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, the authors fully characterize the set of initial data leading to a given target using the classical Lax-Hopf formula. In this note, an alternative proof based only on generalized backward characteristics is given. This leads to the hope of investigate systems of conservation laws in one dimension where the classical Lax-Hopf formula doesn't hold anymore. Moreover, numerical illustrations are presented using as a target, a function optimized for minimum pressure rise in the context of sonic-boom minimization problems. All of initial data leading to this given target are constructed using a wave-front tracking algorithm.

I. INTRODUCTION A. Sonic-boom minimization

A supersonic airplane, flying above the speed of sound, creates a near-field pressure disturbance. This near-field pressure propagates via an augmented Burgers equation [START_REF] Olav | Propagation of sonic booms through a real, stratified atmosphere[END_REF], [START_REF] Sriram | Advanced sonic boom prediction using the augmented burgers equation[END_REF] (1) Above, P = P (σ, τ ) is the pressure disturbance, σ is the distance from the airplane, τ is the time and the nearfield pressure is localized at σ 0 . For a description of other parameters, we refer to [START_REF] Olav | Propagation of sonic booms through a real, stratified atmosphere[END_REF], [START_REF] Sriram | Advanced sonic boom prediction using the augmented burgers equation[END_REF], [START_REF] Allahverdi | Numerical aspects of sonic-boom minimization[END_REF]. When the pressure disturbance reaches the ground level, it creates two subsequent loud bangs with a short time lapse in between, so-called sonicboom [START_REF] Juan | Multidisciplinary optimization with applications to sonic-boom minimization[END_REF], see Figure 1.

The sonic-boom effects could be minimized by tailoring the shape of the airplane [START_REF] Pawlowski | Origins and overview of the shaped sonic boom demonstration program[END_REF]. The near-field pressure is approximated using F-functions theory [START_REF] Beresford | The flow pattern of a supersonic projectile[END_REF] from the shape of the airplane. We confine our study to the propagation of the sonic-boom from the near-field of the plane down to a desired ground target. More precisely, given a desired ground target P T and the distance of the propagation Σ, our aim 1 Thibault Liard is with LS2N, Ecole Centrale de Nantes & CNRS UMR 6004, F-44000 Nantes, France., Thibault.Liard@ls2n.fr. 2 Enrique Zuazua is with Chair in Applied Analysis, Alexander von Humboldt-Professorship, Department of Mathematics Friedrich-Alexander-Universitat, Erlangen-Nurnberg, 91058 Erlangen, Germany, Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain and Chair of Computational Mathematics, Fundación Deusto Av. de las Universidades 24, 48007 Bilbao, Basque Country, Spain, enrique.zuazua@fau.de.

Fig. 1: Evolution of pressure disturbances. The near-field disturbance propagates away from the aircraft to the far-field generating a classic N-wave consisting only of a leading and trailing shock. Extract from [START_REF] Juan | Multidisciplinary optimization with applications to sonic-boom minimization[END_REF]. is to identify the set of near-field pressure disturbances P 0 leading to P T at σ = Σ along augmented Burgers evolution at the ground level, i.e P (Σ, •) = P T where P solution of (1) with initial data P 0 . We refer the reader to [START_REF] Juan | Multidisciplinary optimization with applications to sonic-boom minimization[END_REF] for a detailed review on the state of the art related to sonic-boom minimization problem.

In this paper, we take into account the non linear hyperbolic dynamic of (1) disregarding the non-local term and the diffusion effects. Hence, the augmented Burgers equation is reduced to a one-dimensional Burgers equation (2) using the change of variable u(t, x) = P (t, -x). In Section III, we construct multiple approximate initial data P 0 leading to ground-boom signature P T optimized for minimum pressure rise, see [3, Figure 2].

B. Presentation of the problem

We consider the one-dimensional scalar conservation laws

∂ t u(t, x) + ∂ x f (u(t, x)) = 0, (t, x) ∈ R + × R, u(0, x) = u 0 (x), ( 2 
)
where u is the state, u 0 is the initial state and the flux function f is defined by f (u) = u 2 2 . Kruzkov's theory [START_REF] Stanislav | First order quasilinear equations in several independent variables[END_REF] provides existence and uniqueness of a solution of (2) with bounded initial datum u 0 ∈ L ∞ (R).

Let T > 0 a final time and u T a target function. As ( 2) is time-irreversibility, some conditions on u T need to be imposed for it to be attainable. This is shown in [12, Theorem 3.1, Corollary 3.2], [START_REF] Gosse | Filtered gradient algorithms for inverse design problems of one-dimensional burgers equation[END_REF]Corollary 1] or [START_REF] Sundar Ghoshal | Exact controllability of scalar conservation laws with strict convex flux[END_REF] where they prove that u T is truly attainable in an exact manner by a solution of (2) if and only if u T satisfies the one-sided Lipschitz condition [START_REF] Bressan | Decay of positive waves in nonlinear systems of conservation laws[END_REF], [START_REF] Glass | An extension of oleinik's inequality for general 1d scalar conservation laws[END_REF], [START_REF] Arsen | Discontinuous solutions of non-linear differential equations[END_REF], [START_REF] Constantine M Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of grundlehren der mathematischen wissenschaften[END_REF], i.e

∂ x u T ≤ 1 T in D (R). (3) 
Due to the property of non-backward uniqueness of (2), there may exist multiple initial data leading to the same attainable target u T , as seen in Figure 3. In [START_REF] Gosse | Filtered gradient algorithms for inverse design problems of one-dimensional burgers equation[END_REF], the authors prove that the set of initial data evolving to an attainable target u T is a convex set. Later on, the aforementioned set was fully characterized in [START_REF] Colombo | Initial data identification in conservation laws and hamilton-jacobi equations[END_REF], [START_REF] Esteve | The inverse problem for hamiltonjacobi equations and semiconcave envelopes[END_REF] using the classical Lax-Hopf formula [START_REF] Peter | Hyperbolic systems of conservation laws ii[END_REF]Theorem 2.1].

In [START_REF] Castro | An alternating descent method for the optimal control of the inviscid burgers equation in the presence of shocks[END_REF], [START_REF] Castro | Optimal control and vanishing viscosity for the burgers equation[END_REF], [START_REF] Allahverdi | Numerical aspects of large-time optimal control of burgers equation[END_REF], [START_REF] Castro | An alternating descent method for the optimal control of the inviscid burgers equation in the presence of shocks[END_REF], initial data identification of Burgers equation is regarded as an optimal control problem

min u0 J 0 (u 0 ) := u T (•) -u(T, •) L 2 (R) (4) 
To solve the optimal control problem (4), some difficulties arise from a theoretical and numerical point of view. Because of the presence of discontinuities (called shocks) in the solution u of (2), the derivative of the cost function J 0 in ( 4) is regarded in a weak sense by requiring strong conditions on the set of initial data [START_REF] Bressan | A maximum principle for optimally controlled systems of conservation laws[END_REF], [START_REF] Bressan | A variational calculus for discontinuous solutions of systems of conservation laws[END_REF], [START_REF] Franc | One-dimensional transport equations with discontinuous coefficients[END_REF], [START_REF] Franc | Differentiability with respect to initial data for a scalar conservation law[END_REF]. This leads to require that entropy solutions of (2) have a finite number of non-interacting jumps. When J 0 is weakly differentiable, gradient descent methods have been implemented in [START_REF] Castro | An alternating descent method for the optimal control of the inviscid burgers equation in the presence of shocks[END_REF], [START_REF] Castro | Optimal control and vanishing viscosity for the burgers equation[END_REF], [START_REF] Allahverdi | Numerical aspects of large-time optimal control of burgers equation[END_REF] to solve numerically the optimal problem (4). In the cases where it was applied successfully, only one possible initial datum emerges, namely the backward entropy solution, see Section I-C. To find some multiple minimizers, the authors in [START_REF] Gosse | Filtered gradient algorithms for inverse design problems of one-dimensional burgers equation[END_REF] use a filtering step in the backward adjoint solution.

In our paper, an alternative proof of the characterization of the set of initial data in [START_REF] Colombo | Initial data identification in conservation laws and hamilton-jacobi equations[END_REF], [START_REF] Esteve | The inverse problem for hamiltonjacobi equations and semiconcave envelopes[END_REF] is given using only backward generalized characteristics. This leads to the hope of investigate systems of conservation laws in one dimension. More precisely, [START_REF] Colombo | Initial data identification in conservation laws and hamilton-jacobi equations[END_REF]Theorem 4.1] cannot be extend to systems as Euler equations, Saint-Venant equations or Aw-Rascle-Zhang model since Lax-Hopf formula does not hold anymore. Moreover, a wave-front tracking method is implemented to construct numerically all of them. In the simulations, the target function is optimized for minimum pressure rise in the context of sonic-boom minimization problems.

C. The backward-forward method

For a sake of completeness, we recall the definition of a weak-entropy solution of (2).

Definition 1.

• We say that u

∈ L ∞ (R + × R) ∩ C 0 (R + , L 1 loc (R)) is a weak solution if for all ϕ ∈ C 1 c (R 2 , R), R + R (u∂ t ϕ + f (u)∂ x ϕ)dxdt + R u 0 (x)ϕ(0, x)dx = 0. • We say that u ∈ L ∞ (R + × R) ∩ C 0 (R + , L 1 loc (R)) is a weak-entropy solution if u is a weak solution and for every k ∈ R, for all ϕ ∈ C 1 c (R 2 , R + ), R + R (|u -k|∂ t ϕ + sgn(u -k)(f (ρ) -f (k))∂ x ϕ)dxdt + R |u 0 -k|ϕ(0, x)dx ≥ 0.
Kruzkov's theory [START_REF] Stanislav | First order quasilinear equations in several independent variables[END_REF] provides existence and uniqueness of a weak-entropy solution (t, x) → S + t (u 0 )(x) of ( 2) with initial datum u 0 ∈ L ∞ (R). For a given function u T , we introduce the backward function (t, x) → S - t (u T )(x) as follows: for every t ∈ [0, T ], for a.e x ∈ R,

S - t (u T )(x) = S + t (x → u T (-x))(-x). (5) 
Remark 1. The solutions S + t (u 0 ) and S - t (u T ) may be regarded as the zero viscosity limit of the solutions S +,ε t (u 0 ) and S -,ε T (u T ) respectively where S +,ε t (u 0 ) and S -,ε t (u T ) are defined as follows: S +,ε t (u 0 ) is the solution of the following viscous Burgers equation

∂ t u(t, x) + ∂ x f (u(t, x)) = ε∂ 2 xx u(t, x), (t, x) ∈ R + × R, u(0, •) = u 0 (x), x ∈ R,
and S -,ε t (u 0 ) is the solution of the following backward equation

∂ t u(t, x) + ∂ x f (u(t, x)) = -ε∂ 2 xx u(t, x), (t, x) ∈ R + × R, u(T, •) = u T (x), x ∈ R.
Using the change of variable (t, x) → (Tt, -x), we notice that the backward equation above is well-defined. Thus, S - T (u T ) is called the backward entropy solution.

•

The backward-forward method consists in solving backward in time the PDE (2) with final target u T and then solving it forward in time with initial datum S - T (u T ), the solution of the backward PDE.

For any attainable target u T , we have

S + T (S - T (u T )) = u T as seen in [12, Theorem 3.1, Corollary 3.2] and [19, Corollary 1]. II. MAIN RESULTS Fix u T ∈ L ∞ (R), we introduce the set I(u T ) = {u 0 ∈ L ∞ (R; R) : S + T (u 0 ) = u T }. (6) 
From [12, Corollary 3.2], I(u T ) = ∅ if and only if a suitable representative of u T satisfies the Oleinik condition [START_REF] Bressan | Decay of positive waves in nonlinear systems of conservation laws[END_REF], [START_REF] Glass | An extension of oleinik's inequality for general 1d scalar conservation laws[END_REF], [START_REF] Arsen | Discontinuous solutions of non-linear differential equations[END_REF], [START_REF] Constantine M Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of grundlehren der mathematischen wissenschaften[END_REF], i.e for every x ∈ R and y ∈ R + \{0},

f (u T (x + y) -f (u T (x))) ≤ y T . (7) 
When f ∈ BV loc (R), the limits

lim x→x0,x>x0 f (x) := f (x 0 +) and lim x→x0,x<x0 f (x) := f (x 0 -) exist.
Theorem 1. Let T > 0 and a suitable representation of u T ∈ L ∞ (R) satisfies the Oleinik condition [START_REF] Bressan | A maximum principle for optimally controlled systems of conservation laws[END_REF]. Then the initial data u 0 ∈ L ∞ (R) verifies S + T (u 0 ) = u T if and only if the following statements holds. For any

(x, y) ∈ X(u T ) × R y x-T f (u T (x)) S - T (u T )(s) ds ≤ y x-T f (u T (x)) u 0 (s) ds, (8) 
For any (x, y) ∈ X(u T ) 2 , y-T f (u T (y))

x-T f (u T (x))

S - T (u T )(s) ds = y-T f (u T (y)) x-T f (u T (x)) u 0 (s) ds, (9) where X(u T ) = {x ∈ R, u T (x-) = u T (x+)} ) and S - T (u T ) is defined in (5). Remark 2. When u T ∈ L ∞ (R) satisfies the Oleinik condition (7), then u T ∈ BV loc (R). Thus, X(u T ) is well-defined. • III. SIMULATIONS
Let u T a given target defined by

u T (x) = min(1, max(-1, 1 2 (x -1) -1))1 (0,6) (x). ( 10 
)
Note that P T : x → u T (-x) is of the form of the groundboom signature optimized for minimum pressure rise, see [3, Figure 2].

To solve (2) with initial datum u 0 ∈ BV (R), we have implemented a wave-front tracking algorithm, proposed by Dafermos [START_REF] Constantine M Dafermos | Polygonal approximations of solutions of the initial value problem for a conservation law[END_REF], in the software Matlab. If u ≤ u 0 ≤ u, we introduce the state mesh

M n := u + (u -u)(2 -n N ∩ [0, 1])
and the approximate wave-front tracking solution of S + t (u 0 ) is denoted by S +,n t (u 0 ) : R → M n with n ∈ N the discretization parameter.

Step 1. We construct an approximate backward entropy solution

S -,n t (u T ) : x → S +,n t (x → u T (-x))(-x),
with u = -1, u = 1 and n = 6. An illustration of S -,n t (u T )(x) in the plane (x, t) is given in Figure 2a. The solution S -,n t (u T ) at time t = T is plotted with respect to x in Figure 2b. In figure 2c, the approximate solution (t, x) → S +,n t (S -,n T (u T ))(x) of ( 2) with initial data S -,n T (u T ) is plotted in the plane (x, t). Note that S +,n t (S -,n T (u T )) at time t = T is an approximate function of u T , see Figure 2d.

Step 2. From ( 8) and ( 9), we construct the set of initial data u 0 leading to u T along forward entropy evolution of Burgers equation (2). In Figure 3, four of them are plotted in 3. As a consequence, S +,n T (u 0 ) is an approximate function of u T . Note that, from (9), for any

u 0 satisfying S + T (u 0 ) = u T , for any x ∈ (-∞, 0) ∪ (2, 4) ∪ (6, +∞), u 0 (x) = S - T (u T )(x), Solution u(t, x) Position x Time t (a) (x, t) → -,n t (u T )(-x) (b) x → S -,n T (u T )(x) Solution u(t, x) Position x Time t (c) (x, t) → S t -,n T (u T ))(x) (d) u T (--) and x → S +,n T (S -,n T (u T ))(x) (--)
Fig. 2: T = 2, n = 6. Construction of an approximate backward entropy solution of S - t (u T ) and an approximate solution of S + T (S - T (u T )) of u T defined in [START_REF] Castro | Optimal control and vanishing viscosity for the burgers equation[END_REF] see Figure 2b and Figure 3.

Back to the sonic-boom minimization problem, using the change of variable P (t, x) = u(t, -x), we construct theoretically and numerically the set of near-pressure disturbances P 0 leading to ground bound signature P T optimized for minimum pressure rise. Among this set, a selection of admissible P 0 could be imposed to ensure feasible aircraft design (for instance aerodynamic lift) [3, Section 3.3], [START_REF] Minelli | Advanced optimization approach for supersonic low-boom design[END_REF], [START_REF] Rallabhandi | Sonic boom adjoint methodology and its applications[END_REF].

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is based on the two following lemma and the notion of generalized backward characteristics. This latter notion is an important tool for the study of analytical and geometric properties of weak solutions of (2). We refer to [15, Section 10, Section 11] for more details.

Lemma 1. For every (γ 1 , γ 2 ) ∈ C 0,1 ([0, T ]; R) 2 , for every t 1 < t 2 , γ2(t1) γ1(t1) u(t 1 , x) dx + t2 t1 F (u(t, γ 1 (t)-)) dt = γ2(t2) γ1(t2) u(t 2 , x) dx + t2 t1 F (u(t, γ 2 (t)+)) dt
with u a weak-entropy solution of (2) and for every t ∈ R + , for every γ ∈ C 0,1 ([0, T ]; R),

F (u(t, γ(t)±)) = f (u(t, γ(t)±) -γ(t)u(t, γ(t)±).
The proof of Lemma 1 is given in [13, Lemma 3.2]. We introduce the function Q : R 3 → R defined by

Q(u, v, w) = f (v) -f (u) -f (u)-f (w) u-w (v -u), if u = w, f (v) -f (u) -f (u)(v -u), if u = w. ( 11 
)
Since f is strictly convex, we deduce the following Lemma Lemma 2. Let u, w ∈ R.

• If v ∈ [u, w] with u ≤ w, Q(u, v, w) ≤ 0. • If v / ∈ [u, w], Q(u, v, w) ≥ 0. • If u = v, Q(u, v, w) = 0.
Proof of Theorem 1. Let u 0 ∈ L ∞ (R) and assuming that a suitable representation of u T ∈ L ∞ (R) satisfies the Oleinik condition [START_REF] Bressan | A maximum principle for optimally controlled systems of conservation laws[END_REF]. We denote by u the weak-entropy solution of (2) with initial data u 0 and u * the weak-entropy solution of (2) with initial data u * 0 := S - T (u T ) where S - T (u T ) is defined in [START_REF] Franc | Differentiability with respect to initial data for a scalar conservation law[END_REF].

Assuming that u(T, •) = u T (•). Let (x, y) ∈ X(u T ) × R with x -T f (u T (x)) < y. Since u T ∈ L ∞ (R) satisfies the one-sided Lipschitz condition, from [12, Theorem 3.1], we have u * (T, •) = u T (•).
From Lemma 1 with t 1 = 0 and t 2 = T applied with u 0 and u * 0 and using that u(T,

•) = u * (T, •) = u T , we have γ2(0) γ1(0) (u 0 (s) -u * 0 (s)) ds = T 0 F (u(t, γ 2 (t)+)) -F (u * (t, γ 2 (t)+)) dt - T 0 (F (u(t, γ 1 (t)-)) -F (u * (t, γ 1 (t)-))) dt (12) 
Fig. 3: T = 2, n = 6 and u T defined in [START_REF] Castro | Optimal control and vanishing viscosity for the burgers equation[END_REF]. Plotting of four different u 0 with respect to x yielding solutions of Burgers equation that coincide with u T at time t = T .

for every (γ 1 , γ 2 ) ∈ C 0,1 ([0, T ]; R).

• Since x ∈ X(u T ), we have u T (x-) = u T (x+) = u(T, x-) = u(T, x+). Thus, from [15, Theorem 11.1.3], the minimal backward generalized characteristic ξ -and the maximal backward generalized characteristic ξ + , associated to u (or u T or u * ), emanating from (T, x) coincide over [0, T ], i.e ξ -(t) = ξ + (t) for every t ∈ [0, T ]. Moreover, ξ -is a straight line with slope f (u

T (x-)) = f (u T (x+)) and ξ -(T ) = x -T f (u T (x)). The function ξ : [0, T ] → R defined by ξ(t) = ξ -(T -t
) is a forward characteristic associated with u (or u T or u * ), issuing from (0, x -T f (u T (x)). • There exists a forward generalized characteristic ξ * ∈ C 0,1 ([0, T ]; R), associated with u * , issuing from (0, y) 1 .

From [12, Lemma 7.2], (t, x) → S - t (u T )(x) is Lipschitz continuous on any compact (0, T )×R, thus ξ * is a straight line with slope f (u * ( T 2 , ξ * ( T 2 ))). Thus, for every s ∈ (0, T ), u * (s, ξ * (s)-) = u * (s, ξ * (s)+). From [15, Corollary 11.1.2], since ξ and ξ * are distinct generalized characteristics for (2) associated with the admissible weak solution u * , which are shock-free on the time interval [0, T ]. Then ξ and ξ * cannot intersect for any t ∈ (0, T ) as seen in Figure 4. From [15, Theorem 10.2.3] and ( 12) with ), emanating from (T, x) and plotting of ξ * , the forward generalized characteristic, associated to u * , emanating from (0, y) with (x, y) ∈ X(u T ) × R and x -T f (u T (x)) < y.

x t t = T × x x -T f (u T (x)) y ξ(•) ξ * (•)
γ 1 = ξ and γ 2 = ξ * , y x-T f (u T (x)) (u 0 (s) -u * 0 (s)) ds = T 0 Q(u * (s, ξ * (s)+), u(s, ξ * (s)+), u * (s, ξ * (s)-)) ds + T 0 Q(u(s, ξ(s)-), u * (s, ξ(s)-), u(s, ξ(s)-)) ds, (13) 
where Q is defined in [START_REF] Olav | Propagation of sonic booms through a real, stratified atmosphere[END_REF]. From Lemma 2 and ( 13), for every

(x, y) ∈ X(u T ) × R with x -T f (u T (x)) < y, y x-T f (u T (x)) (u 0 (s) -u * 0 (s)) ds ≥ 0. ( 14 
)
Let (x, y) ∈ I(u T ) 2 with x < y.

• There exists a forward generalized characteristic ξ * ∈ C 0,1 ([0, T ]; R), associated with u * , issuing from (0, x -T f (u T (x))). From [12, Lemma 7.2], (t, x) → S - t (u T )(x) is Lipschitz continuous on any compact (0, T ) × R, thus ξ * is a straight line with slope f (u * ( T 2 , ξ * ( T 2 ))). Thus, for every s ∈ (0, T ), u * (s, ξ * (s)-) = u * (s, ξ * (s)+).

• From [START_REF] Constantine M Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of grundlehren der mathematischen wissenschaften[END_REF]11.1.3 Theorem], since u T (y-) = u T (y+) = u(T, y-) = u(T, y+) the minimal backward generalized characteristic ξ -and the maximal backward generalized characteristic ξ + , associated to u (or u T or u * ), emanating from (T, y) coincide over [0, T ], i.e ξ -(t) = ξ + (t)

for every t ∈ [0, T ]. Moreover, ξ -is a straight line with slope f (u T (y-)) = f (u T (y+)) and ξ -(T ) = y -T f (u T (y)). The function ξ : [0, T ] → R defined by ξ(t) = ξ -(T -t)
is a forward characteristic associated with u, issuing from (0, y -T f (u T (y)). From [START_REF] Constantine M Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of grundlehren der mathematischen wissenschaften[END_REF]Corollary 11.1.2], ξ and ξ * cannot intersect for any t ∈ (0, T ) as seen in Figure 5. Thus, from [15, Theorem 10.2.3] and ( 12) with γ 1 = ξ * and γ 2 = ξ,

x t t = T × x × y x -T f (u T (x)) y -T f (u T (y)) ξ * (•) ξ(•)
y-T f (u T (y)) x-T f (u T (x)) (u 0 (s) -u * 0 (s)) ds = - T 0 Q(u(s, ξ(s)+), u * (s, ξ(s)+), u(s, ξ(s)-)) ds - T 0 Q(u * (s, ξ * (s)-), u(s, ξ * (s)-), u * (s, ξ * (s)-)) ds, (15) 
From Lemma 2 and ( 13), for every (x, y) ∈ X(u T ) 2 with x < y,

y-T f (u T (y)) x-T f (u T (x)) (u 0 (s) -u * 0 (s)) ds ≤ 0. ( 16 
)
From [15, Corollary 11.1.2], we have x -T f (u T (x)) < y -T f (u T (y)). Thus, combining ( 14) with ( 16), we deduce that, for every (x, y) ∈ X(u T ) 2 with x < y y-T f (u T (y))

x-T f (u T (x))

(u 0 (s) -u * 0 (s)) ds = 0. (17) 
The inequality (17) also holds for every (x, y) ∈ X(u T ) 2 with x < y, whence [START_REF] Castro | An alternating descent method for the optimal control of the inviscid burgers equation in the presence of shocks[END_REF]. Assuming that y < x -T f (u T (x)). There exists a z ∈ X(u T ) such that z -T f (u T (z)) < y since a suitable representative of u T ∈ L ∞ (R) satisfies the Oleinik condition [START_REF] Bressan | A maximum principle for optimally controlled systems of conservation laws[END_REF]. Using z -T f (u T (z)) < y and z ∈ X(u T ), from ( 14)

y z-T f (u T (z)) (u 0 (s) -u * 0 (s)) ds ≥ 0. (18) 
Since (z, x) ∈ X(u T ), from (8), we have

x-T f (u T (x)) z-T f (u T (z)) (u 0 (s) -u * 0 (s)) ds = 0. (19) 
Combining ( 18) and ( 19), the inequality ( 14) holds also for y < x -T f (u T (x)), whence [START_REF] Bressan | A variational calculus for discontinuous solutions of systems of conservation laws[END_REF].

Since u T ∈ L ∞ (R) satisfies the one-sided Lipschitz condition, from [12, Theorem 3.1], we have u * (T, •) = u T (•). From Lemma 1 applied with u 0 and u * 0 , we have

γ2(t1) γ1(t1) (u(t 1 , s) -u * (t 1 , s)) ds - γ2(t2) γ1(t2) (u(t 2 , s) -u * (t 2 , s)) ds = t2 t1 F (u(t, γ 2 (t)+)) -F (u * (t, γ 2 (t)+)) dt - t2 t1 (F (u(t, γ 1 (t)-)) -F (u * (t, γ 1 (t)-))) dt (20) for every (γ 1 , γ 2 ) ∈ C 0,1 ([0, T ]; R). Fix (x, y) ∈ X(u T ) 2 with x < y,
Step 1. Fix (x, y) ∈ R × X(u T ) with x < y.

• Let ξ -the minimal backward generalized characteristic, associated to u, emanating from (T, x). Them, ξ -is a straight line with slope f (u(x-)) and ξ

-(T ) = x - T f (u(x-)). The function ξ : [0, T ] → R defined by ξ(t) = ξ -(T -t) is a forward characteristic associated with u, issuing from (0, x -T f (u(x-)). • Since y ∈ X(u T ), we have u T (x-) = u T (x+) = u * (T, x-) = u * (T, x+).
Thus, the minimal backward generalized characteristic ξ * -and the maximal backward generalized characteristic ξ * + , associated to u * , emanating from (T, y) coincide over

[0, T ], i.e ξ * -(t) = ξ * + (t) for every t ∈ [0, T ]. Moreover, ξ * + is a straight line with slope f (u T (x-)) = f (u T (x+)) and ξ * + (T ) = y -T f (u T (y)). The function ξ : [0, T ] → R defined by ξ * (t) = ξ * + (T -t)
is a forward characteristic associated with u * , issuing from (0, y -T f (u T (y)).

We now distinguish if ξ doesn't interact with ξ * or not as seen in Figure 6.

• Assuming that ξ doesn't interact with ξ * over (0, T ). In this case, we have x -T f (u(x-)) ≤ y -T f (u T (y)). 

where Q is defined in [START_REF] Olav | Propagation of sonic booms through a real, stratified atmosphere[END_REF]. Applying (8) with x = y and y = x -T f (u(x-)), we have

y-T f (u T (y)) x-T f (u(x-)) (u 0 (s) -u * 0 (s)) ds ≤ 0. ( 22 
)
From Lemma 2, ( 21) and ( 22), (x, y) ∈ R × X(u T ) with x < y,

y x (u * (T, s) -u(T, s))ds ≥ 0 (23) 
• Assuming that ξ interacts with ξ * at time t I ∈ (0, T ). 

From ( 23) and ( 25), we conclude that for every (x, y) ∈ R × X(u T ) with x < y,

y x (u * (T, s) -u(T, s))ds ≥ 0 (26) 
Step 2. Fix (x, y) ∈ X(u T ) 2 with x < y.

• Since x ∈ X(u T ), we have u T (x-) = u T (x+) = u * (T, x-) = u * (T, x+). Thus, the minimal backward generalized characteristic ξ * -and the maximal backward generalized characteristic ξ * + , associated to u * , emanating from (T, x) coincide over [0, T ], i.e ξ * -(t

) = ξ * + (t) for every t ∈ [0, T ]. Moreover, ξ * -is a straight line with slope f (u T (x-)) = f (u T (x+)) and ξ * -(T ) = x -T f (u T (x)). The function ξ * : [0, T ] → R defined by ξ * (t) = ξ * -(T -t) is a forward characteristic associated with u * , issuing from (0, x -T f (u T (x)).
• Let ξ + the maximal backward generalized characteristic, associated to u, emanating from (T, y). Them, ξ + is a straight line with slope f (u(y+)) and ξ

+ (T ) = y - T f (u(y+)). The function ξ : [0, T ] → R defined by ξ(t) = ξ + (T -t)
is a forward characteristic associated with u, issuing from (0, y -T f (u(y+)). We now distinguish if ξ doesn't interact with ξ * or not as seen in Figure 7.

• Assuming that ξ * doesn't interacts with ξ over (0, T ). In this case, we have x -T f (u T (x)) ≤ y -T f (u(y)+).

From [15, Theorem 10.2.3] and [START_REF] Stanislav | First order quasilinear equations in several independent variables[END_REF] with

t 1 = 0, t 2 = T , γ 1 = ξ * and γ 2 = ξ, y x (u * (T, s) -u(T, s)) ds + y-T f (u(y+)) x-T f (u T (x)) (u 0 (s) -u * 0 (s)) ds = - T 0 Q(u(s, ξ(s)+), u * (s, ξ(s)+), u(s, ξ(s)-)) ds - T 0 Q(u * (s, ξ * (s)-), u(s, ξ * (s)-), u * (s, ξ * (s)-)) ds, (27) 
where Q is defined in [START_REF] Olav | Propagation of sonic booms through a real, stratified atmosphere[END_REF]. Applying (8) with x = x and y = y -T f (u(y+)), we have

y-T f (u(y+)) x-T f (u T (x)) (u 0 (s) -u * 0 (s)) ds ≥ 0. (28) 
From Lemma 2, ( 27) and (28), for every (x, y) ∈ X(u T ) 2 with x < y, y x (u * (T, s)u(T, s))ds ≤ 0 (29)

x t t = T × x × y x -T f (u T (x)) y -T f (u(y+)) ξ * (•) ξ(•) ξ doesn't interact with ξ * x t t = T × x × y t = t I ξ * (•) ξ(•) ξ interacts with ξ * at time t = t Fig. 7: Plotting of ξ * = ξ * -(•) and ξ = ξ + (T -•)
where ξ -is the minimal backward generalized characteristic, associated to u * , emanating from (T, x) and ξ + (•) is the maximal backward generalized characteristic, associated to u, emanating from (T, y) with (x, y) ∈ X(u T ) 2 and x < y.

• Assuming that ξ * interacts with ξ at time t I ∈ (0, T ).

For every t ∈ (t I , T ), we have ξ * (t) ≤ ξ(t). From [15, Theorem 10.2.3] and (20) with t 1 = t I , t 2 = T , γ 1 = ξ * and γ 2 = ξ, y x (u * (T, s)u(T, s)) ds = -T t I Q(u(s, ξ(s)+), u * (s, ξ(s)+), u(s, ξ(s)-)) ds -T t I Q(u * (s, ξ * (s)-), u(s, ξ * (s)-), u * (s, ξ * (s)-)) ds, (30) From Lemma 2, (30), for every (x, y) ∈ X(u T ) 2 with x < y, From ( 29) and (31), we conclude that for every (x, y) ∈ X(u T ) 2 with x < y, Combining ( 26) with (32), we deduce that, for every (x, y) ∈ X(u T ) with x < y, y x (u * (T, s)u(T, s))ds = 0.

(33)

Step 3. From [15, Theorem 11.2.2], u(T, •) ∈ BV loc (R) and u * (T, •) ∈ BV loc (R). Thus, X(u T ) has Lebesgue measure 0. The equality (33) holds for a.e (x, y) ∈ R with x < y. Since y → y x u(T, s) ds and y → y x u * (T, s) ds are absolute continuous functions, (33) holds for every y ∈ R. Using the fundamental theorem of calculus, we deduce that, for a.e y ∈ R, u(T, y) = u * (T, y).

V. CONCLUSION

In this paper, we construct theoretically and numerically the set of initial data yielding solutions of Burgers equation (2) that coincide with a given target. When the augmented Burgers equation ( 1) is reduced to Burgers equation [START_REF] Allahverdi | Numerical aspects of sonic-boom minimization[END_REF], this allows to find the set of near-pressure disturbances P 0 leading to the bound signature P T optimized for minimum pressure rise. The proof is based on a backward-forward method and generalized backward characteristics.

Let us address some related open questions and possible extensions of this work.

In the development of low-boom supersonic airplane, it would be interesting to understand the impact of the nonlocal term and the zero-order term in (1) for the initial data identification problem. Moreover, some constraints on the admissible set of initial data could be imposed to ensure feasible aircraft design.

Since we don't need Lax-Hopf formula as in [12, Theorem 4.1], we may extend our approach to systems of conservation laws in one dimension (Euler equations, Saint-Venant equations, Aw-Rascle-Zhang model). Note that, as soon as the backward-forward operator S + T (S - T ) is welldefined, S + T (S - T )(u T ) may give a good candidate to solve the initial data identification of systems of conservation laws.
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 4 Fig.4: Plotting of ξ(•) = -(T -•) with ξ -the minimal backward generalized characteristic, associated to u (or u T or u * ), emanating from (T, x) and plotting of ξ * , the forward generalized characteristic, associated to u * , emanating from (0, y) with (x, y) ∈ X(u T ) × R and x -T f (u T (x)) < y.

Fig. 5 :

 5 Fig.5: Plotting of ξ , the forward generalized characteristic, associated to u * , emanating from (0, x) and plotting of ξ(•) = ξ + (T -•) with ξ -the maximal backward generalized characteristic, associated to u (or u T or u * ), emanating from (T, y) with (x, y) ∈ X(u T ) 2 and x < y.

ξ

  Fig. Plotting of ξ(•) = ξ -(T -•) and ξ * (•) = ξ * + (•) where ξ -is the minimal backward generalized characteristic, associated to u, emanating from (T, x) and ξ * + (•) is the maximal backward generalized characteristic, associated to u * , emanating from (T, y) with (x, y) ∈ R × X(u T ) and x < y.

  For every t ∈ (t I , T ), we have ξ(t) ≤ ξ * (t). From [15, Theorem 10.2.3] and[START_REF] Stanislav | First order quasilinear equations in several independent variables[END_REF] with t 1 = t I , t 2 = T , γ 1 = ξ and γ 2 = ξ * , y x (u * (T, s)u(T, s)) ds = T t I Q(u * (s, ξ * (s)+), u(s, ξ * (s)+), u * (s, ξ * (s)-)) ds + T t I Q(u(s, ξ(s)-), u * (s, ξ(s)-), u(s, ξ(s)-)) ds.(24) From Lemma 2, (24), for every (x, y) ∈ R × X(u T ) with x < y, y x (u * (T, s)u(T, s))ds ≥ 0

  (T, s)u(T, s))ds ≤ 0 (31)

  (T, s)u(T, s))ds ≤ 0 (32)

If a rarefaction wave is created at t = 0, multiple forward generalized characteristics exist.