude stabilizer Re 7→ γR(Re) is contin-
uous and such that the equilibrium point Re = I3 is locally
exponentially stable for (6) with domain of attraction contain-
ing

{
R ∈ SO(3) : ‖R‖SO(3) ≤ `

}
for some ` ∈ (0,1).

Property 2: The position stabilizer (ex,ev) 7→ γp(ex,ev) is
continuously differentiable and the scaling function Re 7→
c(Re) is continuous and they are such that

1Due to topological obstructions of SO(3), only a local exponential result
can be achieved with continuous static state feedback [16]. Nonetheless, it
can be shown that the basin of attraction can be extended up to the set{

R ∈ SO(3) : ‖R‖SO(3) < 1
}

which does not contain only rotations about any
axis of πrad away from I3. Moreover, the results can be extended to global
ones by using hybrid stabilizers [17].



1) there exist class-K∞ and KL functions α(·) and β (·) and
a class-HI gain η(·) such that the (ex,ev)-subsystem in
equations (12), (13), (15) is iISS from Re as in (24);

2) there exist saturation levels Mi ∈R>0, i ∈ {1,2,3}, satis-
fying

M3 < mg,
3

∑
i=1

Mi ≤ TM−mg (28)

and such that the components of γp are bounded as
|γpi(ex,ev)| ≤Mi ∀(ex,ev, i) ∈ R6×{1,2,3}.

Remark 2: The second item in Property 2 and the continuous
differentiability of γp(·, ·) are required in order to obtain a
planner reference Rp(ex,ev,Rd) as defined in equations (8)-(9)
that is well-defined and C1 ∀(ex,ev,Rd) ∈ R3×R3× SO(3)
(see [6, Section IV-C] for additional details). y
Based on the above properties and Lemma 1, the main result
of the paper is then given by the following theorem.

Theorem 1: Consider the closed-loop system described by
(4)-(6) controlled by (8)-(11). If γR(·),γp(·, ·) and c(·) are
selected according to Properties 1 and 2, then for any desired
constant trajectory (xd ,0,Rd) ∈ R3 ×R3 × SO(3) satisfying
Assumption 1, the control law (10)-(11) solves Problem 1,
in particular the point (ex, ev,Re) = (0,0, I3) is asymptoti-
cally stable with domain of attraction containing R3×R3×{

R ∈ SO(3) : ‖R‖SO(3) ≤ `
}

.
Proof. The proof follows the same steps as the proof of
Lemma 1. Indeed, since the planner reference is C1 and
well-defined (see Remark 2), the control input ωc in (11)
is well-defined as well, and Proposition 1 ensures that the
steps in Lemma 1 can be completed. Moreover, thanks to
(28) and Assumption 1, the control force is bounded by TM . �

IV. SAMPLE STABILIZERS DESIGN

In this section we present a selection of the basic com-
ponents of the control law, namely γp(·, ·), γR(·), c(·) and
show that they satisfy Properties 1 and 2, thereby guaranteeing
the applicability of Theorem 1. Specifically, we adopt a quasi
time-optimal strategy for position stabilization, adapted from
[14], which consists of a locally Lipschitz state feedback
that behaves linearly in a neighborhood of the origin, but
coincides with the time-optimal bang-bang feedback in the
presence of large velocity errors. The QTO stabilizer is a
representative candidate of aggressive solutions with excellent
transient performance, but limited robustness properties: while
we are not able to prove that the QTO enjoys a small-signal
ISS property, which makes it unfit for existing strategies, we
show that it enjoys integral ISS as in (24).

A. Attitude stabilization

The next proposition gives an example of an attitude stabi-
lizer for which Property 1 is satisfied.

Proposition 2: Given γR(Re) := − kR√
1+tr(Re)

skew(Re)
∨,

where kR ∈ R>0 is a scalar gain, Property 1 is satisfied for
any ` ∈ (0,1). In particular, the (closed-loop) trajectories of
(14) converge exponentially to Re = I3 for all initial conditions
starting in set SR :=

{
R ∈ SO(3) : ‖R‖SO(3) < 1

}
.

Proof. The proof follows from Lyapunov arguments, by
considering the candidate Lyapunov function VR(Re) :=
kR(2−

√
1+ tr(Re)) which is quadratic in the error, namely,

kR‖Re‖2
SO(3) ≤ VR(Re) ≤ 2kR‖Re‖2

SO(3) (see [13, equation
12.4]), and continuously differentiable in SR. Indeed, by
taking its time derivative along the dynamics (14) and by
exploiting the trace operator property tr(Aŷ) = tr(skew(A)ŷ) =
−2(skew(A)∨)T y, A ∈ R3×3, y ∈ R3, we get:

V̇R(Re) =− kR
2
√

1+tr(Re)
tr(Ṙe)) =

(14)
− kR

2
√

1+tr(Re)
tr(Reγ̂R(Re))

=− kR
2
√

1+tr(Re)
tr(skew(Re)γ̂R(Re))

= kR(skew(Re)
∨)T√

1+tr(Re)
γR(Re) =−‖γR(Re)‖2, (29)

which is continuous and negative definite in SR (note that
γR(Re) is well-defined in SR since tr(R) = −1⇔ ‖R‖SO(3) =
1). Furthermore, since it can be shown that ‖γR(Re)‖ =
kR‖Re‖SO(3) ∀Re ∈ SR, equation (29) can be written as

V̇R(Re) =−k2
R‖Re‖2

SO(3) ≤−
kR
2 VR(Re) ∀Re ∈ SR. (30)

If we take Re(0) ∈ SVR := {R ∈ SO(3) : VR(R)< 2kR},
tr(Re(0) 6= −1 since tr(Re) = −1 ⇔ VR(Re) = 2kR and
VR(Re) is forced to decrease by continuity by virtue of
(30) and γR(Re), in turn, is well-defined. Accordingly,
for all initial conditions in SVR , the solutions of system
(14) satisfy VR(Re(t)) = VR(Re(0))exp

(
− kR

2 t
)
∀t ≥ 0.

It is worth remarking that as subsets, SR and SVR are
equal, and therefore SR is positively invariant. Finally,
since VR is quadratic, it can be easily shown that
‖Re(t)‖SO(3) ≤

√
2‖Re(0)‖SO(3) exp

(
−kR

4 t
)
∀t ≥ 0, for

all initial conditions starting in SR. Finally, Property
1 is satisfied since for any ` ∈ (0,1) we have that{

R ∈ SO(3) : ‖R‖SO(3) ≤ `
}
⊆ SR. �

Remark 3: The stabilizer used in Proposition 2 is only one
among several possible alternatives. By exploiting the angle
axis parametrization S2×(−π,π)3 (n,θ) 7→ R(n,θ)∈ SO(3),

it is readily seen that ‖γR(Re(n,θ))‖ = kR

√
1−cos(θ)

2 ≤ kR,
which reveals that the proposed solution is bounded for
any Re ∈ SR and that limθ→±π ‖γR‖ = kR. For large attitude
errors, this is more aggressive than the standard selection
γ0

R(Re) := kRskew(Re)
∨ which has a vanishing magnitude for

θ→±π , since ‖γ0
R(Re(n,θ))‖= kR|sin(θ)|. For further details

about this comparison see [13]. y

B. Position stabilization

A smooth version of the quasi time-optimal sta-
bilizer for saturated double integrators, originally pro-
posed in [14], and also used in [18], is employed as
the position stabilizer in a decoupled form γp(ex,ev) =
(γp1(ex1 ,ev1),γp2(ex2 ,ev2),γp3(ex3 ,ev3)):

γpi(exi ,evi) :=−σMi

(
kxi

(
exi + evi µ

(
|evi |
2Mi

,
kvi

kxi

)))
, (31)

for i ∈ {1,2,3}, where kxi , kvi ∈ R>0 are scalar PD-like gains
assigning the small-signal linear behavior, σMi(·) denotes a



continuously differentiable version of the saturation function
satisfying σMi(s)s > 0 if s 6= 0, whose components σMi are
bounded away from zero for large values of s and are globally
bounded by |σMi(s)| ≤Mi with Mi ∈ R>0 arbitrarily selected.
Finally function µ(a,b) := n

√
an +bn, a,b∈R≤0, for some n≥

1 is a smooth approximation of the maximum of two non-
negative scalars. The next proposition establishes iISS from
the attitude error input of the arising position closed-loop (12),
(13), (31).

Proposition 3: Consider the selection c(Re) := 1 and the
QTO position stabilizer (31). Then, Property 2 is satisfied.
Proof. The proof is based on [12, Lemma 1] establishing iISS
if there exists a C1, positive definite and radially unbounded
function V (ex,ev) and a class-HI function η(·) such that
V̇ (ex,ev)≤ η(‖Re‖SO(3)). To this end, consider the following
Lyapunov candidate for the unperturbed system, proposed in
[18]:

Vp(ex,ev) := 1
2 m

3

∑
i=1

kxie
2
vi
+

3

∑
i=1

∫ ui

0
σMi(s)ds, (32)

which is positive definite and radially unbounded from the
stated sector properties of σMi . Applying [15, Lem. 4.3] and
using the structure of the first term of Vp, there exist class-K∞

functions αm(·),αM(·) and a scalar cv ∈ R>0 such that

cv‖ev‖2 +αm(‖ex‖)≤Vp(ex,ev)≤ αM(‖ep‖), (33)

where we denoted ep := (ex,ev). By straightforward deriva-
tions we first obtain

∂Vp(ep)
∂exi

=−kxiσMi(ui) (34)

∂Vp(ep)
∂evi

= mkxievi − kxiσMi(ui)
(

µi +
∂ µi
∂evi

evi

)
(35)

where we used the shortcut notation µi := µ

( |evi |
2Mi

,
kvi
kxi

)
. Using

µi ≥ 0 and ∂ µi
∂evi

evi ≥ 0, the time derivative of Vp along the
unperturbed dynamics (12), (13), (31) (namely ∆R fd = 0)
satisfies

V̇p(ex,ev) =−
1
m

3

∑
i=1

kxi

(
µi +

∂ µi
∂evi

evi

)
σ

2
Mi
(ui)≤ 0. (36)

The function µi is the n−norm of the vector
[ |evi |

2Mi

kvi
kxi

]T
, for

which one has the bound µi ≤
|evi |
2Mi

+
kvi
kxi

and, by exploiting
homogeneity, the same bound can be shown to hold also for
∂ µi
∂evi

evi . As a consequence, using the bounds and gradients in
(33)-(35), for any r > 0, we may establish the upper bound:

‖ep‖ ≥ r⇒
‖∇epVp(ep)‖

Vp(ep)
≤ c1 + c2‖ev‖

cv‖ev‖2 +αm(r)
≤ c3, (37)

for some scalars c1,c2 ∈R>0, and c3 ∈R>0 possibly growing
unbounded as r approaches zero. Inspired by (37), let us now
define a C1, positive definite and radially unbounded function

V (ex,ev) :=
{

ln(Vp(ex,ev)) if Vp(ex,ev)> e
1
eVp(ex,ev) if Vp(ex,ev)≤ e

(38)

where e denotes Euler’s number. Using (37) and the fact that
the gradient of Vp is bounded in any compact set ‖ep‖ ≤ r,

we obtain ‖∇V (ep)‖ ≤ c4 for some c4 ∈ R>0. Combining
this bound with the complementary one in (37), inspecting
the perturbed dynamics (12), (13), (31) and exploiting the
unperturbed bound (36), we may write

V̇ (ep)≤max(c3,c4)‖∆R(Re,ex,ev,Rd) fd(ex,ev)‖, (39)

where we may use ‖∆R fd‖ as a shortcut for the right
hand side interconnection term in (13). Consider now the
chain of inequalities ‖∆R fd‖ ≤ ‖∆R‖‖ fd‖ ≤ ‖∆R‖F‖ fd‖.
Then, since ‖∆R(Re)‖F = ‖RT

p ReRp− I3‖F =
√

6−2tr(Re) ≤
2
√

2‖Re‖SO(3) (by exploiting the definition of the Frobe-
nius norm, the trace operator properties and the inequality
−1 ≤ tr(A) ≤ 3 for any A ∈ SO(3) [7, eqn. (86)]) and since
‖ fd‖= ‖γp(ex,ev)+mge3‖ ≤∑

3
i=1 Mi+mg≤ TM (by selecting

∑
3
i=1 Mi ≤ TM−mg as per (28)), one gets:

‖∆R fd‖ ≤ 2
√

2TM‖Re‖SO(3). (40)

Finally, combining bounds (39), (40), we get
V̇ (ep) ≤ 2

√
2max(c3,c4)TM‖Re‖SO(3) := η(‖Re‖SO(3)),

where function η(·) is clearly of class-HI , and we can apply
[12, Lemma 1] to conclude that the (ex,ev)−subsystem is
iISS with respect to input Re and that the QTO stabilizer (31)
satisfies Property 2. �

Remark 4: The selection c(Re) := 1 corresponds to the
choice adopted by most hierarchical strategies [4], [5]. Differ-
ent solutions can be envisaged to improve performance, e.g.,
c(Re) := c̄−(1−eT

3 Ree3))
c̄ , c̄ > 2, which guarantees reduced posi-

tion overshoot for large initial attitude errors (see Remark 1
and [6, Section VI-C]). With this choice, it can be shown that
the proof of Proposition 3 still works. y

V. SIMULATION RESULTS

We present a simulation example to assess the performance
of the proposed control law (10)-(11) when the attitude and
position stabilizers are selected as in Propositions 2 and 3.
We also compare the performance obtained with a nested
saturations-based stabilizer, which is one of the most common
solutions in the recent literature [5], [6], [4] to globally
stabilize the position dynamics of UAVs. To better highlight
the differences, we refer to ideal conditions in which the UAV
is described by the control model (4)-(6). The considered
UAV has mass m = 1kg and can deliver a maximum thrust
of TM = 40N. The gain of the attitude stabilizer γR(·) used in
Proposition 2 is selected as kR = 40. For the QTO stabilizer
(31), the gains can be freely chosen to have a desired behavior

in unsaturated conditions and are set to kvi = 9, kxi =
k2

vi
4

(critical damping). The saturation levels are set to Mi = 9 for
i ∈ {1,2,3} so as to ensure the validity of (28). The nested
saturations stabilizer used for comparison is the one employed
in [5]:

γp (ex, ev) :=−λ2σ1

(
k2
λ2

(
ev +λ1σ1

(
k1
λ1

ex

)))
(41)

where the gains are set to k1 = 0.06, k2 = 9 and the saturation
levels to λ1 = 5, λ2 = 9. While we have used the same
outer saturation level λ2 ≡ Mi and damping gain k2 ≡ kvi of



the QTO stabilizer, we had to follow the guidelines of [5,
Prop. 1] in selecting k1 and λ1, to guarantee the small-signal
ISS property. Different selections of the control parameters
could be considered but the constraints among them [5, eq.
(26)] ultimately pose an intrinsic limitation to the achievable
performance possibly caused by the strong ISS robustness
property. As already mentioned, this is a common issue shared
by nested saturations-based stabilizers [10].

The initial state of the UAV is x(0) = (4,4,4)m,
v(0) = (10,0,0)m/s and R(0) = I3 + sin(179.9◦)ê1 + (1 −
cos(179.9◦)ê2

1), which corresponds to an upside-down con-
figuration with a significantly misplaced position with respect
to the desired hovering position xd(0) = (0,0,1)m, Rd = I3.
The attitude tracking performance is illustrated in Figure 2
(top) for both controllers. Since the same control law is
used for attitude stabilization, the same attitude transient is
achieved. On the contrary, the position errors are characterized
by a quite different behavior. The aggressive nature of the
QTO stabilizer results in an impressively faster response (see
Figure 2 (bottom)). This desirable aggressive behavior is
confirmed by inspecting Figure 3, where the thrust and the
magnitude of the commanded angular velocity are depicted.
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Figure 2. Stabilization errors: attitude ‖Re‖SO(3) (top) and position ‖ex‖.

VI. CONCLUSIONS

The stabilization problem for vectored-thrust UAVs has been
addressed using an inner-outer loop paradigm and integral
ISS tools to analyze the arising pseudo cascade. This allows
one to employ stabilizers with superior performance with
respect to existing strategies while guaranteeing the same
basin of attraction. Our stabilization results can be extended to
trajectory tracking following the approach in [6], which should
allow tracking in cluttered environments via suitable planners.
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