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Ion Channels Hot Paper

A Voltage-Responsive Synthetic Cl�-Channel Regulated by pH
Shao-Ping Zheng, Ji-Jun Jiang, Arie van der Lee, and Mihail Barboiu*

Abstract: Transmembrane protein channels are an important
inspiration for the design of artificial ion channels. Their
dipolar structure helps overcome the high energy barrier to
selectively translocate water and ions sharing one pathway,
across the cell membrane. Herein, we report that the amino-
imidazole (Imu) amphiphiles self-assemble via multiple H-
bonding to form stable artificial Cl�-channels within lipid
bilayers. The alignment of water/Cl� wires influences the
conduction of ions, envisioned to diffuse along the hydrophilic
pathways; at acidic pH, Cl�/H+ symport conducts along
a partly protonated channel, while at basic pH, higher Cl�/
OH� antiport translocate through a neutral channel config-
uration, which can be greatly activated by applying strong
electric field. This voltage/pH regulated channel system
represents an unexplored alternative for ion-pumping along
artificial ion-channels, parallel to that of biology. &&Abstract
was shortened to fit within allotted space.&&

Transmembrane protein channels[1–4] and carriers[5] facilitate
the ion transport across the cell membrane maintaining most
of the vital functions.[6–10] Any defects of these systems would
cause specific diseases related to disorders of ion flux,
clinically called channelopathies.[11–15] For instance, cystic
fibrosis (CF) is associated with defective Cl� conductance
along CFTR channel due to unexpected mutations.[16,17]

Synthetic ion transporters have greatly emerged in recent
decades, as novel treatment approaches to replace the
deficient proteins with structurally simpler compounds to
effectively restore the transport biofunction.[18–21] Inspired by
prodigiosin, a natural H+/Cl� carrier with potent anticancer
activity,[22–25] studies toward active synthetic transporters open
up new avenues for the development of antitumor agents.[26–29]

Compared with extensively documented Cl�-carriers/iono-
phores that translocate themselves across membrane,[29–34]

examples of synthetic Cl�-channels[35–40] providing hydrophilic
interiors for successive ion hoping along selective conducting
pathway, remain rare.

Natural channels present frequent open-closed transi-
tions,[41] usually relying on external triggers such as volt-
age,[42–44] light,[45,46] temperature,[47,48] redox[49] or molecular[50]

agents, to generate action potential as signal transduction.
CLIC (Intracellular Chloride Channel) protein family found
in human nuclear membranes is a class of voltage-sensitive
Cl�-channel which widely performs in transepithelial ion
absorption and secretion in the kidney.[51] Among this family,
CLIC1 exists in two forms into lipid bilayers, either as soluble
monomers,[52] or as an active Cl� channel, built through a pH-
dependent state transition from soluble CLIC1.[53] Determi-
nation of CLIC1 structure in the membrane[54,55] confirms
a concentration-dependent oligomerization event, resulting
in the formation of a voltage-responsive Cl� channel. How-
ever, few examples of voltage-responsive synthetic channels
are reported in the literature.[56–58]

Herein, we report a series of amino-imidazole (Imu)
amphiphiles that form self-assembled Cl�/water channels in
the lipid bilayers. Similar to natural protein CLIC1�s,[51–55] two
different pH-dependent self-assembled channel configura-
tions are found. Moreover, at high basic pH, Cl� channel can
be greatly activated, simultaneously resulting in a voltage-
responsive channel. The formation of ion channels was
evidenced by X-ray crystal structures of Imu-2 and Imu3-
HCl, as well as planar lipid bilayer assays showing step-like
conductance profile. These columnar aggregates different
from other stimulus-activated channels[59–66] provide excellent
reasons to be considered as dually pH/voltage-triggered
biomimetic Cl� channel with high performance in bilayer
membranes. Interestingly, the channels show pH and voltage-
dual responsive properties, with ion transport activated under
low and high pH (with no activity at intermediate) and the
application of a high membrane potential. The dual-respon-
siveness is an important merit of the work, which remains as
a previously unreported behavior and would surely inspire
future research in this area.

The reaction between substituted amino-imidazoles and
corresponding alkyl-isocyanates readily afforded compounds
Imu1–3 (Figure 1). It�s noted that electrophilic isocyanate
group selectively reacted with N2-imidazole ring, which is
more nucleophilic than -NH2 group. The 4-substitution of
imidazole with different electron-withdrawing side groups
results in the formation of more acidic C1-H groups
(imidazole ring) as potential anion binding sites.

Single-crystals of Imu2 and Imu3H+·Cl� were obtained by
slow evaporation of water/methanol or ethanol solution at
room temperature.[67] As shown in Figure 1, the single-crystal
packings reveal that neutral Imu2 and protonated Imu3H+·Cl
undergo self-assembly via extended H-bonding networks and
form pores with water/anion wires arrays found inside.

Analysis of Imu2 crystal packing shows heteromeric H-
bonding associations of interdigitated amino-imidazole ter-
minal heads, interacting on one side with their neighbors via
four -CO···H2N- (dN-H = 3.00 �) H-bonds between Imu2 head
units, which presents an unusual tetrahedral geometry (Fig-
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ure 1a). In the crystal, zipper-like layers are formed, further
interconnected via double -NIm···NHCO- H-bonds (dN-H =

3.00 �) on the other side of Imu2 heads. The successive H-
bonding sequences strongly enforce the channel-type winding
of Imu2 strands allowing considerable overlap between the
hydrophobic alkyl chains of the monomers. Therefore, the
intermolecular hydrogen bonding affords a preorganized
channel-like structure with two unique lumens in turn aligned.
The robustness of the continuous alignment of Imu2 results
from the compatibility and the simultaneous effect of H-
bonding and hydrophobic interaction, which may be associ-
ated with the stable oligomers observed in membranes.

The single-crystal packing of protonated Imu3H+·Cl� ,
reveals that one third of the molecules are protonated. They
tend to assemble in a “head-to-head” conformation via
-CO···H2N and -CO···NIm H-bonds (dN-H = 3.00 �) between
the Imu3 head units on one side, while double H-bonds via
-NIm···NHCO- motifs (dN-H = 3.00 �) are formed on the other
side. Alternative H-bonding dimers form successive layers in
tight contact with the neighboring ones. This assembled
pattern encapsulates water/chloride-wires filling the interior
void of about 5 � in diameter (Figure 1b–d). The inner pore

superstructure is asymmetrically surrounding the Cl� anions
via multiple hydrogen bonding interactions: C�H···Cl� (dC-H-

Cl- = 2.6 �), -CONH···Cl� (dC-H-Cl- = 2.6 �) and -CO-NH2···Cl�

(dC-H-Cl- = 2.8 �), while the remaining space is closed by
vicinal alkyl chains. Moreover, bridging water molecules are
present in this pocket as a result of strong anion-dipole
interaction from O2H—Cl (� 2.3 �).

The alignment of water molecule-anion within single wire
through channel may act as driving force for ion permeatio-
n.[40a, 58b] The water-anion wires within channels anticipate, to
some extent, the Cl� transport activity responsive to outer pH
change in the following transport experiments. There are
probably two different water/anion binding configurations
corresponding to acidic [H2O·Cl�] and basic [OH�·H2O·Cl�]
pH conditions. Our findings may be related to imagination
that complex protein anion-channels can be bio-mimicked
using simpler compounds displaying constitutional functions
like the natural ones.

The ion transport activities of Imu1–3 were fully inves-
tigated across EYPC-LUVs (egg yolk phosphatidylcholine
large unilamellar vesicles)[68] loaded with a pH-sensitive dye
HPTS (8-hydroxypyrene-1,3,6-trisulfonate) and NaCl
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Figure 1. Chemical structures of Imu1–3 ; a) X-ray single-crystal packing in stick representation of Imu2 ; b) X-ray single-crystal packing in stick
representation of Imu3H+·Cl� ; c) top view and d) lateral view of the channels revealing the formation of the anion–water wires via synergetic N�H
and C�H hydrogen bonding. Anions are presented in ball model.
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(100 mM) and suspended in buffers (100 mM, MCl, M+ = Li+,
Na+, K+, Rb+, Cs+). While varying cation in the extravesicular
buffer or introducing FCCP (carbonyl cyanide-4-(trifluoro-
methoxy)-phenylhydrazone) as H+ carrier didn�t make any
differences (Figure S6)

A series of assays: HPTS (10 mM)/NaCl (100 mM, pH 6.4)
containing LUVs were suspended in the extravesicular buffer
solution (100 mM NaCl) with different pH values: 7.4, 8.4, 9.4,
10.4, 11.4), showed that the fluorescence ratio intensity
gradually improved, especially with a significant increase
from pH 8.4 to pH 11.4 implying a new translocation mech-
anism through assembled channels Imu1, Imu1a and Imu2,
respectively (Figure 2 c,d&&Figure 2a,b?&&, S8). Imu3
hardly showed transport activity irrespective of pH values
(Figure S8e), and control experiments of LUVs loaded with
Na2SO4 (50 mM) instead of NaCl provided low transport
activities of Imu channels (Figure S7). Interestingly, the Cl�

transport activities-related fluorescence ratio changes of
Imu1 (Figure S10b), Imu1a (Figure S8c) and Imu2 (Fig-
ure S8d), dropped out when outer pH was changed from 7.4
to 8.4, then increased back to the maximum at pH 11.4.
Accordingly, the Cl� transport is highly dependent on pH: a)
at lower pH values, Imu compounds are protonated under
weakly acidic condition, which then induces a Cl�/H+ symport
along the assembled channel, and the proton transport is

activated via inner water wires [H2O·Cl�]; b) increasing pH to
8.4 gradually neutralizes the protonated Imu channels and
consequently weakens transport activity; c) at higher pH 8.4–
11.4, the increased OH� concentration introduces another
new Cl�/OH� antiport mechanism favored by translocation of
OH-anions [�OH·H2O·Cl�] within channels, greatly improv-
ing Cl� transport efficiency.

Pseudo-first-order initial transport rate constants are
strongly dependent on DpH (pH difference between intra-
and extravesicular media) giving a transport rate sequence
Imu3 ! Imu1 < Imu1a < Imu2 with maximum transport rate
values at DpH = 5 or 6, quite in accordance with their
fluorescence ratio change at the same DpH (Figures S8, S10
and Table S1). Meanwhile, Cl� flow speed in Imu2-based
channel was shown much better than that in Imu1a-based
channel with pH increase, though Imu1a has higher transport
activity (EC50), also suggesting the cooperative translocation
of water wires within Imu2-assembled channel is evenly
distributed along the whole hopping path, rendering a manner
of transport rate whose steady increase only depends on OH�

concentration.
The conductances of Imu1a or Imu2 channels were

assessed by the bilayer clamp technique in 1 M KCl solution
as electrolyte with different pH values (4, 7, 8, 11). Thereby
after addition of compound solution, distinct channel opening
and closing states confirmed the formation of Imu1a- or
Imu2- based channel (Figure 3a–h). Imu2�s multi-conduc-
tance channel is also reminiscent of the same channel
characteristic of CLIC1 channel.[69]

Varied conductance level, higher channel opening prob-
ability, longer retention time and better channel shape were
more recorded at high pH 8 and 11 (Figure 3c,d,g,h), while at
pH 4 and 7 (Figure 3a,b,e,f) the lower level dominated at the
expense of the closed baseline state. I–V plots at different pH
values (Figure 3 i,j) more obviously demonstrated a significant
increase of transmembrane ionic current by changing pH
from 4 to 11. The magnitude of the smallest openings
observed at lower pH for protonated channel configuration
is inferior to the regular activities of electroneutral channel
configuration at basic pH. For both compounds, I–V plots
showed a linear variation (i.e., ohmic behavior) at low
potential, while at higher potential they became asymmetric
and seemed greatly responsive toward either negative or
positive voltage applied, especially at basic pH, leading us to
speculate Imu1a- and Imu2-built channels are simultaneously
triggered by high voltage. This hypothesis is confirmed by the
perfect fitting of current versus voltage curves with 2-
parameter exponential function (Figure S13, S14) which
represents a kind of sharp current increase with changing
voltage behavior. Usually ion transport property of a nano-
channel relies on channel shape, channel surface charge
distribution, and the wettability of the channel.[70] Multiple
conducting species illustrate “supramolecular polymorphism”
commonly observed with synthetic channel-forming com-
pounds.[71] We therefore equate the lower Cl�/H+ symport
conducting state with a fully assembled channel behaving
strong electrostatic interaction and the higher Cl�/OH�

antiport state with the same channel but in a form of single
hydrated anion species. Their orderly flow toward one
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Figure 2. a) Normalized fluorescence intensity versus outer pH for
Imu1a and Imu2, (insets) proposed transport mechanisms;
b) pseudo-first-order initial transport rate constants for Imu1–3 versus
DpH between intra- and extravesicular media.
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direction creates a dynamic charge distribution along the
channel, which can certainly be stimulated if a strong electric
field is applied.

In summary, we�ve designed an original class of synthetic
self-assembled chloride channels Imu1–3 providing remark-
able combination of functions very close to natural ones (i.e.
CLIC1): synergetic pH regulation and voltage sensitivity.
Their signal sensitivity is related to the alignment of chloride-
water single file along channel acting as driving force for
permeating H2O-mediated Cl� transport and responding to
pH change. At acidic pH, Cl�/H+ symport conducts along
a partly protonated channel mainly driven by hydrogen
bonding interactions. When switched to basic pH, higher Cl�/
OH� antiport hydrated anions are transported through
a neutral channel configuration, which can be greatly
activated by applying strong electric field. Conversely, the
molecular-scale hydrodynamics of water and anions within
channels, could also provide inspirations for the systematic

rationalization of active stimuli responsive channels. Work is
in progress to pursue such studies.
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Figure 3. Channel conductance of Imu1a-based channel at pH a) 4, b) 7, c) 8, d) 11 and of Imu2-based channel at pH e) 4, f) 7, g) 8, h) 11; I–V
plots for i) Imu1a and j) Imu2 recorded in KCl solution at pH 4, 7, 8 and 11, respectively.
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