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Two-phase crystallization in a carpet of inertial spinners
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We study the dynamics of torque driven spherical spinners settled on a surface, and demonstrate that hy-
drodynamic interactions at finite Reynolds numbers can lead to a concentration dependent and non-uniform
crystallization. At semi-dilute concentrations, we observe a rapid formation of a uniform hexagonal structure in
the spinner monolayer. We attribute this to repulsive hydrodynamic interactions created by the secondary flow
of the spinning particles. Increasing the surface coverage leads to a state with two co-existing spinner densities.
The uniform hexagonal structure deviates into a high density crystalline structure surrounded by a continuous
lower density hexatically ordered state. We show that this phase separation occurs due to a non-monotonic
hydrodynamic repulsion, arising from a concentration dependent spinning frequency.

Introduction: Recently, active systems considering rota-
tional degrees of freedom have emerged as an important part
of out-of-equilibrium materials [1-14]. In the case of field-
actuated colloidal particles [3-8], the rotational and transla-
tional motion are coupled. The flow created by the rotating
objects in the presence of a boundary can lead to a trans-
lational motion. The rolling objects have been observed to
form rotating clusters [4] and the hydrodynamic coupling be-
tween the rollers have been attributed to a formation of flock-
ing states [8] as well as to a fingering instability [3]. While
purely rotational dynamics has been linked to the formation
of hexagonal crystal by fast spinning bacteria [10] as well as
to the emergence of edge currents [11] and odd viscosity [12]
in dry spinner materials.

Another example, where the individual dynamics is purely
rotational, is provided by torque driven particles suspended
in a fluid. Previous work has predicted a phase separation of
binary mixture of counter-rotating spheres in a monolayer at
the Stokes’ limit [15]. In the absence of inertia, an individual
spinning sphere creates a rotational flow field with only an az-
imuthal component [16, 17]. At higher volume fractions this
enables the particles to explore different states and leads to
chaotic particle trajectories [18]. At hexagonally symmetrical
arrangement of the particles the mutual (azimuthal) flow fields
cancel, rendering the structure marginally stable [19, 20] and
recently it has been shown that combining the mixing arising
from the rotational flow with a steric repulsion can lead to a
fast crystallization at zero Reynolds number (Re) limit [21].

When the rotational Re is increased, inertial effects be-
come important. Co-rotating disks on a gas-liquid interface
have been observed to form hexagonal arrangements due to
an interplay between repulsive far-field Magnus forces and a
magnetic attraction [22, 23], while simulations have predicted
both attractive and repulsive hydrodynamic interactions be-
tween co-spinning disks at finite Reynolds numbers in strictly
2-dimensions (2D) [24].

In 3-dimensions (3D) and at Re ~ 1 a single spinning spher-
ical particle creates an additional flow, which includes both
radial and polar components [16, 25, 26] which are missing
in the 2D case. This secondary flow has been attributed to
the repulsion between a spinner pair [16, 27, 28] and to the
attraction of a single spinner towards a no-slip wall along the

spinning axis [29]. At higher volume fractions, the secondary
flow is expected to lead more intricate particle dynamics and,
for example, the stabilization of spinner vortices in 3D space
has been predicted [30].

Here we study the inertial hydrodynamics of spinners at
high concentrations. The system consists of spherical spin-
ning particles near a no-slip surface and includes both the ef-
fects of inertia and the 3D flow fields. The particles are sub-
jected to a constant torque in the wall normal and to a weak
gravity towards the surface (Fig. 1(a)). At the steady state the
spinners form a monolayer. Starting from random initial posi-
tions above the surface, we observe a rapid formation of hex-
atic order at semi-dilute area coverages (Fig. 1(c)). In the ab-
sence of thermal effects, the crystallization arises from an in-
terplay between the hydrodynamic mixing from the azimuthal
flow fields and the repulsion from the secondary flow. When
the overall area fraction is increased, we find a spontaneous
condensation of high spinner density area surrounded by a
lower density hexagonal structure of the spinners (Fig. 1(d)).
We show that this phase separation is due to particle concen-
tration dependent hydrodynamic repulsion - the spinning fre-
quency decreases with increasing concentration, leading to a
reduction of the hydrodynamic repulsion at high particle den-
sities.

Methods and simulation set-up: We employ a lattice
Boltzmann method (LBM) to solve the dynamics of the sys-
tem. The fluid-particle interaction is achieved by bounce-back
on links method [31-33], which gives rise to a no-slip bound-
ary condition on the particle surface. A very short range repul-
sion between the solid boundaries is applied in order to avoid
particle-particle and particle-wall overlaps [34, 35].

We study the system at finite rotational Reynolds numbers
(Re > 1), which measure the ratio between inertial and vis-
cous forces Re = pa)R2 /1L, where @ and R are the rotational
frequency and radius of a particle, and p and u are the den-
sity and viscosity of the fluid [36]. The particles are driven
by a constant torque 7', which leads to the spinning motion of
the particles. In the Stokes’ limit, the frequency of an isolated
particle is given by @y = T /87uR>. Using this, we calculate
the rotational Reynolds number Re = payR?/u = pT /87 u’R
which is used in the text. The effective Re will be a little
lower due to inertial effects [25, 26, 29] and the hydrody-
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FIG. 1. (a) A schematic showing the simulation system. A constant
torque T is subjected to each particle sedimented on a flat wall. (b)
The streamlines showing the flow field created by a rotating spherical
particle with Re ~ 10. (c) A hexagonal structure of the particles for
an area fraction ¢g ~ 32%. (d) Phase separation to particle dense and
dilute regions for ¢y ~ 37% . The colour maps show the local area
fractions. The insets in (¢) and (d) show the structure factors with the
characteristics of a hexatic order in both cases.
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FIG. 2. (a) The probability distributions of the local area fractions
P(¢) are shown for different global area fractions ¢y marked by the
vertical dashed line for a Re ~ 10 sample. In the case of a single
phase (¢ < 35%) the peak corresponds to ¢y. The P(¢) becomes
bimodal for ¢9 > 35%. (b) The averaged local hexatic order as a
function of overall area fraction. (c) Density profile ¢(r) as a func-
tion of the radial distance » from the center of the dense region.

namic resistance from the wall. We vary the particle area frac-
tion ¢o = N~ — x 100%, where Ly|z are the simulation box
lengths (Ly = 20R and Ly = Lz = 160R unless otherwise men-
tioned) [36]. The hydrodynamic interactions create an attrac-
tion towards a no-slip surface along the spinning axis [29]. To
model an experimental set-up and to ensure a smooth mono-
layer we add an additional (weak) gravitational force towards
the confining wall [36].

Hexatic order and phase separation: A spherical particle
spinning near a surface at Re > 0 creates an outward spiralling
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FIG. 3. The time evolution of (a) the local hexatic order parame-
ter W and (b) the domain length-scale L. When a constant torque
was applied on each particle, the domain length shows a conden-
sation of the particles for ¢y ~ 37% (Re ~ 10). After the system
reaches a steady two density state, the constant torque 7 is replaced
by a constant frequency @ corresponding to Re ~ 8. (c-e) The snap-
shots show particle positions and are colour coded by the spinning
frequencies w of the particles.

flow field (Fig. 1(b))[29]. At higher particle area fractions this
gives a rise to mixing via the rotating flow field, similarly to
Re = 0 case [18, 21] and it includes outward radial compo-
nent, which leads to effective repulsions between the spinners.

When starting from random particle positions above the
wall (Fig. 1(a)), we observe a rapid formation of stable hex-
atic order at semi-dilute area fractions (Fig. 1(c)), which is
in contrast with the Re = 0 case where the ordering requires
a thermodynamic repulsion [21]. To characterise the ordered
state, we calculate a local hexatic order parameter Wg [36].
A relative high value of W¢ =~ 0.75 (Fig. 2(b) and Fig. 3(a))
is observed when the overall area fraction @9 < 35% and the
local density distribution P(¢), calculated from sub-domains
Lys = 12R and Lz, = 12R, shows a single peak (Fig. 2(a)).

Increasing ¢y, the P(¢) becomes bimodal (Fig. 2(a)).
The uniform structure deviates into a high density crys-
tal surrounded by a lower density hexatically ordered state
(Fig. 1(d)). P(¢) shows two peaks at ¢ ~=25% and ¢, ~ 58%,
corresponding to a low and a high particle density region, re-
spectively (Fig. 2(a)). The values of ¢; and ¢, are independent
of the overall area fraction ¢, but the size of the dense region
grows with the increasing ¢y while the size of the dilute re-
gion is reduced (as shown by the amplitudes of the two peaks
in Fig. 2(a)). Both the dense and dilute regions show a non-
vanishing hexatic order, with a slightly lower Wg = 0.7 than
in the single phase state (Fig. 2(b) and Fig. 3(a)).

To study the dynamics of the phase separation, we measure
a time development of the domain length-scale L(¢) [36]. In
the uniform state, the domain size is constant and the hexatic



order grows rapidly (Fig. 3(a) and (b)). At higher area frac-
tions, the local density becomes non-uniform and the L starts
to grow (Fig. 3(b), see also Movie 1 [36]). After the onset, the
growth of the L(¢) is rapid, eventually reaching a stable do-
main size, and the radial density profile ¢ (r) shows a plateau
in the denser phase (Fig. 2(c)). The particle spinning frequen-
cies m are strongly correlated with the local density. At high
densities @ is decreased (Fig. 3(d)), due to increased hydro-
dynamic resistance similar to what is observed with passive
colloidal particles [37]. Replacing the constant torque T by
a constant spinning frequency, the two-density structure dis-
solves and a uniform hexatic state is reformed (Fig. 3(b) and
(e)). These observations suggest that the density dependent
spinning frequency can locally alter the hydrodynamic repul-
sion between the particles.

Typical inertial (lift) forces on a spinning particle, such as
Magnus effect, require non-zero translational motion [38]. In
our simulations, the particles have vanishing velocity v <<
®R due to the constraint of the hexagonal crystal. We propose
that the repulsion between the spinners mainly arises from the
secondary flow created by the spinning spheres [16, 25, 26],
and that the Magnus effect plays little or no role. For a
single particle, the secondary flow has a radial component
v, ~ @* which advects the fluid away from the particle at the
equatorial plane [16, 25, 26]. Based on this, we expect that
altering ® could lead to changes in the particle-particle inter-
actions.

Non-monotonic repulsion and hydrodynamic instability:
We estimate the repulsion between a pair of spinners aris-
ing from the secondary flow by applying a spring force F =
—ks(r — ro) between the particles and varying @ [36]. The
particles are restricted to a straight line along Y to ensure that
there is no translational motion. We observe a repulsive inter-
action F ~ ®” between the two spinners (Fig. 4(a)), which
agrees with what is expected from the single particle flow
field [16, 25, 26].

For a single spinner the secondary flow shows a decay of

the radial component as v, ~ (1 — 5)2 r~2 [16, 25, 26]. The
interactions between the spinners is expected to be more com-
plicated, due to the presence of the particle-wall and particle-
particle near-field interactions. For a particle pair, a decay
F ~r~%7 is observed and the normalized repulsion forces col-
lapse on a single curve for all the spinning frequencies consid-
ered (Fig. 4(b)).

Using a relation r ~ ¢ ~% between the area fraction ¢ and
particle separation r in a uniform two-dimensional structure
and the data in Fig. 4(b), we can estimate a monotonic scal-
ing of the repulsion force F ~ ¢!3 for a constant spinning
frequency. This is not expected to lead to phase separation, in
agreement with the constant @ case (Fig. 3(e)). When a con-
stant torque is applied, the spinning frequencies are sensitive
to the local surroundings and decrease when the local density
is increased (Fig. 4(c), see also Fig. 3(d)).

To qualitatively evaluate the existence of a critical area frac-
tion ¢*, we combine the pair data from Fig. 4(a) and (b)
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FIG. 4. (a, b) The hydrodynamic repulsion between a pair of spin-
ners confined to move only along one direction (Y). (a) The repul-
sion force shows a F ~ @2 scaling and (b)a F ~ 27 decay. (c) The
spinning frequency @ as a function of overall area fraction for a con-
stant torque for a small sample (open circles) (Ly = Ly = Lz = 20R
and Re ~ 10). The black curve is a fit to polynomial function
o/my = 0.308¢> — 1.291¢% +0.122¢ + 0.821. The green shadow
shows the correlation between the frequency and the local area frac-
tion calculated from the two-phase state of Fig. 1(d). (d) A schematic
showing the repulsion force as a function of overall area fraction
when combing the measurements from (a-c). (e) A snapshot show-
ing the measurement of the expansion force of a small spinner clus-
ter (N = 80). (f) The measured effective repulsion force of a spinner
cluster as a function of the area fraction.

with the w(¢) data from Fig. 4(c). Now we can estimate
F ~ @*(¢)¢"* which gives a non-monotonic ¢ dependence
(Fig. 4(d)). At dilute regime the repulsion increases with in-
creasing ¢ reaching a maximum at ¢* ~ 46% and then starts
to decrease (Fig. 4(d)). This can qualitatively explain our ob-
servation of the two density crystallization. When the global
area fraction ¢y > ¢*, the uniform density is unstable, and any
perturbation from the azimuthal mixing will lead to the sepa-
ration of dense and dilute regions. We note that our analysis
in Fig. 4 is based on pair interactions, and assumes a perfect
symmetry. It is over estimating the ¢* compared to the bulk
simulations where ¢* ~ 35% is observed (Fig. 2).

In the simulations, W is observed to grow rapidly to ~
0.75, while the growth of the domain length-scale L occurs
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FIG. 5. (a) The probability distributions of the local area fractions
P(¢) are shown for different Reynolds numbers for a global area
fraction ¢y ~ 39% (marked by the vertical dashed line). (b) The
averaged local hexagonal order parameter W¢ as a function of the
Reynolds number.

at later stage (Fig. 3(a) and (b)). When Wg < 1 the rotational
(tangential) flow fields lead to translational motion of the spin-
ners, giving a rise to non-uniformities in the particle density
(see e.g. Movie 1 and 2 in [36]). These suggest that local den-
sity fluctuations may reduce the ¢* predicted from the pair
interactions in Fig. 4(d). Close to the critical concentration,
the density fluctuations would eventually lead to the forma-
tion of a large high density cluster, stabilized by a boundary
layer between the high and low density regions, where both
the W and ¢ change continuously [36] (Fig. 1(d)).

To better evaluate the effective repulsion, we measure an
expansion force of a small uniform cluster [36] (Fig. 4(e)
and (f)). The expansion force shows an increase until ¢ ~
37%, it is then observed to slightly decrease, followed by a
steep increase at ~ 55% due to particle collisions and repul-
sive lubrication forces (Fig. 4(f)). This favours the forma-
tion of the high density phase at ~ 55%, in agreement with
~ 58% observed in Fig. 2. To balance the repulsion from the
dense phase, we can estimate a low density phase at ~ 28%
(Fig. 4(f)), which is close to ~ 25% observed in Fig. 2.

The effect of Reynolds number: The inertial effects con-
trol the competition between the rotational mixing and the
radial repulsion. For a single particle, the ratio between
the azimuthal vy and radial v, flow fields gives vl,,/vr ~
Re~! [16, 25, 26]. At small Re mixing dominates, and no
spontaneous crystallization is expected at the Stokes’ limit in
the absence of repulsive interactions [21].

Starting from the steady state of a two-phase crystalliza-
tion (Re = 10), we observe that the density peaks become less
pronounced when Re decreases and disappears when Re ~ 1
(Fig. 5). Similarly, the hexatic order is lost when the rela-
tive hydrodynamic repulsion is reduced (Re < 5 in Fig. 5(b)),
in agreement with the predictions at Re = 0 [21]. When
the Re is increased, the density peaks become more pro-
nounced (Fig. 5(a)) and the system shows increased hexatic

order (Fig. 5(b)). Interestingly, the hexatic order shows a hys-
teresis around Re ~ 2. This is likely due to W¢ dependence of
the rotational mixing: the higher W¢ the smaller the perturba-
tions arising from the rotational flows.

Conclusions: We have simulated spherical particles spin-
ning at an inertial regime. The results show that the parti-
cles form hexagonal structures when they settle on the solid
surfaces with a semi-dilute particle concentrations. Increas-
ing the particle concentration, leads to a phase separated state,
where the uniform hexagonal structure deviates into a dense
domain surrounded by a less dense region while maintaining
overall hexatic order. We demonstrate that this effect is due
to the non-monotonic repulsion arising from the particle con-
centration dependent spinning frequency at inertial regime,
suggesting a rotational analogue of the motility-induced phase
separation (MIPS) [39] for spinners.

We believe that our system can be useful for the design
of new artificial spinner materials. A possible experimental
realization could be a spinner system consisting of millime-
ter sized particles embedded with a weak magnet in a rotat-
ing magnetic field [40]. By using weak magnets, and high
magnetic field, the dipole-dipole interactions could be reduced
enough to allow hydrodynamic interactions to dominate. Typ-
ically, this leads to spinning with a constant frequency, while
a constant torque would require a slip between the embedded
magnet and the spherical shell. Our observation of the phase
separation provides a route for a plastic crystal state with a
spatially variable density. Further it highlights the importance
of inertial secondary flow in the spontaneous assembly of or-
dered structures in non-equilibrium spinner systems.
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