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Abstract

Oscillations in the beta/low gamma range (10-45 Hz) are recorded in diverse neural
structures. They have successfully been modeled as sparsely synchronized oscillations
arising from reciprocal interactions between randomly connected excitatory (E) pyramidal
cells and local interneurons (I). The synchronization of spatially distant oscillatory spiking
E-I modules has been well studied in the rate model framework but less so for modules
of spiking neurons. Here, we first show that previously proposed modifications of
rate models provide a quantitative description of spiking E-I modules of Exponential
Integrate-and-Fire (EIF) neurons. This allows us to analyze the dynamical regimes
of sparsely synchronized oscillatory E-I modules connected by long-range excitatory
interactions, for two modules, as well as for a chain of such modules. For modules with
a large number of neurons (> 105), we obtain results similar to previous obtained ones
based on the classic deterministic Wilson-Cowan rate model, with the added bonus that
the results quantitatively describe simulations of spiking EIF neurons. However, for
modules with a moderate (∼ 104) number of neurons, stochastic variations in the spike
emission of neurons are important and need to be taken into account. On the one hand,
they modify the oscillations in a way that tends to promote synchronization between
different modules. On the other hand, independent fluctuations on different modules
tend to disrupt synchronization. The correlations between distant oscillatory modules
can be described by stochastic equations for the oscillator phases that have been intensely
studied in other contexts. On shorter distances, we develop a description that also takes
into account amplitude modes and that quantitatively accounts for our simulation data.
Stochastic dephasing of neighboring modules produces transient phase gradients and
the transient appearance of phase waves. We propose that these stochastically-induced
phase waves provide an explanative framework for the observations of traveling waves in
the cortex during beta oscillations.

Introduction

Rhythms and collective oscillations at different frequencies are ubiquitous in neural
structures [1]. Numerous works have been devoted to understanding their origins and
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characteristics [2] which depend both on the neural area and on the activity of the
animal. Gamma band oscillations (30-100 Hz) are for instance recorded in the visual
cortex as well as several other structures and have been hypothesized to support various
functional roles [3]. Beta oscillations (10-30 Hz) are prominent in the motor cortex
during movement planning before movement initiation [4] and have traditionally been
assigned a role in movement control while more general roles have also been proposed [5].

Several experimental results point out the need to model and analyze the spatial
organization of oscillatory activity [6]. An early study [7], using widefield imaging and
voltage-sensitive dyes, reported that stimulus-induced oscillatory activity around 10 Hz
and 20 Hz was organized in plane waves and spiral waves in the turtle cortex. This
spiral-like organization was also reported for pharmacologically induced 10 Hz oscillations
in the rat visual cortex [8]. The underlying mechanisms and specific cells involved in
the synchronization of two distant regions have more recently started to be investigated
using optogenetic manipulations in mice [9].

A motivating illustrative example for the present theoretical study is the observation
that beta oscillatory activity during movement preparation exhibits transient episodes of
propagating waves in the motor cortex of monkeys [10–13] and humans [14]. These waves
appear to propagate along particular anatomical directions with a typical wavelength of
1 cm and a velocity of about 20 cm · s−1 [10]. On the structural side, the characterization
of the long-range intracortical connectivity in motor cortex have given rise to several
quantification endeavors in both monkeys [15, 16] and cats [17] with the strength of
excitatory responses to microstimulation decaying on a 2 mm length scale. Can one
connect these different observations in some ways and how? What is the proper
mechanistic interpretation of these observed waves?

The study of waves in oscillatory media has been largely based on the analysis of
oscillator synchronisation which itself has a long history [18]. Classic mathematical
methods for studying synchronization of weakly coupled oscillators have been extended
to study oscillations and travelling waves in spatially extended media in physics and
chemistry [19]. In simple descriptions of neural network dynamics based on rate models
introduced by Wilson and Cowan [20], also called neural-mass models, the dynamics of
a whole set of neurons is reduced to a small set of differential equations approximately
describing the temporal evolution of the firing rate of a “typical ”’neuron in the set.
This allows one to directly apply the techniques developed to analyze synchronization of
oscillators to study the synchronization properties of sets of oscillating neurons in the
rate-model framework. This approach has been followed in a number of works to study
the synchronization of spatially-coupled neural networks in the oscillatory regime [21–25].
Rate models with spatially-structured connectivity have also been extensively studied to
analyze pattern formation in a neural network context since Amari’s work [26] (see [27–29]
for reviews). A limitation is that rate models are generally difficult to quantitatively
relate to models of single neurons.

Networks of model spiking neurons provide a more detailed description of neuronal
network dynamics than rate models. Studies of networks with random unstructured
connectivities have shown the existence of a “sparsely synchronized” oscillatory (SSO)
regime [30] in which a collective oscillation exists at the whole population level while spike
emission by single neurons is quite stochastic with no significant periodic component.
Experimental recordings suggest that neural rhythms in the beta, gamma and higher
frequency ranges operate in this regime [2]. Specifically, rhythms in the beta/low gamma
range are thought to arise from sparse synchronization between excitatory (E) and
inhibitory (I) neuronal populations with reciprocal interactions [31, 32], the so-called
Pyramidal-Interneuron Gamma (PING) mechanism [33].

A few studies have considered the impact of structured connectivity on sparsely
synchronized oscillations in the spiking-network framework. The influence of delays
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in synaptic transmission was studied in [34] for the synchronization of two neuronal
E-I modules oscillating in the high-gamma frequency range, using a classic rate-model
formalism. A variety of dynamical regimes was found and qualitative agreement with
the bifurcations observed in simulations of a spiking network was reported when the
neurons in each E-I module oscillated in a well-synchronized manner. Visually induced
gamma oscillations and their dependence on visual stimulus contrast [35] have been
investigated by simulations of a spiking network with a two-layer ring-model architecture.
Recently, simulations of 2 or 3 coupled E-I modules have been performed [36] to assess
how information flow between different modules is correlated with bursts of transient
synchrony at gamma frequency.

Spiking networks model more closely biological reality but are more difficult to
analyze theoretically. The mathematical analysis of their oscillatory regime is essentially
confined to the neighborhood of the oscillatory threshold in parameter space (parameters
being the strengths of synaptic connections). General linear stability analyses of E-I
spiking networks with spatially structured connectivity have been performed in the
absence of transmission delays [37] or taking one into account [38]. Going beyond linear
stability is feasible but already somewhat heavy for a single module with unstructured
connectivity [30, 39]. An exception is the soluble case of deterministic quadratic
integrate-and-fire neurons with a wide distribution of frequencies [40] which has been
used to study oscillations of an E-I module [41] as well as synchonization between two
weakly-coupled modules [42]. Aside from oscillations, the conditions necessary for the
existence of a balanced state [43] in a spatially structured network have been studied [44]
and it was found in particular that the spatial spread of excitation should be broader
than that of inhibitory inputs. Firing correlations have also been studied in such a
network state [45]. However, the spatial organization of sparsely synchronized oscillatory
activity in spiking networks with spatially structured connectivity remains to be generally
studied.

In the present study, our aim is to analyze the synchronization between different
local E-I modules, induced by distance-dependent long-range excitation. We focus on
the case where each module oscillates in a sparsely synchronized way [30] to model the
in vivo situation. We combine spiking network simulations in the SSO regime with a
mathematical analysis of an “improved” rate model to develop a quantitative picture of
the dynamics in such a system. Relating rate models to spiking networks is a classical
endeavor. This can be achieved when the collective dynamics is stationary or slowly
varying [46], for instance in the presence of slow synapses [47], by an appropriate choice
of the f-I curve in the rate model. More recently, different works have shown that mild
modifications allow rate models to overcome this limitation of a slow-varying collective
dynamics by introducing a timescale that depends of the firing rate. These “adaptive”
rate models successfully produced a quantitative description of an uncoupled neuronal
population submitted to time-varying inputs [48], as well as of spike synchronization [49]
or oscillations driven by spike-frequency-adaptation (SFA) [50] in a recurrently coupled
excitatory neural population. Building on this progress, we first develop a rate model
with an adaptive timescale [48,50] and show that it accurately describes population-level
oscillations of an E-I spiking neuron module in the SSO regime. This allows us to make
use of the large body of work that has been developed to study synchronization in
deterministic rate-model equations [23–25]. We show that in spite of the introduction
of the adaptive timescale, the model that we use behaves very similarly [21–24] to
classic rate models [20]. For two modules, we find that the synchronization between
the two-module oscillations depends on the specific pattern of long-range excitation
connectivity. Complex dynamical regimes are produced when long-range excitation is
weak and targets only excitatory neurons [21,22], whereas synchronization of the two
oscillations of the two modules is otherwise observed. For a chain of oscillatory E-I
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modules with long-range excitatory coupling decreasing with distance, we similarly find
that the connectivity properties of long-range excitation play an important role. In
particular, when long-range excitation only targets excitatory neurons, distant modules
oscillate with different phases, namely oscillation phase gradients and phase waves
spontaneously appear. The bonus as compared to the classical rate-model results, is
that, as we show, the obtained results quantitatively agree with simulations of spiking
networks of large size.

Simulations of spiking modules of biologically relevant size, of about 104 − 105

neurons each, display significant stochastic variations in module activities that require
to go beyond the use of deterministic rate models. Building on previous work [39],
we find that finite-size fluctuations can be quantitatively accounted in the adaptive-
timescale rate-model framework by adding to it a stochastic component. Even when
different modules would fully synchronize in a deterministic context, stochasticity in
the module activities produces differences in the phases of oscillation of neighboring
modules. [18,19,25]. Classical [19] and more recent results [25,51,52] show how to derive
stochastic equations for the oscillatory phases of the different modules that describe
stochastic dephasing. In our case, we find that this usual weak-noise reduction to a
phase dynamics is accurate only for modules with a very large number of neurons. We
obtain a quantitative description of stochastic effects for modules of moderate size, by
computing the noise influence on both the phase and amplitude of the module oscillation
at the linear level. Stochastic dephasing creates transient bouts of traveling waves in
a chain of modules that would be fully synchronized in a deterministic context. We
end by obtaining in a chain of E-I modules with long-range excitatory coupling, the
probability of dephasing between close E-I modules and the spectrum of phase velocities
for the corresponding bouts of traveling waves. We propose that this phenomenon of
phase waves induced by stochasticity is at the root of the observation of waves during
oscillatory episodes in cortex.

Results

Oscillations in an E-I module: rate-model description vs spiking
network simulations

We first consider oscillations of neural activity in a local module comprising excitatory
(E) and inhibitory (I) neuronal populations with a spatially unstructured connectivity.
Oscillations are observed both in rate-model descriptions [20] and in simulations of spiking
networks [31–33]. We choose the neurons in our spiking network simulations to be of
the Exponential-Integrate-and-Fire type (EIF) [53] (see Eq. (25) for their mathematical
definition), which have been shown to describe well the dynamics of cortical neurons [54].

We wish to use a rate model description that quantitatively describes oscillations
of the spiking E-I module in the SSO regime [30]. Mild modifications of classic rate
models [20] can give quantitatively accurate accounts of simulations of spiking neurons
when spike emission has a strong stochastic component, as it is the case in the SSO
regime. This was previously demonstrated both for an assembly of independent spiking
neurons receiving identical inputs [48] and for spiking neurons coupled by recurrent
excitation [50]. Building on these advances, we use the following adaptive timescale
rate-model formulation [48,50] to represent the activity of a group of EIF neurons:

τ(I)
d

dt
I = −I + I0 + s(t) , (1)

r(t) = Φσ[I(t)] , (2)
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where Φσ(I) is the f-I curve of the EIF model (25) for a noisy input current Iext + Isyn
with mean I and total noise strength σ. It is shown in Fig. S1A for the parameters used
in the present study. This specific choice of f-I curve allows the rate-model to to agree
with the rate of a spiking network of spiking EIF neuron in a stationary regime. The term
s(t) represents the time-dependent inputs to the neurons of the population and includes
both the external and the network-averaged instantaneous internal inputs. The response
time τ(I) is said to be “adaptive” [48] because it depends on the current I. It allows
to overcome the limitation of a slowly varying dynamics [46, 47] when the population
rate remains close to the stationary f-I curve. The chosen function τ(I) is displayed
in Fig. S1B. It is obtained by a fitting procedure to best reproduce the dynamics of a
population of uncoupled EIF spiking neurons (see Methods: Fit of the adaptive timescale
in the FAT rate model for a precise description of our fitting procedure and Fig. S1C for
examples of the timescale fit). In agreement with previous works [48, 50], Fig. S1D-F
shows that the rate model with such a fitted adaptive timescale (FAT model) reproduces
quite accurately oscillations of the population activity of a set of identical uncoupled
neurons driven by a sinusoidal input current.

The connectivity of our elementary module is depicted in Fig. 1A (inset). It is
composed of an excitatory (E) and an inhibitory (I) population with recurrent connections.
The FAT rate-model description is obtained by describing the dynamics of each of these
populations by Eq. (2),

τE(IE)
dIE
dt

= −IE + IextE + wEE rE − wEI rI , (3)

τI(II)
dII
dt

= −II + IextI + wIE rE , (4)

with rE = ΦE(IE) and rI = ΦI(II). (Here and in the following we have dropped
the explicit noise strength index on Φ(I) for notational simplicity). In all numerical
computations, we have chosen ΦE(I) = ΦI(I) = Φσ(I), τE(I) = τI(I) = τ (FAT )(I),
with Φσ(I) and τ (FAT )(I) displayed in Fig S1. Note that recurrent inhibition has not
been included in Eqs. (3,4) both to simplify the analysis and to focus on oscillations in
the beta/low gamma range that are mediated by E-I reciprocal interactions. Recurrent
inhibitory connections allow for high frequency oscillations in suitable parameters regimes
[32, 39] and can also be important to prevent a too high firing rate of interneurons, e.g.
in the balanced state [43], a role that is assigned here to the external input IextI .

The stability diagram for the steady non-oscillatory regime of the FAT rate model
is easily obtained [20,24] (see Methods: Oscillatory instability for the E-I module), see
Fig. 1A. As for the classic Wilson-Cowan model [20], it displays three regimes. Steady
neural activity is stable when recurrent excitation, measured by the total synaptic
strength wEE , is weak enough. When recurrent excitation grows, two possibilities
arise. They depend on the strength of inhibitory feedback on the excitatory population,
measured by the product wIEwEI , where wIE is the total excitatory synaptic strength
on inhibitory neurons and wEI the total inhibitory synaptic strength on excitatory
neurons. When inhibitory feedback is weak, the steady state is subject to a non-
oscillatory instability: recurrent excitation leads to steady firing at a very high rate,
basically limited by the neuron refractory period in our simple model (other mechanisms,
not considered here, such as SFA or pair-pulse synaptic depression can moderate this
regime). When inhibitory feedback is sufficiently strong, the steady state is destabilized
by an oscillatory instability. This instability can lead to finite amplitude oscillations
but also to steady high frequency discharge when a steady high-rate fixed point exists
(see [55] for a detailed analysis). Oscillations with high discharge and synchronous
spiking are also possible outcomes. Here, we limit ourselves to considering oscillations of
moderate amplitude that remain sparsely synchronized [30], a dynamical regime which
appears most appropriate to describe beta/low gamma oscillations recorded in vivo. The
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Fig 1. Dynamical regimes of an E-I module. (A) Stability and instability of the module
steady discharge as a function of synaptic coupling. Stable regions with complex eigenvalues
(green) and real eigenvalues (light blue) and unstable regions with complex eigenvalues (purple)

and real eigenvalues (orange) are shown for the stationary state r
(s)
E = 5 Hz, r

(s)
I = 10 Hz.

Inset: sketch of the excitatory and inhibitory neuronal populations (the E-I module) and their
synaptic interactions. The parameters for the three cases shown are: A - wEE = 1.6 mVs,
wIEwEI = 0.64 mV2s2 ; B - wEE = 1.6 mVs, wIEwEI = 1.28 mV2s2; C - wEE = 1.76 mVs,
wIEwEI = 1.28 mV2s2. We use the parameters of case A (solid circle) throughout the remainder
of this article; for cases B and C, see Fig. S2. (B,C) Oscillations of the discharge rates rE , rI
of the E-I populations in the rate-model description, (B) as rI vs. rE or (C) as a function of
time (blue, excitatory population; red, inhibitory population) for parameters corresponding to
case A in panel (A) with wIE = 2 mVs, wEI = 0.32 mVs (the corresponding effective constants
are α = 2.33, β = 2.15). Oscillations in a spiking network with a large number of neurons
(N = 106, resampled with time bin ∆t = 0.1 ms) are also shown in (B) (blue line) and (C)
(black and gray lines). (D) Time traces of the excitatory activity in a spiking network with
smaller number of neurons (N = 104) and the corresponding stochastic rate model Eqs. (5,6)
(sampled with time bin ∆t = 0.1 ms). (E) Autocorrelation of the excitatory activity for the
spiking EIF module (N = 104, solid blue) and the adaptive rate model (solid orange). The
autocorrelation for the rate model with the adaptive timescale of ref. [48] is also shown (solid
green). The fit of the analytical expression Eq. (56) for the autocorrelation to the adaptive rate
model (shown in dashed black) allows to obtain the module’s autocorrelation decay time τD.
(F) The decorrelation time τD shown for spiking modules (solid blue dots), for FAT modules
(solid orange line) and as predicted by Eq. (10) (dashed black line).
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parameters corresponding to one such point are indicated in Fig. 1A (solid black circle)
and used as reference for the figures of the present paper. The corresponding limit-cycle
oscillations are shown in Fig. 1B,C. Two other representative sets of parameter values
are also indicated in Fig. 1A (solid losange and square) and the corresponding dynamical
traces are shown in Fig. S2.

The rate-model description is compared to simulations of spiking networks (see
Methods: Simulations of spiking networks) in Fig 1. The rate-model deterministic
activity trace accounts well for the network activity when the number N of spiking
neurons is very large (N ∼ 106) and stochastic effects at the level of the population are
negligible, as shown in Fig 1B,C.

Our E-I module with unstructured connectivity is, however, intended to represent local
interactions at a scale comparable to that of a cortical column [56,57], which is estimated
to comprise a smaller number of neurons (N ∼ 104− 105). In this case, simulations show
that the network population activity has a significant stochastic component, as seen in
Fig. 1D. Auto-correlograms of the E population activity display decreasing oscillatory
tails reflecting the corresponding dephasing of oscillations (Fig. 1E).

We take into account these stochastic effects in the rate-model description by remem-
bering that, in a sparsely synchronized spiking network [30], the global network activity
retains a stochastic component due to the finite numbers NE , NI of excitatory and
inhibitory neurons in the network, even for constant external inputs. We follow ref. [39]
and assume that, in the SSO regime, the probability of an excitatory (resp. inhibitory)
spike between the times t and t+ ∆t is given by ΦE [IE(t)]∆t (resp. ΦI [II(t)]∆t), and
spikes being independently drawn for each neuron in the network. This leads to replacing
the deterministic relations rE(t) = ΦE [IE(t)] and rI(t) = ΦI [II(t)] by stochastic versions
coming from Poissonian sampling, an approximation that has previously been shown to
be quite accurate when neurons are sparsely synchronized [39],

rE(t) = ΦE [IE(t)] +
√

ΦE [IE(t)]/NE ξE(t) , (5)

rI(t) = ΦE [II(t)] +
√

ΦI [II(t)]/NI ξI(t) , (6)

where ξE(t), ξI(t) are independent white noises (〈ξE(t)ξE(t′)〉 = 〈ξI(t)ξI(t′)〉 = δ(t− t′),
〈ξE(t)ξI(t

′)〉 = 0) and Ito’s prescription is used [58]. Eq. (5,6) transform the deterministic
rate equations into stochastic ones with a noise amplitude that is inversely proportional
to the size of the population

Accounting in this way for finite-size fluctuations allows the FAT rate-model descrip-
tion to reproduce quite well the sparsely synchronized oscillations in a moderately-sized
spiking network (Fig. 1D). The similarity between the spiking network and the stochastic
FAT model can be quantitatively assessed by computing the autocorrelations of the E-I
module excitatory population activity, CEE(t− t′) = 〈rE(t)rE(t′)〉 − 〈rE〉2. As shown
in Fig. 1E, the stochastic FAT model accurately describes the network autocorrelation.
It should be noted that the added stochastic terms in the rate equation description
have no free parameters, they are entirely determined by the assumption (admittedly
approximate) that the instantaneous network spike rate is the product of an underlying
Poissonian process.

Stochastic dephasing of oscillations leads to an exponential decrease of the autocorre-
lation amplitude with a characteristic time τD,

|CEE(t)| ∼ exp(−t/τD) . (7)

The time τD increases with the number of neurons in the E-I module as shown in Fig. 1F.
Well-known results are available to analytically describe dephasing due to weak

noise [19, 25, 51, 52], namely in the present case when the E-I module comprises large
numbers of neurons and finite-size fluctuations around the deterministic limit cycle
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are small (see Methods: Diffusion of the oscillation phase of an E-I module with a
finite number of neurons). For very large numbers of neurons, the activities of the two
populations (rE(t+ φ), rI(t+ φ)) are oscillatory with rE(t) and rI(t) periodic functions
of time, and the phase φ being arbitrary but constant. Note that in the present work,
we define the phase φ to be a variable with the same dimension as time and with a
period T equal to the oscillation period. Another usual convention is to consider the
phase as a dimensionless variable with a period of 2π. (Therefore rE is here a periodic
function of the phase φ with period T , instead of being a periodic function of a phase
with period 2π.) The phases in these two different conventions are simply related by a
multiplicative factor of 2π/T .

Stochastic fluctuations in E-I modules with large number of neurons dominantly
produce a random drift of the phase φ with a diffusive behavior in time,

〈[φ(t)− φ(0)]2〉 = DN t . (8)

Similarly to the amplitude of the finite-size fluctuations of activity, the diffusion constant
DN vanishes as the numbers NE of excitatory neurons and NI of inhibitory neurons in
the module grow,

DN =
DE

NE
+
DI

NI
. (9)

The constants DE and DI can be expressed and computed in terms of integrals along
the deterministic limit cycle [19] (Eqs. (53,54) in Methods). This provides an explicit
expression of the decorrelation time as a function of DN and the period of the limit
cycle,

τD =
1

2π2

T 2

DN
. (10)

Eq. (10) predicts that the dephasing time increases linearly with the size N of the E-I
module. Expression (10) is displayed in Fig. 1F. It agrees well with the simulation results
for large N . Quantitative agreement deteriorates as N diminishes and fluctuations
become stronger. Fluctuations then strongly affect the shape of limit cycle itself and the
description by a pure dephasing becomes less accurate.

Dynamical regimes of two oscillatory E-I modules coupled by
long-range excitation

We start by considering the simplest case of coupling between distant modules, namely
two identical E-I modules coupled by long-range excitation. In spite of the addition of
the adaptive timescale in the rate model we use, the results we obtain are very similar
to results [21, 22] obtained for the classic Wilson-Cowan model [20]. It matters for
synchronization whether long-range excitation targets only excitatory neurons or both
excitatory and inhibitory neurons. We thus distinguish the two cases.

Long-range excitation targeting excitatory neurons

We analyze the synchronization properties between two E-I modules with oscillatory
activity when long-range excitation only targets excitatory neurons, the “E → E”
connectivity case depicted in Fig. 2A.

The dynamics of two coupled E-I modules are described in the rate-model framework
(3,4) by

τE(IE,1)
dIE,1
dt

= −IE,1 + IextE + wEE [(1− flr)rE,1 + flrrE,2]− wEI rI,1 (11)

τI(II,1)
dII,1
dt

= −II,1 + IextI + wIE rE,1 (12)
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Fig 2. (see next page)

with the same two equations with permuted indices 1 and 2 describing the dynamics of
module 2.

We first consider the dynamics of this two-module network for two coupled deter-
ministic FAT rate models, when the firing rates, rE,n and rI,n for n = 1, 2, are given
in terms of the respective currents by the f-I curve (Eq. (2)). Mathematical analysis
and simulations show the existence of a number of different dynamical regimes. In
order to obtain a precise view of the various cases as a function of the different synaptic
couplings, we choose the parameters of the E-I modules so that they remain at a fixed
oscillatory location in the parameter diagram of Fig. 1A. This fixes in each module the
total strength of recurrent excitatory connections wEE and the total inhibitory feedback
wIEwEI , and leaves as variable parameters the strength of excitation on inhibitory
interneurons wIE (or equivalently the strength of inhibition on excitatory neurons wEI)
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Fig 2 (previous page). Synchronization and dynamical regimes for two E-I modules
coupled by long-range excitation. (A) Sketch of the coupled E-I modules and their synaptic
interactions. Top: In the E → E connectivity case, long-range excitation only targets excitatory
neurons in other modules. Bottom: In the E → E, I connectivity case, long-range excitation
targets excitatory and inhibitory neurons in distant modules in equal proportion. (B) Different
dynamical behaviors for the coupled modules as a function of the coupling strength flr and
the synaptic excitatory strength on inhibitory neurons wIE . The labeled points (solid black
circles) mark the parameters of the dynamical regimes shown in (B1-6) , the cross (light grey)
corresponds to the parameter used in Fig. 3A. (B1) Fully synchronized state for sufficiently
strong long-range excitation; flr = 0.03. (B2) Finite phase difference: the activity of one module
is greater than the other, the amplitudes of their oscillatory activities are constant in time but
the phases of their oscillations are different; flr = 0.025. (B3) Modulated dominance: one of
the two modules is more active than the other but the amplitudes of the oscillatory activities of
both modules vary themselves periodically in time; flr = 0.02. (B4) Alternating dominance:
the activities of the two E-I modules successively dominate; flr = 0.015. (B5) Antiphase regime
at very low coupling and strong local excitation on inhibitory neurons; flr = 0.001. (B6) Finite
phase difference regime at very low coupling and weak local excitation on inhibitory neurons;
flr = 0.001 and wIE = 1.44 mVs. (C) The synchronization function governing the evolution of
the relative of two weakly coupled modules in the E → E connectivity case. Modules with weak
local excitation of inhibitory neurons wIE (blue solid line), strong local excitation of inhibitory
neurons (orange dashed-dotted line) and wIE close to the threshold strength of local excitation
separating the two regimes (red dashed line). (D) The synchronization function governing the
evolution of the relative phase of two weakly coupled modules in the E → E, I connectivity
case. The fully synchronized state is the only stable state (zero-crossing with negative slope)
for the three shown wIE values. (E) The difference of excitatory activity between the two
modules decreases exponentially (wIE = 2 mVs, flr = 0.001). (F) The measured exponential
restabilisation in two-modules FAT simulation with E → E, I connectivity (crosses, flr = 0.001)
matches well the prediction of Eq. (15) and Eq. (66) (solid black line).

and the fraction flr of excitatory connections on excitatory neurons that corresponds
to long-range excitation. The found dynamical regimes of the two E-I networks are
displayed in Fig. 2B as a function of wIE and flr for one of our reference points (case A
marked by the black solid circle in Fig. 1A; the analogous diagrams for the two other
points are shown in Fig. S3). The individual panels Fig. 2B1-6 show representative
traces of the activities of the two excitatory populations in the different regimes. We
describe them in turn.

When the E-I modules are not coupled, each of them oscillates with a period T and an
arbitrary phase with respect to the other module. For very weak long-range excitation,
the effect on each E-I module of the excitatory inputs coming from the other one simply
leads to a slow change of the phase of its oscillation [19, 21, 23, 24]. The synchronization
dynamics itself can be characterized by the evolution of the relative phase ∆φ between
the oscillations of the two modules. For ∆φ = 0, the two modules oscillate in phase
whereas for ∆φ = T/2 they oscillate in antiphase. The evolution of ∆φ is found to
be governed by the following dynamics [19, 21, 23, 24] (see Methods: Synchronization
function for two weakly coupled E-I modules):

d∆φ

dt
= flr SE(∆φ) . (13)

The function SE(∆φ) is shown in Fig. 2C for different synaptic parameter values wIE .
For two identical modules, symmetry implies that the phase differences ∆φ = 0 and
∆φ = T/2 are always zeros of SE . Therefore, in-phase as well as antiphase oscillations
are always possible oscillating states. In the present case, the positive slope of the zero-
crossing at ∆φ = 0, S′E(∆φ) > 0 shows that in-phase oscillations are always unstable.
When local excitation targets sufficiently strongly interneurons, i.e. for wIE > w∗IE ,
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S′E(T/2) < 0 and antiphase oscillations are the only possible stable phase difference. An
example of such oscillations is displayed in Fig. 2B5. On the contrary for wIE < w∗IE ,
both in-phase and antiphase are unstable. The function SE(∆φ) displays a new zero at
a non-trivial ∆φ with a negative slope (Fig. 2C) and the two modules stably oscillate
with this non-trivial phase difference (Fig. 2B6). Such a synchronization regime was also
obtained [21] for the classic Wilson-Cowan rate model [20].

For a larger strength of long-range excitation, the interaction between the two modules
does not reduce to changing their oscillation phases. Nonetheless, the stability of the in-
phase oscillations can be computed (see Methods: Stability analysis of full synchronization
for two coupled E-I modules). The analysis shows that fully synchronous oscillations
(Fig. 2B1) are stable when long-range excitation is sufficiently strong. This actually
happens for a relatively weak long-range excitation strength, at about flr ∼ 2 − 7%,
depending on the strength wIE of the local excitation on the inhibitory population in
each module (Fig. 2B).

More complex dynamical regimes hold for intermediate strengths of the long-range
excitation, below that required for full synchrony and above the excitation strength
leading to finite-phase difference phase at very low flr. A first decrease of flr below that
necessary for full synchrony leads to a phase where the two-modules oscillate at the same
frequency and different phases. In contrast to the finite-phase difference at very low flr,
oscillation amplitude in one module strongly dominates the other one, as illustrated in
Fig. 2B2. This finite phase difference regime itself looses stability with a further decrease
of flr and is replaced by a “modulated dominance” regime: beta/low gamma oscillations
in one module continue to be of larger amplitude in one module than in the other one
but these two unequal amplitudes are themselves modulated at a very low frequency
in the 1 Hz range, as shown in Fig. 2B3. This regime stems from a Hopf bifurcation
of the finite-difference regime, with the unusual low frequency coming from the small
value of flr (see Methods: Stability analysis of full synchronization for two coupled E-I
modules). A further decrease of flr transforms the modulated-dominance regime into
an “alternating dominance” regime: oscillations in one module dominate the oscillations
in the other one, but the dominant module switches periodically, again with a slow
frequency in the 1 Hz range, as illustrated in Fig. 2B4. Similarly to modulated dominance,
alternating dominance stems from a Hopf bifurcation of the antiphase regime at very
low flr, when flr is increased. A sequence of bifurcations and dynamical states similar
to the one reported in Fig. 2 has been described long ago [22] for the Wilson-Cowan rate
model upon increase of the excitatory coupling between the two modules. The regimes
that we call here “alternating dominance” and “modulated dominance” are referred to
as “antisymmetric torus” and “nonsymmetric torus” in ref. [22] and a short discussion
of the transition between them is provided.

Long-range excitation targeting excitatory and inhibitory neurons

We now consider the case in which long-range excitation targets both excitatory and
inhibitory neurons with strengths proportional to that of local excitation. In this case,
Eq. (12) is replaced by

τI(II,1)
dII,1
dt

= −II,1 + IextI + wIE [(1− fr)rE,1 + frrE,2] (14)

with the same equation with permuted index 1 and 2 to describe the dynamics of the
inhibitory population of module 2.

In this “E → E, I” connectivity case, sketched in Fig. 2A, long-range excitation is
found to always have a synchronizing effect.

For very weak coupling, the synchronization dynamics can be reduced as above to the
evolution of the relative phase of the two modules. It is described by Eq. (13) with the
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Constant Value Definition
T 63.7 ms limit cycle period
DE 1.2 · 104 ms Excitatory noise amplitude (Eq. (53))
DI 2.0 · 103 ms Inhibitory noise amplitude (Eq. (54))
DN 2.5 ms (for N = 104) Finite-size noise strength (Eq. ( 9))
DE
φ −0.31 ms−1 Phase diffusion for E → E coupling (Eq. (63))

DEI
φ 9.4 · 10−2 ms−1 Phase diffusion for E → E, I coupling (Eq. (66))

Table 1. Computed constants. Values of the constants defined in the text for the E-I
module limit cycle with the reference parameters (solid circle in Fig. 1A) wEE = 1.6 mVs,
wEI = 0.32 mVs, wIE = 2.0 mVs.

function SEI(∆φ) plotted in Fig. 2D. For a small phase difference, SEI(∆φ) behaves as

SEI(∆φ) ' −2∆φDEI
φ , (15)

with the constant DEI
φ depending on the characteristics of the oscillation cycle (see

Eq. (66) in Methods). The constant DEI
φ is found to be positive (see Table 1 for its value

at the reference point wIE = 2 mVs). Eq. (15) shows that a zero phase lag between the
two modules is a dynamically stable configuration, in contrast to our previous results for
E → E connectivity (compare with Fig. 2C). Eq. (15) predicts that an initial activity
difference between two oscillating E-I modules should vanish exponentially. As shown in
Fig. 2E, this is indeed observed in simulations with a rate of decrease that agrees well
with the one predicted by Eq. (15) (see Fig. 2F).

We have checked that this synchronizing effect of long-range excitation persists
for stronger long-range excitation strengths. We have found the two-module fully
synchronized regime to be linearly stable for all couplings for which we computed its
stability matrix (see Methods: Stability analysis of full synchronization for two coupled
E-I modules). Moreover, numerical simulations with different initial conditions did not
show any other stable pattern. Therefore, we conclude that in the context of the present
model with instantaneous synapses and no propagation delays, long-range excitation
with E → E, I connectivity between two E-I modules always tends to fully synchronize
their activities.

Comparison with spiking networks and influence of stochastic activity fluctuations

For a single E-I module, we already found a good match between the oscillatory dynamics
in the rate-model framework and simulations of a spiking E-I network, as described in the
first section of the results. Finite-size fluctuations were found to play an important role
for modules of moderate sizes and were found to be well accounted for by our stochastic
rate model. We now pursue this comparison in the two-module case by taking the firing
rates rE,n and rI,n in Eqs. (11),(12) or (14) expressed in terms of the respective currents
by the stochastic relations Eq. (5) and Eq. (6) which account for the finite number of
neurons in the networks.

Fig. 3 shows the close correspondence between the rate-model results and networks
with a large number of neurons (N ∼ 106) for E → E connectivity. The different
dynamical regimes for two E-I modules coupled by long-range E → E connectivity
are all observed in simulations of networks spiking neurons. Both antiphase (Fig. 3A),
alternating dominance (Fig. 3B), modulated dominance (Fig. 3C) and full synchrony
(Fig. 3D) are observed for parameters that quantitatively correspond to those predicted
by the rate-model analysis. Similarly, in the case of E → E, I connectivity, two large
E-I modules oscillate in full synchrony as predicted by the rate description (not shown).
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Spiking network Rate model (FAT)
A1 A2 A3

B1 B2 B3

C1 C2 C3

D1 D2 D3

Figure 3

Fig 3. Two large E-I modules coupled by long-range excitation. (1,2) E-I modules
with a large number of neurons, N = 1.6 ·106, and E → E connectivity. The different dynamical
regimes depicted in Fig. 2 for different coupling strengths are clearly visible both in (1) spiking
network simulations and in (2) the corresponding rate-model simulations. The respective auto-
and crosscorrelations of the excitatory activities are shown in panels (3). The coupling strengths
are as follows: (A) flr = 0.01 (light grey cross in Fig. 2B), (B) flr = 0.015, (C) flr = 0.02, (D)
flr = 0.05.

For smaller number of neurons, stochastic effects compete with deterministic effects
both in simulations of spiking networks and in the rate-model description, when stochas-
ticity arising from finite-size effects is accounted for. Interestingly, both descriptions
continue to agree well when fluctuations play a major role in the dephasing of the two
E-I modules, as shown in Fig. 4.

For E → E connectivity, the correlation between the activities of the two networks
clearly displays the signature of the antiphase regime at weak coupling for N = 2 · 105

neurons, whereas it is not apparent for N = 104 when stochasticity is stronger (Fig. 4A,B).
At larger coupling, even small fluctuations lead to modules exchanging their roles and
make more complex regimes difficult to identify even for N = 2 · 105 neurons. This is
illustrated by simulations with a coupling parameter in the modulated dominance regime
(flr = 0.02, Fig. 4C). The ratio of cross- and auto-correlation functions at zero time lag
shows that the transition between different regimes as a function of coupling is blurred
by stochasticity as N decreases (Fig. 4E,F).

The corresponding results for E → E, I connectivity are shown in Fig. 4G-L. In

13



! " #

$ % &

' (

) * +

,

Excitatory-to-excitatory cross-coupling only

Excitatory-to-excitatory & excitatory-to-inhibitory cross-coupling

Figure 4

Fig 4. Stochastic effects due to network size for two E-I modules coupled by long-
range excitation. Auto- and crosscorrelations C11 and C12 of the activities of E-I modules
with a finite number of neurons N = 104 and 2 · 105 for different coupling strengths flr = 0.01
and 0.02 with long-range excitation targeting only excitatory populations (A-D) or targeting
both excitatory and inhibitory neurons (G-J) (parameter values are stated in the panels’ lower
left corner). Summary plots with the ratio of equal-time crosscorrelations over autocorrelations
for varying N and flr are shown in (E,F) and (K,L), respectively. In the E → E case, oscillatory
synchrony between the two modules disappears when the coupling strength flr diminishes ((C)
vs. (D)), but the dynamical regimes of Fig. 2 are blurred by stochastic effects when the network
size N decreases ((A,B) vs. (C,D)). In the E → E, I case, no other dynamical regimes than
oscillatory synchrony are expected, but synchrony increases both with coupling strength flr
and, more strongly, with network size N .

this case, two effects can be observed. On the one hand, synchrony decreases at fixed
coupling strength when N is decreased due to larger noise (Fig. 4G,H). On the other
hand, synchronization of the two networks increases when coupling strength increases at
fixed N (fixed noise) as shown in Fig. 4G,I and Fig. 4H,J. Both effects are quantified in
Fig. 4K,L.

One should note that whereas the precise targeting of the long-range excitation plays
a crucial role in the instability of in-phase oscillations for large networks (N ∼ 106),
it is much less important for smaller (N ∼ 104) networks. For these smaller networks,
the dominant role of fluctuations in the dynamics of the two individual E-I modules
modifies the connectivity synchronization properties. It leads to similar synchronization
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effects of long-range excitation, whether one module only targets the other E population
(E → E connectivity) or targets both E and I populations in the other module (E → E, I
connectivity) (compare Fig. 4B to Fig. 4H).

Analysis of the competition between synchronization and noise

We thought it interesting to try and analyze more precisely the competition between
synchronization and stochastic fluctuations, given that it arises for E-I modules of
biologically realistic sizes. We chose to precisely study the case of E → E, I connectivity
when stochastic fluctuations simply compete with full synchronization promoted by long-
range connectivity. We developed two approaches which both assume that fluctuations
are of an amplitude moderate enough that they can be treated as perturbations of the
deterministic limit cycle.

A classical approach is available for weakly coupled modules and small noise. It was
previously used to study noisy coupled oscillators [19] as well as neural systems [25].
In the present case, the outcome of this approach is that finite-size fluctuations in the
rate-model description add a stochastic component to the previous Eq. (13) for the
phase difference between the two modules (see Eqs. (78) and (84) in Methods). (It also
provides an estimate to the small shift of oscillation frequency due to small noise [51,52]
which we do not consider here). This leads to a very explicit quantification of the
difference of oscillation phases between the two modules induced by fluctuations,

〈(φ1 − φ2)2〉 =
DN

2flrDEI
φ

. (16)

In this expression, the constant DN is simply the amplitude of stochastic fluctuations
in a single module (Eq. (9)), whereas flrDEI quantifies the synchronization strength
due to long-range connectivity (Eqs. (66) and (15)). As intuitively expected, the mean
square phase difference between the two oscillators increases with the noise strength and
decreases when the synchronization strength increases.

Eq. (16) provides a simple estimate of the competition between stochastic dephasing
and synchronization. In order to compare it to numerical simulations, one can compute
the respective phase of oscillations of two oscillatory E-I modules. Alternatively, Eq. (16)
can be transformed into a prediction of the average spike-rate difference between the two
modules, taking into account that the firing rate is a periodic function of the oscillatory
phase (Eq. (82) in Methods). The latter is chosen to compare with results of numerical
simulations of both FAT rate-model and spiking network implementations of two coupled
E-I modules in Fig. 5. The mean square difference of excitatory rates between the
two modules are quite comparable in the noisy FAT (Fig. 5A) and spiking networks
(Fig. 5B), again showing the quantitative accuracy of the FAT rate-model description.
However, Fig. 5 shows that the predicted rate difference fluctuations obtained from
Eq. (16) (“phase approximation” in Fig. 5) are accurate only for very small coupling
between the two modules.

The underlying assumption in Eq. (16) is that the phase difference plays a dominant
role in the difference of activities between the two E-I modules because the phase
difference mode has a much smaller restoring strength than the other (amplitude) mode
between the two modules. The respective eigenvalues of the two modes are shown in
Fig. 6G as a function of the fraction of long-range connection flr. Indeed, for weak
coupling (flr � 1), one eigenvalue µA1 is close to 1, so that the restoring strength 1− µA1
of the corresponding (phase) mode is much smaller than 1− µA2 , the restoring strength
of the other mode. However, an explicit computation shows that µA1 quickly decreases as
flr increases (see Eq. (76) in Methods). Therefore, the two modes soon play comparable
roles as flr increases.
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Figure 5

Fig 5. Competition between synchronization and noise for two E-I modules with
E → E, I connectivity: theory vs. simulations. The variance of excitatory activity between
the two modules 〈δr2E〉 = 〈(r1,E − r2,E)2〉/2 is shown as a function of coupling strength flr.
(A) Simulations of the stochastic rate model (FAT, duration 100 s, averaged over 3 repetitions)
for different noise strengths (color symbols), as specified in the insert in term of the number
of neurons N in the individual E-I module. These simulation results are plotted against
theoretical predictions with different approximations. For very small coupling strengths, the
phase approximation with the full limit cycle dynamics (Eqs. (16, 82), dotted lines) gives a good
account of the observed synchronization, while for larger couplings both phase and amplitude
modulations have to be considered (two-mode calculation, Eq. (97), solid black line). Note
that for very small couplings, the two-mode calculation coincides with the phase approximation
with linearized limit cycle dynamics (Eqs. (16,80), dashed black line), which does not take
into account the periodicity of the firing rate as a function of the phase and which predicts an
unphysical diverging activity difference for vanishing coupling. (B) Same as in (A) with the
results for the network simulations of Fig. 4K,L (colored solid lines corresponding to different
E-I module sizes, as sprecified in the inset), shown as 〈δr2E〉 = C11(0)− C12(0).

We developed another approach, valid for small noise but for arbitrary coupling flr, in
order to check this origin of the inaccuracy of Eq. (16) as well as to obtain a quantitatively
precise description of the competition between synchronization and stochasticity. The
approach is simply based on accounting for the effect of stochastic perturbations at
a linear level around the fully synchronized state where all modules are in the exact
same states (see Methods: Competition between synchronization and stochasticity for
two coupled E-I modules of finite size. Weak noise at arbitrary coupling). As shown
in Fig. 5, this two-mode computation produces precise estimates of the mean square
excitatory rate difference of the two modules, 〈(r1,E − r2,E)2〉, even for modules with
only 104 neurons when stochasticity is quite high. This second approach is thus quite
successful in quantitatively capturing the observed competition between synchronization
and stochasticity.

Phase gradients in a chain of oscillatory E-I modules coupled by
long-range excitation

Having analyzed the synchronization dynamics and effects of finite-size fluctuations for
two E-I modules, we now turn to a fuller description of spatially-structured connectivity.
We consider a chain of E-I modules, with each module’s long-range excitation targeting
other modules in a distance-dependent way. Interestingly, the effects that we uncovered
in the two-module setting, such as desynchronization at weak coupling for E → E
connectivity and competition of synchronization with stochastic finite-size fluctuations,
reappear in a more elaborate form. Moreover, the computational techniques that we
developed for the two-module case turn out to be directly applicable to the chain of
modules.
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Figure 6

Fig 6. Spontaneous appearance of phase gradients in a chain of E-I modules. (A)
Sketch of the chain of E-I modules coupled by long-range excitation. Excitatory neurons in one
module target excitatory neurons (E → E) or excitatory and inhibitory neurons (E → E, I) in
the other modules with a distance-dependent excitation profile. (B) Fourier transform of the
coupling function C̃λ(q) (Eq. (106)) for perturbations of wavenumber q when the long-range
excitation has an exponential profile (Eq. (20)), for space decay constants λ = 1 (turquoise)
and λ = 0.33 (dark blue). For λ � 1, the chain of modules can be approximated by a
continuous system. (C) Effective long-range coupling flr(q;λ) = (1− C̃λ(q))/2 for perturbations
of wavenumber q. (D) Stability spectrum for perturbations of wavelength q as function of
the effective coupling flr(q;λ) for E → E connectivity. For small coupling strengths, i.e. long
wavelengths, the largest eigenvalue (thick solid line) is larger than 1, and the perturbations
are unstable (flr < f∗

lr, hatched region). While both eigenvalues are real and positive for small
coupling strengths, they become complex conjugated for larger couplings (real part, thick dotted
black line; imaginary part, thick dotted grey line). (E) Excitatory activity rE for a chain of
deterministic E-I modules over time (L = 512, with 0.1 mV noise on initial condition). (F)
Growth of the variance of excitatory activity

∑L
n=1(rn,E −

∑L
m=1 rm,E/L)2 over time, with the

predicted rate for the fastest-growing mode shown on top (dashed black line). (G,H) Same as
(D,E) but for E → E, I connectivity. Note that all modes are stable (G) and no instability
develops over time (H). (I) Rate of decay of longest wavelength perturbation σ2π/L for different
chain lengths L (orange crosses) against the theoretical prediction (Eq. (23), black line). Inset:
Decay of the spatial modulation of excitatory activity over time (L = 512). For all simulations
shown, λ = 1/3.

Spontaneous appearance of phase gradients due to long-range excitation
specifically targeting excitatory neurons

The setting of our analysis is sketched in Fig. 6A. E-I modules with locally unstructured
connectivity are coupled by long-range excitation. For E → E connectivity, the
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dynamics of L coupled E-I modules are described in the rate-model framework (3,4) by

τE(IE,n)
dIE,n
dt

= −IE,n + IextE + wEE
∑

m=1,··· ,L
C(n,m)rE,m − wEI rI,n (17)

τI(II,n)
dII,n
dt

= −II,n + IextI + wIE rE,n (18)

with C(n,m) = C(|n−m|).
For E → E, I connectivity, Eq. (18) is replaced by

τI(II,n)
dII,n
dt

= −II,n + IextI + wIE
∑

m=1,··· ,L
C(n,m)rE,m . (19)

The connection strength decreases monotonically with the distance l between modules
[17], as described by the function C(l). Our analytical expressions are valid for a general
functional form. For the numerical simulations, we have chosen, for illustration, an
exponential decrease which appears compatible with experimental data in the primate
motor cortex [16]. We specifically take

C(l) = Aλ [exp(−λ|l|) + exp(−λ(L− |l|))] , Aλ =
1− exp(−λ)

[1− exp(−λL)][1 + exp(−λ)]
(20)

where Aλ implements the normalization
∑
l=0,··· ,L−1 C(l) = 1. The second exponential

corresponds to choosing periodic boundary conditions for the chain. While this is not
realistic for the cortex, it minimizes boundary effects in the simulations and should not
significantly modify the results in the regime when L is large compared to 1/λ (i.e.,
when exp(−λL)� 1).

We first analyze the dynamics in the framework of deterministic rate equations,
before considering the effects of fluctuations and comparing with spiking networks in
the next section.

A perfectly synchronized oscillating chain, with zero phase difference between the
oscillations of different modules, is always a possible network state at the level of the
rate-model description. It needs however to be tested whether full synchronization is
resistant to perturbations or whether some perturbations are amplified by the dynamics
and full synchronization is unstable. Interestingly, the linear stability analysis of a
periodic lattice such as the considered 1D chain, exactly reduces to that of a two E-I
module network with an effective coupling flr. More precisely, any small perturbation
of the fully synchronized state is the linear sum of periodic perturbations with different
wavenumbers q which evolve independently of each other. Perturbations of wavenumber
q evolve in the same way as perturbations in the two E-I module network considered in
the previous section, provided the coupling in the two-module network is chosen as

flr(q) = [1− C̃λ(q)]/2 , (21)

where C̃λ(q) is the Fourier transform of the long-range excitation profile C(l) (Eq. (106)
in Methods). C̃λ(q) and the corresponding “effective” coupling in the two-module
network, flr(q), are displayed in Fig. 6B,C for an exponentially decreasing long-range
excitation profile C(l) ∼ exp(−λ|l|). It is seen in Fig. 6C that small wavenumbers q
correspond to weak effective coupling flr(q), with flr(q)→ 0 when q → 0. While deriving
the exact relation (21) requires mathematical analysis (see Methods: Stability analysis
of full synchronization for a chain of oscillatory E-I modules), it can be intuitively
understood. For perturbations of small wavenumbers (q → 0), only distant parts of the
chain are in distinct oscillating states. The relative dynamics of these distant parts is
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thus effectively only weakly coupled by excitation since long-range excitation decreases
with distance. The relation (21) allows one to directly transcribe for the E-I module
chain the results previously obtained for the two E-I module case. As before, we compare
two connectivities for long-range excitation.

We first consider the case of E → E connectivity, when long-range excitation only
targets excitatory neurons. The effective coupling flr(q) decreases monotonically with
the wavenumber q and vanishes as q → 0. The stability diagram displayed in Fig. 2B
then shows that full in-phase synchronization is unstable for chains sufficiently long
to accommodate modulations of small enough wavenumber q. The associated stability
eigenvalues are shown in Fig. 6D. In-phase synchronization is unstable when flr becomes
smaller than a critical f∗lr that depends on the single E-I module synaptic parameters.
For the the chain of modules, this implies that spatially-periodic perturbations grow
when their wavenumber q lies below a critical q∗, defined by

cos(q∗) =
1− 2f∗lr cosh(λ)

1− 2f∗lr
, or q∗ '

√
2f∗lr

1− 2f∗lr
λ , (22)

where λ controls the exponential decrease with distance of the long-range excitation. The
second equality in Eq. (22) is valid for small λ; the used approximate relation between
flr and q is shown in Fig. 6C, it can be seen that it is already very accurate for λ = 1/3.

Eq. (22) predicts that for a network of sufficient spatial extent L > 2π/q∗, spontaneous
phase gradients should appear along the chain. This is confirmed by direct numerical
simulations of the rate-model equations, shown in Fig. 6E. The exponential growth of
the modulation of excitatory activity along the chain is shown in Fig. 6F, starting from a
weakly perturbed fully synchronized state. This directly confirms the linear instability of
full synchronization. One further notable feature in Fig. 6E is that the phase gradients
develop on a spatial scale that is quite long (i.e. ∼ 30 modules) compared to the spatial
scale of the long-range excitation profile C(l) (∼ 1 in Fig. 6D). This stems from the fact
that in-phase synchronization is unstable only for small flr(q), that is, for small q or long
wavelengths compared to the characteristic module coupling length. For our reference
parameters and wIE = 2 mVs, Eq. (22) gives for the critical wavelength q∗ ' 0.24λ.
Similarly, one obtains qm ' 0.15λ for the wavenumber qm of the fastest-growing mode,
which corresponds to the largest eigenvalue in Fig. 6D.

For E → E, I connectivity, when long-range excitation targets both excitatory and
inhibitory neurons, the previous two E-I module synchronization analysis shows that full
synchronization is stable up to vanishingly low coupling flr. The stability eigenvalues
are shown in Fig. 6G. For all wavelengths, their real part is less than 1. This linear
analysis thus predicts that any modulation of activity along the chain should disappear
exponentially. This is indeed what is observed in direct simulations of a chain of
modules, as illustrated in Fig. 6H. Moreover, our stability analysis shows that the longest
wavelength modes are the slowest to vanish. Their relaxation rate is obtained (Eq. (107)
in Methods) as

σq =
DEI
φ

2[cosh(λ)− 1]
q2 . (23)

The relaxation rate σq vanishes when q → 0 and decreases with increasing modulation
wavelength. The smallest wavenumber that can be accommodated in a chain of L
modules is 2π/L. Fig. 6I shows that σ2π/L as given by Eq. (23) precisely describes the
approach to full synchronization in our simulations of a E-I module chains of different
lengths with long-range E → E, I connectivity.
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Phase gradients emerging from stochastic fluctuations in E-I modules of finite size

Spontaneous stochastic fluctuations of activity are present in each E-I module with a
finite number of neurons, as already emphasized. In the two E-I module case, these were
seen to compete with synchronization and promote phase differences between different
E-I modules. Finite-size fluctuations similarly act in a chain of E-I modules. This is
shown in Fig. 7, where the results of stochastic rate-model simulations are displayed
for both E → E and E → E, I connectivity. Both the phases of oscillation of different
modules (Fig. 7A,D) and the activity of excitatory neurons (7B,E) show that in both
connectivity cases differences between neighboring modules are present. The histograms
of phase differences between nearest modules are displayed in Fig. 7C,F for E → E and
for E → E, I connectivity, respectively. In both cases, differences in phases decrease
when the number of neurons in the modules increases, i.e., when stochastic fluctuations
decrease. They also decrease when the range of long-range excitation increases and
neighboring modules become more strongly coupled. The similarity between the two
connectivity cases shows that stochastic fluctuations play the dominant role in creating
phase differences between neighboring modules, for modules of size lower than N = 105.

The stochastic fluctuations along the two chains of E-I modules are further quantified
in Fig. 7G,H by computing the power in different spatial modes. These clearly show that
for both connectivities, power is highest in the longest wavelengths. This qualitatively
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Fig 7 (previous page). Appearance of phase gradients and stochastic fluctuations
in a chain of E-I modules. (A,B) Simulation of the stochastic rate model (FAT) for a
chain with E → E connectivity, a space constant λ = 0.33 and network size N = 104. (A)
Instantaneous phase as obtained from the Hilbert transform of bandpass-filtered excitatory
activity, where the (unfiltered) rates are shown in (B). (C) Distributions of local phase gradients
∇φ = φx+1 − φx for different noise strengths and space constants for E → E connectivity.
Inset: distributions of gradients normalized to the respective mean value. (D,E) Phase and
excitatory activity for the same parameters as in (A,B) but with E → E, I connectivity. (F)
Same as in (C) but for E → E, I connectivity. (G,H) Power spectra of the spatial activity
profiles (averaged over 5 s) for different module sizes and space constants λ, for E → E (G) and
E → E, I (H) activity, respectively. The spectra obtained from spiking network simulations
(N = 5000: L = 128; N = 104: L = 32) are shown in light thick lines, spectra obtained
from rate-model simulations are shown in dark thin lines (L = 256). (I) Comparison of the
spectra obtained from simulations (FAT, solid lines) and theoretical predictions for E → E, I
connectivity. Similar to the two-module case, the modes with larger effective couplings are well
described by the two-mode calculation (dashed lines, Eq. (136)), while for smaller couplings, or
vanishing q, non-linear effects due to the periodicity of the limit cycle, which are not captured
by the linearized two-mode dynamics, become dominant. This limit is better captured by
the phase approximation and taking the periodicity of the limit cycle dynamics into account
(dash-dotted lines, Eq. (123)). Network size N and space constant λ as in (G,H). (J) Example of
a spatially extended phase gradient (upper panel) that gives rise to a the apparent propagation
from left to right of a (negative) bump of activity in space (lower panel). Phase and excitatory
firing rate are shown over a length of 15 modules for different instances in time, see color code
legend. (K) Correlation of spatially extended phase gradients ∇φ (averaged over 5 modules and
retained when the absolute average gradient is larger than the standard deviation of local phase
differences) with phase propagation velocities vφ determined from frame-to-frame correlations
between spatial phase profiles (see Methods). (L) Summary plot of average phase gradients
for different network sizes N and connection decay space constants λ for E → E connectivity
(circles) and E → E, I connectivity (diamonds).

agrees with a generalization of the two-module result Eq. (16) for the chain. This result,
given in Eq. (127), is obtained by assuming that oscillatory phase differences dominate
the fluctuations between modules. While this is true for very long wavelengths, it does
not quantitatively agree with the measured spectra for the smaller wavelengths of interest
in the present context (Fig. 7I). A generalization of the two-module computation that we
developed to take into account both phase and amplitude modes (see Methods: Charac-
terization of the E-I module chain stochastic activity profile) is required to quantitatively
describe the simulation results, which is also shown in Fig. 7I.

The above results were obtained by simulating chains of E-I modules using the FAT
rate-model description. Equivalent simulations for spiking networks are too demanding
in computational power for us to perform. We have however checked that for shorter
chains of modules (L = 128 for N = 5000, L = 32 for N = 104), the stochastic FAT
rate model reproduces well the results of spiking network simulations (Fig. 7G,H). This
renders us confident that this would be the case for longer chains as well.

Phase waves and propagation of activity

We have shown that stochastic fluctuations in a chain of E-I modules create phase
differences in the oscillations of E-I modules along the chain. In the presence of phase
differences, activity in different modules peaks at different times and may produce “phase
waves” (also described as traveling waves, e.g. in [2, p1219]), as shown in Fig. 7J. The
propagation velocity vφ of phase waves is kinematically related to the phase gradient

21



and the distance between E-I modules (which is also the linear size of an E-I module),

vφ =
d

∇φ
, (24)

where ∇φ denotes the phase variation between neighboring modules (recall that the
phase has the unit of time with our convention) and d is the physical distance between
these module centers.

These transient phase waves bear some resemblance to the observation of traveling
waves in the motor cortex during episodes of beta oscillations [10–14]. Thus, it appears
of interest to better characterize them in the present setting and to compare them to
propagation of activity. Phase waves covering a notable spatial range correspond to phase
gradients that extend over several modules. Although phase differences between modules
are mostly correlated on short length scales, extended phase gradients nevertheless
exist. For our purpose, we determined gradients of activity that extend over five
modules (see Methods: Simulations and numerical analysis. Detection of propagation
events in an E-I module chain), and computed the corresponding phase wave velocity.
Furthermore, we independently assessed the spatio-temporal propagation of activity
for these occurrences by correlating successive frames of simulations (see Methods:
Simulations and numerical analysis. Detection of propagation events in an E-I module
chain). These two independently measured velocities are strongly correlated as shown in
Fig. 7K. In our simulations, phase gradients and the associated phase waves thus explain
the detected propagation of neural activities.

The probability distributions of spatially extended phase gradients are shown in
Fig. S4, for the two different considered connectivities and two space decay constants λ
of long-range excitation, as well as for different numbers of neurons in the E-I modules.
The corresponding mean values of these gradients are summarized in Fig. 7L. In order
to compare these values to neural recordings, values for the size of an E-I module and
the range of long-range horizontal connections should be determined. Data are available
for different species and for different areas [16, 17, 59–61]. For instance, for mouse
somatosensory barrel cortex, identifying an E-I module with a barrel column would give
d ' 175µm for the distance between neighboring modules (which is also the linear size of
an E-I module) and λ ' 0.7 for layer 2/3 horizontal connections since synaptic excitatory
charge is measured to decay to 26% two columns away from an excited column [60].

For the motor cortex of adult monkeys, data are available from intra-cortical micro
stimulation and recordings with single and multielectrodes [16]. Response amplitudes
vary with the protocol and exact location of the electrodes, but a space decay constant
of 1.5 mm seems representative. An E-I module size of d ' 500µm and N ' 2 · 104

neurons then gives λ ' 0.33 for the long-range connectivity. For this last case, our
numerical results give ∇φ ' 0.5 ms (E → E, I) or 1 ms (E → E) depending on the
precise connectivity (Fig. 7K). With the above estimate of d, Eq. (24) then gives a phase
velocity vφ ∼ 1 m/s or 0.5 m/s, respectively. In both cases, this is significantly larger
than the beta wave velocities recorded in the motor cortex of monkeys. Increasing the
local noise on each module increases the dephasing between modules, e.g. ∇φ ' 1.4 ms
for N = 5 · 103 and (E → E, I) connectivity (Fig. 7K), and correspondingly lowers
vφ. Thus, in this framework, stochastic dephasing between modules could account for
the experimental results only if other sources of “noise” are present beyond the one
coming from the finite size of local modules. This would suggest that different E-I
modules receive different inputs, shared at the level of individual modules but varying
independently from module to module, as further discussed below.

We assessed one other possibility of increasing local noise with respect to the long-
range synchronization of neighboring modules. It would consist of diminishing the
importance of long-range coupling relative to purely local excitation, without modifying
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the characteristic length scale of long-range connectivity as such. The associated coupling
function then takes the form C(l) ∼ (1 − α)δ0l + α exp(−λ|l|), where α measures the
fraction of truly long-range connectivity. For α = 0.5, the resulting average phase
gradients are about two times steeper for all λ and N , see Fig. S5, implying phase waves
that are about two times slower than for α = 1 (compare Fig. S5E to Fig. 7L).

While noise increase brings the phase wave speed in simulations closer to the range of
recorded ones, other features may be responsible for the quantitative differences between
the present simplified model and biological recordings, as discussed below.

Discussion and conclusion

In the present work, we have studied the synchronization of spatially distant E-I modules
connected by long-range excitation.

At a technical level, our analysis was greatly facilitated by the formulation of a
stochastic rate model with an adaptive timescale that accounts quite precisely for the
activity of spiking networks. This extends the finding of previous works [48,50] to E-I
oscillations. The use of a quantitatively precise rate model offers two main advantages.
First, it eases numerical simulations that are computationally very demanding for spiking
networks with spatially-structured connectivity, since they require both a significant
amount of locally connected neurons and a finite number of such modules for spatial
extension. Second, the rate-model formulation lends itself much more easily to math-
ematical analysis [21, 24, 25, 27] than its spiking network counterpart. Therefore, the
approach may certainly prove useful in other contexts.

Our application of this methodology provides a description of spatially-structured
networks with a local oscillatory dynamics in the SSO regime, based on E-I recurrent
interactions. Our first general finding is that , as previously obtained in the Wilson-
Cowan rate model framework [21,22,27], the detail of long-range connectivity matters.
Based on observations in several neural areas [15–17,61, 62], we have confined ourselves
to considering long-range excitatory connections. Long-range excitatory connections
only targeting distant excitatory neurons result in more complex dynamical properties
than long-range excitatory connections that have the same connection specificity as local
ones. Experimental investigations of the targeting specificity of long-range excitatory
connections appear rather scarce at present (but see [60,63]). Results such as ours and
previous ones [21,22,27] will hopefully provide an incentive to gather further data on
this question for which experimental tools are now available.

Complex dynamical regimes for two spiking oscillatory modules connected by long-
range excitations were previously found [34] for fast oscillations driven by recurrent
connections between inhibitory interneurons with synaptic delays, with delays also being
present in the excitatory connections. Our results, in agreement with previous rate
model calculations [22] extend these previous findings to a different oscillatory regime, for
slower beta oscillations, in the absence of recurrent inhibitory connections and significant
synaptic delays. It will be interesting to see if these complex regimes are observed in
experiments like the one performed in ref. [9] which record and perturb distant neural
ensembles oscillating in the beta/low gamma range. They may be also be relevant
for oscillations in large ensembles of neurons coupled by long-distance connections,
e.g. inter-areal dynamics [64].

We have however observed that these complex oscillatory regimes for two coupled
E-I modules are very sensitive to stochastic fluctuations of activity. This has led us to
develop a quantitative description of the competition between finite-size fluctuations and
synchronization in order to describe the dynamics at the scale of a cortical column. Other
studies have proposed more refined and complex ways to take into account finite-size
fluctuations (see e.g. [65–67]) than the one we used. But, at least for our purposes, the
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simple procedure of ref. [39] proved sufficient to account for spiking network simulations.
We have also found that the instability of full synchronization for the two-module

network translates in a long-distance instability of synchronization in the extended
spatial setting of a chain of modules when long-distance excitation primarily targets
excitatory pyramidal cells (E → E connectivity). This instability is analogous to those
occurring in oscillatory media such as the one created by an oscillatory chemical reaction
taking place in a layer of liquid (see [68] for a review). It can similarly be captured by
considering the spatio-temporal dynamics of the local oscillation phases as originally
proposed in a general coupled-oscillator context [19] and extended in previous works to
neural systems [21–25].

This phase instability results in the spontaneous creation of phase differences between
neighboring spatial locations, namely oscillatory phase gradients. Phase gradients
kinematically lead to the observation of traveling waves of activity (see [2,23] for previous
discussions) and seem at the origin of traveling waves associated with oscillatory activity
observed in different contexts. The instability wavelength that we determined appears too
long however to account for observations in motor cortex [10–14] taking a cortical column
typical size of 500µm and available data on the range of excitatory connections [15–17].
Moreover, this would require that E → E connectivity prevails in motor cortex, which is
certainly not clear at present.

Stochasticity arising from the finite number of neurons in a cortical column plays
a role as important in a spatial setting as for two modules. It competes with the
synchronizing effect of connectivity in the E → E, I case or in the E → E case at length
scales smaller than the phase instability critical wavelength. This competition itself
induces phase differences between spatially neighboring neural oscillatory ensembles.
These produce the stochastic and transient appearance of phase waves, as we have shown
(Fig. 7J,K). This has led us to search and obtain a quantitatively precise understanding
of stochastic dephasing between different modules. Phase differences are most simply
described by stochastic equations for the spatially varying oscillation phase that we
derived, and that have been intensely studied in other contexts [69]. We have found
however that the stochastic phase description accurately describes oscillatory phase
differences only for sufficiently distant spatial locations which appear beyond those
relevant for waves within a neural area. On shorter distances, relevant for intra-areal
dynamics, modes beyond the phase modes have to be included to obtain a quantitatively
accurate description of neural activity and its fluctuations. Dephasing of oscillators
in space and the allied phase waves account for the propagating activity events in our
simulations (Fig. 7J, K). However, the measured phase wave velocities appear too high
to account for the measured velocities [10,12,13] of the transiently appearing traveling
waves in the motor cortex during beta episodes. This points to the existence of further
effects beyond the ones we have taken into account in the simple model that we have
analyzed here. First, there may exist sources of dephasing between modules beyond
finite-size noise. It seems plausible that this may arise from inputs from other neural
areas which vary from module to module. This seems consistent with the topographic
connectivity between the motor cortex and body muscles [15]. Whether these inputs
can be treated as white noise or are better approximated by noise with a significant
correlation time remains to be seen. Another hypothetic origin of steeper phase gradients
suggested by our model would be an overrepresentation of local connections relative
to the long-range excitatory connections studied here. This question will have to be
addressed quantitatively in light of precise data that will eventually be available. A
third non-exclusive possibility is that the slow conduction velocity along non-myelinated
axons [59, 62] and the associated propagation delays amplify the phase gradient between
different modules. The present analysis provides a solid foundation to incorporate these
effects that we plan to examine in forthcoming work together with a detailed comparison
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with neural recordings.
An interesting further aspect of our results is that the correlation of neural activity

at different spatial points is related to the profile of long-range connectivity via the
effective coupling. This relation could certainly be tested when the appropriate data
becomes available. Interestingly, it could also serve to deduce profiles of long-range
connectivity from measurements of neural activity, i.e., measured correlations between
spatially distant LFP recordings.

Several other directions will be interesting to pursue to extend the present study.
We have here restricted ourselves to consider a one-dimensional chain of E-I modules.
Recordings not only display planar waves but also rotating waves and more complex
wave patterns. Extension to two dimensions is required for a precise comparison with
experimental data [12, 13]. Recorded planar waves also display preferred propagation
axes [10] that it will be interesting to link to anisotropies in connectivity or possibly to
geometrical properties of the motor and premotor cortices. Finally, we have analyzed
a very simple E-I module. It will be important to decipher the roles of the different
interneuron types (cf. [9]) of the different cortical layers and of their connectivity [60] to
better understand cortical dynamics.

Methods

Simulations and numerical analysis

Simulations of spiking networks

For our spiking network simulations, we used exponential integrate-and-fire (EIF) neurons
that exhibit the following membrane potential dynamics:

τm
d

dt
Vi = EL − Vi + ∆T e

Vi−VT
∆T + Iext,i + Isyn,i , (25)

where τm = 10 ms is the membrane time constant, EL = −65 mV is the resting potential
set by a leak current, and ∆T = 3.5 mV and VT = −59.9 mV are the sharpness of the
spike onset and the spike threshold, respectively. The external current Iext represents
inputs from neurons outside the network and comprises a mean current shared among
all neurons of the excitatory or inhibitory population and a noise term specific to each
neuron,

Iext,i = IextX + σX
√
τmξi , (26)

where ξi is a Gaussian white noise with zero mean and unit variance, 〈ξi(t)ξj(t′)〉 =
δijδ(t − t′), and X = E/I depending on whether neuron i is excitatory or inhibitory.
Synaptic currents Isyn,i are given by

Isyn,i = τm
∑
j

JijSj(t) , (27)

where the Jij are the synaptic weights between post- and presynaptic neurons i and j,

respectively, and Sj(t) =
∑
k δ(t− t

(j)
k ) is the spike train of neuron j with spike times

t
(j)
k .

If not specified otherwise, we considered an all-to-all connectivity at the level of
an individual module, such that Jij ∈ {JEE , JIE , JEI , JII} depending on the type
(excitatory vs. inhibitory) of neurons i and j. The synaptic weights JXY relate to
population weights wXY according to JXY = wXY /(NY τm). Here, NE and NI are the
numbers of excitatory and inhibitory neurons in a module; for a given network size N ,
NE = 0.8N and NI = 0.2N .

25



We chose the external currents IextE , IextI such that at steady state, excitatory and

inhibitory neurons fire at an average rate of r
(s)
E = 5 Hz and r

(s)
I = 10 Hz, respectively.

We furthermore fixed the noise strengths σE , σI by imposing a total noise (external plus

synaptic) of σtot = 10 mV, using σ2
tot = σ2

X + J2
XENEτmr

(s)
E + J2

XINIτmr
(s)
I , X ∈ {E, I}.

Further parameters were: the numerical threshold potential after which a spike was
registered and the membrane potential reset, Vthresh = −30 mV; the reset potential,
Vreset = −68 mV; and a refractory period of τref = 1.7 ms. We used a time step
dt = 0.01 ms throughout.

For reasons of computational efficiency, we used the following connectivity scheme for
the two-module simulations. Because all-to-all connectivity can be implemented without
actually processing spikes over all O(N2) synapses, we maintained all-to-all connectivity
with lowered synaptic weights J̃XE = (1− flr)JXE for those synaptic connections within
a given module that are supplemented by long-range excitation (X = E in the E → E,
X = E, I in the E → E, I connectivity case, respectively). The long-range connections
were implemented as a finite number Clr = flrNE (rounded to the nearest integer) of
excitatory synaptic connections across modules with unchanged synaptic weights JXE .
Only for the very large networks (N = 1.6 · 106) used in Fig. 3, we also replaced the
connections across modules with all-to-all connectivity, where we reduced the synaptic
weights accordingly to J̃XE = flrJXE.

The long-range excitatory connections between modules in the chain simulations
were set up as follows: We first determined the distance-dependent number of excitatory
connections as a function of NE and λ such that the NE input synapses are distributed
according to their relative contribution p(∆x) = e−λ|∆x|/(1 + 2/(eλ−1)) across modules,
using periodic boundary conditions so that each neuron could in principle receive input
from 2L−1 modules. Input connections from different modules were then randomly drawn
in corresponding numbers for each neuron receiving long-range excitatory connections.

All network simulations were performed using brian2, a convenient Python package
for implementing network simulations [70].

Population firing rates were calculated as the total number of spikes within a time bin
∆t divided by the size of the population; we typically used ∆t = 0.1 ms if not explicitly
stated otherwise.

Computation of correlation functions

The auto- and cross-correlation functions C1j(τ) with j = 1, 2, respectively, as shown in
Figures 1-4, were calculated as

C1j(τ) =
1

M

∑
ti

δr1,E(ti)δrj,E(ti + τ) , (28)

with M the number of discrete time points ti considered, and δr(ti) = r(ti) − r̄ the
deviatory part of the firing rate relative to its temporal mean. Note that M was limited
by the duration of the simulation and we generally discarded an initial transient of
250 ms. We furthermore substracted the expected zero-time Poisson contribution due to
stochastic firing, 〈δrE(t)2〉Poisson = r̄E/(NE∆t), from the autocorrelation at τ = 0 to
focus on the correlations induced by the network dynamics.

Detection of propagation events in an E-I module chain

We first resampled the firing rates obtained by simulations with a new time step ∆t = 1 ms
by averaging the activity in 1 ms bins to reduce the sampling noise ∝ 1/dt. We then
determined the Hilbert phase from the band-pass filtered version of the deviatory firing
rate δr = r − r̄, using a fifth-order Butterworth filter with lower and upper corner
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frequencies of 15 and 40 Hz, respectively. The Hilbert transform was obtained using the
Python scipy package.

In a next step, we determined locally averaged phase gradients by averaging phase
differences ∇φx(ti) = φx+1(ti) − φx(ti) over five neighboring segments, i.e.,∇φx(t) =
1
5

∑4
k=0∇φx+k(ti) = (φx+5 − φx)/5 (note that all phase differences are taken modulo a

full oscillation period). For the detection of propagation events, we retained gradients
where the absolute average phase gradient |∇φx(ti)| is larger than the standard deviation
of the five contributing local phase differences. To determine the propagation of the local
phase profile φx(ti) = (φx(ti), φx+1(ti), . . . , φx+4(ti)), we calculated the Euler distance
of laterally shifted versions at later time bins ti+j ,

d(∆, j;x, ti) = ‖φx(ti)− φx+∆(ti+j)‖2 .

We subsequently inferred the phase propagation speed vφ(x, ti) from the optimal shift
∆opt(j;x, ti) that minimizes the distance between phase profiles after a given time j∆t
according to:

vφ(x, ti) =
1

5

5∑
j=1

∆opt(j;x, ti)

j∆t
.

For reasons of computational efficiency, we restricted the search for an optimal shift ∆
over shifts of ±15 modules.

Fit of the adaptive timescale in the FAT rate model

In the adaptive rate model (2), the response time depends on the current I. In a previous
work [48], Ostojic and Brunel (OB) proposed the analytically-motivated choice,

τ (OB)(I) = τm∆T
Φ′σ(I)

Φσ(I)
.

In the present paper, the adaptive response time was chosen following [50], by taking the
exponential kernel that best fitted the firing-rate response to an oscillating current at
different frequencies. Precisely, we numerically evaluated the analytical expression for the
linear firing-rate response R̂1(f) of EIF neurons [71] for frequencies from 1 Hz to 1 kHz in
steps of 1 Hz for all values of the input current on the grid of input currents I with step size
dI = 0.1 mV, and fitted the modulus of the firing-rate response by A/

√
1 + (2πfτfit)2,

which is the Fourier transformation of an exponential decay in the time domain (see
Fig. S1C). We used these values of τfit as a look-up table and interpolated in between.
The resulting “fitted adaptive timescale” (FAT) curve τ (FAT )(I) is shown in Fig. S1B
together with τ (OB)(I). We also used look-up tables and interpolation for Φσ(I) and
the first and second derivatives of Φσ(I) to speed up the numerical calculations. The
tabulated functions Φσ(I) and τ (FAT )(I) used for the present paper are provided as
supporting material S1 File.

Simulations of the FAT rate-model for an E-I module

For a network with synaptic weights wEE , wIE and wEI , the currents IextE , IextI are

chosen so as to impose the steady firing rates r
(s)
E , r

(s)
I for the excitatory and inhibitory

populations. Namely,

IextE = I
(s)
E − wEE r

(s)
E + wEI r

(s)
I ,

IextI = I
(s)
I − wIE r

(s)
E ,
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where I
(s)
E and I

(s)
I are the currents corresponding to the chosen rates according to

r
(s)
E = Φσ(I

(s)
E ), r

(s)
I = Φσ(I

(s)
I ). The same external currents are used in the spiking

network simulations.
We implemented the stochastic rate-model equations in Python using an Euler

scheme with a time step dt = 0.01 ms. At each time ti, we calculated the noisy firing
rate rX(ti) by drawing a number of emitted spikes nX(ti) from a Poisson distribution
with mean NXΦ[IX(ti)]dt, and setting rX(ti) = nX(ti)/(NXdt), X = E, I, in order to
avoid negative firing rates.

Oscillatory instability for an E-I module

The E-I module (3,4) either has its E and I populations stably firing at the chosen

rates r
(s)
E , r

(s)
I (i.e., the chosen fixed point is stable) or departures from r

(s)
E , r

(s)
I are

amplified and the rates cannot be maintained (i.e., the fixed point is unstable). These
different cases are shown in parameter space in Fig. 1A. The regions of Fig. 1A are
obtained in a standard way [20, 24] by linearizing Eqs. (3,4) around the fixed point

currents I(s) = (I
(s)
E , I

(s)
I ). Using a vector notation for the currents, I = (IE , II), the

perturbation δI = I− I(s) evolves according to

d

dt
δI = LEI · δI , (29)

where matrix multiplication is denoted by a dot and LEI is the 2 × 2 linear stability
matrix

LEI =

 [−1 + wEE Φ′E(I
(s)
E )]/τE(I

(s)
E ) −wEI Φ′I(I

(s)
I )/τE(I

(s)
E )

wIE Φ′E(I
(s)
E )/τI(I

(s)
I ) −1/τI(I

(s)
I )

 . (30)

One can note that the derivatives τ ′E(I
(s)
E ), τ ′I(I

(s)
I ) do not appear at the linear level

since these timescales multiply time derivatives which are themselves small quantities at
the linear level. Thus, the adaptive character of τE and τI in the FAT model does not
modify the computation.

The solutions of the linear system (29) are linear combinations of two exponentials
in time, exp(κt), with the two arguments κ being solutions of

τEτIκ
2 + [τE + τI(1− α)]κ+ 1− α+ β = 0 . (31)

Here, we have defined the two positive constants

α = Φ′E(I
(s)
E )wEE and β = Φ′I(I

(s)
I ) Φ′E(I

(s)
E )wEI wIE . (32)

The conditions for the stability of the steady state are that the real parts of the two
roots of Eq. (31) are negative, namely that the sum of the two roots is negative and
their product is positive, respectively

α < 1 +
τE
τI
, (33)

β > α− 1 . (34)

If the latter condition (34) on the product of the two roots is violated, the two solutions
are real and of different signs, the instability is purely exponential. When condition (34)
holds but not the one on the sum of the two roots (33), the instability is either purely
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exponential or oscillatory depending on how strongly the second condition is violated. It
is oscillatory when α− 1 is not too large, namely in the domain

α > 1 +
τE
τI
, (35)

β >
τI

4τE
(α− 1)2 +

1

2
(α− 1) +

τE
4τI

=
τI

4τE

(
α− 1 +

τE
τI

)2

. (36)

Phase dynamics of a forced oscillatory E-I module

We consider an E-I module in the oscillatory regime forced by a small time-dependent
current, as described by Eqs. (3,4) with

IextE (t) = IextE,0 + IforcE (t) , IextI (t) = IextI,0 + IforcI (t) . (37)

Different choices of the forcing currents, IforcE (t) and IforcI (t), allow us to describe the
influence of finite-size stochastic effects as well as the synchronization dynamics of
coupled E-I modules. The computation of the drift and entrainment of oscillators is a
classical topic [18]. Methods to compute the effect of a weak forcing are well-known [19]
and have been applied to neural rate models in numerous works (see [23–25] for reviews).
We provide a derivation of these classical formulas for the FAT rate model, for the
convenience of the reader.

As above (e.g. Eq. (29)), we adopt a vector notation for the currents. We suppose that
the synaptic parameters are such that, with the current Iext0 alone, the E-I module follows

the limit cycle I(0)(t+φ) = (I
(0)
E (t+φ), I

(0)
I (t+φ)) of period T (i.e., I(0)(t+T ) = I(0)(t)).

Here, the phase φ is an arbitrary constant number reflecting the invariance of the dynamics
under time translation when Iext is constant and there is no time-dependent forcing.
When perturbed by a small time-dependent current Iforc(t), the E-I module currents
I(t) closely follow the unperturbed limit cycle I(0)(t+ φ). However, the phase φ of the
followed limit cycle slowly drifts in time, since it is not submitted to any restoring force.

Note that, for simplicity, in the present work, we define the phase to be a periodic
variable between 0 and T , instead of normalizing it to 2π as it is sometimes done.

In order to determine how Iforc(t) entrains the phase φ, we compute perturbatively
the correction δI(t+ φ) to the zeroth-order evolution I(0)(t+ φ). From Eqs. (3) and (4),
we obtain for δI

dδI(ζ)

dζ
= L[I(0)(ζ)] · δI(ζ) + F(ζ) (38)

with ζ = t+ φ and

F(t+ φ) = Fforc(t+ φ)− dI(0)(ζ)

dζ

dφ

dt
, (39)

Fforc(t) =

(
IforcE

τE [I
(0)
E (t)]

,
IforcI

τI [I
(0)
I (t)]

)
. (40)

The matrix L describes the linearized dynamics around the limit cycle,

L[I(0)(t)] =


−1+wEE Φ′E [I

(0)
E (t)]−τ ′E [I

(0)
E (t)]I′

(0)
E (t)

τE [I
(0)
E (t)]

−wEI Φ′I [I
(0)
I (t)]

τE [I
(0)
E (t)]

wIE Φ′E [I
(0)
E (t)]

τI [I
(0)
I (t)]

− 1+τ ′I [I
(0)
I (t)]I′

(0)
I (t)

τI [I
(0)
I (t)]

 . (41)

The last term in Eq. (39), proportional to the time derivative of the phase φ, comes from
the slow phase evolution φ = φ(t) that will be required for preventing the appearance of
growing secular terms [72], as explained below.
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Eq. (38) is a linear equation with coefficients which are periodic functions of time.
For this Floquet problem [73], it is helpful to consider the evolution of δI(t) from one
period to the next. For this purpose, we introduce the so-called monodromy matrix
M(t) such that

d

dt
M = L[I(0)(t)] ·M (42)

with M(0) = Id, the identity matrix. The matrix M(t) describes the linear evolution
along the limit cycle and M(T ) the evolution after one full turn around the limit cycle.

The vector tangent to the limit cycle e1 = (I0
E
′
(0), I0

I
′
(0)) is an eigenvector of M(T )

with eigenvalue µ1 = 1. The other eigenvector of M(T ), e2, has an eigenvalue µ2 with
|µ2| < 1 since the limit cycle is stable. Eq. (38) can be explicitely integrated by writing
δI(t) and F(t) in the basis obtained by translating e1, e2 along the limit cycle,

δI(t) = x1(t) e1(t) + x2(t) e2(t) , (43)

F(t) = f1(t) e1(t) + f2(t) e2(t) (44)

with
ej(t) = M(t) ej , j = 1, 2 . (45)

Substitution in Eq. (38) gives

dxj
dt

= fj(t), j = 1, 2 . (46)

That is after one turn,

xj((n+ 1)T ) = µj

[
xj(nT ) +

∫ (n+1)T

nT

dtfj(t)

]
, (47)

where we have used that ej(T ) = µjej . When |µj | < 1, the above recurrence relation
implies that xj(nT ) has a magnitude comparable to the integral on the r.h.s. of Eq. (47).
In the simple case when fj(t) is periodic of period T , the integral is constant and xj(nT )
tends toward the finite value x∗j ,

x∗j =
µj

1− µj

∫ T

0

dtfj(t) . (48)

However for µ1 = 1, Eq. (47) is an arithmetic series and x1 grows with time, if the
integral term in Eq. (47) does not vanish. This would lead to a breakdown of the validity
of the perturbation expansion. This growth of the tangent component to the limit cycle
reflects a slow phase change of the oscillations that we have anticipated in the last term
in Eq. (39). We can now choose the phase evolution so that the integral term in Eq. (47)
exactly vanishes and the validity of the perturbative expansion is preserved, requiring
that ∫ T+t

t

du f1(u) = 0 . (49)

This determines the E-I module phase drift dynamics to be

dφ

dt
=

1

T

∫ T+t

t

du g1(u) · Fforc1 (u), (50)

where we have computed the component f1(t) of F (Eq. (39)) with the help of the
first vector g1(t) = (g1,E(t), g1,I(t)) of the bi-orthogonal basis (g1(t),g2(t)), such that
gi(t) · ej(t) = δij . Eq. (50) can be interpreted in a usual way as the product of the phase
response curves of the E-I module multiplied by the perturbations due to forcing [19,23].
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Diffusion of the oscillation phase in an E-I module with a finite
number of neurons

The finite number of spiking neurons in a module gives rise to stochastic effects and
produces a diffusive behavior for the oscillation phase of an E-I module in the oscil-
latory regime. This can be well-captured in the rate-model description by including
supplementary stochastic terms, as described by Eqs. (5,6).

These stochastic terms can be interpreted as forcing the deterministic E-I module
oscillations. The resultant stochastic phase dynamics can be described by Eq. (50) with
Fforc(t) given by

Fforc(t) =

 1
τE [IE(t)]

[
wEE

√
ΦE [IE(t)]

NE
ξE(t)− wEI

√
ΦI [II(t)]
NI

ξI(t)

]
1

τI [II(t)]wIE

√
ΦE [IE(t)]

NE
ξE(t)

 . (51)

Substitution in Eq. (50) and averaging over the noise gives a diffusive evolution for
the phase φ [19],

dφ

dt
= η(t) , 〈η(t)η(t′)〉 = DNδ(t− t′) . (52)

The finite number of neurons in both the excitatory and inhibitory populations
contributes to the diffusion constant DN , as described by Eq. (9). The two constants
DE and DI in Eq. (9) are expressed as integrals along the limit cycle as

DE =
1

T

∫ T

0

dt

(
g1,E(t)wEE

τE [I
(0
E (t)]

+
g1,I(t)wIE

τI [I
(0)
I (t)]

)2

ΦE [I
(0)
E (t)] , (53)

DI =
1

T

∫ T

0

dt

(
g1,E(t)wEI

τE [I
(0)
E (t)]

)2

ΦI [I
(0)
I (t)] . (54)

For the synaptic weights wEE = 1.6 mVs, wEI = 0.32 mVs, wIE = 2.0 mVs,
Eqs. (53,54) give DE = 1.2 · 104 ms, DI = 2.0 · 103 ms (Table 1).

Stochastic effect produces a diffusion of the oscillatory phase, the mean square
amplitude of which grows linearly in time, as described by Eq. (8). This gives rise to
a loss of oscillation coherence with time and to the decay of the activity correlation
functions. Stochastic effects in the two neuronal populations also produce small changes
in the oscillation frequency [19,51,52] of magnitudes 1/NE and 1/NI , changes that we
do not consider here.

The autocorrelation decay time τD can be directly related to the phase diffusion
constant DN as follows. We consider, for definiteness, the activity of the excitatory
population rE(t). For a very large number of neurons, noise is negligeable and rE(t) =

r
(0)
E (t) is a periodic function of period T . It can written in a Fourier series as

r
(0)
E (t) =

+∞∑
n=−∞

r̃n exp

(
i
2πnt

T

)
. (55)

For a finite but large number of neurons, the activity of the excitatory population can
approximately be described by taking the dominant effect of phase diffusion into account,

namely approximating rE(t) by r
(0)
E (t+ φ(t)). With the help of Eq. (55), it is then easy
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to compute the auto-correlation of the excitatory activity CEE(t). That is,

CEE(t) ' 〈r(0)
E (s+ φ(s))r

(0)
E (s+ t+ φ(s+ t))〉 − 〈r(0)

E (s)〉2

=

+∞∑
n=−∞

r̃nr̃−n exp

(
i
2πnt

T

)
exp

(
−2π2n2

T 2
〈[φ(s)− φ(s+ t)]2〉

)
− r̃2

0

= 2

+∞∑
n=1

|r̃n|2 cos

(
2πnt

T

)
exp

(
−2π2n2

T 2
DN t

)
, (56)

where the angular brackets indicate averages over different realizations of the noise, i.e.,
the fluctuating values of the phase φ(t). The auto-correlation decay time τD is thus
obtained as given by Eq. (10). Eqs. (9,10) show that the oscillation coherence time
τD grows linearly with the number of neurons in the E-I module. For our reference
parameters (solid circle in Fig. 1A) where T = 64 ms, Eq. (10) gives τD ' 83 ms for an
E-I module with N = 104 neurons (DN = 2.5 ms). For a module with ten times more
neurons (N = 105), the decay time is ten times longer.

A fit of the activity auto-correlation decay with the above expression allows one to
directly measure τD in simulations. This procedure is followed in Fig. 1F to compare
the theoretical prediction to the simulation results.

Synchronization function for two weakly coupled oscillatory E-I
modules

The phase dynamics of a single forced oscillatory module (Eq. (50)) allows us to derive
Eq. (13) governing the evolution of the respective phases of two weakly coupled oscillatory
modules [19,21,24,25].

We suppose that the parameters are such that for a vanishing coupling flr (Eqs. (11,14)),

the two E-I modules follow the limit cycle I(0)(t) = (I
(0)
E (t), I

(0)
I (t)) of period T with

different phases φ1 and φ2,

Ij(t) = I(0)(t+ φj) , j = 1, 2 . (57)

In order to determine how a small coupling flr makes the phases φ1 and φ2 evolve, we
compute perturbatively in flr the corrections δIj(t+ φj), j = 1, 2, to the zeroth-order
evolution (57). We obtain that δI1 follows Eq. (38) with the following forcing current
(Eq. (37)) that arises from the coupling to the second E-I module,

Fforc(t+ φ1) = flrK[I(0)(t+ φ1), I(0)(t+ φ2)] . (58)

The perturbation comprises both long-range excitation coming from the other module
and missing local excitation within the module, which is instead used as long-range
excitation onto the other module.

More precisely, for E → E connectivity (Eqs. (11,12)), the forcing current is given by

K[I(0)(t), I(0)(t+ φ2 − φ1)] =

(
wEE

τE [I
(0)
E (t)]

(
ΦE [I

(0)
E (t+ φ2 − φ1)]− ΦE [I

(0)
E (t)]

)
0

)
.

(59)
Eq. (50) then determines the phase drift of the first E-I module to be

dφ1

dt
=

flr
T

∫ T

0

dtg1(t) ·K[I(0)(t), I(0)(t+ φ2 − φ1)]

=
flrwEE
T

∫ T

0

dt
g1,E(t)

τE [I
(0)
E (t)]

(
ΦE [I

(0)
E (t+ φ2 − φ1)]− ΦE [I

(0)
E (t)]

)
. (60)
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The evolution of φ2 is obtained by permutation of φ1 and φ2 in Eq. (60). Subtraction of
these two equations provides the evolution of the relative phase ∆φ = φ1 − φ2 of the
two modules as given by Eq. (13), with the explicit expression of the coupling function
SE being

SE(∆φ) =
wEE
T

∫ T

0

dt
g1,E(t)

τE [I
(0)
E (t)]

(
ΦE [I

(0)
E (t−∆φ)]− ΦE [I

(0)
E (t+ ∆φ)]

)
. (61)

The subscript E of SE denotes that the expression holds in the case when long-range
excitation only targets excitatory neurons.

For a small phase difference, one readily obtains to first order in ∆φ

SE(∆φ) ' −2∆φDE
φ , (62)

with

DE
φ =

wEE
T

∫ T

0

dt
g1,E(t)

τE [I
(0)
E (t)]

Φ′E [I
(0)
E (t)]

d

dt
I

(0)
E (t) . (63)

The constant DE
φ is actually negative (see Table 1 for our reference parameters) so

that full oscillatory synchrony is unstable for small long-range excitatory coupling fflr
between the two modules.

For E → E, I connectivity (Eqs. (11,14)), the coupling function K of Eq. (59) is
replaced by

K[I(0)(t), I(0)(t+ φ2 − φ1)] =

 wEE
τE [I

(0)
E (t)]

(
ΦE [I

(0)
E (t+ φ2 − φ1)]− ΦE [I

(0)
E (t)]

)
wIE

τI [I
(0)
I (t)]

(
ΦE [I

(0)
E (t+ φ2 − φ1)]− ΦE [I

(0)
E (t)]

) 
(64)

This gives in turn the coupling function for the phase difference ∆φ between the two
modules,

SEI(∆φ) =

∫ T

0

dt

T

(
g1,E(t)wEE

τE [I
(0)
E (t)]

+
g1,I(t)wIE

τI [I
(0)
I (t)]

)(
ΦE [I

(0)
E (t−∆φ)]− ΦE [I

(0)
E (t+ ∆φ)]

)
.

(65)
For a small phase difference between the two modules, analogously to Eq. (61),

Eq. (65) reduces to Eq. (15), the analog of Eq. (62) for E → E, I connectivity, with

DEI
φ =

1

T

∫ T

0

dt

(
g1,E(t)wEE

τE [I
(0)
E (t)]

+
g1,I(t)wIE

τI [I
(0)
I (t)]

)
Φ′E [I

(0)
E (t)]

d

dt
I

(0)
E (t) . (66)

In this case, the constant DEI
φ is positive (see Table 1 for our reference parameters) and

full oscillatory synchrony is stable for small long-range excitatory coupling between the
two modules.

Stability analysis of full synchronization for two coupled E-I modules

The fully synchronized oscillatory state is always a possible dynamical state for two
coupled identical E-I modules. Namely, I1(t) = I2(t) = I(0)(t) is an exact solution of
the coupled Eqs. (17) and (18/19) since the missing local excitation is supplied by the
distant modules. The stability of this oscillatory state can be determined irrespective of
the strength of coupling between the two modules.

We consider slightly perturbed evolutions for the two modules Ij(t) = I(0)(t) + δIj(t),
j = 1, 2. The dynamical behavior of the perturbations δIj(t) is obtained by linearizing
the dynamics around the fully synchronized oscillatory state,

dδI1

dt
= L11[I(0)(t)]δI1 + L12[I(0)(t)]δI2 , (67)
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together with the analogous equation with permuted indices 1 and 2.
Since the dynamics is invariant under the interchange of module 1 and 2, the

4-dimensional linear evolution of (δI1(t), δI2(t)) can be reduced to the study of the
2-dimensional evolution of symmetric (δI1 = δI2) and antisymmetric (δI1 = −δI2)
perturbations. The evolution of symmetric perturbations is governed by the 2× 2 matrix
LS(t) which is identical to the matrix L(t) (Eq. (41)) for a single E-I module,

LS(t) = L11 + L12 = L . (68)

The coupled system of two modules thus inherits its stability with respect to symmetric
perturbations from the stability of the limit cycle of a single E-I module. On the contrary,
antisymmetric perturbations evolve according to the new 2× 2 matrix LA(t),

LA[I(0)(t)] = L11 − L12 . (69)

The matrix LA(t) explicitely depends on the coupling flr. The stability of the synchro-
nized state is determined by assessing whether antisymmetric perturbations have grown
or decayed after one period T . As above, this is governed by the eigenvalues of the
monodromy matrix MA(T ) associated with LA(t),

d

dt
MA = LA[I(0)(t)] ·M , MA(0) = Id . (70)

For E → E connectivity (Eqs. (11,12)), the matrices L11 and L12 read

LE11[I(0)(t)] =


−1+wEE(1−flr) Φ′E [I

(0)
E (t)]−τ ′E [I

(0)
E (t)]I′

(0)
E (t)

τE [I
(0)
E (t)]

−wEI Φ′I [I
(0)
I (t)]

τE [I
(0)
E (t)]

wIE Φ′E [I
(0)
E (t)]

τI [I
(0)
I (t)]

− 1+τ ′I [I
(0)
I (t)]I′

(0)
I (t)

τI [I
(0)
I (t)]

 ,

(71)

LE12[I(0)(t)] =

 flrwEE Φ′E [I
(0)
E (t)]

τE [I
(0)
E (t)]

0

0 0

 . (72)

Integration of Eq. (70) for different flr and other parameters fixed, shows that the two
eigenvalues of ME

A (T ) are smaller than 1 for flr above a threshold coupling f∗lr, while
one eigenvalue is larger than 1 for flr < f∗lr. The obtained f∗lr is shown as a solid red
line in Fig. 2B.

For E → E, I connectivity (Eqs. (11,14)), the calculation is identical but the resulting
matrix LEIA (t) reads

LEIA [I(0)(t)] =


−1+wEE(1−2flr) Φ′E [I

(0)
E (t)]−τ ′E [I

(0)
E (t)]I′

(0)
E (t)

τE [I
(0)
E (t)]

−wEI Φ′I [I
(0)
I (t)]

τE [I
(0)
E (t)]

(1−2flr)wIE Φ′E [I
(0)
E (t)]

τI [I
(0)
I (t)]

− 1+τ ′I [I
(0)
I (t)]I′

(0)
I (t)

τI [I
(0)
I (t)]

 .

(73)
The eigenvalues of the associated monodromy matrix MEI

A (T )are found to be smaller
than 1 irrespective of the value of flr (see Fig. 6G), showing that the fully synchronized
state is stable in this case.

In the previous section, it was shown that the stability of the synchronized state for
small flr was dependent on the sign of the constants DE

φ (Eq. (63)) and DEI
φ (Eq. (66)),

respectively. This can also be seen directly by computing the largest eigenvalue µA1 of
MA(T ) (Eq. (70)) for small flr as we shall demonstrate below.
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When flr = 0, the two modules are not coupled and MA(T ) reduces to M(T ), the
matrix for a single module (Eq. (42)), with µA1 = µ1 = 1. For small flr → 0, µA1 can be
computed perturbatively. We write the expansion of LA(t) and MA(T ) in powers of flr
to first order as

LA(t) = L(t) + flr δLA(t) , MA(T ) = M(T ) + flr δMA , (74)

where L(t) is given by Eq. (41) and the matrix M by Eq. (42). The matrix δMA is
obtained from the integration of Eq. (70) to linear order in flr,

δMA = M(T )

∫ T

0

duM−1(u)δLA(u)M(u) . (75)

First-order perturbation theory gives the development of the eigenvalue µA1 as a
function of δMA,

µA1 = 1 + flr g1 · δMA e1 , (76)

where g1 the left eigenvector of M(T ) associated to the eigenvalue 1, such that g1 ·e1 = 1
(i.e., the first vector of the bi-orthogonal basis (g1,g2)). Explicit formulas are obtained
after the replacement of δMA by its expression (75) together with the identity g1(u) =
g1M

−1(u) and the expressions of δLA for the two considered connectivities. For E → E, I
connectivity, Eq. (73) gives δLEIA , and subsequently the expression for the largest
eigenvalue of MEI

A (T ),
µA1 − 1 = −2flrD

EI
φ T +O(f2

lr) . (77)

The same formula with DEI
φ replaced by DE

φ is obtained for the largest eigenvalue of

ME
A (T ) with the help of Eqs. (71) and (72). Since DEI

φ > 0 and DE
φ < 0, one recovers

that E → E, I connectivity synchronizes the two modules’ oscillations (µA1 < 1) while
full synchronization is unstable (µA1 > 1) at small coupling for E → E connectivity.

Competition between synchronization and stochasticity for two
coupled E-I modules of finite size

For E → E, I connectivity, long-range excitation between two E-I modules tends to
synchronize their oscillations. In contrast, finite-size stochasticity tends to make their
oscillatory phases drift independently. The competition between these two effects can
be analytically estimated when noise is weak. We first consider the simplest case when
the coupling between the two modules is also weak, before considering the case of an
arbitrary coupling.

Weakly-coupled modules

The phase dynamics of weakly-coupled modules is simply described by the linear addition
of the stochastic diffusion of the two modules’ phases (Eqs. (8,52)) and synchronization
due to long-range coupling (Eq. (13)). Thus, one obtains for the phase difference
dynamics

d(φ1 − φ2)

dt
= flr SEI(φ1 − φ2) + η12(t) ' −2flrD

EI
φ (φ1 − φ2) + η12(t) , (78)

where in the second approximate equality we have replaced SEI(∆φ) by its linear
approximation for small phase differences (Eq. (15)). The noise term η12(t) is the
difference of the independent finite-size noises for the two modules (52). Being a linear
combination of white noises, η12(t) is also a white noise, with an amplitude twice as
large as for a single module,

η12(t) = η1(t)− η2(t), 〈η12(t)η12(t′)〉 = 2DNδ(t− t′) . (79)
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Eqs. (78) and (79) readily give that for a small noise amplitude (DN � flrD
EI
φ T ), the

two-module oscillation phase difference has Gaussian fluctuations with a mean square
amplitude given by Eq. (16).

We can use that result to estimate the mean square amplitude of the excitatory
firing rate difference δrE = (r1,E − r2,E)/

√
2 between the two modules. In the case of

weak coupling, the firing rates can be approximated as rj,E(t) ' r(0)
E (t) + r

′(0)
E (t)φj(t),

j = 1, 2, as long as |φj | � T . The firing rate fluctuations are then directly obtained
from the phase differences as

〈δrE(t)2〉T =
1

2
〈(φ1 − φ2)2〉

∫ T

0

dt

T

[
Φ′E [I

(0)
E (t)]

dI
(0)
E

dt
(t)

]2

=
DN

4flrDEI
φ

∫ T

0

dt

T

[
Φ′E [I

(0)
E (t)]

dI
(0)
E

dt
(t)

]2

, (80)

where we used r
′(0)
E (t) = Φ′E [I

(0)
E (t)]I

′(0)
E (t) and furthermore averaged over one oscillation

period, indicated by the subscript T . Note that we neglected here the additional direct,
i.e. not phase-mediated, contribution due to Poissonian sampling, which would add an

additional term r
(0)
E (t)/(NE∆t) with ∆t being the spike sampling interval.

The above expression diverges with vanishing flr. This arises from the fact that the
phase difference between the two oscillating modules becomes arbitrarily large when
the inter-module coupling vanishes. However a large phase difference does not imply
large rate differences since for completely uncorrelated oscillating modules the rate
fluctuations are given by 〈r2

E〉T − 〈rE〉2T . The unphysical divergence of expression (80)
for small flr comes from the neglect of the periodicity of the rate as function of the
oscillation phase. We can obtain an expression for 〈δrE(t)2〉T that takes this periodicity

into account. Using the Fourier decomposition Eq. (55) and rj,E(t) ' r
(0)
E (t + φj(t)),

j = 1, 2, one obtains analogously to the single module autocorrelation

〈r1,E(t)r2,E(t)〉T '
∫ T

0

dt

T

∑
n,m

r̃nr̃m exp

(
i
2π(n+m)t

T

)〈
exp

(
i
2π[nφ1(t) +mφ2(t)]

T

)〉
=
∑
n

|r̃n|2
〈

exp

(
i
2πn

T
[φ1(t)− φ2(t)]

)〉
=
∑
n

|r̃n|2 exp

(
−2π2n2

T
〈[φ1(t)− φ2(t)]2〉

)
. (81)

Here, we first used that 1
T

∫ T
0

dtei2π(n+m)t/T = δn,−m and that the relative phases
φ1(t), φ2(t) vary slowly with time with respect to the oscillatory dynamics, i.e., can be
considered constant over one oscillation period.

Using 〈δr2
E〉T = (〈r2

1,E〉T + 〈r2
2,E〉T )/2 − 〈r1,Er2,E〉T , it is now straightforward to

obtain

〈δrE(t)2〉T = 2

+∞∑
n=1

|r̃n|2
[
1− exp

(
−2π2n2

T
〈(φ1 − φ2)2〉

)]
. (82)

A comparison of this theoretical result with simulations of the stochastic FAT rate model
and spiking networks is shown in Fig. 5.

Weak noise at arbitrary coupling

Eq. (16) provides a simple estimate of the competition between stochastic dephasing and
synchronization for weak coupling between the two modules. A more precise estimate
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for small noise but arbitrary coupling is obtained by considering general fluctuations
around the fully synchronous state that result from the modules’ stochastic activities.
Namely, we describe the dynamics around the fully synchronized state, at the linear
level, as in Eq. (67), Ij(t) = I(0)(t) + δIj(t), j = 1, 2, and compute the dynamics of the
perturbations δIj(t) resulting from the presence of stochasticity. For the first module,
this gives

dδI1

dt
= L11[I(0)(t)]δI1 + L12[I(0)(t)]δI2 + B1 + flrB12 , (83)

with the stochastic terms

B1 =

( wEE
τE [I

(0)
E (t)]
wIE

τI [I
(0)
I (t)]

)
(1−flr)

√
ΦE [I

(0)
E (t)]

NE
ξE,1(t)−

(
wEI

τE [I
(0)
E (t)]

0

)√
ΦI [I

(0)
I (t)]

NI
ξI,1(t) ,

B12 =

( wEE
τE [I

(0)
E (t)]
wIE

τI [I
(0)
I (t)]

)√
ΦE [I

(0)
E (t)]

NE
ξE,2(t) (84)

Permuting indices 1 and 2 in Eqs. (83) and (84) gives the dynamics of the linear departure
δI2 of the second module from the fully synchronized state.

As previously, the permutation symmetry between module 1 and 2 can be taken
advantage of to reduce the 4-dimensional dynamics to a pair of uncoupled two-dimensional
dynamics for the symmetric and antisymmetric modes. We focus on the antisymmetric
mode δIA(t) in the following,

δIA =
1√
2

(δI1 − δI2) . (85)

From Eq. (83) and the analogous equation for module 2, the antisymmetric mode obeys

dδIA
dt

= LEIA [I(0)(t)]δIA + BEI
A , (86)

with the matrix LEIA for E → E, I connectivity given by Eq. (73). The stochastic term
BEI
A is given by

BEI
A =

( wEE
τE [I

(0)
E (t)]
wIE

τI [I
(0)
I (t)]

)
(1−2flr)

√
ΦE [I

(0)
E (t)]

NE
ξE,A(t)−

(
wEI

τE [I
(0)
E (t)]

0

)√
ΦI [I

(0)
I (t)]

NI
ξI,A(t)

(87)
with

ξE,A(t) =
1√
2

[ξE,1(t)− ξE,2(t)] , ξI,A(t) =
1√
2

[ξI,1(t)− ξI,2(t)] . (88)

In order to solve Eq. (86), we introduce again the matrix MEI
A (t), as defined by

Eq. (70). The matrix MEI
A (T ) has eigenvectors eA1 , e

A
2 with eigenvalues µA1 and µA2 . The

two eigenvalues and eigenvectors are real when the coupling flr between the two modules
is sufficiently small (flr . 0.13 for our reference parameters, see Fig. 6G), but they can
be complex for larger couplings.

Eq. (86) can be explicitely integrated by writing δIA(t) and BA(t) in the basis
obtained by translating eA1 , e

A
2 along the limit cycle,

eAj (t) = MA(t) eAj , j = 1, 2 . (89)

Analogously to a single oscillatory E-I module subject to a forcing current (Eqs. (43,44)),
we define

δIA(t) = x1(t) eA1 (t) + x2(t) eA2 (t) , (90)

BA(t) = b1(t) eA1 (t) + b2(t) eA2 (t) . (91)
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Substitution of these expressions in the differential equation (86) simply gives

dxj
dt

= bj(t) , j = 1, 2 . (92)

One readily obtains, for 0 ≤ t ≤ T ,

xj(t) =

∫ t

−∞
du bj(u) =

∫ t

0

dugAj (u) ·BA(u) +

+∞∑
n=1

µnj

∫ t

0

dugAj (u) ·BA(u− nT ) . (93)

We note that
〈gAj (u) ·BA(u)gAk (v) ·BA(v)〉 = bjk δ(u− v) , (94)

with

bjk = (1−2flr)
2

(
wEEg

A
j,E(u)

τE [I
(0)
E (u)]

+
wIEg

A
j,I(u)

τI [I
(0)
I (u)]

)(
wEEg

A
k,E(u)

τE [I
(0)
E (u)]

+
wIEg

A
k,I(u)

τI [I
(0)
I (u)]

)
ΦE [I

(0)
E (u)]

NE

+
w2
EIg

A
j,E(u) gAk,E(u)

τ2
E [I

(0)
E (u)]

ΦI [I
(0)
I (t)]

NI
(95)

The amplitude of the current fluctuations along the limit cycle is finally obtained, with
the help of Eqs. (90), (93), and (94), as

〈δIA,E(t)2〉 =
∑

j,k=1,2

eAj,E(t)eAk,E(t)

[∫ t

0

du bjk(u) +
µjµk

1− µjµk

∫ T

0

du bjk(u)

]
. (96)

Since eAj (T ) = µAj e
A
j , j = 1, 2, the obtained expression is periodic in time, as it should.

Because we are considering fluctuations around the stationary limit cycle to linear

order, the firing rates can be approximated by rj,E(t) = Φ′E [I
(0)
E (t)]δIj,E(t), j = 1, 2,

up to the stochastic contribution due to Poisson sampling. The amplitudes of the rate
fluctuations 〈δrE(t)2〉 = 〈[r1,E(t)− r2,E(t)]2〉/2 along the limit cycle, up to the direct
Poisson contribution, are thus directly obtained by multiplying the above expression

with φ′E [I
(0)
E (t)]2. Averaging over one oscillation period, we find

〈δrE(t)2〉T =
1

T

∫ T

0

dt
∑

j,k=1,2

φ′E [I
(0)
E (t)]2eAj,E(t)eAk,E(t)

×

[∫ t

0

du bjk(u) +
µjµk

1− µjµk

∫ T

0

du bjk(u)

]
. (97)

For larger coupling strengths, this result is found to be much more precise when compared
to numerical simulations than the expressions obtained in the weak-coupling limit,
Eq. (80) or respectively (82) when taking the periodicity of the limit cycle dynamics
into account, see Fig. 5. Note however that expression (97) is valid only for small
perturbations and fails to account for the limited rate correlations at vanishing coupling
due to the periodicity of the limit cycle dynamics, as done in Eq. (82).

In the weak-coupling regime (flr → 0), Eq. (97) gives back the simple expression (16)
obtained from the stochastic phase equation. This can be seen as follows. When flr → 0,
µA1 tends towards 1 (Eq. (77)), its value for a single module. Therefore, the r.h.s. of
Eq. (97) is dominated by the j = k = 1 contribution in the sum and more precisely by
its second term, the denominator of which vanishes. Namely, with the help of Eq. (77),
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when flr → 0 one obtains

〈δrE(t)2〉T '
1

T

∫ T

0

dt φ′E [I
(0)
E (t)]2

(eA1,E(t))2

4flrDEI
φ T

∫ T

0

du b11(u)

' 1

T

∫ T

0

dt φ′E [I
(0)
E (t)]2

(e1,E(t))2

4flrDEI
φ T

(
DI

NI
+ (1− 2flr)

2DE

NE

)
, (98)

where the last equality is obtained by comparing the definition (95) to the previous
expressions for DE and DI and noting that the vectors gAj and eA1 tend toward those
of the single module limit cycle, gj and e1, when flr → 0. Finally, in the limit of weak
coupling and weak noise where the phase is well-defined, the mean square difference of
excitatory firing rates between the two modules is related to their mean square phase
difference,

〈δrE(t)2〉T =
1

2
〈(φ1 − φ2)2〉

∫ T

0

dt

T

[
φ′E [I

(0)
E (t)]

dI
(0)
E

dt
(t)

]2

. (99)

(We used this relation before when deriving Eq. (80).) Comparison of Eq. (98) and
Eq. (99) gives back the expression (16) for the mean square phase difference when one
remembers that the tangent vector e1(t) is simply the velocity along the current limit
cycle.

Stability analysis of full synchronization for a chain of oscillatory E-I
modules

The fully synchronized oscillatory state In(t) = I(0)(t), n = 1, · · · , L, is also always an
exact solution for the dynamics of a chain of L E-I modules (Eqs. (17) and (18) or
(19) depending on the connectivity). Its stability can be assessed very similarly to the
previous case of two coupled modules.

We consider slightly perturbed evolutions for the L modules In(t) = I(0)(t) + δIn(t),
n = 1, · · · , L. The linear evolution of the perturbations δIn is found to be

dδIn
dt

=
∑

m=1,··· ,L
Lnm[I(0)(t)]δIm . (100)

Since the chain is invariant by translation, one can reduce this 2L-dimensional
evolution to the evolutions of L independent 2-dimensional systems. Namely, we write
the perturbations as

δIn(t) = exp(iqn)δĨq , n = 1, · · · , L , (101)

with L “wavevectors” q = 2πk/L, n = 0, · · · , L− 1. This gives, for each q, the evolution

dδĨq
dt

= Lq[I(0)(t)]δĨq (102)

with 2× 2 matrices Lq that we give below.
For E → E connectivity, the matrices Lnm read, for n = m,

LEnn[I(0)(t)] =


−1+wEEC(0) Φ′E [I

(0)
E (t)]−τ ′E [I

(0)
E (t)]I′

(0)
E (t)

τE [I
(0)
E (t)]

−wEI Φ′I [I
(0)
I (t)]

τE [I
(0)
E (t)]

wIE Φ′E [I
(0)
E (t)]

τI [I
(0)
I (t)]

− 1+τ ′I [I
(0)
I (t)]I′

(0)
I (t)

τI [I
(0)
I (t)]

 ,

(103)
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and for n 6= m,

LEnm[I(0)(t)] =

 wEEC(n−m) Φ′E [I
(0)
E (t)]

τE [I
(0)
E (t)]

0

0 0

 . (104)

The corresponding matrices LEq read

LEq [I(0)(t)] =


−1+wEEC̃λ(q) Φ′E [I

(0)
E (t)]−τ ′E [I

(0)
E (t)]I′

(0)
E (t)

τE [I
(0)
E (t)]

−wEI Φ′I [I
(0)
I (t)]

τE [I
(0)
E (t)]

wIE Φ′E [I
(0)
E (t)]

τI [I
(0)
I (t)]

− 1+τ ′I [I
(0)
I (t)]I′

(0)
I (t)

τI [I
(0)
I (t)]

 (105)

The matrix LEq is identical to the previous matrix LEA (Eqs. (69,71,72)) governing the
stability of two coupled modules with the replacement of (1 − 2flr) by the effective
coupling C̃λ(q),

C̃λ(q) =
∑

l=0,··· ,L−1

exp(iql)C(l) =
cosh(λ)− 1

cosh(λ)− cos(q)
, (106)

where the second equality specifically holds for the exponentially decreasing excitatory
interaction (20). The instability of full synchronization for two-coupled E-I modules for
flr < f∗lr translates into an instability of full synchronization in a chain of modules for

C̃λ(q) close enough to 1. Namely, spontaneous phase gradients appear in the chain of
E-I modules for |q| < q∗ with the threshold q∗ given by Eq. (22) in the main text (for
the coupling choice (20)).

For E → E, I connectivity, the matrix LEIq is similarly given by the previous matrix

LEIA (Eq. (73)) with (1− 2flr) replaced by C̃λ(q). Therefore in this case, the eigenvalues
of LEIq are of magnitude smaller than 1, perturbations of any wavelength tend to
vanish, and full synchronization of the chain modules is stable. The evolution of a long
wavelength mode can be directly transcribed from our previous results in the two-module
case (Eqs. (13) and (15) or Eq. (77)), using the correspondence between flr and C̃λ(q),

dδĨq
dt

= DEI
φ

[
C̃λ(q)− 1

]
δĨq(t) ' −

DEI
φ q2

2[cosh(λ)− 1]
δĨq(t) , (107)

where in the second approximate equality we used that q � 1. This provides the
relaxation rate of long-wavelength modes given in Eq. (23) of the main text.

Stochastic dynamics of the phases of oscillations along a chain of E-I
modules

We analyze the competition between synchronization and stochastic fluctuation in a
chain of E-I modules. We consider E → E, I connectivity (Eqs. (17,19)), for which the
oscillations of all modules are stably synchronized in the absence of stochastic fluctuations
of activity. We first consider the case when the variation of the phase of oscillation is
small. The dynamics of these long wavelength modes can be fully described analytically
and provide reference expressions. Shorter wavelength fluctuations are considered in the
next section.

Taking Eq. (17) as an example, we rewrite the long-range synaptic coupling as∑
m=1,··· ,L

C(n,m) rE,m = ΦE [IE,n(t)] +

∑
m=1,··· ,L

C(n,m)
(
{ΦE [IE,m(t)]− ΦE [IE,n(t)]}+

√
ΦE [IE,m(t)]

NE
ξE,m(t)

)
, (108)
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where we have made use of the expression (5) of the firing rate. The term between
large parenthesis on the r.h.s. of Eq. (108) can be treated perturbatively when one
assumes that the activities of nearby modules are close, and that the noise is not too
strong. As before, we suppose that a good starting approximation for the currents
In(t) = (IE,n(t), II,n(t)) which describe the dynamics of the nth module is provided

by I(0)(t + φn) = (I
(0)
E (t + φn), I

(0)
I (t + φn)), namely the vector of currents on the

deterministic limit cycle at a particular phase φn. Linearization of the chain dynamics
around this approximation gives, similarly to Eqs. (38,39),

dδIn(t+ φn)

dt
= L[I(0)(t+φn)] · δIn(t+φn) +Fforcn (t+φn)− dI(0)(t+ φn)

dφn

dφn
dt

(109)

where the matrix L is given by Eq. (41). The forcing of the nth module Fforcn can be
decomposed as a sum of inputs coming from the mean activities, I(0)(t+ φm), of nearby
modules and of fluctuations of their activities,

Fforcn = Ff,meann + Ff,stochn . (110)

With the help of Eq. (108), one obtains

Ff,meann =

( wEE
τE [I

(0)
E (t+φn)]
wIE

τI [I
(0)
I (t+φn)]

)
L∑

m=1

C(n,m)
{

ΦE [I
(0
E (t+ φm)]− ΦE [I0

E(t+ φn)]
}

'

( wEE
τE [I

(0)
E (t+φn)]
wIE

τI [I
(0)
I (t+φn)]

)
L∑

m=1

C(n,m)(φm − φn)Φ′E [I
(0)
E (t+ φn)]

dI
(0)
E (t+ φn)

dt

(111)

and

Ff,stochn =

( wEE
τE [I

(0)
E (t+φn)]
wIE

τI [I
(0)
I (t+φn)]

)
L∑

m=1

C(n,m)

√
ΦE [I

(0)
E (t+ φm)]

NE
ξE,m(t)

'

( wEE
τE [I

(0)
E (t+φn)]
wIE

τI [I
(0)
I (t+φn)]

)
L∑

m=1

C(n,m)

√
ΦE [I

(0)
E (t+ φn)]

NE
ξE,m(t) . (112)

In Eq. (111), we have approximated in a linear way the difference of activities between
the modules n and m. This supposes that the phase difference between the two modules
stays close when their distance is small enough for C(n,m) not to be negligible. (Note
that this approximation simplifies the phase equation below but it is not required;
without it, the linear phase difference between module n and m would be replaced by
a nontrivial function of the phase difference, as in Eq. (60) for the two-module case.)
In Eq. (112), we have neglected the phase difference between the two modules in the
amplitudes of the stochastic terms since these terms are already treated perturbatively.

Substitution of the forcing term (110) along with the expressions (111,112) in Eq. (50)
provides coupled equations for the oscillation phases along the chain,

dφn
dt

= DEI
φ

∑
m=1,··· ,L

C(n,m)[φm(t)− φn(t)] + ηn(t) , (113)

with the constant DEI
φ given by Eq. (63). The value of DEI

φ for the reference parameters
is provided in Table 1. The stochastic terms ηn in Eq. (113) are Gaussian and are fully
characterized by their correlation functions

〈ηn(t)ηm(t′)〉 = δ(t− t′)
[
DI

NI
δn,m +

DE

NE
S(n−m)

]
(114)
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with

S(n−m) =
∑

l=1,··· ,L

C(n, l)C(m, l)

= A2
λ exp(−λ|n−m|) [coth(λ) + |n−m|] , (115)

where the second equality in Eq. (115) holds for the exponentially decreasing coupling
(20) and where, for simplicity, the expression has been written for a long chain (i.e.,
neglecting exp(−Lλ) for L� 1/λ). Eqs. (53,54) give the expressions of the constants DE

and DI that quantify the phase diffusion of an oscillatory E-I module due to stochastic
fluctuations.

Characterization of the E-I module chain stochastic activity profile

Long-wavelength modes

As described by Eq. (113), the phases of the different oscillating E-I modules of the
spatially extended network are stochastic quantities. Since Eq. (113) is linear and the
stochastic terms are Gaussian, the phases also form a Gaussian field that can be fully
characterized by its correlation functions. Since the chain is translation invariant, these
are most easily computed by writing the phases φn and the stochastic terms ηn in Fourier
space,

φn(t) =
1√
L

∑
k=0,··· ,L−1

φ̃q(k)(t) exp(iq(k)n) , (116)

ηn(t) =
1√
L

∑
k=0,··· ,L−1

η̃q(k)(t) exp(iq(k)n) , (117)

where the L wavevectors are {q(k) = 2πk/L, k = 0, · · · , L − 1}. The stochastic terms
η̃q(k) are Gaussian as linear sums of the ηn(t) and their correlations are obtained from
Eqs. (114, 115) as

〈η̃q(k)(t)η̃q(l)(t′)〉 = δ(t− t′) δk+l≡0 (modL)

[
DI

NI
+
DE

NE
C̃2
λ(q(k)) ,

]
(118)

where we have made use of the identity∑
n

exp(iqn)S(n) = C̃2
λ(q) . (119)

The Fourier transform of the coupling function, C̃λ(q), is given in Eq. (106). One can
note that its normalization implies that C̃λ(q)→ 1 in the long-wavelength limit q → 0.

Replacement of expressions (116) and (117) into Eq. (113) gives

dφ̃q(k)

dt
= DEI

φ

[
C̃λ(q(k))− 1

]
φ̃q(k)(t) + η̃q(k)(t) . (120)

Note that the deterministic part of Eq. (120) exactly corresponds to our previous Eq. (107)
for the relaxation of the long-wavelength modes.

For k 6= 0, the above equation can easily be integrated to obtain φ̃q(k)(t),

φ̃q(k)(t) =

∫ t

−∞
dt′ exp

{
DEI
φ

[
C̃λ(q(k))− 1

]
(t− t′)

}
η̃q(k)(t′) . (121)
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Therefore, the mean square amplitude for the E-I module oscillation phases for a
modulation of wavevector q(k) 6= 0 is given by

〈|φ̃q(k)(t)|2〉 =
DI/NI +DE/NE C̃

2
λ(q(k))

2DEI
φ [1− C̃λ(q(k))]

, (122)

where we have used the expression (118) for the noise correlation. Eq. (122) is the
analog for the chain of modules of Eq. (16) in the two-module case. It is relatively
straightforward to transform the 〈|φ̃q(k)(t)|2〉 into an expression for the amplitudes of the
firing rate fluctuations 〈|r̃q(k)(t)|2〉 for k 6= 0, along the lines of the previous calculations.
Namely, we find

〈|r̃q(k)(t)|2〉T =
1

L

∑
n,m

exp
[
iq(k)(m− n)

]
〈rn,E(t)rm,E(t)〉T

' 1

L

L∑
n,m=1

exp
[
iq(k)(m− n)

] +∞∑
l=−∞

|r̃l|2 exp

(
−2π2l2

T
〈[φn(t)− φm(t)]2〉

)
(123)

with

〈[φn − φm]2〉 = −2〈φnφm〉 = −2

L−1∑
j=0

exp
[
iq(j)(m− n)

]
〈|φ̃q(j)(t)|2〉 . (124)

Expression (123) can be expected to hold at large wavelengths, or small q, while it will
fail at shorter wavelengths where the effective coupling is stronger. It is shown (including

an additional contribution 〈r(0)
E 〉T /(NE∆t) due to Poisson sampling of spikes) alongside

a more precise estimate valid for all couplings (see below) and FAT rate model results in
Fig. 7I.

When q → 0, the coupling strength vanishes. Eq. (122) shows that the mean square
amplitudes of the long-wavelength modes then diverge as q−2,

〈|φ̃q(t)|2〉 ∼
[
DI

NI
+
DE

NE

]
cosh(λ)− 1

DEI
φ q2

, q → 0 . (125)

In this limit, the phase equation (121) reduces to the classical Edwards-Wilkinson
equation [69],

∂tφ = Dlw ∂xxφ+ η(x, t) , 〈η(x, t)η(x′, t′)〉 = DN δ(x− x′)δ(t− t′) , (126)

where DN = DI/NI + DE/NE is the local module noise amplitude (Eq. (9)) and the
long-wavelength diffusion constant Dlw is given by

Dlw =
DEI
φ

2[cosh(λ)− 1]
. (127)

Fluctuations of arbitrary wavelengths

Eqs. (113) and (122) very explicitly quantify the dynamics of long-wavelength modes
and their average amplitude. Their validity depends however on the fact that for q → 0,
one eigenvalue of the matrix LEIq is very close to 1 and the corresponding (phase)
mode dominates the fluctuation of activity at the corresponding wavelength 2π/q. For
modulations of smaller wavelengths, the modules are more strongly coupled. The two
modes of LEIq significantly contribute to the fluctuation of activity and Eq. (122) looses
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its accuracy. In this case, a more precise estimate of the fluctuation amplitude is obtained,
for small noise, by linearizing around the fully synchronized state. This extends to a
chain of E-I modules our previous analysis for two coupled E-I modules (Eqs. (83)-(96)).

As in the above analysis of the stability of the synchronized state for the chain, we
consider perturbed evolutions for the L modules around the fully synchronized states
In(t) = I(0)(t) + δIn(t), n = 1, · · · , L. The linear evolution of the perturbations δIn is
found to be

dδIn
dt

=
∑

m=1,··· ,L
LEInm[I(0)(t)]δIm + Bn (128)

with the stochastic terms Bn given by,

Bn =


1

τE [I
(0)
E (t)]

[
wEE

√
ΦE [I

(0)
E (t)]

NE

∑
m C(n−m) ξE,m(t)− wEI

√
ΦI [I

(0)
I (t)]

NI
ξI,n(t)

]
1

τI [I
(0)
I (t)]

[
wIE

√
ΦE [I

(0)
E (t)]

NE

∑
m C(n−m) ξE,m(t)

]


(129)
As above (Eq. (101),(117)), translation invariance allows us to simplify the coupled
equations (128) by introducing the Fourier representations

δIn(t) =
1√
L

∑
k=0,··· ,L−1

δĨq(k)(t) exp(iq(k)n) , (130)

ξν,n(t) =
1√
L

∑
k=0,··· ,L−1

ξ̃ν,q(k)(t) exp(iq(k)n) , ν = E, I . (131)

The noise Fourier components obey,

〈ξ̃ν,q(k)(t)ξ̃ν′,q(l)(t′)〉 = δ(t− t′) δk+l≡0 (modL)δν,ν′ (132)

Replacement of Eqs. (130,131) in Eq. (129) gives decoupled dynamics for each Fourier
mode of the currents δĨq(k)(t), generalizing Eq. (102) to account for stochasticity,

δĨq(k)

dt
= LEIq(k) [I

(0)(t)]δĨq(k) + δB̃q(k)(t) . (133)

The stochastic terms δB̃q(k) are the Fourier components of the Bn (Eq. (129)),

δB̃q(k) =


1

τE [I
(0)
E (t)]

[
wEE

√
ΦE [I

(0)
E (t)]

NE
C̃λ(q(k)) ξ̃E,q(k)(t)− wEI

√
ΦI [I

(0)
I (t)]

NI
ξ̃I,q(k)(t)

]
1

τI [I
(0)
I (t)]

[
wIE

√
ΦE [I

(0)
E (t)]

NE
C̃λ(q(k)) ξ̃E,q(k)(t)

]
 .

(134)
Eq. (133) and (134) generalize to arbitrary Fourier modes the previous Eq.(86) and (87)
for the antisymmetric mode in the two-module case with the with the already-noted
replacement of (1− 2flr) by the Fourier transform C̃λ(q) (Eq. (106)). The amplitudes of
the Fourier mode modulations thus read, similarly to Eqs. (95,96),

〈|δĨE,q(k)(t)|2〉 =
∑
j,l=1,2

eq
(k)

j,E (t)eq
(k)

l,E (t)

[∫ t

0

du bjl(u) +
µjµl

1− µjµl

∫ T

0

du bjl(u)

]
, (135)

where the vectors eqj(t) are defined for the matrices LEIq (t) as the vectors eAj (t) for the

matrix LEIA (t).
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The amplitudes of the rate fluctuations are again obtained by multiplying the

expression above by Φ′E [I
(0)
E (t)]2, and averaged over the complete limit cycle we find

〈|r̃E,q(k)(t)|2〉T =
1

T

∫ T

0

dt

{ ∑
j,l=1,2

Φ′E [I
(0)
E (t)]2eq

(k)

j,E (t)eq
(k)

l,E (t)×

[∫ t

0

du bjl(u) +
µjµl

1− µjµl

∫ T

0

du bjl(u)

]}
+
〈r(0)
E 〉T

NE∆T
. (136)

Here, we explicitly added the contribution that arises due to Poissonian sampling of the
spiking dynamics within bins of size ∆T . The above result is compared to the stochastic
FAT rate model in Fig. 7I.
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Supplementary Figure 1

Fig S1. The FAT rate model for EIF neurons. (A) The f-I curve Φσ(I) for the EIF
neurons used in the rate-model formulation (numerically evaluated following [71]). (B) The
fitted adaptive timescale τ (FAT )(I) determined by fitting the linear firing-rate response and
used throughout the manuscript (thick blue line). For comparison, we also show the adaptive
timescale proposed by Ostojic and Brunel (OB) [48] (thin orange line). (C) Examples of
the fit of the analytically determined firing-rate response with the Fourier transformation of
an exponential kernel in the time domain (see Methods). (D) Dynamics of a population of
(uncoupled) EIF neurons and the two adaptive rate models upon injection of a sinusoidal current
I1 sin(2πft) for f = 17 Hz and different values of I1. (E,F) Correlation between the network
activity and the two adaptive rate models (FAT, thick blue; OB, thin orange) as a function of
the amplitude I1 of the injected current for a fixed frequency f = 17 Hz (E), and as a function
of frequency f for a fixed amplitude I1 = 3 mV (F).
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Supplementary Figure 2

Fig S2. Oscillatory E-I module dynamics for reference parameters B and C. (A,B)
The deterministic limit cycle dynamics for a single E-I module described by the FAT rate model
with synaptic strengths corresponding to reference case B (see Fig. 1A) is shown together with
spiking network simulations with N = 106. The synaptic strengths are given bywEE = 1.6 mVs,
wIE = 1.6 mVs, and wEI = 0.8 mVs. (C) A comparison of the stochastic FAT rate model with
spiking network simulations with N = 104 for the same parameters. (D-E) Analogous plots for
the reference case C, with wEE = 1.76 mVs, wIE = 3.2 mVs, and wEI = 0.4 mVs.
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Supplementary Figure 3

Fig S3. Dynamical regimes of two coupled E-I modules for reference parameters B
and C. The analog of Fig. 2B for the two other reference parameters shown on Fig. 1A. The phase
diagrams for case B (wEE = 1.6 mVs, wIEwEI = 1.28 mV2s2) and case C (wEE = 1.76 mVs,
wIEwEI = 1.28 mV2s2) are shown on panels (A) and (B), respectively.
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Supplementary Figure 4

Fig S4. Average phase gradients for a chain of E-I modules. The probability distribu-
tion of extended phase gradients ∇φx that exceed the standard deviation of locally contributing
phase differences (see Methods), for different values of λ and N , for E → E connectivity (A)
and E → E, I connectivity (B).
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Supplementary Figure 5

Fig S5. Phase gradients in a chain of E-I modules with decreased long-range
excitation. (A,B) Simulation of the stochastic rate model (FAT) for a chain with E → E, I
connectivity, a space constant λ = 0.33, and network size N = 104. In contrast to Fig. 7D,E, the
contribution of the long-range connectivity to the total recurrent excitatory drive is lowered by a
factor 2 at the expense of purely local recurrent excitation. (A) Instantaneous phase as obtained
from the Hilbert transform of bandpass-filtered excitatory activity, where the (unfiltered) rates
are shown in (B). (C,D) Histograms of the local phase differences for different values of λ
and N for E → E connectivity (C) and E → E, I connectivity (D). (E,F) Histograms of the
extended phase gradients ∇φ. The averages of the distributions shown in (E,F) are plotted in
(G), and are the analog of Fig. 7I for a diminished contribution (by a factor of 2) of long-range
connectivity to the total recurrent excitatory drive.

55


