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Abstract 

We studied in this article a topic that focused on two areas of research: Constraint Satisfaction 
Problems (CSP) and genetic algorithms. The problem is that this type of algorithm is recognized to be 
greedy in terms of CPU time. To solve this problem, we tried to integrate the arc consistency (AC) at 
the initial population in a way that it would be the result of this filtering. First, we generated the 
genetic algorithm without integrating the arc consistency. Then, we considered that each 
chromosome is a CSP, each gene is a variable of the problem and each allele represents the taken 
value. We randomly generated the CSP to obtain the inconsistent values of each pair of variables. 
To remove these values, we used the technique of arc consistency as a technique for solving this 
type of problem, that means we have worked to eliminate from each variables domain the values 
which violate the constraint specific and make the CSP inconsistent. The aim of this work is to reduce 
performance in terms of execution time of the genetic algorithm. 
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1. Introduction 
In everyday life, we all face more or less complex optimization problems. That can start, for 
example, when we try to put our offices together. Taking as an example the domain of the industry 
in which the business environment is mainly characterized by competition from markets where the 
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demands and expectations of customers are becoming stronger and more important in terms of 
quality, cost and time of provision. This is why we can say that the success of a project or the 
excellent development of a company are mainly linked to the competence and ability of engineers to 
solve this type of problem (optimization problem) while minimizing Costs    and     maximizing     
production. In order to solve such a problem, we must give good values to the various parameters in 
order to reach an optimal solution. These values must respect the constraints associated   with   the    
problem. Generally, there are two distinct approaches to solving an optimization problem: There are 
the exact methods that allow certain problems to find the best solution or optimal solution. But most 
of the problems studied in optimization belong to the class of NP- Complex problems. This class 
brings together problems for which there is no algorithm that provides the optimal solution. There is 
also the stochastic methods which content themselves with looking for a "good quality" solution. To 
this end, different approaches have been developed. Among them, we can cite simulated annealing, 
taboo research and genetic algorithms. The principle of the latter is inspired by the laws of natural 
selection, described by Darwin. The evolution of a species is simply a successive sequence of 
improvement so that it is best adapted to the environment in which it evolves. This adaptation is 
achieved through natural selection and the mechanisms of reproduction: crosses, mutations  
and selections. This algorithm is now very successful. We use it in complex problem solving, 
requiring high CPU (Central Processing Unit) processing times. In order to minimize this execution 
time, we had the idea to put the problem in the form of a constraint satisfaction problem (CSP) and 
to enrich it by using a technique of filtering "the consistency of arc" . Constraint satisfaction is a 
powerful tool for modeling and solving combinatorial problems associated with a set of powerful 
resolution techniques. 

This modeling approach has proved successful in the areas of planning, configuration, resource 
allocation and others. 

A constraint network consists of a set of variables, their domains of values and a set of constraints 
between these variables. This formalism is very simple it allows to model easily many problems. 
One of the fundamental tasks of constraint networks is to find a solution to the modeled problem, 
that is to say an assignment of values to the variables of the network which satisfies the set of 
constraints. The work supported in this document is that the integration of a technique of solving a 
problem of constraint satisfaction in a genetic algorithm can eventually bring a satisfactory solution 
to a problem solved with genetic algorithm also to reduce the time d CPU execution. This article 
consists of four parts: The first speaks about the CSPs. The second speaks of the arc consistency The 
third presents the genetic algorithms. The last part discusses the obtained results. 

2. The CSP (Constraint Satisfaction Problems) formalism: 
2.1. Definition 

Formally, a CSP [2] is a modelized problem in the form of a set of constraints placed on variables, each taking its 
values in a domain. We define a CSP by a triple (X, D, C) such that: 

• X = (x1, x2, ..., xn) the set of n variables of the problem. 

• D = (d1, d2, ..., dn) the set of n discrete and finite domains of the problem: each variable xi∈X is 
associated with a domain of values dj∈D. 

• C = (c1, c2, ..., cm) the finite set of m constraints   related   to    the    problem.   A CSP can  be  of  
different  types:   
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Unary: the variable bears only on itself  

Binary: the variables are in  pairs  

Ternary: the variables are in three to three  

N-aire: relation between all variables of the problem    

   
2.2. Binary CSP 

A binary CSP can be represented by a Constraint Network G = (X, Y) where each node of this graph 
represents a single variable and each arc connecting two nodes represents a constraint. 

2.3. Notion of constraint 
A constraint is a relation or property that must be checked between the (unknown) variables. It restricts all values of 
domains that can take variables simultaneously.  We denote by var (c) the set of variables involved     in     this     
constraint      c. The arity of a constraint c∈C represents the number  of  variables  on  which  it  bears. It  is  said  that   
the   constraint   is:   

 Unary  if  its  arity  is  equal   to   1.  

Binary  if  its  arity  is  equal   to   2.  

N-aire   if   its   arity   is   equal   to  n. The objective of a CSP is to find a set of values to assign to variables in a way 
that all constraints are satisfied. 

2.4. Instantiation / assignment 

The assignment is a set of pairs (variables- values), in effect it assigns to each variable a        value        of        its         
domain:   A = {(xi ← vi)} with xi ∈X and vi∈D (xi). 

2.5. Solution of a CSP 

A solution of a CSP is a total and consistent assignment. 

3. Concept of consistency 

Consistency is a property related to the compatibility between domain values and constraints. It must be ensured at 
every stage of the search for the solution. Indeed, it removes domains from variables, values that do not participate 
in any solution. 

3.1. Arc consistency(AC) 

The arc consistency [1] remains one of the fundamental properties of constraint satisfaction problems. It is the 
oldest and most used of the local consistencies. It is concerned with binary constraints and guarantees that any value 
of the domain of a variable has a support in any constraint. There is, however, a simple way to make a coherent arc 
constraint: removing domains from variables that do not belong to any correct  instantiation  of  the  constraint. Let 
a CSP (X, D, C) be a binary constraint c ∈ C on the variables x and y with their respective domains Dx and Dy. We 
will say that    this    constraint    is    consistent    if: 

-   ∀a   ∈  Dx,   ∃b   ∈  Dy,   (a,   b)   ∈ c, 

-   ∀b ∈ Dy, ∃a ∈ Dx, (a, b) ∈ c. 
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3.1.1. The arc consistency algorithms 

There are different versions of these algorithms: AC or called REVISE, AC1, AC3, ..., each version 
being more efficient than the previous one. 

3.1.1.1REVISE procedure 

The Revise [2] procedure removes from the domain of the variable i all values without support for 
the constraint Cij and returns a Boolean indicating whether the domain of xi has been modified. 

• Insufficient of REVISE: 

To ensure that each arc is consistent, only one application of the Revise procedure is insufficient. 
Indeed, the deletion of a value of a domain for a given constraint can have repercussions on the 
other constraints on this domain. 

• AC1 algorithm 

The algorithm AC-1 [2] calls the procedure Revise (x, y) for all pairs of variables (x, y) linked by a 
binary constraint, and repeats this loop as long as  one  of  the  calls  returns  true.   One obvious 
cause of the inefficiency of AC-1 is that it is enough for a single Revise-arc call to perform a single 
deletion so that all the arcs are re- examined during the next iteration. 

• AC3 algorithm 

More efficient than AC-1, Mackworth presents a variant, AC-3 [2], which uses a queue to re-check only those 
constraints in which one of the domains has been modified by avoiding unnecessary tests. The improvement 
provided by AC-3 consists in not reapplying Revise-arc to all the arcs, but only to those likely to be affected by the 
deletion of the value of a domain. The arcs to be processed are put on hold in the Q list, and of course, an array is 
not   reinserted   if   it   already   exists. AC3 (y) holds the arc consistency after an assignment to y. Initially, Q = 
{y}. Then as long as Q is not empty: y = Q.deepile (). For any variable x linked to y, call Revise (x, y). If the call 
returns true, then add x to Q if it is not already there. 

• Other Aci 

Since the proposal of AC-3, several algorithms establishing the arc-consistency have been proposed, these 
algorithms aim to improve the theoretical complexity and the      actual      calculation       time. AC-4: An 
improvement in AC-3 that reduces theoretical complexity by using sophisticated data structures. AC-4 avoids 
redundant testing related to AC3. AC-4 has two steps: the first is to save information about values and its supporters 
in other areas in a data structure; The second step is to delete the values that do not have supporters. When a value is 
deleted, it is added to a queue to propagate the effect of its deletion. 

• AC-6 [3] which mixes principles from AC-3 and AC-4. The main goal of AC-6 is to reduce 
the spatial complexity generated by AC-4. AC-6 only backs up a media for each value. The 
values are assumed to be ordered. 

4. Genetic algorithm 

4.1. Basic principle of a genetic algorithm 
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The principle of a GA is simple, it is a question of simulating the evolution of a population of 
individuals up to a criterion of arrest. 

4.2.2 The operators of a GA 

4.2.2.1. The coding 

The coding of the data is a very important part of genetic algorithms because its quality conditions 
the success of the algorithm, to this effect we say that the choice of the coding is delicate. The 
coding makes it possible to present the individual in   the   form   of   a    chromosome. Binary 
encodings were widely used at the outset. Afterwards, the real codings are now widely used, in 
particular in the case where the maximum of a real function is sought. 

4.2.2.2 Random generation of the initial population 

The choice of the initial population of individuals is important because it determines the speed of the 
algorithm by making the convergence towards the global optimum more or less rapid. This 
mechanism must be able to produce a heterogeneous population of individuals. After we have to 
randomly generate individuals by making random draws making sure that the produced individuals 
respect the constraints. If, on the other hand, a priori information on the problem is available, it seems 
to generate the individuals in a particular sub- domain in order to accelerate the convergence. 

4.2.2 A function to optimize 

Since the genetic algorithm is an optimization algorithm then we must define a function that we call the adaptation 
function or fitness f to optimize which will quantify the adaptability of each individual to the environment that 
surrounds it. This function of evaluating the individual returns a positive real value. 

4.2.2.1 The reproduction operators 

• The selection 

The purpose of breeding is to identify and select individuals in the population as a whole to reproduce. This 
operator does not create new individuals but identifies the best ones on the basis of their adaptation function, the 
best adapted individuals are selected while the least adapted ones are discarded. 

• Croisment 

The crossing or reproduction operation allows the exchange of information between the chromosomes. This 
operator aims to enrich the diversity of the population while manipulating the structure of the chromosomes. It 
combines the genes of the two parent individuals who are already selected to get one or two new children. In order 
to make a cross over chromosomes consisting of M genes, we randomly draw a position in each of the parents. We 
then exchange the two terminal subchains of each of the two chromosomes, which produces the descendants. The 
crossing is based on the idea that two performing parents will produce better children. 

• Mutation 

The role of this operator is to randomly modify, with a certain probability, the value of a component 
of the individual. The following figure shows an example of a chromosome mutation. 

5. Contribution 
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Proposal of an enriched genetic algorithm with arc consistency (AC): 
The basic idea of this work is to integrate the arc consistency at the level of the genetic algorithm 
whose objective is to reduce the CPU execution time. In these experiments, first we tested the 
standard genetic algorithm until finding the solution. Indeed, this type of algorithm is recognized to 
be greedy in terms of CPU time (sometimes they take a lot of time during the execution of a given 
problem). To solve this problem, we considered that each individual in the initial population is a 
constraint satisfaction problem that we seek to solve with the arc consistency technique, so the 
initial population will represent the result. Using this method, we have been able to reduce the 
execution time while eliminating from each domain the values that violate the constraint specific to 
their variables and which make the CSP inconsistent. 

5.1. Experiments and validation 
All experiments are done with the java programming language using the eclipse software. This choice of java is 
justified by its speed, security and reliability. We used an Intel® Core ™ i3-2330M CPU @ 2.20 GHZ 220 GHZ. 
The aim of this work is to minimize the CPU execution time of a genetic algorithm without first using the arc 
consistency and after its enrichment with this filtering technique. For the creation of the genetic algorithm we used 
the pseudo code below: 

Algorithm 1 : Pseudo code of the genetic algorithm 
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For the parameters of the genetic algorithm, we used, during all the experiments for the size of the individual (the 
number of variables), 100 for the population size, a probability of crossing Pcrois of value equal to 0.5 and 

Probability of mutation Pmut equalto0.15. After generating the algorithm and finding the solution. We have 
switched to the implementation of a random CSP [4][5]. This type of generator used for constraint satisfaction 

problems is one of those commonly used in the CSPs community. Generation is guided by classical CSP 
parameters: the number of variables of the problem (n), the size of their domain (d) (as numerical values, we use n 
= 20, d = 2) the stress density P (This number can be specified either as an integer or as a fraction between 0 and 1 

and indicating the ratio between the number of effective constraints of the problem and the number of possible 
constraints, that is, a complete graph Of constraints) and the hardness q (this number can be specified either as an 

integer or as a fraction between 0 and 1, it refers to the number of pairs of values that are not allowed by the 
constraint. Are chosen randomly with the generator). 

 
Algorithm 2: Algorithm (6): Algorithm of the random generator of the CSPs 

 

1.1. Experiments 

The experiments are carried out in two parts: 

First: the implementation of the genetic algorithm before enriching it with the technique    of    arc     
consistency.  

Second: the implementation of the same algorithm with  this  filtering  technique. In order to have a 
clear comparison of the execution between step 1 and step 2, the performances are evaluated by the 
following measure: 

- Runtime: TIME-CPU requested to resolve a problem. 

The   genetic   algorithm   without    AC: At the beginning of our experiments, we generated the genetic algorithm 
without integrating the arc consistency. This algorithm comprises a population of 100 individuals in which each 
individual expresses itself in the form of a binary string of length 20. The AG seeks to find the binary string of the 
solution. After having applied the operators of the algorithm we were able to find the generation and the 
competence of the desired solution.                           
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          Generation  

         Fitness 

Diagram 1: Genetic algorithm without AC 

 

After finding the solution, we calculated the execution time of the algorithm. The second diagram is interested in 
showing us the consumed time (CPU) during the execution of the algorithm to find the solution. The latter was 
found after 15 ms. This represents the time consumed in milliseconds by the genetic algorithm throughout the 
generation in order to achieve the goal. 

 

Diagram 2: CPU execution time before AC integration 

 

The genetic algorithm enriched with AC: In order to minimize the execution time found during 
the first experiment, we considered that each chromosome of the initial population is a problem of 
constraint satisfaction and that each gene represents a variable. Then, we randomly generated the 
CSP. The latter, could randomly indicate the pairs of variables involved in the same constraint. It 

displays in front of each pair the forbidden values. So for the resolution of this CSP, we used the arc 
consistency to remove the forbidden values from the domains of the variables. We then 
rectified the values of the variables and placed them back into the initial population to regenerate the 
genetic algorithm again in order to obtain better results in terms of execution time. After randomly 
generating the CSP and removing inconsistent values from the variable domains, we were able to 

find the results indicated  by  the  following  diagrams. The third diagram shown below shows that 
the desired solution is found at the level of the 19th generation with a competence equal to 
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19.  

 

Diagram 3: Genetic algorithm with AC 

 
The fourth diagram shows us the time consumed during the new execution of the genetic algorithm after using 
consistent values  at  the  level  of  the   variables. This diagram shows that generation number 19 was found after 
about 9ms. That is, the solution was found after 9ms. 

 

 
 

Diagram 4: CPU runtime after AC integration. 

 
 

Comparison in terms of CPU time between the genetic algorithm without AC and the genetic    algorithm    enriched    
with  AC: 

The diagram above helps us to better visualize the results. Indeed, we can clearly distinguish the difference in terms 
of the time between the execution of the non- enriched genetic algorithm with the arc consistency and that 
corresponding to the enrichment of the algorithm with this filtering technique. By removing the prohibited values of 
the individuals of the initial population, we have been able to decrease the time of execution of the genetic 
algorithm, we have gained a 6 ms gain from 15ms to 9ms. This gain also explains the reduction in the generation 
number of the 24 generation to 19 generations, ie the algorithm has made fewer iterations to find the solution. 

5.3 Results interpretation 
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According to the first diagram we have found that the number of generations made by the genetic algorithm to reach 
the solution before the integration of the consistency arc is equal to 24 with a skill equal to 19. The second 
diagram showed the CPU execution time that the genetic algorithm consumed to reach the chromosome of the 
solution before the enrichment with the arc consistency ie at this level we are not yet interested To the inconsistent 
values, at this stage we had a CPU time = 15 milliseconds. 

After enriching the algorithm using the filtering technique (AC) we have found as diagram 3 shows a generation 
number equal to 19 with a better skill equal to 19 as well. And we were able to decrease the execution time as 
shown in Diagram 4 and 5 from 15 ms to 9 ms. This gain in terms of time could also give a gain in terms of the 
number of iterations (generations) performed. 

6. Conclusions 

Genetic algorithms and the resolution of a problem of constraint satisfaction by the consistency of 
arc. The aim was to reduce the CPU time by using the arc consistency at the level of constraints that 
have been violated. Our findings will be divided into two sections. In The first, we set the 
framework and the problematic of our work. In the second, we summarize our contribution in terms 
of our subject (a general synthesis of our work) and then we will return to the research perspectives 
that we have been able to highlight during the work.  

Part  1:  Framework  of  work  and issue  

Our work is positioned within the framework of the integration of one of the filtering methods (the arc consistency) 
at the level of the initial population of a genetic algorithm. This work was based on a reasoning based on       
satisfaction       of       constraints.  In the first part of this manuscript, we have given importance to the presentation 
of the CSP, to explain well the method arc consistency as a filtering method (this method has the advantage of prove 
to be a good alternative for the Resolution of CSP) so  we  tried  to   speak   well   of   GAs. So the framework of our 
work combines the two research axes: the resolution of a CSP using the arc consistency and the genetic algorithm. In 
fact, this last one is known to be gourmant in term of CPU time therefore we have interest of diminishing this 
objective consists the problematic of our work. 

 Part 2: General Work Synthesis 

Using the arc consistency technique as a filtering method we have succeeded in decreasing the time consumed by 
the genetic algorithm and with this result we have been able to achieve the objective of the problem. 
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