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The presence of elongated streaks of high and low streamwise velocity in the shear layer
of circular jets breaks the axisymmetry of their steady-state solution. If the streaks are
considered to be part of the base �ow, for the purpose of linear instability analysis,
the instability eigenmodes are thus a�ected by their presence. The resulting changes of
growth rate and spatial shapes of eigenmodes, related to the shear instability in jets,
are investigated here for parallel base �ows. Optimal streamwise vortices (�rolls�) with
prescribed azimuthal periodicity are computed, such that the transient temporal growth
of the streaks that they produce is maximal. The presence of �nite-amplitude streaks
requires the formulation of eigenvalue problems in a two-dimensional cross-plane. Sinuous
rolls and streaks are found to have a stabilising e�ect on Kelvin-Helmholtz instability,
whereas the varicose rolls and streaks have a destabilising e�ect. Absolute instability is
not found to occur. This work shows that the e�ects of rolls and streaks need to be taken
into account for more precise modelling of jet instability.

Key words:

1. Introduction

Rolls and streaks, and their role for instability dynamics and laminar-turbulent tran-
sition, have been extensively studied in the context of wall-bounded shear �ows (Butler
& Farrell 1992; Jiménez 2013). Rolls, de�ned as vortices in the cross-plane of the �ow,
transport high-speed �uid towards the wall and low-speed �uid away from the wall,
thereby creating streaks in the main �ow velocity (�lift-up e�ect�, Landahl 1975). These
streaks are themselves subject to instabilities (Park et al. 2011), and are even assumed
to play a central role in the self-sustained process of wall-bounded turbulence (Wale�e
1997; Hwang & Cossu 2010). However, the very presence of rolls and streaks in free

shear �ows such as jets has seldom been recognised until recently. Nogueira et al. (2019)
documented the appearance of streaky structures in the turbulent velocity �eld of a high-
speed jet, by processing particle image velocimetry data with spectral proper orthogonal
decomposition. A linear analysis of the mean �ow con�rmed that the transient growth
of these structures is caused by the lift-up e�ect. Pickering et al. (2020) investigated
the formation of streaks in developing jets, obtained from large eddy simulation, in
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response to harmonic forcing input, concluding that streaks may be expected to dominate
perturbations in jets at low frequencies.

A linear analysis of the growth of streaks in round jets was conducted by Jiménez-
González & Brancher (2017), who computed optimal initial conditions for transient
energy growth. These were found to take the shape of rolls, leading to the creation
of streaks. Marant & Cossu (2018) performed similar transient growth calculations for
a parallel plane shear layer. These authors then went on to characterise the in�uence
of �nite-amplitude streaks on the linear Kelvin�Helmholtz instability. It was found
that �sinuous� streak structures have a stabilising e�ect, whereas �varicose� structures
destabilise the Kelvin-Helmholtz eigenmode over certain parameter regimes. A similar
analysis on wake �ows was conducted by Del Guercio et al. (2014), where the situation
was found to be di�erent: both the sinuous and varicose structures reduce the maximal
growth rate, and the varicose streaks have a more stabilising e�ect than sinuous streaks
of the same amplitude. A quadratic variation of the eigenvalues with respect to the streak
amplitude was found in both of these works, consistent with results from a second-order
sensitivity analysis.

On the basis of these recent studies, the present article investigates how the presence of
rolls and streaks modi�es the linear instability characteristics of round jets. The scope and
study program are quite similar to the plane shear-layer investigation of Marant & Cossu
(2018). As streaks in turbulent jets are well modelled using a transient growth analysis
(Nogueira et al. 2019), we evaluate here how optimal rolls and streaks, obtained with
a similar procedure, a�ect the Kelvin-Helmholtz mechanism in jets, which is relevant
to understand the interplay between streaks and the well-documented wavepackets in
jets (Jordan & Colonius 2013; Cavalieri et al. 2019). Di�erently from (Marant & Cossu
2018), the curvature of a jet shear layer induces self-interaction e�ects, and in particular
�jet-column� dynamics, which scale with the jet diameter and are absent in single plane
shear layers. Jet-column dynamics are similar to the interaction dynamics between the
two shear layers that form a plane jet or wake; the absolute mode in round jets without
counter�ow is of the jet-column type (Lessha�t & Huerre 2007). While our present study
considers only streamwise-invariant base �ow settings, the role of streaks in jets is not
limited to these. For instance, streak structures have been observed to appear prominently
in the braid regions between convecting ring vortices, as shown most recently in the
experiments by Kantharaju et al. (2020) and in the optimal perturbation analysis by
Nastro et al. (2020).

The paper is organised as follows. In �2, linearly optimal roll structures are computed,
consistent with Jiménez-González & Brancher (2017), that maximise the transient tem-
poral growth of streaks in an axisymmetric jet base �ow. The nonlinear �ow development,
in the presence of �nite-amplitude rolls, is then simulated in time. In �3, frozen instances
of streaky parallel jets, obtained in this way, are taken as base �ows for linear stability
analysis, and the sensitivity of temporal eigenmodes with respect to rolls and streaks
is discussed. The maximum temporal mode as well as the absolute growth rate in jets
distorted by rolls and streaks are investigated. Conclusions and perspectives are given in
�4.

2. Evolution of rolls and streaks in a parallel jet

We seek roll structures that lead to the fastest growth of streaks in a parallel and
initially axisymmetric jet (Jiménez-González & Brancher 2017). The initial velocity in
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the streamwise z-direction is given by the usual pro�le of Michalke (1971),
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where b represents the non-dimensional momentum shear-layer thickness and r the radial
coordinate. The pro�le, as all quantities in what follows, is scaled with respect to the
jet radius R and the centreline velocity Wc. The viscosity ν of an incompressible �uid is
characterised by the Reynolds number, Re = WcR/ν. Values Re = 104 and b = 1

20 are
used throughout this study.
We de�ne rolls as a set of counter-rotating vortices in the cross-stream plane, with

radial and azimuthal velocity components ur(r, θ) and uθ(r, θ), where θ is the azimuthal
coordinate. Through convection, the rolls distort the axisymmetric pro�le (2.1), such
that the streamwise velocity changes in time as W (r) + uz(r, θ, t). The perturbation uz
represents the streaks. As we limit all following instability analysis to streamwise-invariant
base �ows, rolls and streaks are assumed to be independent of the streamwise coordinate
z.
It is to be clari�ed at this point that the computation of optimal initial conditions for

the transient growth of streaks is not the focus of this study, but only a necessary step
for the following instability analysis of streaky base �ows. The transient growth scenario
over short and long time horizons has been amply documented by Jiménez-González &
Brancher (2017). Furthermore, in accordance with that work as well as with Marant
& Cossu (2018) and the connected studies cited in �1, we deliberately stay within the
classical assumption of a streamwise-invariant base �ow (including the rolls and streaks),
in order to provide a �rst characterisation of the e�ect of streaks on the shear instability
in round jets. This choice allows us to restrict the number of parameters, and to arrive at
general conclusions from local instability analysis. It is hoped that these will be bene�cial
for the future analysis of non-parallel streaky jet base �ows, which will necessitate a three-
dimensional global framework, including nozzle conditions and justi�cations for turbulent
mean �ow modelling.

2.1. Optimisation in the linear limit

Following the approach of Jiménez-González & Brancher (2017), Marant & Cossu
(2018), and references therein, optimal roll shapes for streak generation are sought in the
linear limit of small velocities (ur, uθ, uz) � 1. The number of rolls and streaks around
the azimuth is prescribed by an azimuthal wavenumber m, such that the variations of ur,
uθ and uz in θ are given by a factor eimθ. In the following, we refer to m as the �streak
wavenumber�.
For a given value of m, temporal eigenmodes of the axisymmetric pro�le (2.1) are

computed, under the restriction of z-invariance (zero axial wavenumber). These com-
putations are performed in polar coordinates, such that only the radial coordinate is
discretised via Chebyshev collocation (Lessha�t & Huerre 2007), and non-oscillatory
eigenmodes (in time) are recovered. The full spectrum of these eigenmodes, which satisfy
the incompressibility condition of zero velocity divergence, are then used as a non-
orthogonal basis for the optimisation of transient perturbation growth.
The optimal rolls and streaks are identi�ed such that their kinetic energy is maximised

in a linear framework. For a perturbation u(r,m, t), the initial perturbation u0 =
u(r,m, t = 0) is sought such that the quotient

σ2 =
‖u(T )‖2

‖u0‖2
(2.2)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Optimal (a,c,e,g) and �rst suboptimal (b,d,f,h) linear rolls and streaks for streak
wavenumbers m = 2 (a,b,e,f) and m = 6 (c,d,g,h). Top row: streamwise perturbation vorticity
(rolls) at t = 0; bottom row: streamwise perturbation velocity (streaks) at t = T = 1. Red colour
is positive, blue colour is negative.

is maximised, where T is a prescribed �nite evolution time. The norm is de�ned as ‖u‖2 =∫ rmax

0

(
|ur|2 + |uθ|2 + |uz|2

)
rdr, where rmax denotes the maximal radial coordinate in

computation domain. An orthogonal set of optimal and suboptimal initial perturbations
u0 can then be obtained by singular value decomposition (Schmid & Henningson 2001).
All three components of perturbation velocity are included in the norms in (2.2), which
means that the energy of both rolls and streaks are taken into account.
Identical optimal structures as shown by Jiménez-González & Brancher (2017) are

recovered, for the same base �ow (2.1) and the same gain de�nition (2.2), characterised
by roll structures in the initial condition u0 (vorticity in the cross-plane), which give rise
to streaks in u(T ) (axial velocity). These structures, obtained over a time horizon T = 1,
are presented in �gure 1 for m = 2 and m = 6. Note that the shapes of these rolls and
streaks are insensitive to the choice of su�ciently short time horizons, so that T = 0.1
or T = 10 give practically identical results for the optimal initial condition. According
to Jiménez-González & Brancher (2017), viscous decay of rolls and streaks becomes
important at time scales T = O(1000), much larger than the turbulent coherence scales
in the jet �ows that motivate the present study.
While Jiménez-González & Brancher (2017) computed, through direct-adjoint looping,

the optimal initial conditions that lead to the highest gain, the present SVD technique
also allows us to recover the following suboptimals. The optimal and �rst suboptimal ini-
tial perturbations for both example values of m are shown in �gure 1; in analogy with the
plane shear-layer results of Marant & Cossu (2018), we refer to the optimal structures in
sub�gures (a,c,e,g) as �sinuous�, and to the �rst suboptimal ones in sub�gures (b,d,f,h) as
�varicose�. Subsequent suboptimal structures are characterised by an increasing number
of radial oscillations.

2.2. Nonlinear time-stepping

In the following simulations, optimal and suboptimal initial conditions (ur, uθ) are
projected onto a two-dimensional Cartesian mesh in the (x, y) cross-plane, and are added
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(a) t = 2, As = 28% (b) t = 4, As = 49% (c) t = 6, As = 63% (d) t = 16, As = 90%

(e) t = 2, As = 7% (f) t = 4, As = 13% (g) t = 6, As = 19% (h) t = 16, As = 35%

Figure 2. Nonlinear time evolution of m = 6 streaks in jets: streamwise velocity. (a, b, c, d)
sinuous rolls as initial condition (see �gure 1g); (e, f, g, h) varicose rolls as initial condition (see
�gure 1h). Both cases start from initial roll perturbations with amplitude Ar(t = 0) = 3%, as
de�ned in (2.5).

with a �nite amplitude to the initially axisymmetric streamwise base �ow velocity pro�le
(2.1). This perturbed base �ow is then advanced in time, according to the complete
nonlinear Navier-Stokes equations for incompressible �ow,

∂tu+ (u · ∇)u = −∇p+Re−1∇2u, (2.3)

∇ · u = 0, (2.4)

expressed in Cartesian velocity components. Finite elements, provided by the FEniCS
library (Logg & Wells 2010), are used to discretise these equations in the (x, y) plane,
and time-stepping is performed by use of the Crank-Nicolson method. The velocity
components in these Cartesian calculations are denoted u = (U, V,W ).
Example results from these simulations, with m = 6, are shown in �gure 2: the �rst

case (top row) develops from a sinuous initial condition, the second case (bottom row)
starts from a varicose one. The jet deformation due to the sinuous perturbation is more
apparent, and reminiscent of the pro�le shapes of jets from corrugated nozzles (Lajús
et al. 2019). While the sinuous rolls mostly lead to azimuthal variations of the radial
position of the shear layer, the varicose rolls lead to a thickening and thinning of the
shear layer at di�erent azimuthal positions. These e�ects correspond to the parameters
R and Θ, respectively, of the velocity pro�les in Lajús et al. (2019).
To quantify the intensity of rolls and streaks, their amplitudes Ar and As are de�ned

in the same way as in Marant & Cossu (2018) and references therein,

As(t) =
1

2maxx,y(Wb)

(
max
x,y

[W (t)−W (0)]−min
x,y

[W (t)−W (0)]

)
, (2.5)

and

Ar(t) =
1

4maxx,y(Wb)

(
max
x,y

[U(t)] + max
x,y

[V (t)]−min
x,y

[U(t)]−min
x,y

[V (t)]

)
. (2.6)
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Figure 3. Time evolution of the streak amplitude As(t) and the roll amplitude Ar(t), both
normalised by Ar(0), with sinuous and varicose rolls of m = 6 as initial perturbations of
amplitude Ar(0) = 1%, 2%, 3%.

The growth of streak amplitude, caused by sinuous and varicose rolls, respectively,
is shown in �gure 3: these computations are initialised with rolls of amplitude 1% 6
Ar 6 3%, and the streak wavenumber is again chosen as m = 6. The streak amplitude,
which initially is zero, is found to increase approximately linearly in time, and the linear
growth rate in the initial stage scales with the roll amplitude. The amplitude growth of
varicose streaks is slower. As the rolls experience viscous dissipation, their amplitude
Ar(t) decreases slowly in time. Note that in our parallel-�ow setting, rolls generate
streaks, but streaks have no in�uence on rolls, even in the nonlinear regime. Therefore, the
roll amplitude may be set as an initial-condition parameter, whereas the streak amplitude
is simply a function of time in the base �ow evolution. The streak amplitude is then chosen
as a parameter instead of evolution time, because it indicates more directly the intensity
of the jet deformation. Snapshots of these time-evolving streaky jets, characterised by
the values of m, Ar and As, and by their sinuous or varicose symmetry, are now taken
as base �ows for the purpose of linear stability analysis.

3. Linear stability analysis

Linear stability analysis is carried out in Cartesian coordinates (x,y,z). Velocity per-
turbations (u′x, u

′
y, u

′
z) and pressure p′ are assumed to take the form of normal modes

[u′x, u
′
y, u
′
z, p
′](x, y, t) = [ux(x, y), uy(x, y), uz(x, y), p(x, y)] exp(−iωt + ikz). The linear

perturbation equations are

−iωux+U∂xux+∂xUux+V ∂yux+∂yUuy+ikWux+∂xp−Re−1(∂xxux+∂yyux−k2ux) = 0,
(3.1)

−iωuy+U∂xuy+∂xV ux+V ∂yuy+∂yV uy+ikWuy+∂yp−Re−1(∂xxuy+∂yyuy−k2uy) = 0,
(3.2)

−iωuz+U∂xuz+∂xWux+V ∂yuz+∂yWuy+ikWuz+ikp−Re−1(∂xxuz+∂yyuz−k2uz) = 0,
(3.3)

∂xux + ∂yuy + ikuz = 0. (3.4)

Finite-element discretisation is applied by use of the FEniCS library on a two-dimensional
mesh in the (x, y) plane. Second- and �rst-order Lagrangian elements are used to
discretise perturbation velocity and pressure, respectively. The discretised equations are
assembled as an eigenvalue problem Aq = ωBq, where the eigenvalues ω and the associ-
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Figure 4. Validation and mesh convergence of the linear stability results computed in the
(x, y) plane. Eigenmodes with streamwise wavenumber k = 5 of an axisymmetric base �ow
(2.1) are shown. (a) Validation against a polar formulation, where only the radial coordinate is
discretised: the seven leading eigenmodes (n = 0, . . . , 6) computed in the (x, y) plane (◦), and in
polar coordinates (×). (b) Relative error ε of the growth rate ωi (solid line) and the frequency
ωr (dashed line) of the n = 0 eigenmode, as a function of the number of grid points N in the
(x, y) plane. Results for N = 22041 are taken as reference.

ated eigenvectors q = (ux, uy, uz, p) for a �xed k are computed via the Arnoldi algorithm.
Eigenvalue calculations on the two-dimensional (x, y) mesh have been validated against
the one-dimensional polar formulation used in �2.1, discretised only in r, for a strictly
axisymmetric base �ow. For a wavenumber k = 5, the seven most unstable eigenmodes
are compared in �gure 4(a), and excellent agreement is found between these two di�erent
formulations. Grid convergence is then examined to determine the required number of grid
points N in the (x, y) plane, to be used for linear stability analysis. Real and imaginary
parts of the dominant eigenvalue (n = 0, k = 5) are tracked. The eigenvalue obtained
with the largest number of points (N = 22041) is taken as reference, and the relative
error ε, as a function of N , with respect to this reference value is presented in �gure 4(b).
A number of N = 15821 grid points is deemed satisfactory, giving convergence within
�ve signi�cant digits, and is kept for the following computations. As nomenclature, we
de�ne the temporal growth rate as ωi = Im[ω] and the frequency as ωr = Re[ω]. We
denote the azimuthal wavenumber of eigenmodes n, so as to distinguish it from the
streak wavenumber m, which characterises the azimuthal periodicity of the streaky base
�ow.

3.1. Linear sensitivity analysis

In the limit of in�nitesimal base �ow modi�cations, the e�ect of streaks on instability
eigenvalues (growth rate and frequency) can be predicted by way of sensitivity analysis
(Hill 1992; Marquet et al. 2008). In the context of streaks in plane shear layers, Marant &
Cossu (2018) demonstrated that this analysis needs to be expanded to second order, if one
wishes to correctly retrieve the quadratic dependency of eigenmodes on streak amplitude.
The same observation had been reported before from studies of instability control in plane
two-dimensional �ows via spanwise-periodic base �ow modi�cations (Hwang & Choi 2006;
Tammisola et al. 2014; Boujo et al. 2019). If, however, in the present con�guration,
rolls and streaks in jets cause �rst-order variations in the instability eigenvalues, then a
sensitivity analysis will allow us to identify roll shapes that optimally destabilise linear
eigenmodes.
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(a) (b) (c) (d)

Figure 5. First-order sensitivity of the growth rate with respect to base �ow modi�cations: (a)
an instability eigenmode (n = 3, k = 5) of the axisymmetric base �ow (axial velocity); associated
sensitivity with respect to (b) radial velocity, (c) azimuthal velocity and (d) streamwise velocity
changes in the base �ow.

A given base �ow variation δQ = (δUr, δUθ, δUz) induces a variation δA of the
matrix of the linearised Navier-Stokes operator. The resulting �rst-order variation δω
of the eigenvalue associated with a direct eigenvector q and an adjoint eigenvector q+

(appropriately normalised, see Chomaz (2005) for details) is given by

δω = q+HδAq = sHMδQ. (3.5)

The superscript H denotes the transpose conjugate, the matrix M contains mesh-
dependent quadrature coe�cients for a scalar product, and s is the base �ow sensitivity
�eld (nomenclature as in Lessha�t & Marquet 2010). The e�ect of a given base
�ow variation δQ onto the eigenvalue is given by its projection onto the sensitivity
�eld; consequently, if we restrict the norm of δQ to a �xed value, its optimal shape

for maximum destabilisation of an eigenmode is given by the imaginary part of the
associated s.
Such a sensitivity �eld (imaginary part) is shown in �gure 5, for an eigenmode with

wavenumbers (n = 3, k = 5) in an axisymmetric (non-streaky) base �ow. It can be
seen that, at �rst order, the temporal growth rate is only sensitive to changes in the
shear. All components of the sensitivity are found to be axisymmetric, although the
underlying eigenmode is not. This result, consistent with the shear layer and wake studies
cited above, indicates that rolls and streaks, here de�ned as non-axisymmetric base �ow
modi�cations with zero mean along the azimuth, can only have a second-order, but not
�rst-order e�ect on the eigenmodes. Optimisation could be performed on the second-
order sensitivity operator to identify azimuthally non-uniform base �ow modi�cations
for maximum change of an eigenmode (Boujo et al. 2015, 2019).

3.2. Linear stability of �nite-amplitude streaky jets

Linear stability analysis is now carried out to identify the temporal growth rate ωi of
eigenvalues in frozen instances of streaky base �ows. For illustrative purposes, the e�ect
of rolls and streaks on the shapes of some eigenmode shapes is shown in �gure 6: basic
eigenmodes in the axisymmetric case, with azimuthal wavenumbers n = 0, 1 and 2, have
been continuously tracked towards high amplitudes Ar and As in base �ows with sinuous
and with varicose roll and streak structures. In the caption, we extend the use of n to the
high-amplitude cases in this loose sense of mode tracking, fully aware that the implied
symmetries are not strictly preserved in these cases (see the detailed discussion of mode
tracking in Lajús et al. 2019).
Systematic variations of the dominant temporal growth rate (n = 0) over streamwise

wavenumber k are represented in �gure 7. Amplitudes Ar = As = 5% are �xed, and



The e�ect of streaks on the instability of jets 9

(a) n = 0 no streaks (b) n = 0 sinuous streaks (c) n = 0 varicose streaks

(d) n = 1 no streaks (e) n = 1 sinuous streaks (f) n = 1 varicose streaks

(g) n = 2 no streaks (h) n = 2 sinuous streaks (i) n = 2 varicose streaks

Figure 6. Eigenmodes (n = 0, 1, 2 and k = 5) of axisymmetric and streaky jets, with streak
wavenumber m = 6. Sinuous case: Ar = 10%, As = 40%; varicose case: Ar = 10%, As = 51%.
Streamwise velocity is shown.

instability growth rates are plotted for streak wavenumbers m = 1, ..., 10. The range of
unstable wavenumbers is narrowed in the presence of sinuous streaks, but largely widened
for cases with varicose streaks.
In �gure 8(a), the maximum ωi over all streamwise wavenumbers k, denoted as ωi,max,

is presented as a function of As(t). The sinuous perturbations, decreasing ωi,max, have
a stabilising e�ect, whereas the varicose perturbations, increasing ωi,max, destabilise the
jets. The maximum temporal growth rate of a streaky jet with sinuous perturbations
does not strongly change as the streaks gain amplitude, whereas that with varicose
perturbations increases monotonously with the streak amplitude. These results are
consistent with the �ndings of Lajús et al. (2019): the sinuous streaks lead to an azimuthal
change of the shear layer position (parameter R in Lajús et al. 2019), which has little
e�ect on jet stability. In contrast, the varicose streaks lead to azimuthal variations of the
shear-layer thickness (parameter Θ in Lajús et al. 2019), which has a destabilising e�ect.
While it is tempting to discuss these tendencies on the basis of the azimuthally averaged
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Figure 8. Parameter studies of the temporal growth rate ωi. Blue and red symbols represent
sinuous and varicose variations of the base �ow, respectively. The temporal growth of the purely
axisymmetric jet is shown for comparison (dashed line). (a) ωi,max as a function of streak
amplitude As(t) for m = 6 and Ar(0) = 5% (circle), 10% (square). (b) ωi,max as a function of
streak number m for the most destablising k for Ar = 5% and As = 5%. (c) ωi as a function of
Ar for m = 6, k = 6 and As = 0. The initially axisymmetric (n = 0) eigenmode is tracked in
(c).

base �ow distortions, Marant & Cossu (2018) and Lajús et al. (2019) have demonstrated
that such a discussion is incomplete, because the periodic variations of the base �ow
contribute to the change of eigenvalues on the same order as their average.
The e�ect of the streak wavenumber m on ωi,max is presented in �gure 8(b) for Ar =

As = 5%. Over all m studied, the varicose perturbations lead to an increase of temporal
growth rate, while the sinuous perturbations always decrease the temporal growth rate.
The same qualitative behaviour, as demonstrated here only for m = 6, is observed at
all values of m, including the special case m = 1 (�shift-up� as opposed to �lift-up�, see
Jiménez-González & Brancher (2017)). In �gure 8(c), the changes of the temporal growth
rate of the dominant n = 0 eigenmode as a function of small roll amplitude are tracked.
It is found that the growth rate variations are initially quadratic in Ar, which indicates
a second-order sensitivity. This is consistent with our �ndings in �3.1 that the �rst-order
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Figure 9. Variations of the absolute growth rate ω0,i with roll amplitude Ar. The streak
amplitude As is zero.

sensitivity of azimuthally periodic base �ow modi�cations, rolls and streaks, is zero. A
quantitative second-order sensitivity analysis is not attempted here, as the result can be
expected to be similar to that of Marant & Cossu (2018).

3.3. Absolute instability of streaky jets

Although the results of our jet study so far display the same trends as exposed by
Marant & Cossu (2018) for plane shear layers, the e�ect of streaks on the absolute

instability mode in jets deserves to be examined. In jets, the absolute mode is of the
jet-column type (Lessha�t & Huerre 2007), and therefore physically distinct from the
plane shear layer case. In a similar study of parallel wakes, Del Guercio et al. (2014)
observed that sinuous as well as varicose spanwise perturbations may reduce the absolute
growth rate and even suppress the absolute instability. Brandt et al. (2003) demonstrated
a similar stabilising e�ect of streaks on the absolute mode in a Blasius boundary layer.
For our standard jet base �ow, variations of the absolute growth rate ω0,i (see Huerre

& Monkewitz 1990) with roll amplitude Ar are shown in �gure 9. The streak amplitude
is set to zero in this example. In the case of varicose perturbations, increasing Ar slightly
increases the absolute growth rate ω0,i for streak wavenumbers m < 6, but even a
very high roll amplitude does not give rise to absolute instability. Varicose rolls with
m > 6 are seen to decrease ω0,i. Sinuous rolls are found to have a stabilising e�ect
on the absolute growth rate, higher m being more stabilising. Additional computations,
not presented here, show that non-zero values of the streak amplitude As do not lead
to further signi�cant destabilisation of the absolute jet-column mode. In conclusion, a
situation where rolls and streaks would give rise to absolute instability in jets could not
be identi�ed.

4. Conclusions

The e�ect of rolls and streaks on the local instability properties of round jets has
been investigated in this work for various control parameters. First, optimal sinuous and
varicose rolls and streaks, in the sense of maximal energy growth, have been identi�ed
for prescribed numbers of streaks along the azimuth. Optimal and suboptimal rolls and
streaks take the form similar to the sinuous and varicose perturbations found in plane
mixing layers. In both scenarios, streaks grow within the jet shear layer due to the lift-up
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mechanism. Sinuous roll structures impart wavy displacements of the shear layer, whereas
varicose rolls lead to periodic variations of its thickness. Nonlinear simulations show that
rolls evolve slowly in time, only subject to viscous decay, while streaks experience linear
amplitude growth in their initial stage.
Linear stability analysis has been performed on frozen instances from nonlinearly

evolved streaky jet �ows. The observed trends are clear and easily summarised: sinuous
rolls and streaks, which themselves represent the fastest-growing transient structures,
induce a decrease in the growth rate of Kelvin-Helmholtz instability modes. Varicose
rolls and streaks, in contrast, lead to increased instability. The �rst-order sensitivity
of Kelvin-Helmholtz eigenmodes in a non-streaky jet has been computed, and found
to be strictly axisymmetric, even for non-axisymmetric mode shapes. Therefore, the
e�ect of low-amplitude rolls and streaks, with zero axisymmetric projection, cannot be
explained from such an analysis. Consistent with this result, the variations of instability
growth rates with roll amplitude have been shown to be nonlinear, presumably quadratic,
analogous to the more detailed sensitivity studies of plane shear �ows in the recent
literature.
Finally, the absolute growth rate of the axisymmetric jet-column mode in streaky jets

has been examined. Although varicose rolls do lead to a slight destabilisation of this mode,
the instability has been found to remain convective over the investigated parameter space.
On this basis, the presence of rolls and streaks in jets, although certain to change the
quantitative instability properties, is not expected to lead to self-sustained oscillations.
The results from the present investigation lead to the conclusion that the presence

of rolls and streaks a�ect the instability properties of round jets in similar ways as
described by Marant & Cossu (2018) for the setting of plane shear layers. The inclusion
of roll structures in the base �ow, compared to the roll-free settings of Marant & Cossu
(2018), has been found to have a similarly strong, but not qualitatively di�erent e�ect
as the streaks alone. An important limiting assumption in the present study, which
is to be relaxed in future work, lies in the restriction to streamwise invariant rolls
and streaks. Despite this limitation, the signi�cant modi�cation of Kelvin-Helmholtz
instability growth rates clearly indicates that roll and streak perturbations in jets must
be accounted for in future modelling of jet instability behaviour.
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