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Genetically regulated cell death (RCD) occurs in all domains of life. In eukaryotes, the
evolutionary origin of the mitochondrion and of certain forms of RCD, in particular
apoptosis, are thought to coincide, suggesting a central general role for mitochondria
in cellular suicide. We tested this mitochondrial centrality hypothesis across a dataset
of 67 species of protists, presenting 5 classes of mitochondrial phenotypes, including
functional mitochondria, metabolically diversified mitochondria, functionally reduced
mitochondria (Mitochondrion Related Organelle or MRO) and even complete absence of
mitochondria. We investigated the distribution of genes associated with various forms
of RCD. No homologs for described mammalian regulators of regulated necrosis could
be identified in our set of 67 unicellular taxa. Protists with MRO and the secondarily
a mitochondriate Monocercomonoides exilis display heterogeneous reductions of
apoptosis gene sets with respect to typical mitochondriate protists. Remarkably, despite
the total lack of mitochondria in M. exilis, apoptosis-associated genes could still be
identified. These same species of protists with MRO and M. exilis harbored non-
reduced autophagic cell death gene sets. Moreover, transiently multicellular protist
taxa appeared enriched in apoptotic and autophagy associated genes compared to
free-living protists. This analysis suggests that genes associated with apoptosis in
animals and the presence of the mitochondria are significant yet non-essential biological
components for RCD in protists. More generally, our results support the hypothesis
of a selection for RCD, including both apoptosis and autophagy, as a developmental
mechanism linked to multicellularity.

Keywords: regulated cell death, unicellular eukaryotes, mitochondria, mitochondrion-related organelle,
apoptosis, autophagy

Abbreviations: RCD, regulated cell death; MRO, mitochondrion-related organelle; AMO, Amorphea; SAR, Stramenopiles-
Alveolates-Rhizaria; ARC, Archaeplastida; EXC, Excavata; HAP, Haptophyta; CRYP, Cryptista; P, parasitic, S, (ecto)symbiotic;
F, free-living; M, transiently multicellular; Mit., mitochondria.
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INTRODUCTION

Regulated cell death (RCD) is a central, ancient, and widespread
phenotype of life, displayed by prokaryotes and eukaryotes,
be they multicellular or unicellular (Ameisen, 2002; Koonin
and Aravind, 2002; Van Hautegem et al., 2015; Bidle, 2016;
Gonçalves et al., 2017; Peeters and de Jonge, 2018; Durand and
Ramsey, 2019). Yet, the origins and evolution of RCD and of
its associated molecular mechanisms remain poorly understood.
A broader evolutionary explanation for the evolution of RCD,
including, but not limited to apoptosis, is still lacking. This is
partly because the focus of the research on RCD has indeed
largely been restricted to animal apoptosis. When broader
taxonomic scales are considered, two main hypotheses are
commonly discussed to explain the evolutionary origin of
apoptosis. These hypotheses give distinct roles to mitochondria.
The “Original Sin” hypothesis proposes that apoptosis emerged
as a consequence of the evolution of multicellularity, providing
a social control of cell survival (Ameisen, 1996), hence possibly
independently from the mitochondrial acquisition. By contrast,
the endosymbiotic hypothesis posits that the evolution of
apoptosis was a consequence of the mitochondrial acquisition
(Ameisen, 1996; Kroemer, 1997; Kaczanowski, 2016), and gives a
central role to this organelle in the origin of apoptosis. Moreover,
many hypotheses have been proposed to explain why RCD
is maintained in unicellular eukaryotes despite its high cost
on individual fitness. Thus, kin-selected altruistic death could
provide an evolutionary advantage to a population of protists as
(i) a mechanism of immunity against viruses, (ii) a response to
starvation and stress, (iii) a developmental process in transiently
multicellular species, or (iv) as a way to control parasite density in
an infected host (Durand and Ramsey, 2019). These hypotheses
suggest that a selective pressure exists to drive the evolution of
RCD, but they do not specify whether mitochondria are required
for various forms of RCD to occur.

Beyond apoptosis, many forms of RCD, such as autophagic
cell death, parthanatos and several types of regulated necrosis
such as ferroptosis, pyroptosis, necroptosis, or Mitochondrial
Permeability Transition (MPT)-driven necrosis have been
characterized in metazoans and, for some forms, proposed
in some protists (Calvo-Garrido et al., 2010; van Zandbergen
et al., 2010; Reece et al., 2011; Galluzzi et al., 2018; Tang
et al., 2019). Mitochondria have been consistently implicated
in apoptosis, parthanatos and MPT-driven necrosis. In the
context of mammalian apoptosis in particular, mitochondria
are thought to be central for the integration of cell death
signals and the cytoplasmic release of apoptogenic factors
(Galluzzi et al., 2018). By contrast, mitochondria are not directly
implicated in autophagic cell death or in other forms of regulated
necrosis (Galluzzi et al., 2016; Wang et al., 2017). Whether the
distribution of genes associated to autophagy is constrained by
the presence of mitochondria is therefore an open question,
especially because autophagy-associated genes can be involved in
cellular maintenance and their expression need not necessarily
result in cell death.

Importantly, the current biological connection between the
mitochondrial phenotypes of protists and the distribution of

genes associated with various forms of RCD can be tested,
because these unicellular eukaryotes undergo RCD and exhibit a
range of diversified mitochondria. Indeed, whereas many protists
harbor “typical” mitochondria, several independent anaerobic
protists lineages exhibit various degrees of mitochondrial
metabolic diversification and electron-transport chain (ETC)
reduction. Despite heterogeneity in metabolic functions
associated to these organelles, mitochondrial phenotypes
have been classified into five types depending on common
characteristics in their energy metabolism: first, fully aerobic
mitochondria; second, anaerobic mitochondria (ETC using an
endogenous electron acceptor instead of O2); third, hydrogen-
producing mitochondria (with a reduced ETC); fourth, the
more functionally reduced hydrogenosomes (lacking ETC) and
mitosomes (only retaining Fe/S cluster assembly function), that
retained the mitochondrial membranes but lost the mtDNA
(Muller et al., 2012; Roger et al., 2017). The three latter
classes of mitochondria-derived organelles are referred to as
Mitochondrion-Related Organelles (MRO). Furthermore, in one
secondarily amitochondriate lineage, the Monocercomonoides
spp., mitochondria were entirely lost (Karnkowska et al.,
2016), defining a fifth mitochondrial phenotype (i.e., complete
secondary loss). Former studies, conducted in protists with
MRO before the sequencing of Monocercomonoides exilis,
started to question the connection between apoptosis-like
RCD and the presence of a mitochondrion (Chose et al.,
2003; Sarde and Roseto, 2008; Taylor-Brown and Hurd, 2013).
These studies concluded that RCD could be performed by
mitochondria-independent apoptosis-like death, resulting from
extensive mitochondrial gene transfer to the nuclear genome
(Taylor-Brown and Hurd, 2013).

Here, we further investigated the presence of characteristic
genes associated with various forms of RCD, as defined in
multicellular organisms, across a broad taxonomic diversity of
mitochondriate protists, protists with MRO and M. exilis, with
publicly available whole-genome sequencing data.

METHODS

Proteome Data Mining
Whole-proteome assemblies (Supplementary Table S1) were
searched for proteins or domains defined as RCD-associated
genes (see Definition of RCD-associated genes). To detect RCD-
associated domains in non-homologous proteins and additional
remote homologs of RCD genes and domains in protists for each
type of RCD, searches were either performed solely by iterative
homology search using Diamond Blastp (Buchfink et al., 2015)
with an E-value <E−5, 30% identity and 80% coverage as cutoff
thresholds, by homology searches combined with manual parsing
of proteome scans for presence or conserved associations of
the death-associated PFAM domains (PfamScan1(Mistry et al.,
2007)], or solely by domain search. Retrieved protein sequences
are available as fasta files (Supplementary Files S1, S2).

1https://www.ebi.ac.uk/Tools/pfa/pfamscan/
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Orthology Assignment
For each putative gene family, maximum likelihood phylogenetic
trees were reconstructed. First, multiple alignments were
performed on retrieved protein sequences using Clustal Omega
with default parameters.2 Alignments were cleaned using Trimal
with default parameters,3 then phylogenetic reconstruction was
performed using iqtree4 using the following parameters: -
s < input alignment > -m MFP (automatic model selection
with ModelFinder) -bb 1000 (ultrafast bootstrap). The resulting
Newick tree files are available as Supplementary Materials.5

Although, in principle, gene trees allow to identify in-
paralogs (duplicated homologs within a species), out-paralogs
(duplication that predated some speciation events), and orthologs
(single copy genes originating from the same ancestral gene copy
in a group of species), a single gene family contains too little
phylogenetic information to robustly resolve the eukaryotic tree
of life. Therefore, the backbone of these trees was statistically
weakly resolved (Supplementary File S3).

As an alternative approach, orthology relationships between
retrieved sequences were assigned using the recently developed
Broccoli pipeline, based on Diamond and FastTree2 (Price
et al., 2009, 2010; Buchfink et al., 2015; Derelle et al., 2020).
The 67 proteomes listed in Supplementary Table S1 were
passed as arguments and Broccoli was run using default
parameters. Summarized and detailed results of orthology
assignment by Broccoli are available as Supplementary
Tables S2, S3, respectively.

Definition of RCD-Associated Genes
Previous studies have identified common apoptosis regulators in
metazoans, plants, fungi and protists, and inferred the existence
of an ancestral apoptosis-like pathway in the last eukaryotic
common ancestor (van der Biezen and Jones, 1998; Koonin and
Aravind, 2002; Leipe et al., 2004; Nedelcu, 2009; Sundström et al.,
2009; Klim et al., 2018). From these studies, we defined the
following ancestral conserved apoptosis-associated genes:

– putative homologs of Zinnia endonuclease 1 (ZEN1)
/ Endonuclease G (ENDOG) / Nuclease 1 (NUC1)
(PF02265 / PF01223 / PF03265), Apoptosis-Inducing
Factor (AIF)/AIF-homologous mitochondrion-associated
inducer of death (AMID) (by homology only),
HTRA-like protease (PF13365 + PF00595 / PF12812
/ PF13180 / PF17815 / PF17820), metacaspase (PF00656),
metacaspase substrate Tudor Staphylococcal Nuclease
(TSN: PF00565+ PF00567).

– proteins (homologs and non-homologs) containing either
the Bax-inhibitor (PF01027), Apoptosis Inhibitor 5 (API5:
PF05918), Defender Against Death (DAD: PF02109), IAP
repeat, Baculovirus Inhibitor of apoptosis protein Repeat
(BIR: PF00653) or Nucleotide-Binding adaptor – APAF-1,

2https://www.ebi.ac.uk/Tools/msa/clustalo/
3http://trimal.cgenomics.org/
4http://www.iqtree.org/doc/
5https://github.com/TeamAIRE/Supplementary_Materials_Teuliere_et_al_2020

R gene products, CED-4 (NB-ARC: PF00931) / NAIP,
CIIA, HET-E and TP1 (NACHT: PF05729) domains.

Inputs for AIF/AMID, caspase-family and OMI/HTRA Diamond
searches were taken from Klim et al. (2018).

The presence of domains specific for conserved
autophagy-associated genes (ATG) that act in the following
pathways in yeast and metazoans was also investigated
(Anding and Baehrecke, 2015):

– Induction: ATG1 (PF12063), ATG13 (PF10033), ATG101
(PF07855) domains and Tor (PF08771) homologs.

– Cargo selection: ATG11 (PF10377), Beclin/ATG6
(PF04111/PF17675) domains.

– Vesicle expansion: ATG3/10
(PF03986/PF03987/PF10381), ATG4 (PF03416), ATG5
(PF04106), ATG7 (PF16420), ATG8 (PF02991), ATG12
(PF04110) domains.

Homologs of the following described necrosis regulators in
mammals were searched using Diamond inputs corresponding
to human sequences and the corresponding PFAM domains:
RIPK1/3 (PF12721/PF00531), Gasdermin D (PF04598/PF17708),
or MLKL (by homology only, no specific PFAM domain).

Life Strategies and Taxonomic
Categories
For each species of protist, life strategies were classified either
as parasitic (P), (ecto)symbiotic (S), free-living (F) or transiently
multicellular (M). Included in the latter category were protists
associating in colonies, aggregating or forming multicellular or
coenocytic hyphae.

Taxonomic information was summarized by adding
superphylum information for each taxa according to
Lax et al. (2018).

Hierarchical Clustering and Scoring
Presence/absence heatmaps were generated using custom python
scripts and hierarchical clustering was performed using the Ward
variance minimization algorithm from the scipy library.6 For
each dataset, the appropriate number of clusters was determined
using the R package NbClust (Charrad et al., 2014). Average
numbers or genes by groups are indicated in the text +/−
standard deviation. The Mann-Whitney U-test (two-tailed) was
used to compare groups.

RESULTS AND DISCUSSION

Many forms of RCD have been defined in mammals by the
Nomenclature Committee on Cell Death (NCCD) (Galluzzi et al.,
2018). Given that these RCD forms have been discovered and
described in the context of metazoan biology, their evolutionary
scope and significance is unknown in all other eukaryotic phyla,
including unicellular taxa.

6https://www.scipy.org/
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Distribution of Genes Associated With
Regulated Necrosis
Although experimental data are sparse on necrosis in protists,
rupture of the plasma membrane associated to necrosis had
already been reported in Dictyostelium (Laporte et al., 2007).
Yet, it is unclear whether regulated necrosis generally occurs
in unicellular eukaryotes since secondary necrosis can be a
consequence of apoptotic death in the absence of phagocytes
(Carmona-Gutierrez et al., 2018; Galluzzi et al., 2018). We
thus attempted to identify homologs of genes associated
with regulated necrosis in 67 species of protists, spanning
a diversity of mitochondrial phenotypes. No homologs for
described mammalian regulators of necroptosis and pyroptosis
could be identified in our set of unicellular taxa (data
not shown), indicating that these two RCD pathways are
likely exclusive to vertebrates, in agreement with previous
studies (Dondelinger et al., 2016). The lack of distinctive
genes for ferroptosis precluded us to test the previously
formulated hypothesis that this form of RCD may be widely
conserved (Distéfano et al., 2017). Similarly, the possibility of
conservation of Mitochondrial Permeability Transition (MPT)-
driven necrosis could not be unambiguously investigated due
to the ubiquity and high duplication of cyclophilins and the
uncertainty on the composition of the MPT Pore complex
besides Cyclophilin-D (Baines and Gutiérrez-Aguilar, 2018).
Therefore, the existence of regulated necrosis in protists remains
to be demonstrated.

Distribution of Genes and Domains
Associated With Apoptosis
Previous studies have identified ancestral conserved apoptosis-
associated genes and protein domains in eukaryotes (Koonin and
Aravind, 2002; Leipe et al., 2004; Nedelcu, 2009; Sundström et al.,
2009; Klim et al., 2018). We performed hierarchical clustering
of the species based on the presence/absence of these apoptosis-
associated genes (Figure 1A). Two main clusters emerged,
separating most protists with hydrogenosomes/mitosomes (with
the exception of Entamoeba and Cryptosporidium) and the
mitochondrial Monocercomonoides, from typical mitochondriate
protists. Protists with diverged mitochondria displayed reduced
numbers of apoptosis-associated genes with respect to protists
with fully aerobic mitochondria (3.8 +/− 2.8, n = 16 versus
6.9 +/− 1.5, n = 51, respectively, P < 0.001) and protists
with functionally reduced MRO in particular displayed the
lowest numbers of apoptosis-associated genes (fully aerobic
mitochondria: 6.9 +/− 1.5, n = 51, anaerobic mitochondria:
8.0 +/− 1.4, n = 2, hydrogen-producing mitochondria: 5.5
+/− 3.5, n = 2 versus hydrogenosome: 3.3 +/− 2.3, n = 6,
mitosomes: 2.0 +/− 2.0, n = 5). We also performed hierarchical
clustering of the species based on the presence/absence
of at least one ortholog from the largest ortholog group
found by the tool Broccoli (Derelle et al., 2020) for each
category of apoptosis-associated genes (Figure 1B). Although
this clustering does not separate as clearly protists with
functionally diversified or reduced mitochondria from typical
mitochondriate protists, similar results are observed when

considering the average number of genes by mitochondrial
phenotype (fully aerobic mitochondria: 6.0 +/− 1.4, n = 51,
anaerobic mitochondria: 7.0+/− 0.7, n = 2, hydrogen-producing
mitochondria: 5.0 +/− 2.8, n = 2 versus hydrogenosome:
3.0 +/− 1.9, n = 6, mitosomes: 2.0 +/− 2.1, n = 5). This
result is compatible with a significant role for mitochondria in
apoptosis in protists. Yet, the correlation between the number
of apoptosis-associated genes and mitochondrial metabolic
diversification or reduction is not strictly linear. Surprisingly,
despite the total lack of mitochondria in Monocercomonoides,
we detected apoptosis-associated genes such as a NUC1
nuclease, two metacaspases and a BIR domain-containing
protein. Experimental data are required to test whether
Monocercomonoides protists are able to undergo RCD in the
absence of mitochondria, and whether the predicted apoptosis-
associated genes contribute to RCD.

Distribution of Genes Associated With
Autophagy
A more controversial form of RCD, autophagic cell death,
has been proposed to occur in animals and plants. High
levels of autophagy may deplete mitochondria (mitophagy)
and possibly lead to a metabolic catastrophe, causing cell
death. In this model, autophagic cell death would depend
on the maintenance of mitochondria in eukaryotic cells.
Alternatively, autophagy could indirectly promote cell death
by selective degradation of pro-survival factors (Nelson and
Baehrecke, 2014). With regard to unicellular eukaryotes,
autophagic-like cell death features have been described in
Dictyostelium and Toxoplasma (Calvo-Garrido et al., 2010;
Ghosh et al., 2012) and suspected in Plasmodium, Giardia
and the dinoflagellate Amphidinium carterae (Franklin and
Berges, 2004; Bagchi et al., 2012; Eickel et al., 2013). This
mode of RCD requires autophagic machinery gene sets,
which are generally conserved in unicellular eukaryotes except
in Rhodophyta (Porphyridium, Cyanidioschyzon, Galdieria),
Fornicata (Spironucleus, Kipferlia, Giardia) and microsporidia
(Trachipleistophora, Encephalitozoon) (Rigden et al., 2009;
Brennand et al., 2011; Duszenko et al., 2011; Shemi et al.,
2015). Consistently, in our analysis these three lineages clustered
together as well as with Blastocystis, whereas other protists
were grouped in a larger cluster (Figure 2A). In contrast
to apoptosis-associated genes, autophagy-associated genes did
not cluster protists with MRO together, but rather distributed
them in two main clusters. Similar results were obtained when
clustering identified orthologs found by Broccoli (Figure 2B).
Of note, our results differ from previously published results
on autophagy gene sets present in M. exilis, T. vaginalis and
N. gruberi (Karnkowska et al., 2019). Karnkowska et al. reported
ATG1 homologs in T. vaginalis and N. gruberi by homology
searches whereas we did not by using the presence of PFAM
domain PF12063 as a criteria. We also did not recover putative
ATG1 orthologs for these taxa using Broccoli. Similarly, unlike
Karnkowska et al., we did not identify homologs for ATG11
in T. vaginalis and N. gruberi but have found a putative
homolog for ATG13 in T. vaginalis, based on the presence
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FIGURE 1 | Presence/absence heatmaps of apoptosis-associated genes in protists with diverse mitochondrial phenotypes. Presence is indicated by copper
rectangles; absence by black rectangles. Hierarchical clustering of putative homologs (A) and orthologs (from the largest ortholog group found by Broccoli for each
set of putative homologs retrieved in this study) (B) groups protists in two main clusters (overlaid in light green and purple). (B) For multiple categories such as
ZEN1/NUC1/ENDOG and NACHT/NB_ARC, presence of at least one ortholog is indicated. References to previous reports of RCD (indicated by dark gray rectangles
with white stars) in specific taxa are listed in Supplementary Table S1. AMO, Amorphea; SAR, Stramenopiles-Alveolates-Rhizaria; ARC, Archaeplastida; EXC,
Excavata; HAP, Haptophyta; CRYP, Cryptista; P, parasitic; S, symbiotic; F, free-living; M, transiently multicellular; Mit., Mitochondria.

of specific PFAM domains. Broccoli did not identify ortholog
groups for ATG11 in T. vaginalis, N. gruberi, and M. exilis
either but confirmed our findings for ATG13, identifying a
small ortholog group (ID 25622) comprised of T. vaginalis and
T. foetus sequences (Figure 2B and Supplementary Table S3).
Experimental autophagy assays in these taxa are needed to
properly assess the functions of these putative homologs and
resolve the discrepancies between our predictions and those of
Karnkowska et al.

Since we and others (Karnkowska et al., 2019) also
identified a putative autophagic vesicle expansion pathway
in M. exilis, this analysis indicates that the evolutionary
conservation of a canonical autophagy pathway does
not depend on the presence of mitochondrial organelles.
Thus, autophagic cell death could occur in absence of
mitochondria, which could explain the observations of
RCD in amitochondriate protists such as Giardia. This

hypothesis could be tested experimentally by knocking down
the conserved autophagy-associated genes we identified and
evaluating their requirement during RCD in Giardia and other
amitochondriate protists.

Distribution of RCD-Associated Genes
Correlates With Protists Lifestyle
The clustering of protist taxa based on shared RCD-associated
genes is also decoupled from taxonomy, suggesting diverse
convergent evolution of RCD (Figure 1). Whereas RCD has
been extensively described in parasites, we detected fewer
apoptosis and autophagy-associated genes in parasitic taxa than
non-parasitic taxa (apoptosis: 3.8 +/− 2.0, n = 17, versus
6.9 +/− 1.8, n = 50, respectively, autophagy: 4.6 +/− 3.0,
n = 17, versus 8.9 +/− 3.0, n = 50, respectively, P < 0.001
in each case). Similar results were obtained when considering
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FIGURE 2 | Presence/absence heatmaps of autophagy-associated genes in protists with diverse mitochondrial phenotypes. See Figure 1 legend for the description
of symbols and abbreviations. Hierarchical clustering of putative homologs (A) and orthologs (from the largest ortholog group found by Broccoli for each set of
putative homologs retrieved in this study) (B) groups protists in two main clusters (overlaid in light green and purple).

orthologs only (apoptosis: 3.0 +/− 2.1, n = 17, versus 6.0
+/− 1.5, n = 50, respectively, autophagy: 4.0 +/− 2.6, n = 17,
versus 8.0 +/− 3.0, n = 50, respectively, P < 0.001 in
each case). It is thus likely that the observed gene reduction
is linked to genome simplification in parasites rather than
a loss of RCD. In contrast, transiently multicellular taxa
tend to be enriched in apoptosis and autophagy-associated
genes compared to free-living taxa (apoptosis: 8.0 +/− 1.0,
n = 15, versus 6.6 +/− 1.9, n = 31, respectively, P < 0.01,
autophagy: 10.9 +/− 1.5, n = 15, versus 7.9 +/− 3.2,
n = 31, respectively, P < 0.001), even when considering
orthologs only (apoptosis: 6.0 +/− 1.2, n = 15, versus 5.0
+/− 1.6, n = 31, respectively, P < 0.05, autophagy: 11.0
+/− 1.7, n = 15, versus 8.0 +/− 3.2, n = 31, respectively,
P < 0.001). This result is consistent with the hypothesis
of a selection for RCD as a developmental mechanism
linked to the establishment of multicellularity. However,
since the reference organisms used to define canonical RCD
pathways (Dictyostelium, Saccharomyces, metazoans) and 75%
of transiently multicellular species in our dataset belong to

Amorphea (Supplementary Table S1), our analysis may be
biased toward conservation of RCD-associated genes in these
phyla. Interestingly, another argument for the selection of
RCD as a developmental mechanism in transiently multicellular
taxa stresses a hidden connection between mitochondrial
phenotypes and RCD. None of the transiently multicellular
protists harbors divergent mitochondria or MRO, suggesting
that mitochondrial metabolic diversification/reduction and the
establishment of transient multicellularity may be incompatible
processes. However, this incompatibility does not concern
the maintenance of animal multicellularity since metazoan
multicellulars with diverged mitochondrial organelles as an
adaptation to hypoxia have been found. For instance, Ascaris
nematodes possess anaerobic mitochondria and loriciferans
evolved hydrogenosome-like organelles (Danovaro et al., 2010;
Muller et al., 2012). Whole-genome sequencing of additional
transiently multicellular and free-living protists distant from
Amorphea are therefore required to test the hypothesis
of a biological connection between RCD-associated genes
maintenance and the establishment of transient multicellularity.
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CONCLUSION

Our test of the conservation of genes associated with RCD
depending on the mitochondrial status of their host taxa supports
a coupling between the presence of aerobic mitochondria and the
conservation of apoptosis-associated genes, in agreement with an
endosymbiotic origin of this pathway, and a possibly pleiotropic
function of the corresponding genes in aerobiosis (Klim et al.,
2018). Indeed, in protists carrying hydrogenosomes, mitosomes
or even having lost mitochondria completely, those apoptosis
genes tend to be lost, but not entirely. Strikingly, despite various
degrees of apoptosis gene loss, RCD, especially if mediated by
autophagy, appears maintained in protists, irrespective of their
mitochondrial phenotypes. This is logical because RCD is a
broader biological phenomenon than apoptosis, likely affected by
diverse selective pressures, related to protists lifestyle.
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