
HAL Id: hal-03028848
https://hal.science/hal-03028848v2

Preprint submitted on 15 Jun 2021 (v2), last revised 25 Jun 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robustness of the Data-Driven Identification algorithm
with incomplete input data

Marie Dalémat, Michel Coret, Adrien Leygue, Erwan Verron

To cite this version:
Marie Dalémat, Michel Coret, Adrien Leygue, Erwan Verron. Robustness of the Data-Driven Identi-
fication algorithm with incomplete input data. 2021. �hal-03028848v2�

https://hal.science/hal-03028848v2
https://hal.archives-ouvertes.fr


Robustness of the Data-Driven Identification
algorithm with incomplete input data

Marie Dalémat†, Michel Coret†, Adrien Leygue*†, and Erwan Verron†

†Institut de Recherche en Génie Civil et Mécanique (GeM), UMR
CNRS 6183, École Centrale de Nantes, France

June 15, 2021

Abstract

Identifying the mechanical response of a material without presupposing any
constitutive equation is possible thanks to the Data-Driven Identification algorithm
developed by Leygue et. al. (Data-based derivation of material response. Com-
puter Methods in Applied Mechanics and Engineering 331, 184–196 (2018)). This
algorithm allows to measure stresses from displacement fields and forces applied
to a given structure; the peculiarity of the technique is the absence of underly-
ing constitutive equation. In the case of real experiments, the algorithm has been
successfully applied in Dalémat et. al. (Measuring stress field without constitu-
tive equation. Mechanics of Materials 136, 103087 (2019)), where a perforated
elastomer sheet is deformed under large strain. Displacements are gathered with
Digital Image Correlation and net forces with a load cell. However, those real data
are incomplete for two reasons: some displacement values (close to the edges or
in a noise-affected area) are missing and the force information is incomplete with
respect to the original DDI algorithm requirements. The present study proves that
with appropriate data handling, stress fields can be identified in a robust manner.
The solution relies on recovering those missing data smartly enough, so that no
assumption, except that the application of the balance of linear momentum has
to be made. The influence of input parameters of the method is also discussed.
The overall study is conducted on synthetic data: perfect and incomplete data are
used to prove robustness of the proposed solutions. Therefore, the paper can be
considered as a practical guide for implementing the DDI method.

Keywords: Data Driven Identification, Digital Image Correlation, Incomplete data,
Stress measurement
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1 Introduction
Constitutive equations are historically essential in Mechanics of Materials to perform
analytical or numerical calculations: they close the problem when combined with me-
chanical equilibrium. In practice, the identification procedure consists in choosing
or deriving a constitutive model that describes well the material response. Then, the5

calibration of the model parameters has to be done ideally considering multiple defor-
mation states (uniaxial tension, pure shear, biaxial tension...), which renders difficult
the experimental process. These steps are often done iteratively to end up with a robust
and well-calibrated constitutive model. With the evolution of full-field measurement
techniques such as Digital Image Correlation [1], identification methods are constantly10

being improved, specifically with non-standards tests. For example, [2] and [3] gave
an overview of identification techniques such as the Virtual Fields Method or the Finite
Element Model Updating Method. Concomitantly, with the emergence of Data Sci-
ences, other methods are proposed: for example, [4] and [5] trained a neural network
for identification purposes.15

Here, a new path is chosen: identifying the material response with no underlying
constitutive equation. Indeed, it is possible to use the previous techniques (full-field
methods and Data Sciences) to create rich databases that can be used for identification
but also for simulation. It overcomes the difficulties in getting a robust identification of
the model parameters. This has been introduced in [6] where the constitutive equations20

is replaced by a discrete database of strain-stress couples. The corresponding approach
is referred to as Data-Driven Computational Mechanics (DDCM). Slightly different
formulations of this solver are proposed in [7], [8], [9], [10] and several extensions are
discussed in [11], [12], [13].

Concerning material characterization, non-parametric approaches are proposed by25

[14, 15] in which the strain energy function of a hyperleastic material is not presup-
posed but expresssed with splines. In [16] splines are further used to build a structure-
based non-parametric constitutive manifold of the material,using experimental simple
tests which explicitly provide the stress values. Furthermore, it is possible to account
for the thermodynamic consistency of the data-driven procedure through well estab-30

lished formalism as proposed by Gonzalez et al. [17].
For more complex testing conditions, the stress field is heterogeneous and cannot

be obtained in a straightforward manner. In [18], a decomposition of the strain fields
obtained with Digital Image Correlation is made in order to compute the stress field
without constitutive equation. In [19], experimental dynamic measurements are used35

in the balance equations so that stress fields can be directly computed. Additionally,
several manifold learning approaches have been proposed and validated on synthetic
data to identify a material constitutive manifold, see for example [20, 21].

In the present paper, a specific algorithm called Data Driven Identification (DDI) is
considered; it has been recently proposed in [22]. It allows to identify heterogeneous40

stress fields from measured displacement fields and external forces, without constitu-
tive equation. It relies on the availability of heterogeneous and rich data which can
be smartly clustered so that a strain-stress database is built without constitutive equa-
tions. It has been validated with synthetic data [22] and its application to real data has
been recently assessed [23]. It is an innovative tool to measure stress fields, from DIC45
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gathered displacement fields and net forces measured by load cells.
The difficulty in applying the DDI algorithm to real data lies mainly in the incom-

pleteness and noisiness of data in some areas of the samples. Indeed, unlike a synthetic
problem where everything is perfectly known, neither all forces nor all displacements
can be perfectly measured; these difficulties are overcome by making preprocessing50

choices (both on the two intrinsic parameters of the algorithm and on the experimen-
tal input data). The so-called preprocessing step transforms raw input data to well-
conditioned input data with consistent parameters for the DDI algorithm. The present
work demonstrates the robustness of the DDI algorithm when applied to incomplete
data: several possible preprocessing choices are compared so that the proper one can55

be applied with confidence. It is to note that although the discussion is here illustrated
on a single non-linear hyperelastic case study, it stems from the experience accumu-
lated from applying DDI to many cases involving synthetic and real data, linear and
non-linear material behaviors [22, 23, 24].

The paper is organized as follow:60

• A brief recall of the algorithm is proposed in order to highlight its optimal pa-
rameters and input data;

• Then, a case study is built to study several preprocessing choices. Synthetic data
are considered for which the reference stress response is known. These synthetic
data are modified to simulate incomplete data representative of reality;65

• Then, a parametric study is conducted to find the proper preprocessing choice. It
focuses on:

(i) the intrinsic parameters (of the algorithm) when using the DDI with per-
fect data;

(ii) the preprocessing step for incomplete input data (missing displacements70

and forces);

• Finally, the proper preprocessing choice is summarized so that the DDI method
can be applied with confidence on real (i.e. partial and noisy) data. It gives the
reader the possibility to implement him/herself the DDI method for real data.

2 Recall of the Data Driven Identification algorithm75

This section is recalling the DDI algorithm so that its optimal parameters and input
data are highlighted. The Data Driven Identification (DDI) [22] corresponds to the in-
verse method of Data Driven Computational Mechanics (DDCM) derived in [6]. This
method identifies the complete response of a structure without using constitutive equa-
tion, from a large database.80

2.1 Input data
We consider a 2D-meshed geometry, deformed over NX increments indexed by X . For
this geometry, the following data are the inputs of the algorithm and are considered to
be available:
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(I-1) the nodal displacements uuuX
j , j being the node number. The strain derived from

the displacements is the Hencky’s true strain tensor lnvvv. It is defined from bbb, the
left Cauchy-Green tensor, by:

lnvvv =
1
2

lnbbb, (1)

with bbb = FFFFFFT , FFF being the deformation gradient tensor. In practice, a Digital85

Image Correlation software provides displacement fields on a grid. A mesh with
associated connectivity is built from it to compute FFF ,

(I-2) the matrix BBBX
e j which encodes geometry and connectivity, e being the quadrature

point number. In particular, the mechanical balance can be evaluated at all nodes
by:

∑
e

wX
e BBBX

e j ·σσσX
e = fff X

j ∀X , j, (2)

where wX
e is the integration weight of point e at loading step X ,

(I-3) the nodal forces fff X
j . These are zero in the absence of body forces, excepted for

boundary nodes.90

Additionally, the method has two intrinsic parameters:

(Inp-1) the size N∗ of the (stress-strain) database that samples the material response,

(Inp-2) the positive definite tensor C that defines the distance between two points in the
phase space (here, the stress-strain space).

2.2 Output of the method95

After convergence of the algorithm, the NX mechanical problems are solved and the
method gives:

(O-1) the stress fields σσσX
e that satisfy the mechanical balance in each node j accord-

ing to Eq. (2). The stress σσσX
e (calculated) and the strain lnvvvX

e (measured) are
referred to as a mechanical state, as they are mechanically admissible (balanced100

and compatible),

(O-2) the N∗ material states (lnvvv∗i ,σσσ
∗
i ), N∗ being chosen by the user (Inp-1). These

material states can be interpreted as a sampling of the material strain-stress re-
sponse surface. Their distance from mechanical states is defined by a norm || · ||2C
defined in Eq. (3) where C is a fourth order positive definite tensor also chosen105

by the user (Inp-2).

2.3 Solver
The algorithm aims at finding material states that are as close as possible to statically
and kinematically admissible mechanical states (the latter being half known: the strain
field is known, the stress field not), according to the norm || · ||2C defined by:

||(lnvvv,σσσ)||2C =
1
2
(lnvvv : C : lnvvv+σσσ : C−1 : σσσ). (3)

4



Although this norm has the form and the units of an energy density through C ([Pa]) it
is not related to any actual energy in the system. The magnitude of C actually allows
to weight the respective contributions of strain and stress.
The problem is formulated as follows:

solution = arg min
σσσX

e ,(lnvvv∗i ,σσσ
∗
i )

E (σσσX
e , lnvvv∗e

X ,σσσ∗e
X ), (4)

with,

E (σσσX
e , lnvvv∗e

X ,σσσ∗e
X ) = ∑

X ′
∑
e′

wX ′
e′ ||(lnvvve′

X ′ − lnvvv∗e′
X ′ ,σσσX ′

e′ −σσσ
∗
e′

X ′)||2C, (5)

and subject to the constraints

• of respecting the mechanical balance Eq. (2),110

• that the material state (lnvvv∗e
X ,σσσ∗e

X ) associated to the element e of increment X
belongs to the database (lnvvv∗i ,σσσ

∗
i )

N∗
i=1.

Therefore, the DDI outputs are:

• the mechanical states,

• the database of material states,115

• the mapping between mechanical and material states.

In the initial work [22], the validity of the method has been demonstrated with
perfect synthetic data (from (I-1) to (I-4)). In the experimental validation [23], the al-
gorithm has been applied with incomplete data that are well-preprocessed. The purpose
of this paper is to carefully study the preprocessing choices and their influence on the120

robustness of the algorithm.

3 Building the case study
In this section, a case study is developed to study several preprocessing choices. First,
features of usual real data are presented then several preprocessing options are pro-
posed, with a focus on missing data. Finally, the methodology for the next section is125

summarized.

3.1 From idealized to realistic input data
Experimental data might have missing information and can be noisy. Here, the con-
struction of the actual realistic problem from perfect synthetic data is explained thanks
to a 2D example. Noise on the displacement field measurements has to be taken into130

account. The typical noise in DIC is considered to have an amplitude of the order
of 1 pixel, independently of the measured displacement. The discussion of the effect
of noisy displacement values is beyond the scope of this paper and has already been
partially addressed in the original DDI publication [22].
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3.1.1 Why are some data missing?135

The DDI method is applied to a perforated hyperelastic membrane subjected to uniaxial
tension. The mechanical problem and the different notations are provided in Figure 1a.

Figure 1: a) Theoretical problem b) Real problem with three particular modified bound-
aries: top boundary with grip, cluster of missing data and imperfectly defined edges
close to hole.

Synthetic data are rendered incomplete according to usual experimental constraints:

• we cannot measure the nodal forces but a net force,

• displacements are sometimes missing in areas called clusters (which are larger140

than just a few pixels): the latter are the DIC results when using a software that
does not provide the considered unreliable displacements (due to large strain,
noise or loss of speckles for example),

• displacements are also missing close to edges: both the camera and the DIC
software which works on a manually preselected region cannot resolve the edges145

of the part. In addition, most correlation software use rectangular patterns that
cannot account for curved edges.

The mechanical problem with real boundaries is thus provided in Figure 1b.
In the figures, the theoretical boundaries are the top boundary (ΓT) where the force

is applied, the sides boundaries (ΓS) that are free edges, the bottom boundary (ΓB)150

which is clamped and the hole boundary which is free (ΓH). In the real problem, all the
boundaries are close but not exactly identical to the actual ones. They are noted Γ̃T for
the top, Γ̃S for the sides, Γ̃B for the bottom and Γ̃H for the hole boundaries. Plus, the
cluster of missing data is defined by its boundary denoted γC.

3.2 Possible preprocessing options for missing data155

The preprocessing choices concern both the intrinsic parameters of the DDI method
and the way of dealing with raw data. First, the preprocessing choices regarding the
missing data are detailed.
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With such experimental data, it is necessary to rewrite some equations of the initial
DDI algorithm given in Section 2. Indeed, handling properly the areas where data are160

missing is fundamental to insure robustness. Several possibilities are proposed to deal
with the missing data:

• In the area near the grip, where the force is measured (the "t" stands for the top
boundary):

(t-0) In the synthetic case, we know each nodal force fff X
j at the top boundary ΓT;165

(t-1) Using a load cell, only the sum of the forces fff X
j on the top boundary ΓT in

the loading direction nnnsol is known:

∑
j∈ΓT

fff X
j ·nnnsol = FX

cell ∀X . (6)

It is thus possible to define a global equilibrium condition on the boundary,
by combining Eqs. (2) and (6):

∑
j∈ΓT

∑
e

wX
e BBBX

e j ·σσσX
e ·nnnsol = FX

cell ∀X . (7)

(t-2) In the real case, the displacements close to the grips are not measured and
the true boundary cannot be considered in the algorithm. Thus, the bound-
ary ΓT cannot be considered and is replaced by Γ̃T. To deal with the force
information, the simplest solution is to assume that Eq. (7) applies also on
Γ̃T as follow:

∑
j∈Γ̃T

∑
e

wX
e BBBX

e j ·σσσX
e ·nnnsol = FX

cell ∀X . (8)

• For clusters of missing displacement values, the objective function Eq. (5) cannot
be evaluated in some elements which should be removed from the problem along
with associated nodes.

(c-1) A simple and naive solution is to simply discard the equilibrium constraint
for these nodes.170

(c-2) Another solution is to consider that the boundary of clusters is the boundary
of a mechanically balanced subset. Indeed, a global balance condition is
prescribed on the boundary γC. This is equivalent to consider a zero net
force on this boundary. This can be easily explained by the Ostrogradsky-
Gauss theorem in the continuous formulation:∫

ΩC

divσσσdV =
∫

γC

σσσ ·ndS =
∫

γC

fdS, (9)

which gives, for the discrete formulation:

∑
j∈γC

∑
e

wX
e BBBX

e j ·σσσX
e = 000. (10)
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• For edges close to holes, the perfect case is the one where the mesh boundary
coincides with the real edge of the hole and the free edge condition applies. It is
denoted (h-0) and will be the reference case (the "h" stands for the hole bound-
ary). In the real case, due to the imperfect edge definition, the displacement
values in the vicinity of holes edges are not known. Therefore, the data on the175

real boundary ΓH are not known and Γ̃H must be considered instead. On this
boundary, several assumptions can be made:

(h-1) The free edge assumption can be adopted if we consider that Γ̃H is really
close to ΓH so the edge is free. This incorrect assumption is likely to intro-
duce a bias in the predictions.180

(h-2) A weaker assumption consists in applying a zero net force on this boundary.
It is verified as the missing matter should be mechanically balanced (like
in (c-2)):

∑
j∈Γ̃H

∑
e

wX
e BBBX

e j ·σσσX
e = 000. (11)

These strategies to deal with missing data are summarized in Figure 2.

Figure 2: Summary of the preprocessing choices to analyze. They concern the missing
data for three particular boundaries: top boundary with grip, cluster of missing data
and imperfectly defined edges close to hole.

3.3 Methodology in practice
3.3.1 Inputs and parameters

The methodology to investigate the robustness of the DDI is to compare several cases
of synthetic input data that are deteriorated on purpose. The cases are studied with185
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respect to the intrinsic parameters of the DDI algorithm. As a recall, the inputs of the
algorithm are:

• The algorithm parameters (intrinsic to the resolution method): N∗ and C,

• The measured data, especially displacements and forces, which might be incom-
plete.190

Therefore, the discussion is organized as follows:

1. First, the effects of intrinsic parameters on a case where the input data are prefect
are analyzed;

2. Second, the influence of the incomplete measured data is analyzed: the cases of
(t-0), (t-1) and (t-2) related to the top grip are compared, the cases of (c-1) and195

(c-2) related to the clusters of missing data are discussed, and finally the cases
of (h-0), (h-1) and (h-2) related to the edges close to the holes are considered.

3.3.2 Reference model

It is necessary to build synthetic data for which the reference response is known. Thus,
a standard Finite Element model (made with the software Abaqus™) is used. The200

geometry is given in Figure 3 where the initial and deformed meshes of the problem
are presented. The initial height is denoted h0.

Mesh
Top boundary (force info)
Clamped boundary

150

200

25

35

25

30

⌀	40

⌀	25

⌀	20
⌀	20

⌀	20
⌀	20

12,5

100

(a) (b)
x

y

Figure 3: Case of study: a perforated hyperelastic membrane under uniaxial tension
( (a): initial mesh; (b) : after 200% of total macroscopic strain). On the top nodes,
information on force is available while the bottom ones are clamped.

The Ogden model [25] is chosen and the equation describing the strain energy
density is:

W (λ1,λ2,λ3) =
n

∑
i=1

µi

αi

(
λ

αi
1 +λ

αi
2 +λ

αi
3 −3

)
. (12)
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Coefficient Value Units
µ1 6.18 ·105 [Pa]
µ2 1.18 ·103 [Pa]
µ3 −9.81 ·103 [Pa]
α1 1.3 [−]
α2 5.0 [−]
α3 −2.0 [−]

Table 1: Ogden parameters to build the reference solution [25].

The values of the parameters are given in Table 3.3.2. They are identified in [25] to fit
experimental data in [26].

Ne = 6108 linear triangular finite elements under plane stress condition are chosen.
The displacements are prescribed using a (x,y) coordinate system corresponding to the
horizontal and vertical directions, respectively. They are given for the top and bottom
boundaries (denoted ΓT and ΓB) by:

ux = 0 on ΓT

uy = 2h0 on ΓT

ux = 0 on ΓB

uy = 0 on ΓB.

(13)

The finite element computation is decomposed into NX = 21 increments under205

quasi-static loading conditions. It gives the reference stresses in each element denoted
σσσFE. The strain fields, meshes and loading conditions are used as inputs in the DDI
algorithm with the preprocessing choices introduced in the previous section, resulting
in an identified stress field, denoted σσσDDI.

3.3.3 Error in stress identification210

As the purpose of the DDI is to measure stress field without constitutive equation, the
global error between the stress field identified by the DDI σσσDDI and the reference one
σσσFE is computed for all loading increments X and all elements e by:

e =
∑
X ,e
||σσσFE,eX −σσσDDI,eX ||2

∑
X ,e
||σσσFE,eX ||2

. (14)

4 Results and discussion
This section presents the results which consist in comparing several cases of incomplete
data. The aim is to determine the proper preprocessing choices that ensure robustness
and reliability for stress identification. The influence of the intrinsic parameters of the
DDI algorithm is first discussed with perfect input data. Then, the incompleteness of215

input data and the preprocessing choices associated are discussed.
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4.1 Influence of intrinsic parameters
The number of material states N∗ is the parameter that allows to sample more or less
finely the response of the material. It is to be compared to the total number of degrees
of freedom of the problem: Ne×NX = 128 268. We define the sampling ratio r∗ =220

(Ne×NX )/N∗ and consider that it varies between 2 and 104.
The distance to mechanical states (lnvX

e ,σσσ
X
e ) is defined by the norm || · ||2C of

Eq. (3). The simplest form for the tensor C is spherical with an amplitude C:

C=CI, (15)

where I is the fourth-order identity tensor. This form aims to equally weight all com-
ponents of the strain and stress fields. C is defined accordingly to a pseudo-tangent
elasticity modulus of the behavior model used in finite element analyses: C0 = 2.3 ·106

Pa. It is computed by the slope of the straight line found by the least mean square225

method in the (|| lnv||VM, ||σσσ ||VM) space (von Mises norm). Practically, we choose
values of C ranging from 10−6C0 to 106C0.

Figure 4 shows the identification error, after convergence. The left subfigure presents

10-6 10-1 104

C/C
0

0.04

0.05

0.06

0.07

0.08

m
in

r*
 e

101 102 103 104

r*

0.05

0.1

0.15

0.2

0.25

0.3

e

C=1 C
0

C=103 C
0

C=104 C
0

Figure 4: Influence of the intrinsic parameters N∗ (related to r∗) and C without missing
data. The error is compared to r∗ (left subfigure), and the minimum error is compared
to C (right subfigure).

the error as a function of the sampling ratio r∗ for different values of C. For each C
value, the minimum error (with respect to r∗) is reported. Then, the minimum error (for230

the optimal value of r∗) in relation to C/C0 is shown in the right subfigure. The error
is minimal for r∗ ≈ 20 (10 to 50 depending on the C value). A large ratio (not enough
material states) implies a sub-sampling of the response and therefore a significant er-
ror. Conversely, a too small ratio (too many material states) does not provide enough
regularization to the stress estimation problem as the behavior is no longer averaged235

sufficiently, which also leads to a significant error. It is therefore necessary to choose a
value between these two extremes; these results are similar to those obtained in [22].
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In addition, C significantly contributes to the convergence of the method: the higher
it is (to a certain extent), the lower the error is. Indeed, the distance defined by the norm
influences the mapping between material and mechanical states. By choosing a large240

value of C, the mapping based on strain values is favored, which is relevant since they
are measured (and so reliable) unlike stresses which evolve during the convergence
of the algorithm. Finally, N∗ is more influential than C: without missing data, a bad
choice of N∗ will never be compensated by a good choice of C.

4.2 Influence of the incompleteness of input data245

4.2.1 Force input

First, we consider preprocessing choices related to force information: either with all
nodal forces (t-0), or represented by their net value on the true boundary (t-1) or the net
force on the approximate boundary (t-2). The influence of N∗ on the error is reported
in Figure 5 (for C = 103C0). Global errors are similar: a sampling ratio r∗ from 20 to

Figure 5: Influence of force inputs on the error as a function of r∗ for (t-0) the given
nodal forces, and (t-1) and (t-2) the given net force on respectively the true boundary
and the approximate boundary.

250

100 is preferable. It shows that the DDI results are only slightly influenced by the way
these equilibrium conditions are prescribed on the top boundary.

For a local insight, Figure 6 presents the nodal forces computed with the stress
identified with the DDI in case (t-1). They are compared to the reference ones (case
(t-0)). They are really similar which means that stresses computed with the DDI are255

almost as perfect as the reference ones, even if the input in force is the net force only.
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Figure 6: Nodal forces computed with the identified stress for the case (t-1) compared
to the reference nodal forces (t-0).

4.2.2 Cluster of missing data

We consider the influence of the preprocessing choices related to a cluster: by handling
it naively (c-1) and in a mechanically optimal way (c-2). The influences of r∗ and C on
the error are shown in Figure 7.260

In the case of a naively handled cluster (c-1), it is difficult to achieve a small error.
Too many or too few material states lead to more important errors. Here, the choice of
C is crucial: the larger it is (within a certain limit), the closer we get to a mapping based
on strains (which are known). By simply adding the zero net force condition (c-2) on
the boundary, as proposed in Eq. (10), a robustness similar to results without missing265

data is recovered. In this case, the choice of C is much less critical than that of N∗.

4.2.3 Imperfect resolution close to holes

Finally, we consider the influence of the preprocessing choices in the case of an imper-
fect resolution close to the edges, on the boundary Γ̃H. The case of (h-1) the free edge
assumption on this boundary and the case of (h-2) zero net force over the boundary Γ̃H270

are compared to the perfect case with no missing data close to the edge (h-0). Errors
are plotted for a given C with respect to the sampling ratio r∗ in Figure 8.

Considering the free edge assumption leads to a large error, whereas the globally
balanced assumption again induces a small error, close to the ideal case. Then, it is
interesting to study the stress distribution as one approaches the hole: the von Mises275

stress is plotted along a line of the sample for the three cases, as depicted in Fig-
ure 9. For the free edge assumption (h-0), the algorithm predicts a misplaced stress
increase close to the wrongly presumed free edge. Stresses are overestimated around
the hole and this overestimation propagates to the bulk by equilibrium relations which

13



Figure 7: Influence of the preprocessing choice with a cluster on the error as a func-
tion of r∗ and C for cases (upper subfigure) (c-1) naive and (lower subfigure) (c-2)
mechanically optimal

are global. Therefore, the best manner to handle an imperfect edge consists in adopting280

a mechanically correct assumption: only a zero net force condition must be enforced.
In this case (h-2), the error is similar to the one with no missing data. The optimal ratio
r∗ is again between 20 and 100.

4.2.4 Summary

To close this discussion on how to handle properly incomplete input data, Figure 10285

presents the three stress components identified considering the corrections depicted in
the left-hand side subfigure. The incomplete input data have to be completed smartly
with only the mechanical balance equation: (t-2),(c-2),(h-2). It leads to results similar
to the perfect case: the global error is less than 0.05.
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0.15
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0.3
e

Perfect case (h-0)
Missing but assumed free edges (h-1)
Missing and globally balanced (h-2)

Missing elements in cases (h-1) and (h-2)

Nodes globally balanced in case (h-2)

Figure 8: Influence of preprocessing choice for the hole edge definition on the error as
a function of r∗ for a given C, for the cases of an imperfectly defined edge close to the
hole (with (h-1) the assumption of free edge, (h-2) the global balance condition) and of
a perfectly defined edge (h-0) (left subfigure). Nodes/elements used in the calculations
(right subfigure).

The preprocessing choices that bring the best robustness when dealing with missing290

data are summarized in Figure 11. These are the choices made in the experimental
validation [23] of the DDI algorithm.

5 Closure: implementation of the DDI with real data
In this work, the input parameters of the DDI algorithm have been examined, with the
objective of identifying correctly the stress field without constitutive equation. A study295

of its intrinsic parameters confirms our previous work. In particular, the consequences
of incomplete data (inherent to experimental data) is analyzed through two aspects:
the availability of net forces instead of nodal forces on the computational mesh, and
the difference between the actual part geometry and the computational mesh. This last
aspect appears either through clusters of missing data (areas of a few pixels/elements)300

and the imperfect edge definitions close to holes and boundaries. We show that the
robustness of the method is ensured when incomplete data are managed under a strict
mechanical point of view. Although these recommendations are here illustrated on
a single example, they are drawn from our experience in applying DDI to many cases
involving synthetic and real data, linear and non-linear material behaviors [22, 23, 24].305

To conclude, we propose to adapt the original DDI algorithm to real experimental
data. The boundaries defined in Figure 1 are considered. The solution of the problem
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Figure 9: von Mises stress field (lower subfigure) and reported values along a horizontal
line going through the sample (upper subfigure), for the three cases.

is still defined as:

solution = arg min
σσσX

e ,(lnvvv∗i ,σσσ
∗
i )

E (σσσX
e , lnvvv∗e ,σσσ

∗
e), (16)

with E defined in Eq. (5), and subject to the (new) constraints:

• respecting the mechanical balance equations:

16



Figure 10: Comparison between reference stress fields and identified stress fields with
DDI for a geometry with the proper preprocessing choices for missing data. The colors
in the 2D histograms represent the histogram bin probability for each stress component.

Figure 11: Summary of the proper preprocessing choice to deal with three particular
boundaries (top boundary with a global force information, cluster of missing data and
imperfectly defined edges close to a hole).
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– locally:
∑
e

wX
e BX

e j ·σσσX
e = 0 ∀X ,∀ j ∈ Ω̃∪ Γ̃B, (17)

– globally:
∑

j∈∆X
∑
e

wX
e BX

e j ·σσσX
e = F∆X ∀X , (18)

with ∆X representing each boundary on which is applied the net force F∆X ,
at the increment X i.e.:

* the top boundary Γ̃X
T on which the net force is the one measured by the310

load cell FX
cellnnnsol;

* the boundary around clusters of missing data γX
C on which a zero net

force is applied;

* the boundary around a hole Γ̃X
H on which a zero net force is applied;

• ensuring that the material state (lnvvv∗eX ,σσσ
∗
eX ) associated to the element eX belongs315

to the database (lnvvv∗i ,σσσ
∗
i )

N∗
i=1.

The implementation details can be found in the original paper [22]. For the intrinsic
parameters, it is advised to choose N∗ so that the sampling ratio r∗ is 100 and to choose
C=CI with C > 103C0, C0 being the average stiffness of the material and I the fourth-
order identity tensor.320

Acknowledgements: This work was performed by using HPC resources of Centrale Nantes
Supercomputing Center on the cluster Liger, granted and identified D1705030 by the High Per-
formance Computing Institute (ICI).

References
[1] M. A. Sutton, J. J. Orteu, H. Schreier, Image Correlation for Shape, Motion and325

Deformation Measurements: Basic Concepts,Theory and Applications, Springer
Science & Business Media, 2009.

[2] S. Avril, M. Bonnet, A.-S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte,
D. Lemosse, S. Pagano, E. Pagnacco, F. Pierron, Overview of identification
methods of mechanical parameters based on full-field measurements, Experi-330

mental Mechanics 48 (4) (2008) 381. doi:10.1007/s11340-008-9148-y.
URL https://link.springer.com/article/10.1007/
s11340-008-9148-y

[3] S. Roux, F. Hild, Optimal procedure for the identification of consti-
tutive parameters from experimentally measured displacement fields,335

International Journal of Solids and Structures 184 (2020) 14–23.
doi:10.1016/j.ijsolstr.2018.11.008.
URL http://www.sciencedirect.com/science/article/pii/
S0020768318304542

18

https://link.springer.com/article/10.1007/s11340-008-9148-y
https://link.springer.com/article/10.1007/s11340-008-9148-y
https://link.springer.com/article/10.1007/s11340-008-9148-y
https://doi.org/10.1007/s11340-008-9148-y
https://link.springer.com/article/10.1007/s11340-008-9148-y
https://link.springer.com/article/10.1007/s11340-008-9148-y
https://link.springer.com/article/10.1007/s11340-008-9148-y
http://www.sciencedirect.com/science/article/pii/S0020768318304542
http://www.sciencedirect.com/science/article/pii/S0020768318304542
http://www.sciencedirect.com/science/article/pii/S0020768318304542
https://doi.org/10.1016/j.ijsolstr.2018.11.008
http://www.sciencedirect.com/science/article/pii/S0020768318304542
http://www.sciencedirect.com/science/article/pii/S0020768318304542
http://www.sciencedirect.com/science/article/pii/S0020768318304542


[4] T. Furukawa, G. Yagawa, Implicit constitutive modelling for viscoplasticity using340

neural networks, Numerical Methods in Engineering 43 (1998) 195–219.

[5] H. Yang, X. Guo, S. Tang, W. K. Liu, Derivation of heterogeneous material
laws via data-driven principal component expansions, Computational Mechan-
ics 64 (2) (2019) 365–379. doi:10.1007/s00466-019-01728-w.
URL https://doi.org/10.1007/s00466-019-01728-w345

[6] T. Kirchdoerfer, M. Ortiz, Data-driven computational mechanics, Com-
puter Methods in Applied Mechanics and Engineering 304 (2016) 81–101.
doi:10.1016/j.cma.2016.02.001.
URL http://www.sciencedirect.com/science/article/pii/
S0045782516300238350

[7] J. Ayensa-Jiménez, M. H. Doweidar, J. A. Sanz-Herrera, M. Doblaré, A new
reliability-based data-driven approach for noisy experimental data with physical
constraints, Computer Methods in Applied Mechanics and Engineering 328
(2018) 752–774. doi:10.1016/j.cma.2017.08.027.
URL http://www.sciencedirect.com/science/article/pii/355

S0045782517304255

[8] Y. Kanno, Simple Heuristic for Data-Driven Computational Elasticity with Ma-
terial Data Involving Noise and Outliers: A Local Robust Regression Approach,
Japan Journal of Industrial and Applied Mathematics 35 1085–1101.

[9] T. Kirchdoerfer, M. Ortiz, Data Driven Computing with noisy material data sets,360

Computer Methods in Applied Mechanics and Engineering 326 (2017) 622–641.
doi:10.1016/j.cma.2017.07.039.
URL http://www.sciencedirect.com/science/article/pii/
S0045782517304012

[10] L. T. K. Nguyen, M.-A. Keip, A data-driven approach to nonlin-365

ear elasticity, Computers & Structures 194 (2018) 97–115. doi:
10.1016/j.compstruc.2017.07.031.
URL http://www.sciencedirect.com/science/article/pii/
S0045794917301311

[11] T. Kirchdoerfer, M. Ortiz, Data-driven computing in dynamics, International370

Journal for Numerical Methods in Engineering 113 (11) (2018) 1697–1710.
doi:10.1002/nme.5716.

[12] S. Conti, S. Müller, M. Ortiz, Data-Driven Problems in Elasticity, Archive
for Rational Mechanics and Analysis 229 (1) (2018) 79–123. doi:10.1007/
s00205-017-1214-0.375

URL https://doi.org/10.1007/s00205-017-1214-0

[13] R. Eggersmann, T. Kirchdoerfer, S. Reese, L. Stainier, M. Ortiz, Model-Free
Data-Driven inelasticity, Computer Methods in Applied Mechanics and Engi-
neering 350 (2019) 81–99. doi:10.1016/j.cma.2019.02.016.

19

https://doi.org/10.1007/s00466-019-01728-w
https://doi.org/10.1007/s00466-019-01728-w
https://doi.org/10.1007/s00466-019-01728-w
https://doi.org/10.1007/s00466-019-01728-w
https://doi.org/10.1007/s00466-019-01728-w
http://www.sciencedirect.com/science/article/pii/S0045782516300238
https://doi.org/10.1016/j.cma.2016.02.001
http://www.sciencedirect.com/science/article/pii/S0045782516300238
http://www.sciencedirect.com/science/article/pii/S0045782516300238
http://www.sciencedirect.com/science/article/pii/S0045782516300238
http://www.sciencedirect.com/science/article/pii/S0045782517304255
http://www.sciencedirect.com/science/article/pii/S0045782517304255
http://www.sciencedirect.com/science/article/pii/S0045782517304255
http://www.sciencedirect.com/science/article/pii/S0045782517304255
http://www.sciencedirect.com/science/article/pii/S0045782517304255
https://doi.org/10.1016/j.cma.2017.08.027
http://www.sciencedirect.com/science/article/pii/S0045782517304255
http://www.sciencedirect.com/science/article/pii/S0045782517304255
http://www.sciencedirect.com/science/article/pii/S0045782517304255
http://www.sciencedirect.com/science/article/pii/S0045782517304012
https://doi.org/10.1016/j.cma.2017.07.039
http://www.sciencedirect.com/science/article/pii/S0045782517304012
http://www.sciencedirect.com/science/article/pii/S0045782517304012
http://www.sciencedirect.com/science/article/pii/S0045782517304012
http://www.sciencedirect.com/science/article/pii/S0045794917301311
http://www.sciencedirect.com/science/article/pii/S0045794917301311
http://www.sciencedirect.com/science/article/pii/S0045794917301311
https://doi.org/10.1016/j.compstruc.2017.07.031
https://doi.org/10.1016/j.compstruc.2017.07.031
https://doi.org/10.1016/j.compstruc.2017.07.031
http://www.sciencedirect.com/science/article/pii/S0045794917301311
http://www.sciencedirect.com/science/article/pii/S0045794917301311
http://www.sciencedirect.com/science/article/pii/S0045794917301311
https://doi.org/10.1002/nme.5716
https://doi.org/10.1007/s00205-017-1214-0
https://doi.org/10.1007/s00205-017-1214-0
https://doi.org/10.1007/s00205-017-1214-0
https://doi.org/10.1007/s00205-017-1214-0
https://doi.org/10.1007/s00205-017-1214-0
http://www.sciencedirect.com/science/article/pii/S0045782519300878
http://www.sciencedirect.com/science/article/pii/S0045782519300878
http://www.sciencedirect.com/science/article/pii/S0045782519300878
https://doi.org/10.1016/j.cma.2019.02.016


URL http://www.sciencedirect.com/science/article/pii/380

S0045782519300878

[14] M. Latorre, F. J. Montáns, Experimental data reduction for hyperelasticity,
Computers & Structures 232 (DOI : 10.1016/j.compstruc.2018.02.011) (2020)
105919. doi:10.1016/j.compstruc.2018.02.011.
URL http://www.sciencedirect.com/science/article/pii/385

S0045794917306259

[15] J. Crespo, F. J. Montáns, General solution procedures to compute the
stored energy density of conservative solids directly from experimen-
tal data, International Journal of Engineering Science 141 (2019) 16–34.
doi:10.1016/j.ijengsci.2019.05.013.390

URL http://www.sciencedirect.com/science/article/pii/
S0020722517327635

[16] V. J. Amores, J. M. Benítez, F. J. Montáns, Data-driven, structure-based
hyperelastic manifolds: A macro-micro-macro approach to reverse-
engineer the chain behavior and perform efficient simulations of poly-395

mers, Computers & Structures 231 (2020) 106209. doi:https:
//doi.org/10.1016/j.compstruc.2020.106209.
URL https://www.sciencedirect.com/science/article/pii/
S0045794920300122

[17] D. González, F. Chinesta, E. Cueto, Thermodynamically consistent data-400

driven computational mechanics, Continuum Mechanics and Thermodynamics
31 (2019) 239–253.

[18] J. Réthoré, A. Leygue, M. Coret, L. Stainier, E. Verron, Computational measure-
ments of stress fields from digital images, International Journal for Numerical
Methods in Engineering 113 (12) (2018) 1810–1826. doi:10.1002/nme.5721.405

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5721

[19] R. Seghir, F. Pierron, A Novel Image-based Ultrasonic Test to Map Material Me-
chanical Properties at High Strain-rates, Experimental Mechanics 58 (2) (2018)
183–206. doi:10.1007/s11340-017-0329-4.
URL https://doi.org/10.1007/s11340-017-0329-4410

[20] R. Ibañez, D. Borzacchiello, J. V. Aguado, E. Abisset-Chavanne, E. Cueto,
P. Ladeveze, F. Chinesta, Data-driven non-linear elasticity: constitutive manifold
construction and problem discretization, CComputational Mechanics 60 (2017)
813–826.

[21] Y. Kanno, A kernel method for learning constitutive relation in data-driven com-415

putational elasticity, Japan Journal of Industrial and Applied Mathematics 38
39–77.

[22] A. Leygue, M. Coret, J. Réthoré, L. Stainier, E. Verron, Data-based derivation
of material response, Computer Methods in Applied Mechanics and Engineering

20

http://www.sciencedirect.com/science/article/pii/S0045782519300878
http://www.sciencedirect.com/science/article/pii/S0045782519300878
http://www.sciencedirect.com/science/article/pii/S0045782519300878
http://www.sciencedirect.com/science/article/pii/S0045794917306259
https://doi.org/10.1016/j.compstruc.2018.02.011
http://www.sciencedirect.com/science/article/pii/S0045794917306259
http://www.sciencedirect.com/science/article/pii/S0045794917306259
http://www.sciencedirect.com/science/article/pii/S0045794917306259
http://www.sciencedirect.com/science/article/pii/S0020722517327635
http://www.sciencedirect.com/science/article/pii/S0020722517327635
http://www.sciencedirect.com/science/article/pii/S0020722517327635
http://www.sciencedirect.com/science/article/pii/S0020722517327635
http://www.sciencedirect.com/science/article/pii/S0020722517327635
https://doi.org/10.1016/j.ijengsci.2019.05.013
http://www.sciencedirect.com/science/article/pii/S0020722517327635
http://www.sciencedirect.com/science/article/pii/S0020722517327635
http://www.sciencedirect.com/science/article/pii/S0020722517327635
https://www.sciencedirect.com/science/article/pii/S0045794920300122
https://www.sciencedirect.com/science/article/pii/S0045794920300122
https://www.sciencedirect.com/science/article/pii/S0045794920300122
https://www.sciencedirect.com/science/article/pii/S0045794920300122
https://www.sciencedirect.com/science/article/pii/S0045794920300122
https://www.sciencedirect.com/science/article/pii/S0045794920300122
https://www.sciencedirect.com/science/article/pii/S0045794920300122
https://doi.org/https://doi.org/10.1016/j.compstruc.2020.106209
https://doi.org/https://doi.org/10.1016/j.compstruc.2020.106209
https://doi.org/https://doi.org/10.1016/j.compstruc.2020.106209
https://www.sciencedirect.com/science/article/pii/S0045794920300122
https://www.sciencedirect.com/science/article/pii/S0045794920300122
https://www.sciencedirect.com/science/article/pii/S0045794920300122
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5721
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5721
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5721
https://doi.org/10.1002/nme.5721
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5721
https://doi.org/10.1007/s11340-017-0329-4
https://doi.org/10.1007/s11340-017-0329-4
https://doi.org/10.1007/s11340-017-0329-4
https://doi.org/10.1007/s11340-017-0329-4
https://doi.org/10.1007/s11340-017-0329-4
http://www.sciencedirect.com/science/article/pii/S0045782517307156
http://www.sciencedirect.com/science/article/pii/S0045782517307156
http://www.sciencedirect.com/science/article/pii/S0045782517307156


331 (2018) 184–196. doi:10.1016/j.cma.2017.11.013.420

URL http://www.sciencedirect.com/science/article/pii/
S0045782517307156

[23] M. Dalémat, M. Coret, A. Leygue, E. Verron, Measuring stress field without con-
stitutive equation, Mechanics of Materials 136 (2019) 103087.

[24] L. Stainier, A. Leygue, M. Ortiz, Model-Free Data-Driven Methods in Me-425

chanics: Material Data Identification and Solvers, Computational Mechanics 64
(2019) 381–393.

[25] R. W. Ogden, Large deformation isotropic elasticity: on the correlation of
theory and experiment for compressible rubberlike solids, Proc. R. Soc. Lond. A
328 (1575) (1972) 567–583. doi:10.1098/rspa.1972.0096.430

URL http://rspa.royalsocietypublishing.org/content/328/1575/
567

[26] L. R. G. Treloar, Stress-strain data for vulcanised rubber under various types
of deformation, Transactions of the Faraday Society 40 (0) (1944) 59–70.
doi:10.1039/TF9444000059.435

URL http://pubs.rsc.org/en/content/articlelanding/1944/tf/
tf9444000059

21

https://doi.org/10.1016/j.cma.2017.11.013
http://www.sciencedirect.com/science/article/pii/S0045782517307156
http://www.sciencedirect.com/science/article/pii/S0045782517307156
http://www.sciencedirect.com/science/article/pii/S0045782517307156
http://rspa.royalsocietypublishing.org/content/328/1575/567
http://rspa.royalsocietypublishing.org/content/328/1575/567
http://rspa.royalsocietypublishing.org/content/328/1575/567
https://doi.org/10.1098/rspa.1972.0096
http://rspa.royalsocietypublishing.org/content/328/1575/567
http://rspa.royalsocietypublishing.org/content/328/1575/567
http://rspa.royalsocietypublishing.org/content/328/1575/567
http://pubs.rsc.org/en/content/articlelanding/1944/tf/tf9444000059
http://pubs.rsc.org/en/content/articlelanding/1944/tf/tf9444000059
http://pubs.rsc.org/en/content/articlelanding/1944/tf/tf9444000059
https://doi.org/10.1039/TF9444000059
http://pubs.rsc.org/en/content/articlelanding/1944/tf/tf9444000059
http://pubs.rsc.org/en/content/articlelanding/1944/tf/tf9444000059
http://pubs.rsc.org/en/content/articlelanding/1944/tf/tf9444000059

	Introduction
	Recall of the Data Driven Identification algorithm
	Input data
	Output of the method
	Solver

	Building the case study
	From idealized to realistic input data
	Why are some data missing?

	Possible preprocessing options for missing data
	Methodology in practice
	Inputs and parameters
	Reference model
	Error in stress identification


	Results and discussion
	Influence of intrinsic parameters
	Influence of the incompleteness of input data
	Force input
	Cluster of missing data
	Imperfect resolution close to holes
	Summary


	Closure: implementation of the DDI with real data

