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Compressively Sampled Light Field Reconstruction Using Orthogonal
Frequency Selection and Refinement

Fatma Hawary, Guillaume Boisson, Christine Guillemot and Philippe Guillotel

Abstract—This paper considers the compressive sensing frame-
work as a way of overcoming the spatio-angular trade-off inher-
ent to light field acquisition devices. We present a novel method
to reconstruct a full 4D light field from a sparse set of data
samples or measurements. The approach relies on the assumption
that sparse models in the 4D Fourier domain can efficiently
represent light fields. The proposed algorithm reconstructs light
fields by selecting the frequencies of the Fourier basis functions
that best approximate the available samples in 4D hyper-blocks.
The performance of the reconstruction algorithm is further im-
proved by enforcing orthogonality of the approximation residue
at each iteration, i.e. for each selected basis function. Since
sparsity is better preserved in the continuous Fourier domain,
we propose to refine the selected frequencies by searching for
neighboring non-integer frequency values. Experiments show
that the proposed algorithm yields performance improvements
of more than 1dB compared to state-of-the-art compressive light
field reconstruction methods. The frequency refinement step also
significantly enhances the visual quality of reconstruction results
of our method by a 1.8dB average.

Index Terms—Light fields, computational photography, sparse
reconstruction, compressive sensing, Fourier transform, continu-
ous spectrum.

I. INTRODUCTION

L IGHT field imaging has acquired a significant interest
over the last two decades, both in research and industry.

Providing a rich representation of the captured scene, light
fields bring a variety of novel post-capture applications and
enable immersive experiences. Several camera setups have
been proposed for light field acquisition. Plenoptic cameras
use an array of micro-lenses placed in front of the photosensor
that provides an additional angular information at the expense
of a decreased spatial resolution [1, 2]. Plenoptic consumer
cameras, such as Lytro’s, have become widely available, then
SLR cameras and smartphones started to feature dual-pixel
or quad-pixel sensors. Such light fields do not provide much
angular variation because of their limited disparities, but paved
the way for more ambitious applications. On the other hand,
light fields can also be captured by arrays of cameras [3] usu-
ally dedicated to professional applications. Camera arrays offer
both higher spatial resolution and wider parallax than plenoptic
cameras. This enables accurate depth estimation, which is
required for virtual reality applications and cinema production.
Note that each new generation of smartphones is equipped
with an increasing number of cameras, which foreshadows
light field imaging in the future for mobile devices [4].

This work has been in part supported by the EU H2020 Research and
Innovation Programme under grant agreement No 694122 (ERC advanced
grant CLIM).

Another approach for capturing light fields consists in moving
a single camera (e.g. the Stanford Gantry1), in front of a static
scene. That kind of setup excludes the acquisition of video
light fields, but provides data with high spatial and angular
resolutions. Besides, at the research level, some alternative
solutions have been proposed for light field acquisition with
improved resolution [5–7], or for a more flexible acquisition
[8, 9].

While the industry calls for increasing image resolutions, the
task of acquiring high-quality 4D light field content remains
challenging, due to the complexity and size of optics, photo-
sensors and, ultimately, because of the bottleneck of data stor-
age. Indeed, capturing light field videos requires sophisticated
systems and engineering proficiency to operate the incoming
data stream. When distributed storage is not an option, e.g. for
real-time pre-visualization, light field video acquisition setups
have no choice but sacrificing the resolution in one or several
dimensions: spatial, angular, or temporal. Let us take the
example of a grid of 16 4K-cameras acquiring videos at a
frame-rate of 30 fps. This corresponds to 4 Gigabytes per
second of data to write on the disk, which exceeds the actual
SSD (Solid-State Drive) throughput capacities.

In this context, we consider a light field acquisition system
that would store only a few measurements of the captured light
field content. More precisely, the acquisition system consists
of a sensor grid (a grid of cameras), and the captured data is
transferred to a computer where a software program extracts
data samples to be stored, in order to meet the disk throughput
requirements. Each view of the light field is sampled following
random sampling patterns which are independent from one
view to another. By the sampling operation we retain and store
only a sparse set of light field pixels. The sampling mask is
assumed to be known by the reconstruction algorithm. Our
experimental results show that the proposed random spatial
sampling yields better performances compared with an angular
sampling which would consist in keeping only a subset of
entire views, as e.g. in [10]. In the validation tests, we assume
that the light field images have been demosaicked, to make the
comparison to state-of-the-art methods possible. Note that the
sampling and reconstruction are applied independently within
the three color channels (Red, Green and Blue).

This paper describes a light field reconstruction method
from a sparse set of randomly selected samples, with no prior
sampling pattern specifications. The method, named Orthog-
onal Frequency Selection (OFS), performs the reconstruction
per 4D hyper-block, where a model is iteratively generated

1http://lightfield.stanford.edu/lfs.html

1



2

to best fit the available data in the hyper-block and its 4D
surroundings. The proposed method extends the 2D image
Frequency Selective Reconstruction (FSR) approach described
in [11] to 4D light fields while further improving it by
introducing an orthogonality constraint on the residue. As in
our previous work [12], the proposed OFS method exploits
the assumption that the light field data is sparse in the Fourier
domain [13], meaning that the Fourier transform of the light
field can be expressed as a linear combination of a small num-
ber of Fourier basis functions. The reconstruction algorithm
therefore searches for these bases (i.e. their frequencies) which
best represent the 4D Fourier spectrum of the sampled light
field.

Besides, since sparsity is better verified in the continu-
ous Fourier domain [14], the method is further extended to
reconstruct the light field at non-integer angular frequency
positions. This method, called OFS+refinement, allows us to
better approximate the Fourier spectrum of the signal, and to
overcome the problem of having a small number of samples
in the angular direction. Furthermore, analytical forms can be
derived in the Fourier domain, and the expansion coefficient
computation can be directly done using the Fourier transforms
of the signal. Our solutions can be applied to any captured
light field, independently from the acquisition system. They
are also free of any prior knowledge of scene geometry and do
not require any pre-processing step such as depth estimation.

Experimental results with several light fields show that
the proposed OFS and OFS+refinement methods yield a
high reconstruction quality from a small number of input
samples (e.g. at sampling rates going down to 4%). Results
with synthetic and real light fields show that it outperforms
reference methods that either similarly pose the problem in a
compressive sensing framework as [15] where the authors use
a union of trained dictionaries, or exploit sparsity in the 4D
Fourier domain as [14]. Given that storing a subset of views
rather than randomly sampling all the views could also be
considered to address the data rate issue, we also compare the
proposed OFS algorithm with the view synthesis method of
[10] which uses deep neural networks.

This paper is organized as follows. Section II gives an
overview of the related work. Section III gives a detailed
description of the proposed reconstruction method for 4D light
fields. The non-integer frequency refinement is also described
in this section. The experimental results with the proposed
algorithms are given in Section IV. Section V concludes the
whole paper.

II. RELATED WORK

In this section, we present an overview of the topics related
to our work. We first give a brief review of state-of-the-art light
field imaging solutions. Then, we present existing compressive
sensing systems for higher-resolution light field acquisition.
We finally introduce sparse light field reconstruction methods
in the Fourier domain.

A. Coded aperture imaging
Numerous efforts have already been presented to improve

the spatio-angular resolution trade-off of acquired light fields.

Liang et al. [16] proposed a programmable aperture approach
which exploits the fast multiple-exposure feature of digital
sensors to sequentially capture multiple subsets of light rays,
but at the cost of a longer exposure time. In [17], two
attenuation masks are used, one placed at the aperture and
the other one in front of the 2D photosensor. Zhang et al. [18]
presented a phase-based approach to reconstruct a 4D light
field using a micro-baseline stereo pair. Yagi et al. [19] pro-
posed an aperture pattern and reconstruction algorithm derived
from principal component analysis (PCA). In this method, the
compressive pattern chosen is dependent of the original signal,
which presents a limitation since it may not be known. Another
approach was proposed later in [20] where the basis vectors are
derived from non-negative matrix factorization (NMF). A new
deep learning-based reconstruction method is later proposed
using the same coded aperture acquisition process [21].

B. Light field view synthesis

Some recent methods aimed to synthesize a full light field
from a subset of views. Wanner et al. [22] introduced a
variational light field angular super-resolution framework by
utilizing the estimated depth map from the input views to
warp them to novel views. Several works also proposed light
field synthesis using deep learning and Convolutional Neural
Networks (CNNs). In [10], a full light field is generated from
its four corner views, using two sequential CNNs, one for
disparity estimation and then another for color prediction on
the top of warped images. With a similar pipeline, Srinivasan
et al. [23] addressed the problem of extrapolating a light field
from a single central view, with good visual results. Note that
both works only considered light fields captured with plenoptic
cameras that present limited parallax. Larger baselines make
view synthesis more complex, with wider occlusions and
more non-Lambertian effects such as specularities. Wu et
al. [24] address the problem of light field angular super-
resolution by first spatially down-sampling the views in order
to balance spatial and angular information. The views are
then interpolated using a bi-cubic filter, and extracted Epipolar
Plane Images (EPI) are then fed to a CNN architecture to
restore angular details on EPI. A non-blind deblur step is
then applied to recover spatial details. The framework was
then extended into several applications [25] including depth
enhancement and interpolation for unstructured input.

C. Compressive Sensing for light fields

Reconstructing a light field from a set of measurements is
a compressive sensing (CS) problem that is solved assuming
sparsity priors on the captured data. The CS theory [26] relies
on the assumption that the signal is sparse (or compressible)
in some transform domains like wavelets, Discrete Cosine
Transform (DCT), or even dictionaries learned from large
datasets. The original data is restored by solving a basis pur-
suit denoising (BPDN) problem [27] given an over-complete
dictionary as in [28, 29].

Let x ∈ RN be a signal (here a light field) assumed to be
sparse in the transform domain defined by the basis Ψ. We
say that x is k-sparse in the transform domain defined by Ψ
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if one can find a sparse vector α such that x = Ψα, where
||α||0 ≤ k.

The acquisition of the vector y ∈ RM of measurements
on the input signal can be written as y = Φx ∈ RM , where
M is the number of randomly chosen vectors φ ∈ RN and
Φ = [φ1, φ2, ..., φM ]T is named the measurement matrix.

Reconstructing the sparse signal x from the measurements
y involves solving the following optimization problem:

α̂ = argmin
α
||y − ΦΨα|| + λ · ||α||1

and then computing the estimate x̂ = Ψα̂.
Several light field compressive acquisition schemes have

been recently proposed based on the use of coded masks,
in order to overcome the spatio-angular resolution trade-
off of plenoptic cameras. In all the proposed schemes, the
sensing matrix is assumed to be materialized by a coded
physical mask. The authors in [30] proposed two architectures
which compress sampled data on angular or spatial dimension
respectively using coded masks. One mask is placed at the
aperture for compressive acquisition in the angular dimension
while the second mask is placed in front of a lenslet array
for compressive acquisition in the spatial dimension. Wang et
al. [31] propose a camera architecture using a random coded
mask placed at the aperture and a random convolution CMOS
optical sensor that can compress on the image plane without
additional optical elements. Compared to architectures using
two coded masks, the proposed solution permits a better light
efficiency, while combining double measurements.

A monochrome coded mask is also used in [32] to capture
random linear combinations of angular samples, and the light
field is rebuilt via a hierarchical Bayesian framework. The
authors in [28] propose a camera architecture that records
optically coded projections on a single image sensor, while
the authors in [15] and [29] use respectively a random binary
mask or a moving colour coded mask affixed to the sensor to
extract incoherent measurements. In both cases, the light field
is then reconstructed using a compressive sensing framework,
assuming that the light field is sparse in a domain defined by
an overcomplete dictionary [28, 29] or a set of 2D separable
dictionaries [15].

The problem of light field reconstruction from a sparse
set of measurements can also be efficiently solved using
deep learning architectures. The authors in [33–35] assume
a pre-defined mask pattern and propose convolutional neural
network architectures to reconstruct the light field from the
measurements given the coded mask. The authors in [34]
trained a two-branch neural network to reconstruct compressed
light field, in which one branch is a fully connected network
which limits the patch size. From the compressed image, the
authors in [33] extract the central view and a disparity map,
which are used to reconstruct the final light field by warping
the central view. For that purpose, three different CNNs are
used. Note that the network architectures in both [33–35]
are adjusted for only one mask pattern which is assumed
to be monochrome in [33] and [34], and colored in [35].
Therefore, they are not invariant to different locations on
the sensor as each patch on the sensor is generated by a

different compressing matrix. The authors in [21] pose the
coded aperture acquisition and light field reconstruction as an
auto-encoder and optimize the mask pattern together with the
parameters of the reconstruction algorithm in the end-to-end
learning of the auto-encoder. This approach therefore assumes
a learned and hence pre-defined mask specification.

D. Sparse Fourier reconstruction

Different reconstruction methods have been proposed based
on the assumption that light fields are sparse in the 4D Fourier
domain [14,36]. In [36], the authors propose a linear approach
to synthesize novel views from a focus stack of images. As-
suming that the light field data resides on a 3D manifold in the
4D Fourier domain, the method retrieves the light field views
by deconvolution of the focal stack images. The method in
[14] based on a Sparse Fast Fourier Transform (SFFT) [37,38]
exploits sparsity in the angular dimensions of the 4D Fourier
domain to recover the light field from a subset of views. The
reconstruction algorithm searches for the frequency values of
the Fourier basis functions and the corresponding coefficients.
An optimization step then approximates the spectrum in the
continuous Fourier domain by refining the initial frequency
positions with a small non integer step. Note that the input
views are selected according to a pre-defined pattern (1D
viewpoint trajectories) that ensures a good initialization of
the selection of the appropriate Fourier basis functions in
the sparse approximation. However, all the above methods
assume specific sampling patterns for the positions of the input
views, which may limit their use in practical applications.
Instead, Vagharshakyan et al. [39,40] pose the angular super-
resolution problem as an inpainting problem on the Epipolar
Plane Images (EPI), and use a discrete shearlet transform to
increase the light field angular resolution.

III. LIGHT FIELD RECONSTRUCTION METHOD

A. Problem statement

Let L(x, y, u, v) denote a given 4D light field, that we
assume to be sparse in the 4D Fourier domain. Hence, the
light field L can be represented by a sparse vector α as

L = Ψα, (1)

where Ψ is the matrix containing the Fourier basis functions
and α being the sparse vector of expansion coefficients. Let
Ls(x, y, u, v) be the 4D randomly-sampled version of L,
obtained as

Ls = ΦL = ΦΨα (2)

where Φ represents the sub-sampling matrix containing 0
and 1 values to define the available data sample positions.
Ls(x, y, u, v) constitutes the set of measurements that will be
recorded on the disk, and from which we search to reconstruct
the light field L.

The goal of the reconstruction algorithm is to search for the
sparse vector α̂ that will allow us to reconstruct a light field
L̂r as

L̂r = Ψα̂ (3)
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TABLE I: Notations

j The imaginary unit: j2 = −1

z∗ = <(z)− j.=(z) Complex conjugate of z

i Iteration index

Ω = J1;KK× J1;LK× J1;MK× J1;NK Local light field domain

P = |Ω| = K · L ·M ·N Number of samples in Ω

A ⊂ Ω Subset of known samples

B ⊂ Ω Subset of unknown samples

C ⊂ Ω Subset of reconstructed samples

p = (k, l,m, n) ∈ Ω A pixel’s position within Ω

f : Ω→ R Local light field

g(i) : Ω→ R Approximation model at iteration i

w : Ω→ R Weighting function

r(i) : Ω→ R Weighted residue at iteration i

ϑ = (µ, ν, ζ, ξ) A frequency in the 4D spectrum

ϕϑ : Ω→ R A 4D Fourier basis function

Θ(i) = {ϑ1, . . . ,ϑi} Frequency subset at iteration i

Xϑ =
∑

p x[p]ϕ∗ϑ[p] ∈ C Capitals denote Fourier transforms

that will be as close as possible to the captured light field
L(x, y, u, v). The coefficients in α̂ correspond to the contri-
butions of the frequencies that our reconstruction method itera-
tively selects. Figure 1 gives an overview of the reconstruction
objective. Note that the sampled views look dark since all the
missing pixels are set to 0.

B. Sparse model for light field reconstruction

We conduct the reconstruction per 4D hyper-block of the
light field. An example of 4D hyper-block is shown in Fig. 2
(set of 2D blocks surrounded in red). Together with its local
surrounding area (of a given width in the angular and spatial
dimensions), the red hyper-block forms a 4D domain Ω
spanning over M ×N views with co-located K ×L patches.
We define f [k, l,m, n] as the signal spanning in the 4D
domain Ω, (k, l) and (m,n) denoting the spatial and angular
coordinates of the pixels within the hyper-block. We aim to
find an approximation model g[k, l,m, n] from both original
and reconstructed samples within the domain Ω.

Let A, B and C respectively denote the subsets of known,
unknown, and previously reconstructed samples in the 4D
hyper-block and in its surrounding. At each iteration of the
proposed method, the set of input measurements is therefore
Ω = A ∪ B ∪ C. As neighboring hyper-blocks may already
have been processed before, the corresponding reconstructed
samples are contained in the area C to be used in the
reconstruction of the currently considered hyper-block. For
convenience, we summarize the notations used throughout this
paper in TABLE I.

A weighting function w is defined as

w[p] = w[k, l,m, n] =


ρ

√
k
2
+l

2

s ρ

√
m2+n2

a for p ∈ A
0 for p ∈ B

σ.ρ

√
k
2
+l

2

s ρ

√
m2+n2

a for p ∈ C

(4)

where k = k − K+1
2 , l = l − L+1

2 , m = m − M+1
2 ,

n = n − N+1
2 , and 0 < ρs, ρa, σ < 1. The goal of the

function w is to give more or less weight to the input measure-
ments, depending on their position in Ω and on whether they

correspond to original or previously reconstructed samples.
More precisely, the factors ρs and ρa respectively determine
the weighting decay in the spatial dimension (within a view)
and in the angular (cross-view) dimension. In other words,
the weight of a sample decreases as its distance to the hyper-
block center increases. Finally, the parameter σ is used to
differentiate the contribution of previously reconstructed data
from the available data.

Let f be the local light field defined on Ω. Assuming the
light field to be sparse in the 4D Fourier domain, the algorithm
estimates a sparse approximation model g of the signal f

g[p] =
∑
ϑ∈Θ

cϑ · ϕϑ[p] (5)

as a weighted combination of 4D Fourier basis functions

ϕϑ[p] = ϕµνζξ[k, l,m, n] = e2πj( kµK + lν
L +mζ

M +nξ
N ), (6)

with cϑ being the contribution of the Fourier basis function
ϕϑ. For simplicity, we will use in the following the symbol ϑ
to refer to a 4D frequency position.

C. Iterative Reconstruction by Orthogonal Frequency Selec-
tion (OFS)

The different steps of the method are depicted in Fig. 3.
The algorithm iteratively selects the Fourier basis functions
that would best represent (minimizing an approximation er-
ror) the available samples within the hyper-block. Since the
reconstruction of a hyper-block greatly depends on the amount
of information available in its neighborhood, the hyper-block
processing order is defined according to the number of known
samples in Ω.

In practice, we assign to each hyper-block a surrounding
density measure that is updated (increased) each time one of
its neighboring hyper-blocks is reconstructed. The surrounding
density measure sd(b) of a hyper-block b takes into account
the densities d of its neighbors {bx ∈ N (b)} and is computed
as

sd(b) = d(b) +
∑

bx∈N (b)

d(bx) (7)

This ensures a higher approximation quality, since we ensure
a higher density of known samples at each hyper-block recon-
struction.

1) Frequency selection: Let r(i) be the weighted residue of
the approximation model with respect to the signal at iteration
i:

r(i) = (f − g(i)) · w (8)

At each iteration i, the algorithm selects the basis function ϑi
maximizing the projection of the residue r(i−1), i.e.

ϑi = argmax
ϑ

∣∣〈ϕϑ, r
(i−1)〉

∣∣
= argmax

ϑ

∣∣∣∑
p∈Ω

(
r(i−1)[p] · ϕ∗ϑ[p]

)∣∣∣ (9)
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Fig. 1: Overview of the reconstruction method input and objective.

Fig. 2: 4D hyper-block (outlined in red) and its local spatio-angular
neighborhood (K = L = 8 and M = N = 5): the angularly neigh-
boring hyper-blocks located at top+left of the hyper-block as well
as the spatially-neighboring hyper-blocks located at right+bottom are
previously reconstructed.

2) Update with no orthogonality constraint: The corre-
sponding expansion coefficient c(i)ϑi

is computed by minimizing
the weighted residual energy E(i)

w

E(i)
w =

∑
p∈Ω

∣∣∣f [p]− g(i−1)[p]− c(i)ϑi
· ϕϑi [p]

∣∣∣2 · w[p]. (10)

Looking for zeros of the derivative of E(i)
w with respect to c(i)ϑi

yields

c
(i)
ϑi
·
∑
p∈Ω

(
w · ϕϑi · ϕ∗ϑi

)
[p] =

∑
p∈Ω

(
r(i−1) · ϕ∗ϑi

)
[p], (11)

and therefore:

c
(i)
ϑi

=

∑
p∈Ω r

(i−1)[p] · ϕ∗ϑi [p]∑
p∈Ω w[p]

. (12)

At that point, a straightforward update step of both the
approximation model and the weighted residue would consist
in: {

g(i) = g(i−1) + c
(i)
ϑi
· ϕϑi ,

r(i) = r(i−1) − c(i)ϑi
· ϕϑi · w.

(13)

However, while the Fourier basis functions are orthogonal
on Ω, a weighted basis function may not be orthogonal to
another basis function:

∀ ϑ 6= ϑ′ , 〈w · ϕϑ, ϕϑ′〉 6= 0 (14)

Therefore, if the update step (13) cancels the energy of r(i−1)

along ϑi in r(i), it also alters its spectrum for every ϑj<i, i.e.{
〈r(i), ϕϑi〉 = 0

∀ j < i : ϑj 6= ϑi , 〈r(i), ϕϑj 〉 6= 0
(15)

In other words, the weighted residue is not orthogonal to
the subspace spanned by the already selected functions. As
a consequence, a basis function can possibly be selected
several times. To attenuate this orthogonality deficiency, the
FSR method, proposed in Seiler et al. [11] for 2D image
reconstruction, rely on a compensation factor between 0 and 1
in the computation of cϑi . Still, their approach requires many
iterations to reach a fair approximation quality, for example,
100 iterations for 4 × 4 blocks and 32 × 32 neighborhood
[11]. Moreover, the value of the compensation factor is derived
from a trained parameter. As such, a suitable dataset needs
to be selected for training, which may limit the method
performances when applied on other types of data.

3) Orthogonality and Hermitian symmetry: To enforce or-
thogonality, at each iteration i, we compute an update ∆c

(i)
ϑ of

the coefficient c(i)ϑ associated to all the basis functions selected
so far. More precisely, the model and the approximation
residue at each iteration i are computed as{

g(i) = g(i−1) +
∑

ϑ∈Θ(i) ∆c
(i)
ϑ · ϕϑ,

r(i) = r(i−1) −
∑

ϑ∈Θ(i) ∆c
(i)
ϑ · ϕϑ · w.

(16)



6

Fig. 3: Representative scheme of our proposed compressive light field reconstruction method.

The basis functions are selected as before (in (9)). However,
we now search for updates ∆cϑ of coefficients that will
minimize

E(i)
w =

∑
p∈Ω

∣∣∣f [p]− g(i−1)[p]−
∑

ϑ∈Θ(i)

∆c
(i)
ϑ · ϕϑ[p]

∣∣∣2 · w[p]

(17)
Also, as real-valued signals are Hermitian, their Fourier

spectra exhibit complex conjugate symmetries. So, to ensure
that the approximation g yields a real-valued signal, we modify
(5) into:

g[p] =
1

2

∑
ϑ∈Θ

(
cϑ · ϕϑ[p] + c∗ϑ · ϕ∗ϑ[p]

)
(18)

This means adding to the model the conjugate complex of a
frequency each time it is selected, as

E
(i)
w =∑

p∈Ω

∣∣∣∣∣(f − g(i−1) −
1

2

∑
ϑ∈Θ(i)

(
∆c

(i)
ϑ · ϕϑ + ∆c

(i)∗
ϑ · ϕ∗ϑ

))
[p]

∣∣∣∣∣
2

· w[p]

(19)

The new minimization criterion with respect to each ∆c
(i)
ϑ

yields a system of equations whose solution ensures that the
residue is orthogonal to each basis function selected so far:∑

p∈Ω

(
w[p]ϕϑ[p]

∑
ϑ′∈Θ(i)

1

2

[
∆c

(i)

ϑ′
ϕϑ′ [p] + ∆c

(i)∗
ϑ′

ϕ∗ϑ′ [p]
])

=
∑
p∈Ω

r(i−1)[p]ϕϑ[p], ∀ϑ ∈ Θ(i)
(20)

4) Approximation model and residue update: Once a new
basis function is selected, an update step introduces the con-
tribution of the selected basis function to the approximation
model, and updates the contributions of the already selected
functions, by computing the corresponding coefficients as:

g(i) = g(i−1) +
1

2

∑
ϑ∈Θ(i)

(
∆c

(i)
ϑ · ϕϑ + ∆c

(i)∗
ϑ · ϕ∗ϑ

)
(21)

The residue is similarly updated as

r(i) = r(i−1) − 1

2

∑
ϑ∈Θ(i)

(
∆c

(i)
ϑ · ϕϑ + ∆c

(i)∗
ϑ · ϕ∗ϑ

)
· w (22)

The algorithm then proceeds until a predefined number of
iterations is reached. The orthogonality property leads to
a more accurate reconstruction with a reduced number of
iterations.

D. Analytical solution in the Fourier domain
So far, the reconstruction method has been explained in

the spatial domain. Using DFT functions as basis functions
allows us to express all the equations in the frequency domain,
leading to a more efficient implementations. Only one local
Discrete Fourier Transform (DFT) at the beginning and one
inverse transform at the end of the algorithm are necessary,
all intermediate steps being expressed in the Fourier domain.

The frequency selection step (9) can be expressed in the
Fourier domain as

ϑi = argmax
ϑ

∣∣R(i−1)
ϑ

∣∣, (23)

where R denotes the Fourier transform of the weighted residue
r. For the expansion coefficients computation, the system of
equations (20) becomes, for every ϑ ∈ Θ(i),∑
ϑ′∈Θ(i)

1

2

(
∆cϑ′ ·W ∗ϑ′+ϑ + ∆c∗ϑ′ ·Wϑ′−ϑ

)
= R

(i−1)∗

ϑ , (24)

where W denotes the Fourier transform of the weighted
function w.

Estimating the updates of all the expansion coefficients
{∆c(i)ϑj

}j=1..i , amounts to solving the following equation:

∆c(i) = 2 W(i)−1

·R(i−1) (25)

where we define the (2i− 1) vectors ∆c(i) and R(i−1), and
the matrix W(i) of size (2i− 1)× (2i− 1) as follows:

∆c(i) =



<(∆c
(i)
ϑ1

)
...

<(∆c
(i)
ϑi

)

=(∆c
(i)
ϑ2

)
...

=(∆c
(i)
ϑi

)


R(i−1) =



<(R
(i−1)
ϑ1

)
...

<(R
(i−1)
ϑi

)

=(R
(i−1)
ϑ2

)
...

=(R
(i−1)
ϑi

)


(26)

W(i) =

(
W

(i)
11 W

(i)
12

W
(i)
21 W

(i)
22

)
with:

W
(i)
11 =

[
<(Wϑx+ϑy +Wϑx−ϑy )

]
(x,y)∈J1;iK×J1;iK

W
(i)
12 =

[
=(Wϑx+ϑy −Wϑx−ϑy )

]
(x,y)∈J1;iK×J2;iK

W
(i)
21 =

[
=(Wϑx+ϑy +Wϑx−ϑy )

]
(x,y)∈J2;iK×J1;iK

W
(i)
22 =

[
<(Wϑx−ϑy −Wϑx+ϑy )

]
(x,y)∈J2;iK×J2;iK
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Fig. 4: Refinement example. Shifting the integer frequency by a small step to one of the eight directions at each iteration (refinement level).

Consistently with these definitions, we conventionally force
the first selected frequency ϑ1 to be the zero frequency. Since
the signals considered are real-valued, so are their average
value on the hyper-block. The corresponding expansion coeffi-
cients have therefore no imaginary part, and the corresponding
null rows/columns are removed from the matrix definitions.
Hence the (2i− 1) size instead of expected 2i.

Eventually, the parametric model and the residue are up-
dated in the Fourier domain for every ϑ ∈ Θ(i) as{

G
(i)
ϑ = G

(i−1)
ϑ + 1

2
P ·∆c(i)ϑ

G
(i)
−ϑ = G

(i−1)
−ϑ + 1

2
P ·∆c∗(i)ϑ

(27)

where P represents the total number of samples in the con-
sidered hyper-block. The residue is then updated as

R
(i)
ϑ = R

(i−1)
ϑ −

∑
ϑ′∈Θ(i)

1

2

(
∆c

(i)

ϑ′
·W ∗ϑ′−ϑ +∆c

(i)∗
ϑ′
·Wϑ′+ϑ

)
(28)

E. Frequency refinement to non-integer values

So far, the OFS approximation model is generated by
including the discrete Fourier functions that best represent
the available data samples. However, the actual spectrum of a
signal is not necessarily aligned with the discrete sampling
grid. This is why window effects can be observed in the
spectrum of a light field’s 4D DFT. Besides, since the angular
resolution of a light field (number of views or sub-aperture
images) is usually lower than its spatial resolution (the number
of pixels per view or per sub-aperture image), the windowing
effect is stronger in the angular dimensions, as observed in
[14]. We propose to refine the discrete angular frequencies
to non-integer values, in order to better approximate the
continuous Fourier spectrum of the light field. The refinement
can just as well be performed in the spatial dimensions, but
with a lesser impact since light fields usually present higher
spatial than angular sampling.

Unlike the approach of Shi et al. [14], where the recovery
of continuous frequencies is conducted in the full light field
spectrum, as a global post-processing, the OFS refinement is
performed locally within the hyper-block for each selected
basis function. Each time a new frequency is selected via
residual energy minimization, we shift its position in the
4D spectrum by a small fractional step δ to all the eight
angular directions, as shown in Fig. 4. The residual energy is
calculated in all the eight corresponding frequency positions.
The position that maximizes the residue decrease is selected

Algorithm 1 Angular Frequency refinement
1: ∆ = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 1), (1,−1), (1, 0), (1, 1)}

2: δ = 1/2
3: define nr
4: Select a frequency position ϑ = (µ, ν, ζ, ξ)
5: Rmax = |Rϑ|
6: while δ ≥ 1

2nr do
7: for (dζ, dξ) ∈ ∆ do
8: ϑ′ = ϑ + (0, 0, δ.dζ, δ.dξ)
9: Calculate Rϑ′

10: ϑ∗ = argmaxϑ′ |Rϑ′ |
11: if |Rϑ∗ | > Rmax then
12: ϑ = ϑ∗

13: Rmax = |Rϑ∗ |
14: δ = δ/2

as the final frequency to include to the model. An overview
of the refinement is detailed in Algorithm 1.

The reconstruction steps that follow the selection are the
same as in the regular case (with integer frequencies), except
that computations can no longer be performed in the DFT
domain, but in the pixel domain.

There are several advantages in refining frequencies as soon
as they are selected, rather than as a global hyper-block post-
processing. On-the-fly refinement helps converging swiftly to
the actual light field spectrum, instead of dealing with several
discrete frequencies that correspond to the same spectrum
peak. Thus the number of iterations is reduced, and the overall
reconstruction quality is improved.

F. Differences with an OMP-based approach

Although the iterative selection of basis functions in the pro-
posed OFS method finds some similarities with the Matching
Pursuit (MP) algorithm [41], and its orthogonal variant (OMP),
there exist several aspects that significantly differentiates it
from the MP method.

First, the proposed OFS method defines an hyper-block
processing order to take into account the number of known
or previously reconstructed samples in a given neighborhood.
A weighting function is in addition used to give more weight
in the approximation to known versus previously reconstructed
samples, as well as to samples in the considered window that
are closer to the center of the hyper-block to be reconstructed.
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Besides, a refinement step is introduced to better approximate
the continuous Fourier spectrum of the light field. Further-
more, analytical expressions in the Fourier domain allow us
to significantly reduce the computational time compared with
a computation in the pixel domain.

IV. EXPERIMENTS

The proposed OFS and OFS+refinement with non-integer
frequencies algorithms, as well as FSR [11] extended to 4D
here, are compared against three different types of method.
We compare the proposed approach with:

1) the compressive sensing method based on a union of
trained dictionaries of [15], with overlapping and non
overlapping patches.

2) the light field reconstruction method from a set of views,
exploiting sparsity of light fields in the 4D Fourier
domain [14].

3) the deep learning-based view synthesis approach of [10].
This comparison is motivated by the fact that the prob-
lem of view synthesis can also be regarded as a problem
of reconstruction from sparse measurements (the subset
of input views). In addition, storing a subset of views
instead of random samples can also be considered a
solution to the high data rate problem posed by video
light fields.

We consider both synthetic and real light field datasets. The
synthetic light field considered is the 5×5 light field Dragon2.
The real light fields used in the tests are plenoptic light fields
from [10] and light fields acquired from a camera moving on
a gantry from the Stanford dataset3.

A. Parameter settings

In order to keep the computational load manageable, the
transform model size is set to 32×32×5×5, which means a
block size of 4×4×3×3, and spatial and angular border widths
of 14 and 1 respectively. We set the decay factors ρs (in the
spatial dimensions) and ρa (in the angular dimensions) of the
weighting function w as 0.7 and 0.5 respectively. The weight
to differentiate reconstructed versus original samples is set to
σ = 0.5. Since the maximum number of frequencies a hyper-
block can contain is equal to its size (here 144), and that, at
each iteration, the OFS method permits to add 2 frequencies
(the selected one and its conjugate), we set the maximum
number of iterations to 72. To make a fair comparison, we
set this parameter to 200 for the non-orthogonal version of
the method which can select several times the same basis
functions. Finally, for the refinement step, we decided to limit
the maximum level of refinement to nr = 3.

B. Results

1) Comparison with a compressive sensing method: Fig. 5
compares the PSNR obtained with the proposed FSR, OFS
and OFS+refinement methods with the ones of [15], for

2http://web.media.mit.edu/∼gordonw/SyntheticLightFields
3http://lightfield.stanford.edu/lfs.html
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Fig. 5: PSNR comparison of 4D-FSR, 4D-OFS and 4D-OFS with
refinement, with a state-of-the-art method: Miandji et al. [15] for
different sampling rates.

different sampling rates. The input data for both methods is
the same randomly sampled light field with various sampling
rates. As shown in the graph, our OFS method gives a much
higher PSNR than the method in [15], even for a very low
sampling rate. The average PSNR gain is 4.5dB. The non-
integer refinement adds an average PSNR gain of 1.2dB to the
OFS method. As compared to the non-orthogonal method FSR,
OFS achieves a PSNR gain of 0.72dB with a lower number
of iterations: 72 iterations vs. 200 for FSR.

Fig. 7 shows the reconstructed central views and the differ-
ences with the ground truth of Dragon at a sampling rate of
4%. One can see that a better visual quality is achieved with
the OFS method over the dictionary-learning method of [15].

2) Comparison with a method exploiting sparsity in the
Fourier domain: We now compare with the Sparse Fourier
Transform (SFFT) method [14], using light fields (Bunny,
Crystal, Amethyst and Lego Knights) from the Stanford
Archive4. We reconstruct each light field from a sampled set
of 81 views. The method [14] has been tested with a number
of 45 input views chosen using their box-and-X pattern, which
corresponds to 45/81 = 0.55 of the full light field. We use this
same ratio for our input data sampling. TABLE II gives the
PSNR and SSIM values of the light fields reconstructed with
both methods. The PSNR and SSIM values are averaged over
the 9 × 9 reconstructed views. One can see that our method
achieves a much better reconstruction quality with a PSNR
average gain of 7.37dB.

Fig. 8 shows reconstruction examples (view (5, 2) of Crystal
and Amethyst). The difference images show a strong unstruc-
tured noise in the SFFT method result. This noise cannot
be related to the original data since we do not find it in
our reconstruction result, but is more likely to be inherent
to the initialization step in [14] where a rough estimation
of the frequency positions is made using a voting strategy
from the available views spectra. In the highly non-Lambertian
scene Amethyst, our method succeeds in reconstructing the
specular and reflective features, with very small difference to
the original data, while the SFFT based method [14] fails in
reconstructing regions with reflections and refraction.

Our code was designed for flexible experimentation and
is currently not optimized. Using an 8-core machine, typical
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Fig. 6: PSNR of light fields reconstructed with different methods: Kalantari et al. [10], Vadathya et al. [33], Nabati et al. [35], FSR [11] in
4D, and ours (OFS and OFS+refinement).

Miandji et al. [15] Ours

Fig. 7: Reconstruction quality comparison on the light field Dragon
at 4% sampling rate. Top: reconstructed images. Bottom: difference
from the ground truth (magnified by 5).

runtimes range from 3 to 6 hours for the OFS method,
depending on the light field resolution, plus 3 to 4 additional
hours if the non-discrete frequency refinement is on. This
computational time is to be compared with the 6-8 hours that
the SFFT-based method requires to reconstruct one light field
on a 16-core machine.

3) Comparison with deep learning based methods: Finally,
we compare our method to three deep learning based recon-
struction methods: Kalantari et al. [10] use 4 corner viewpoints
to reconstruct the full 8 × 8 views, Vadathya et al. [33]
reconstruct the light field at 7 × 7 angular resolution from a
coded image, and finally Nabati et al. [35] use a coded color

4http://lightfield.stanford.edu/lfs.html

mask to even lower the sampling rate to 1/(25 × 3) = 1.3%
to reconstruct 5× 5 viewpoints.

We apply the same compression ratios to our method for
comparison purposes, using different light fields of [10]:
Flower 1, Rock, Flower 2, Seahorse and Cars. The results
are summarized in Fig. 6. The PSNR results for [33] and [35]
were extracted from the corresponding articles respectively,
more results could be presented for the method in [10] for
which the software was available. As shown in the graphs of
the figure, our method outperforms the approach in [10] by
at least 1.22dB, and achieves high PSNR values of more than
32dB at only 5% of input data. The reconstruction quality is
lower nevertheless if we take a very low number of samples, of
2% or lower, where the compressive sensing theory is limited
to achieve a correct restoration of the missed data. Fig. 9 shows
a visual comparison of our reconstruction results to the ones
from [10] on the view (4, 4) of each 8 × 8 tested light field.
The difference images demonstrate some diffuse small errors
in our results with a minimum value of SSIM equal to 0.969
while the results in [10] exhibit important errors on edges,
probably related to disparity estimation errors.

Please note that the light fields used in the tests exhibit
different disparity ranges. While the disparity of the real Lytro
light fields is small, around 1 or 2 pixels, the Stanford light
fields have disparities between 3 and 6 pixels. When the
disparity is large, the sparsity of the 4D light field signal within
the 4D hyper-block, which means that more high frequencies
are needed to represent the signal in the Fourier domain. In
this context, our method can still give a perform good quality
reconstruction, provided that the number of frequencies to be
selected is increased. The depth-based method [1] (that the
reviewer gives reference to) is known to perform well for small
disparities of light fields, since the first CNN used for depth
estimation relies on features (the mean and variance images
as input) that can only describe well the small continuous
disparity of dense light fields, typically datasets captured with
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TABLE II: Reconstruction quality comparison of real light fields from Stanford Gantry datasets.

Bunny Crystal Amethyst Lego Knights Lego Truck

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

Shi et al. [14] 40.44 0.9797 32.96 0.9633 35.33 0.9379 31.85 0.8277 39.18 0.941
Ours 47.49 0.9969 41.04 0.9956 41.91 0.9906 39.65 0.9763 43.75 0.9860

a Lytro camera. Besides, in the case of wide disparities, the
warping step would introduce more errors in larger occluded
regions where a simple interpolation is applied. We can already
see these errors in the difference images of the results in Fig.
9. With a much larger disparity, one could imagine larger
areas of similar errors, due to more occlusions. Note that
the tested light fields exhibit small disparities, which helps
providing an accurate depth estimation. However, considering
large disparities, depth-based reconstruction algorithms would
suffer from higher limitations in the depth estimation step.

While the Lytro light fields exhibit small disparities, the
ones of the Stanford dataset captured by a camera moving
on a gantry have larger parallax (up to 9 pixels). When the
disparity is large, 4D hyper-block will be less sparse, hence
more high frequencies will be needed to represent the signal
in the Fourier domain.

Ground truth Ours Shi et al. [14]

Fig. 8: Reconstruction quality comparison with Shi et al. [14]. Top:
Amethyst. Bottom: Crystal (difference images are magnified by 10).

V. CONCLUSION

In this paper, we introduced a new iterative block-wise
algorithm to compressively reconstruct light field images. We
tackle the challenge of capturing high-resolution images of
the scene, by storing compressive data and reconstructing
the full resolution images using an approximation of the
available samples in the Fourier domain. The approximation
model is generated by sparsely selecting the Fourier basis
functions that best fit the sampled data, while ensuring the

orthogonality of the residue to the subspace spanned by
the already selected basis functions. The angular frequency
positions are furthermore refined to non-integer values in order
to preserve the sparsity that may be limited by the small
angular sampling. Experimental results show that high-quality
reconstruction is achieved by our approximation method, and
demonstrate the advantage of the improved version, which in-
creases the quality of the reconstruction while using a reduced
number of iterations. Moreover, refining the model to non-
integer frequency positions permits a better approximation.
Comparisons with state-of-the-art methods demonstrate that
our approach is competitive both in terms of PSNR and SSIM,
even for low sampling rates. More importantly, our solution
does not require multiple shots, or any prior knowledge of the
original data. Therefore, the proposed method can be extended
to applications that require real-time shooting, such as very
high-resolution light field videos.
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Fig. 9: Reconstruction quality obtained with different methods. Light fields (Top to bottom) Flower 1, Rock, Flower 2, Seahorse and Cars.
(Left to right) our reconstruction image, difference of our result to ground truth, difference of result from [10] to ground truth (difference
images are magnified by 5).


