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Initial data identification for the one-dimensional
Burgers equation

Thibault Liard1 and Enrique Zuazua2

Abstract—In this paper, we study the problem of identification
for the one-dimensional Burgers equation. This problem consists
in identifying the set of initial data evolving to a given target at
a final time. Due to the property of non-backward uniqueness of
Burgers equation, there may exist multiple initial data leading
to the same given target. We fully characterize the set of initial
data leading to a given target along forward entropic evolution
of Burgers equation. The proof is based on a backward-forward
method and generalized backward characteristics. Simulations
to sonic boom minimization are given using a wave-front tacking
algorithm.

I. INTRODUCTION

A. Sonic-boom minimization

A supersonic airplane, flying above the speed of sound, cre-
ates a near-field pressure disturbance. This near-field pressure
propagates via an augmented Burgers equation [11], [25] as
follows

∂P
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∂τ + 1
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∂2σ +
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∫ τ
−∞ e
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∂2P (ξ)
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∂G
∂σ P + 1

2ρ0c0

∂(ρ0c0)
∂σ P ,

P (σ0, ·) = P0(·).
(1)

Above, P = P (σ, τ) is the pressure disturbance, σ is the
distance from the airplane, τ is the time and the near-
field pressure is localized at σ0. For a description of other
parameters, we refer to [11], [25], [2]. When the pressure
disturbance reaches the ground level, it creates two subsequent
loud bangs with a short time lapse in between, so-called sonic-
boom [3], see Figure 1.

The sonic-boom effects could be minimized by tailoring
the shape of the airplane [23]. The near-field pressure is
approximated using F-functions theory [26] from the shape
of the airplane. We confine our study to the propagation of
the sonic-boom from the near-field of the plane down to a
desired ground target. More precisely, given a desired ground
target PT and the distance of the propagation Σ, our aim
is to identify the set of near-field pressure disturbances P0

leading to PT at σ = Σ along augmented Burgers evolution
at the ground level, i.e P (Σ, ·) = PT where P solution of
(1) with initial data P0. We refer the reader to [3] for a
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Fig. 1: Evolution of pressure disturbances. The near-field
disturbance propagates away from the aircraft to the far-field
generating a classic N-wave consisting only of a leading and
trailing shock. Extract from [3].

detailed review on the state of the art related to sonic-boom
minimization problem.

In this paper, we take into account the non linear hyperbolic
dynamics of (1) disregarding the non-local term and the
diffusion effects. Hence, the augmented Burgers equation is
reduced to a one-dimensional Burgers equation (2) using
the change of variable u(t, x) = P (t,−x). In Section III,
we construct multiple approximate initial data P0 leading to
ground-boom signature PT optimized for minimum pressure
rise, see [3, Figure 2].

B. Presentation of the problem

We consider the one-dimensional scalar conservation laws{
∂tu(t, x) + ∂xf(u(t, x)) = 0, (t, x) ∈ R+ × R,
u(0, x) = u0(x),

(2)

where u is the state, u0 is the initial state and the flux
function f is defined by f(u) = u2

2 . Kruzkov’s theory [19]
provides existence and uniqueness of a solution of (2) with
bounded initial datum u0 ∈ L∞(R).

Let T > 0 a final time and uT a target function. As (2) is
time-irreversibility, some conditions on uT need to be imposed
for it to be attainable. This is shown in [12, Theorem 3.1,
Corollary 3.2], [18, Corollary 1] or [16] where they prove
that uT is truly attainable in an exact manner by a solution of
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(2) if and only if uT satisfies the one-sided Lipschitz condition
[6], [17], [22], [15], i.e

∂xu
T ≤ 1

T
in D′(R). (3)

Due to the property of non-backward uniqueness of (2),
there may exist multiple initial data leading to the same
attainable target uT , as seen in Figure 3. In [18], the authors
prove that the set of initial data evolving to an attainable
target uT is a convex set. Later on, the aforementioned
set was fully characterized when uT ∈ SBVloc(R)1 in [12,
Theorem 4.1] using the classical Lax-Hopf formula [20,
Theorem 2.1].

In [9], [10], [1], [9], initial data identification of Burgers
equation is regarded as an optimal control problem

min
u0

J0(u0) := ‖uT (·)− u(T, ·)‖L2(R) (4)

To solve the optimal control problem (4), some difficulties
arise from a theoretical and numerical point of view. Because
of the presence of discontinuities (called shocks) in the
solution u of (2), the derivative of the cost function J0 in (4)
is regarded in a weak sense by requiring strong conditions
on the set of initial data [7], [8], [4], [5]. This leads to
require that entropy solutions of (2) have a finite number
of non-interacting jumps. When J0 is weakly differentiable,
gradient descent methods have been implemented in [9], [10],
[1] to solve numerically the optimal problem (4). In the cases
where it was applied successfully, only one possible initial
datum emerges, namely the backward entropy solution, see
Section I-C. To find some multiple minimizers, the authors in
[18] use a filtering step in the backward adjoint solution.

In our paper, the restriction uT ∈ SBVloc(R) in [12,
Theorem 4.1] is removed. More precisely, for any attainable
target uT , we fully characterize the set of initial data yielding
solutions of Burgers equation that coincide with the target uT

at a given time T . The proof is based on a backward-forward
method and backward generalized characteristics. This leads
to the hope of investigate systems of conservation laws in
one dimension. In particular, [12, Theorem 4.1] cannot be
extend to systems as Euler equations, Saint-Venant equations
or Aw-Rascle-Zhang model since Lax-Hopf formula does
not hold anymore. Moreover, a wave-front tracking method
is implemented to construct numerically all of them with
application to sonic-boom minimization.

C. The backward-forward method

For a sake of completeness, we recall the definition of a
weak-entropy solution of (2).

1A function f is a locally Special Bounded Variation function (f ∈
SBVloc(R)) if f ∈ BVloc(R) and the Cantor part of the measure f ′ vanishes.

Definition 1. • We say that u ∈ L∞(R+ × R) ∩
C0(R+, L1

loc(R)) is a weak solution if for all ϕ ∈
C1
c (R2,R),∫
R+

∫
R
(u∂tϕ+f(u)∂xϕ)dxdt+

∫
R
u0(x)ϕ(0, x)dx = 0.

• We say that u ∈ L∞(R+ × R) ∩ C0(R+, L1
loc(R)) is a

weak-entropy solution if u is a weak solution and for
every k ∈ R, for all ϕ ∈ C1

c (R2,R+),

∫
R+

∫
R
(|u− k|∂tϕ+ sgn(u− k)(f(ρ)− f(k))∂xϕ)dxdt

+

∫
R
|u0 − k|ϕ(0, x)dx ≥ 0.

Kruzkov’s theory [19] provides existence and uniqueness of
a weak-entropy solution (t, x)→ S+

t (u0)(x) of (2) with initial
datum u0 ∈ L∞(R). For a given function uT , we introduce
the backward function (t, x) → S−t (uT )(x) as follows: for
every t ∈ [0, T ], for a.e x ∈ R,

S−t (uT )(x) = S+
t (x→ uT (−x))(−x). (5)

Remark 1. The solutions S+
t (u0) and S−t (uT ) may be re-

garded as the zero viscosity limit of the solutions S+,ε
t (u0)

and S−,εT (uT ) respectively where S+,ε
t (u0) and S−,εt (uT ) are

defined as follows: S+,ε
t (u0) is the solution of the following

viscous Burgers equation{
∂tu(t, x) + ∂xf(u(t, x)) = ε∂2

xxu(t, x), (t, x) ∈ R+ × R,
u(0, ·) = u0(x), x ∈ R,

and S−,εt (u0) is the solution of the following backward equa-
tion{
∂tu(t, x) + ∂xf(u(t, x)) = −ε∂2

xxu(t, x), (t, x) ∈ R+ × R,
u(T, ·) = uT (x), x ∈ R.

Using the change of variable (t, x) → (T − t,−x), we
notice that the backward equation above is well-defined. Thus,
S−T (uT ) is called the backward entropy solution. ◦

The backward-forward method consists in solving backward
in time the PDE (2) with final target uT and then solving it
forward in time with initial datum S−T (uT ), the solution of
the backward PDE.

For any attainable target uT , we have S+
T (S−T (uT )) = uT

as seen in [12, Theorem 3.1, Corollary 3.2] and [18, Corollary
1].

II. MAIN RESULTS

Fix uT ∈ L∞(R), we introduce the set

I(uT ) = {u0 ∈ L∞(R; R) : S+
T (u0) = uT }. (6)

From [12, Corollary 3.2], I(uT ) 6= ∅ if and only if a suitable
representative of uT satisfies the Oleinik condition [6], [17],
[22], [15], i.e for every x ∈ R and y ∈ R+\{0},

f ′(uT (x+ y)− f ′(uT (x))) ≤ y

T
. (7)
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When f ∈ BVloc(R), the limits lim
x→x0,x>x0

f(x) := f(x0+)

and lim
x→x0,x<x0

f(x) := f(x0−) exist.

Theorem 1. Let T > 0 and a suitable representation of uT ∈
L∞(R) satisfies the Oleinik condition (7). Then the initial data
u0 ∈ L∞(R) verifies S+

T (u0) = uT if and only if the following
statements holds. For any (x, y) ∈ X(uT )× R∫ y

x−Tf ′(uT (x))

S−T (uT )(s) ds ≤
∫ y

x−Tf ′(uT (x))

u0(s) ds, (8)

For any (x, y) ∈ X(uT )2,∫ y−Tf ′(uT (y))

x−Tf ′(uT (x))

S−T (uT )(s) ds =

∫ y−Tf ′(uT (y))

x−Tf ′(uT (x))

u0(s) ds,

(9)
where X(uT ) = {x ∈ R, uT (x−) = uT (x+)} ) and S−T (uT )
is defined in (5).

Remark 2. When uT ∈ L∞(R) satisfies the Oleinik condition
(7), then uT ∈ BVloc(R). Thus, X(uT ) is well-defined. ◦

III. SIMULATIONS

Let uT a given target defined by

uT (x) = min(1,max(−1,
1

2
(x− 1)− 1))1(0,6)(x). (10)

Note that PT : x → uT (−x) is of the form of the ground-
boom signature optimized for minimum pressure rise, see [3,
Figure 2].

To solve (2) with initial datum u0 ∈ BV (R), we have
implemented a wave-front tracking algorithm, proposed by
Dafermos [14], in the software Matlab. If u ≤ u0 ≤ u, we
introduce the state mesh Mn := u + (u − u)(2−nN ∩ [0, 1])
and the approximate wave-front tracking solution of S+

t (u0)
is denoted by S+,n

t (u0) : R → Mn with n ∈ N the
discretization parameter.

Step 1. We construct an approximate backward entropy
solution

S−,nt (uT ) : x→ S+,n
t (x→ uT (−x))(−x),

with u = −1, u = 1 and n = 6. An illustration of
S−,nt (uT )(x) in the plane (x, t) is given in Figure 2a.
The solution S−,nt (uT ) at time t = T is plotted with
respect to x in Figure 2b. In figure 2c, the approximate
solution (t, x) → S+,n

t (S−,nT (uT ))(x) of (2) with initial
data S−,nT (uT ) is plotted in the plane (x, t). Note that
S+,n
t (S−,nT (uT )) at time t = T is an approximate function of
uT , see Figure 2d.

Step 2. From (8) and (9), we construct the set of initial
data u0 leading to uT along forward entropy evolution of
Burgers equation (2). In Figure 3, four of them are plotted in
3. As a consequence, S+,n

T (u0) is an approximate function of
uT . Note that, from (9), for any u0 satisfying S+

T (u0) = uT ,
for any x ∈ (−∞, 0)∪ (2, 4)∪ (6,+∞), u0(x) = S−T (uT )(x),

S
o
lu
tion

u
(t,x

)

Position x

T
im

e
t

(a) (t, x)→ S−,n
t (uT )(−x)

(b) x→ S−,n
T (uT )(x)

S
olu

tion
u
(t,x

)

Position x

T
im

e
t

(c) (t, x)→ S+,n
t (S−,n

T (uT ))(x)

(d) uT (--) and x→ S+,n
T (S−,n

T (uT ))(x) (--)

Fig. 2: T = 2, n = 6. Construction of an approximate
backward entropy solution of S−t (uT ) and an approximate
solution of S+

T (S−T (uT )) of uT defined in (10)
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see Figure 2b and Figure 3.

Back to the sonic-boom minimization problem, using the
change of variable P (t, x) = u(t,−x), we construct theoret-
ically and numerically the set of near-pressure disturbances
P0 leading to ground bound signature PT optimized for min-
imum pressure rise. Among this set, a selection of admissible
P0 could be imposed to ensure feasible aircraft design (for
instance aerodynamic lift) [3, Section 3.3], [21], [24].

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is based on the two following
lemma and the notion of generalized backward characteristics.
This latter notion is an important tool for the study of
analytical and geometric properties of weak solutions of (2).
We refer to [15, Section 10, Section 11] for more details.

Lemma 1. For every (γ1, γ2) ∈ C0,1([0, T ]; R)2, for every
t1 < t2,∫ γ2(t1)

γ1(t1)
u(t1, x) dx+

∫ t2
t1
F (u(t, γ1(t)−)) dt

=
∫ γ2(t2)

γ1(t2)
u(t2, x) dx+

∫ t2
t1
F (u(t, γ2(t)+)) dt

with u a weak-entropy solution of (2) and for every t ∈ R+,
for every γ ∈ C0,1([0, T ]; R),

F (u(t, γ(t)±)) = f(u(t, γ(t)±)− γ̇(t)u(t, γ(t)±).

The proof of Lemma 1 is given in [13, Lemma 3.2]. We
introduce the function Q : R3 → R defined by

Q(u, v, w) =

{
f(v)− f(u)− f(u)−f(w)

u−w (v − u), if u 6= w,

f(v)− f(u)− f ′(u)(v − u), if u = w.
(11)

Since f is strictly convex, we deduce the following Lemma

Lemma 2. Let u,w ∈ R.
• If v ∈ [u,w] with u ≤ w, Q(u, v, w) ≤ 0.
• If v /∈ [u,w], Q(u, v, w) ≥ 0.
• If u = v, Q(u, v, w) = 0.

Proof of Theorem 1. Let u0 ∈ L∞(R) and assuming that
a suitable representation of uT ∈ L∞(R) satisfies the Oleinik
condition (7). We denote by u the weak-entropy solution of
(2) with initial data u0 and u∗ the weak-entropy solution of
(2) with initial data u∗0 := S−T (uT ) where S−T (uT ) is defined
in (5).

Assuming that u(T, ·) = uT (·). Let (x, y) ∈ X(uT ) × R
with x − Tf ′(uT (x)) < y. Since uT ∈ L∞(R) satisfies the
one-sided Lipschitz condition, from [12, Theorem 3.1], we
have u∗(T, ·) = uT (·). From Lemma 1 with t1 = 0 and t2 = T
applied with u0 and u∗0 and using that u(T, ·) = u∗(T, ·) =
uT , we have∫ γ2(0)

γ1(0)
(u0(s)− u∗0(s)) ds =∫ T

0
F (u(t, γ2(t)+))− F (u∗(t, γ2(t)+)) dt

−
∫ T

0
(F (u(t, γ1(t)−))− F (u∗(t, γ1(t)−))) dt

(12)

Fig. 3: T = 2, n = 6 and uT defined in (10). Plotting of four
different u0 with respect to x yielding solutions of Burgers
equation that coincide with uT at time t = T .
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for every (γ1, γ2) ∈ C0,1([0, T ]; R).
• Since x ∈ X(uT ), we have uT (x−) = uT (x+) =
u(T, x−) = u(T, x+). Thus, from [15, Theorem 11.1.3],
the minimal backward generalized characteristic ξ− and
the maximal backward generalized characteristic ξ+, as-
sociated to u (or uT or u∗), emanating from (T, x) co-
incide over [0, T ], i.e ξ−(t) = ξ+(t) for every t ∈ [0, T ].
Moreover, ξ− is a straight line with slope f ′(uT (x−)) =
f ′(uT (x+)) and ξ−(T ) = x−Tf ′(uT (x)). The function
ξ : [0, T ]→ R defined by ξ(t) = ξ−(T − t) is a forward
characteristic associated with u (or uT or u∗), issuing
from (0, x− Tf ′(uT (x)).

• There exists a forward generalized characteristic ξ∗ ∈
C0,1([0, T ]; R), associated with u∗, issuing from (0, y)2.
From [12, Lemma 7.2], (t, x)→ S−t (uT )(x) is Lipschitz
continuous on any compact (0, T )×R, thus ξ∗ is a straight
line with slope f ′(u∗(T2 , ξ

∗(T2 ))). Thus, for every s ∈
(0, T ), u∗(s, ξ∗(s)−) = u∗(s, ξ∗(s)+).

From [15, Corollary 11.1.2], since ξ and ξ∗ are distinct gen-
eralized characteristics for (2) associated with the admissible
weak solution u∗, which are shock-free on the time interval
[0, T ]. Then ξ and ξ∗ cannot intersect for any t ∈ (0, T ) as
seen in Figure 4. From [15, Theorem 10.2.3] and (12) with

x

t

t = T ×
x

x− Tf ′(uT (x)) y

ξ(·) ξ∗(·)

Fig. 4: Plotting of ξ(·) = ξ−(T − ·) with ξ− the minimal
backward generalized characteristic, associated to u (or uT or
u∗), emanating from (T, x) and plotting of ξ∗, the forward
generalized characteristic, associated to u∗, emanating from
(0, y) with (x, y) ∈ X(uT )× R and x− Tf ′(uT (x)) < y.

γ1 = ξ and γ2 = ξ∗,∫ y
x−Tf ′(uT (x))

(u0(s)− u∗0(s)) ds =∫ T
0
Q(u∗(s, ξ∗(s)+), u(s, ξ∗(s)+), u∗(s, ξ∗(s)−)) ds

+
∫ T

0
Q(u(s, ξ(s)−), u∗(s, ξ(s)−), u(s, ξ(s)−)) ds,

(13)
where Q is defined in (11). From Lemma 2 and (13), for every
(x, y) ∈ X(uT )× R with x− Tf ′(uT (x)) < y,∫ y

x−Tf ′(uT (x))

(u0(s)− u∗0(s)) ds ≥ 0. (14)

Let (x, y) ∈ I(uT )2 with x < y.

2If a rarefaction wave is created at t = 0, multiple forward generalized
characteristics exist.

• There exists a forward generalized characteristic ξ∗ ∈
C0,1([0, T ]; R), associated with u∗, issuing from (0, x−
Tf ′(uT (x))). From [12, Lemma 7.2], (t, x) →
S−t (uT )(x) is Lipschitz continuous on any com-
pact (0, T ) × R, thus ξ∗ is a straight line with
slope f ′(u∗(T2 , ξ

∗(T2 ))). Thus, for every s ∈ (0, T ),
u∗(s, ξ∗(s)−) = u∗(s, ξ∗(s)+).

• From [15, 11.1.3 Theorem], since uT (y−) = uT (y+) =
u(T, y−) = u(T, y+) the minimal backward generalized
characteristic ξ− and the maximal backward generalized
characteristic ξ+, associated to u (or uT or u∗), emanat-
ing from (T, y) coincide over [0, T ], i.e ξ−(t) = ξ+(t)
for every t ∈ [0, T ]. Moreover, ξ− is a straight line
with slope f ′(uT (y−)) = f ′(uT (y+)) and ξ−(T ) =
y − Tf ′(uT (y)). The function ξ : [0, T ]→ R defined by
ξ(t) = ξ−(T − t) is a forward characteristic associated
with u, issuing from (0, y − Tf ′(uT (y)).

From [15, Corollary 11.1.2], ξ and ξ∗ cannot intersect for any
t ∈ (0, T ) as seen in Figure 5.

x

t

t = T ×
x

×
y

x− Tf ′(uT (x)) y − Tf ′(uT (y))

ξ∗(·) ξ(·)

Fig. 5: Plotting of ξ∗, the forward generalized characteris-
tic, associated to u∗, emanating from (0, x) and plotting of
ξ(·) = ξ+(T − ·) with ξ− the maximal backward generalized
characteristic, associated to u (or uT or u∗), emanating from
(T, y) with (x, y) ∈ X(uT )2 and x < y.

Thus, from [15, Theorem 10.2.3] and (12) with γ1 = ξ∗

and γ2 = ξ,∫ y−Tf ′(uT (y))

x−Tf ′(uT (x))
(u0(s)− u∗0(s)) ds =

−
∫ T

0
Q(u(s, ξ(s)+), u∗(s, ξ(s)+), u(s, ξ(s)−)) ds

−
∫ T

0
Q(u∗(s, ξ∗(s)−), u(s, ξ∗(s)−), u∗(s, ξ∗(s)−)) ds,

(15)
From Lemma 2 and (13), for every (x, y) ∈ X(uT )2 with
x < y, ∫ y−Tf ′(uT (y))

x−Tf ′(uT (x))

(u0(s)− u∗0(s)) ds ≤ 0. (16)

From [15, Corollary 11.1.2], we have x− Tf ′(uT (x)) < y−
Tf ′(uT (y)). Thus, combining (14) with (16), we deduce that,
for every (x, y) ∈ X(uT )2 with x < y∫ y−Tf ′(uT (y))

x−Tf ′(uT (x))

(u0(s)− u∗0(s)) ds = 0. (17)

5



The inequality (17) also holds for every (x, y) ∈ X(uT )2

with x < y, whence (9). Assuming that y < x− Tf ′(uT (x)).
There exists a z ∈ X(uT ) such that z−Tf ′(uT (z)) < y since
a suitable representative of uT ∈ L∞(R) satisfies the Oleinik
condition (7). Using z − Tf(uT (z)) < y and z ∈ X(uT ),
from (14)

∫ y

z−Tf ′(uT (z))

(u0(s)− u∗0(s)) ds ≥ 0. (18)

Since (z, x) ∈ X(uT ), from (8), we have

∫ x−Tf ′(uT (x))

z−Tf ′(uT (z))

(u0(s)− u∗0(s)) ds = 0. (19)

Combining (18) and (19), the inequality (14) holds also for
y < x− Tf ′(uT (x)), whence (8).

Since uT ∈ L∞(R) satisfies the one-sided Lipschitz condi-
tion, from [12, Theorem 3.1], we have u∗(T, ·) = uT (·). From
Lemma 1 applied with u0 and u∗0, we have

∫ γ2(t1)

γ1(t1)
(u(t1, s)− u∗(t1, s)) ds

−
∫ γ2(t2)

γ1(t2)
(u(t2, s)− u∗(t2, s)) ds =∫ t2

t1
F (u(t, γ2(t)+))− F (u∗(t, γ2(t)+)) dt

−
∫ t2
t1

(F (u(t, γ1(t)−))− F (u∗(t, γ1(t)−))) dt
(20)

for every (γ1, γ2) ∈ C0,1([0, T ]; R). Fix (x, y) ∈ X(uT )2

with x < y,

Step 1. Fix (x, y) ∈ R×X(uT ) with x < y.

• Let ξ− the minimal backward generalized characteristic,
associated to u, emanating from (T, x). Them, ξ− is a
straight line with slope f ′(u(x−)) and ξ−(T ) = x −
Tf ′(u(x−)). The function ξ : [0, T ] → R defined by
ξ(t) = ξ−(T − t) is a forward characteristic associated
with u, issuing from (0, x− Tf ′(u(x−)).

• Since y ∈ X(uT ), we have uT (x−) = uT (x+) =
u∗(T, x−) = u∗(T, x+). Thus, the minimal backward
generalized characteristic ξ∗− and the maximal backward
generalized characteristic ξ∗+, associated to u∗, emanating
from (T, y) coincide over [0, T ], i.e ξ∗−(t) = ξ∗+(t)
for every t ∈ [0, T ]. Moreover, ξ∗+ is a straight line
with slope f ′(uT (x−)) = f ′(uT (x+)) and ξ∗+(T ) =
y − Tf ′(uT (y)). The function ξ : [0, T ]→ R defined by
ξ∗(t) = ξ∗+(T − t) is a forward characteristic associated
with u∗, issuing from (0, y − Tf ′(uT (y)).

We now distinguish if ξ doesn’t interact with ξ∗ or not as seen
in Figure 6.

• Assuming that ξ doesn’t interact with ξ∗ over (0, T ). In
this case, we have x − Tf ′(u(x−)) ≤ y − Tf ′(uT (y)).

x

t

t = T ×
x

×
y

x− Tf ′(u(x−)) y − Tf ′(uT (y))

ξ(·) ξ∗(·)

ξ doesn’t interact with ξ∗

x

t

t = T ×
x

×
y

t = tI

ξ(·) ξ∗(·)

ξ interacts with ξ∗ at time t = tI

Fig. 6: Plotting of ξ(·) = ξ−(T − ·) and ξ∗(·) = ξ∗+(·)
where ξ− is the minimal backward generalized characteristic,
associated to u, emanating from (T, x) and ξ∗+(·) is the
maximal backward generalized characteristic, associated to u∗,
emanating from (T, y) with (x, y) ∈ R×X(uT ) and x < y.

From [15, Theorem 10.2.3] and (20) with t1 = 0, t2 = T ,
γ1 = ξ and γ2 = ξ∗,∫ y
x

(u∗(T, s)− u(T, s)) ds

+
∫ y−Tf ′(uT (y))

x−Tf ′(u(x−))
(u0(s)− u∗0(s)) ds =∫ T

0
Q(u∗(s, ξ∗(s)+), u(s, ξ∗(s)+), u∗(s, ξ∗(s)−)) ds

+
∫ T

0
Q(u(s, ξ(s)−), u∗(s, ξ(s)−), u(s, ξ(s)−)) ds,

(21)
where Q is defined in (11). Applying (8) with x = y and
y = x− Tf ′(u(x−)), we have

∫ y−Tf ′(uT (y))

x−Tf ′(u(x−))

(u0(s)− u∗0(s)) ds ≤ 0. (22)

From Lemma 2, (21) and (22), (x, y) ∈ R×X(uT ) with
x < y, ∫ y

x

(u∗(T, s)− u(T, s))ds ≥ 0 (23)

• Assuming that ξ interacts with ξ∗ at time tI ∈ (0, T ).
For every t ∈ (tI , T ), we have ξ(t) ≤ ξ∗(t). From [15,
Theorem 10.2.3] and (20) with t1 = tI , t2 = T , γ1 = ξ
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and γ2 = ξ∗,∫ y
x

(u∗(T, s)− u(T, s)) ds

=
∫ T
tI
Q(u∗(s, ξ∗(s)+), u(s, ξ∗(s)+), u∗(s, ξ∗(s)−)) ds

+
∫ T
tI
Q(u(s, ξ(s)−), u∗(s, ξ(s)−), u(s, ξ(s)−)) ds.

(24)
From Lemma 2, (24), for every (x, y) ∈ R×X(uT ) with
x < y, ∫ y

x

(u∗(T, s)− u(T, s))ds ≥ 0 (25)

From (23) and (25), we conclude that for every (x, y) ∈ R×
X(uT ) with x < y,∫ y

x

(u∗(T, s)− u(T, s))ds ≥ 0 (26)

Step 2. Fix (x, y) ∈ X(uT )2 with x < y.
• Since x ∈ X(uT ), we have uT (x−) = uT (x+) =
u∗(T, x−) = u∗(T, x+). Thus, the minimal backward
generalized characteristic ξ∗− and the maximal backward
generalized characteristic ξ∗+, associated to u∗, emanating
from (T, x) coincide over [0, T ], i.e ξ∗−(t) = ξ∗+(t)
for every t ∈ [0, T ]. Moreover, ξ∗− is a straight line
with slope f ′(uT (x−)) = f ′(uT (x+)) and ξ∗−(T ) =
x−Tf ′(uT (x)). The function ξ∗ : [0, T ]→ R defined by
ξ∗(t) = ξ∗−(T − t) is a forward characteristic associated
with u∗, issuing from (0, x− Tf ′(uT (x)).

• Let ξ+ the maximal backward generalized characteristic,
associated to u, emanating from (T, y). Them, ξ+ is a
straight line with slope f ′(u(y+)) and ξ+(T ) = y −
Tf ′(u(y+)). The function ξ : [0, T ] → R defined by
ξ(t) = ξ+(T − t) is a forward characteristic associated
with u, issuing from (0, y − Tf ′(u(y+)).

We now distinguish if ξ doesn’t interact with ξ∗ or not as seen
in Figure 7.
• Assuming that ξ∗ doesn’t interacts with ξ over (0, T ). In

this case, we have x − Tf ′(uT (x)) ≤ y − Tf ′(u(y)+).
From [15, Theorem 10.2.3] and (20) with t1 = 0, t2 = T ,
γ1 = ξ∗ and γ2 = ξ,

∫ y
x

(u∗(T, s)− u(T, s)) ds

+
∫ y−Tf ′(u(y+))

x−Tf ′(uT (x))
(u0(s)− u∗0(s)) ds =

−
∫ T

0
Q(u(s, ξ(s)+), u∗(s, ξ(s)+), u(s, ξ(s)−)) ds

−
∫ T

0
Q(u∗(s, ξ∗(s)−), u(s, ξ∗(s)−), u∗(s, ξ∗(s)−)) ds,

(27)
where Q is defined in (11). Applying (8) with x = x and
y = y − Tf ′(u(y+)), we have∫ y−Tf ′(u(y+))

x−Tf ′(uT (x))

(u0(s)− u∗0(s)) ds ≥ 0. (28)

From Lemma 2, (27) and (28), for every (x, y) ∈ X(uT )2

with x < y, ∫ y

x

(u∗(T, s)− u(T, s))ds ≤ 0 (29)

x

t

t = T ×
x

×
y

x− Tf ′(uT (x)) y − Tf ′(u(y+))

ξ∗(·) ξ(·)

ξ doesn’t interact with ξ∗

x

t

t = T ×
x

×
y

t = tI

ξ∗(·) ξ(·)

ξ interacts with ξ∗ at time t = tI

Fig. 7: Plotting of ξ∗ = ξ∗−(·) and ξ = ξ+(T − ·) where ξ− is
the minimal backward generalized characteristic, associated to
u∗, emanating from (T, x) and ξ+(·) is the maximal backward
generalized characteristic, associated to u, emanating from
(T, y) with (x, y) ∈ X(uT )2 and x < y.

• Assuming that ξ∗ interacts with ξ at time tI ∈ (0, T ).
For every t ∈ (tI , T ), we have ξ∗(t) ≤ ξ(t). From [15,
Theorem 10.2.3] and (20) with t1 = tI , t2 = T , γ1 = ξ∗

and γ2 = ξ,∫ y
x

(u∗(T, s)− u(T, s)) ds =

−
∫ T
tI
Q(u(s, ξ(s)+), u∗(s, ξ(s)+), u(s, ξ(s)−)) ds

−
∫ T
tI
Q(u∗(s, ξ∗(s)−), u(s, ξ∗(s)−), u∗(s, ξ∗(s)−)) ds,

(30)
From Lemma 2, (30), for every (x, y) ∈ X(uT )2 with
x < y, ∫ y

x

(u∗(T, s)− u(T, s))ds ≤ 0 (31)

From (29) and (31), we conclude that for every (x, y) ∈
X(uT )2 with x < y,∫ y

x

(u∗(T, s)− u(T, s))ds ≤ 0 (32)

Combining (26) with (32), we deduce that, for every
(x, y) ∈ X(uT ) with x < y,∫ y

x

(u∗(T, s)− u(T, s))ds = 0. (33)

Step 3. From [15, Theorem 11.2.2], u(T, ·) ∈ BVloc(R)
and u∗(T, ·) ∈ BVloc(R). Thus, X(uT ) has Lebesgue measure

7



0. The equality (33) holds for a.e (x, y) ∈ R with x < y.
Since y →

∫ y
x
u(T, s) ds and y →

∫ y
x
u∗(T, s) ds are absolute

continuous functions, (33) holds for every y ∈ R. Using the
fundamental theorem of calculus, we deduce that, for a.e y ∈
R,

u(T, y) = u∗(T, y).

V. CONCLUSION

In this paper, we construct theoretically and numerically
the set of initial data yielding solutions of Burgers equation
(2) that coincide with a given target. When the augmented
Burgers equation (1) is reduced to Burgers equation (2), this
allows to find the set of near-pressure disturbances P0 leading
to the bound signature PT optimized for minimum pressure
rise. The proof is based on a backward-forward method and
generalized backward characteristics.

Let us address some related open questions and possible
extensions of this work.

In the development of low-boom supersonic airplane, it
would be interesting to understand the impact of the non-
local term and the zero-order term in (1) for the initial data
identification problem. Moreover, some constraints on the
admissible set of initial data could be imposed to ensure
feasible aircraft design.

Since we don’t need Lax-Hopf formula as in [12, The-
orem 4.1], we may extend our approach to systems of
conservation laws in one dimension (Euler equations, Saint-
Venant equations, Aw-Rascle-Zhang model). Note that, as
soon as the backward-forward operator S+

T (S−T ) is well-
defined, S+

T (S−T )(uT ) may give a good candidate to solve the
initial data identification of systems of conservation laws.
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