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Abstract: For a PID-controlled motion system under Coulomb friction described by a
differential inclusion, we present a hybrid model comprising logical states indicating whether
the closed loop is in stick or in slip, thereby resembling a hybrid automaton. A key step for this
description is the addition of a timer exploiting a peculiar semiglobal dwell time of the original
dynamics, which then removes defective and unwanted nonconverging Zeno solutions from the
hybrid model. Through it, we then revisit an existing proof of global asymptotic stability, which
is significantly simplified by way of a smooth weak Lyapunov function. The relevance of the
proposed hybrid representation is also illustrated on a novel control strategy resetting the PID
integrator and hinging upon the proposed hybrid model.

Keywords: hybrid systems, nonlinear systems, Coulomb friction, Lyapunov methods, global
asymptotic stability, PID control.

1. INTRODUCTION

In this paper, we present a hybrid model formulation for
a proportional-integral-derivative (PID) controlled single-
mass motion system subject to Coulomb friction. Friction
is a performance-limiting factor in many high-precision
positioning systems in terms of the achievable setpoint
accuracy and settling times. Many different control strate-
gies have been developed for frictional systems (e.g.,
model-based compensation, see Armstrong-Hélouvry et al.
(1994), impulsive control, see van de Wouw and Leine
(2012), or sliding mode control, see Bartolini et al. (2003)).
PID control, however, is still used in the vast majority of
industrial motion systems, since the integrator action is
able to compensate for unknown static friction. However,
it has performance limitations (e.g., long settling times,
see Beerens et al. (2018)). The popularity of the PID
controller for mechatronics applications in industry, how-
ever, motivates the development of hybrid add-ons, such as
reset control strategies, to complement the classical PID
controller and improve its baseline performance.

Coulomb friction is often modeled by a set-valued force
law, so that the resulting dynamical model of a PID-

? This research is part of the research programme High Tech Systems
and Materials (HTSM), which is supported by NWO domain Applied
and Engineering Sciences and partly funded by the Dutch Ministry of
Economic Affairs and is also supported by ANR via project HANDY,
number ANR-18-CE40-0010.

controlled mass subject to friction yields a differential
inclusion, see, e.g., (Acary and Brogliato, 2008, Sec. 1.3).
When appropriately tuned, the PID control guarantees
global asymptotic stability (GAS) of a constant position
reference, see Bisoffi et al. (2018).

On the other hand, the PID-controlled frictional system
evolves, in some sense, discrete-wise by toggling between
the logical states of stick and slip. The stick phase is char-
acterized by zero velocity and the control force not exceed-
ing the static friction. The integrator action then builds
up the control force by integrating the position error and
eventually compensating for the (unknown) static friction,
so that a slip phase (i.e., a phase with nonzero velocity)
occurs. These logical states can be modeled as suitable
subsystems of the differential inclusion, see (Åström and
Canudas-de-Wit, 2008, p. 106), which motivates the de-
velopment of an equivalent hybrid representation of the
differential inclusion model. The main motivation for such
a hybrid model representation is the fact that it favors a
simplified stability analysis, compared to the one in Bisoffi
et al. (2018), as we will show in Section 5. In particular,
the hybrid model allows employing a smooth Lyapunov
function in order to prove GAS of a constant position refer-
ence, instead of the discontinuous one used in Bisoffi et al.
(2018). Moreover, the hybrid model facilitates a simplified
stability analysis of the frictional system complemented
with reset control strategies, compared to the analysis
framework in Bisoffi et al. (2018). Reset strategies added



to a classical PID controller for frictional systems have
been shown to be promising in Beerens et al. (2018).

This paper has the following contributions. First, we
present a hybrid automaton model for a PID-controlled
mass subject to Coulomb friction. We show that the so-
lution set of the differential inclusion model is contained
in the solution set of the hybrid model, for initial condi-
tions in arbitrarily large compact sets. In particular, we
prove that the solutions to the differential inclusion enjoy
inherently a semiglobal dwell-time between the stick and
slip phases. Second, we prove GAS of the setpoint for the
hybrid model through a Lyapunov analysis, and provide,
as a corollary, an alternative, simplified proof of GAS
for the differential inclusion model, by using the above
property of solution sets. Third, we show that the proposed
hybrid model is useful for PID-based reset control design
and analysis, by presenting a novel reset controller and a
simulation example.

After presenting the physical model in Section 2, we show
in Section 3 that the solutions to this model enjoy a
certain dwell-time property and introduce in Section 4
the hybrid automaton model describing (semiglobally)
the same behavior. A stability analysis is in Section 5,
and Section 6 illustrates the advantages of the hybrid
automaton model for reset design.

Notation. B is the closed unit ball, of appropriate dimen-
sions, in the Euclidean norm. For w1 ∈ Rn1 and w2 ∈ Rn2 ,

(w1, w2) :=
[
w>1 w>2

]>
. The function sign: R → [−1, 1]

is defined as sign(0) := 0, sign(x) := x/|x| for x 6= 0.
The set-valued mapping Sign: R ⇒ [−1, 1] is defined as
Sign(0) := [−1, 1], Sign(x) := {sign(x)} for x 6= 0. For
c > 0, the function dzc : R→ R is defined as dzc(x) := 0 for
x ∈ [−c, c], dzc(x) := x − c sign(x) for x /∈ [−c, c]. In par-
ticular, dz : R→ R is defined as dz(x) := dz1(x) for all x.
For a hybrid solution ψ (Goebel et al., 2012, Def. 2.6) with
hybrid time domain domψ (Goebel et al., 2012, Def. 2.3),
the function j(·) is defined as j(t) := min(t,j)∈domψ j. For
a generic hybrid system H = (F,C,G,D) in Goebel et al.
(2012), SH(x0) denotes the set of all maximal solutions to
H from the initial condition x0. ∨, ∧ denote the logical
operators or, and. For x ∈ Rn and a closed set A ⊂ Rn,
|x|A := infy∈A |x− y|.

2. PHYSICAL MODEL AND MAIN RESULT

A PID controller drives a 1-degree-of-freedom mass m on
a horizontal plane with position z1 and velocity z2, and
subject to a friction force taking values from a set-valued
force law z2 ⇒ Ψ̄(z2) := −F̄s Sign(z2) − ᾱz2, where F̄s
is the static Coulomb friction and ᾱ ≥ 0 is the viscous
friction coefficient. With the goal of attaining the constant
setpoint (z1, z2) = (r, 0), the described model reads

ż1 = z2, (1a)

ż2 ∈
1

m

(
Ψ̄(z2)− k̄p(z1 − r)− k̄iz3 − k̄dz2

)
, (1b)

ż3 = z1 − r, (1c)

where z3 is the integral state of the PID controller and k̄p,
k̄i, k̄d represent its proportional, integral and derivative
gains, respectively. As in Beerens et al. (2018), we intro-
duce mass-normalized parameters to favor clarity

kp :=
k̄p
m , kd := k̄d+ᾱ

m , ki := k̄i
m , Fs := F̄s

m , (2)

and we adopt the convenient change of coordinates

x̂ := (σ̂, φ̂, v̂) =

[
−ki(z1−r)

−kp(z1−r)−kiz3
z2

]
, (3)

where σ̂ is a generalized position error, φ̂ corresponds to
the proportional and integral actions of the PID controller,
and v̂ is the velocity. Further details on the model deriva-
tion and the reasons for the change of coordinates can be
found in Beerens et al. (2018). After the reparametrization
in (2) and the change of coordinates in (3), the model in (1)
is equivalent to

Ĥ :

 ˙̂σ
˙̂
φ
˙̂v

 ∈
 −kiv̂

σ̂ − kpv̂
φ̂− kdv̂ − Fs Sign(v̂)


=

[
0 0 −ki
1 0 −kp
0 1 −kd

]σ̂φ̂
v̂

− [ 0
0
Fs

]
Sign(v̂)

=: Ax̂− bSign(v̂), x̂ ∈ Ĉ := R3.

(4)

Although Ĥ has an empty jump set in the terminology
of Goebel et al. (2012), we call it a hybrid system since
we will consider its (truly) hybrid counterpart below (see
(21)). We consider Fs > 0 and assume that

ki > 0, kp > 0, kpkd > ki, (5)

which is equivalent, by the Routh-Hurwitz criterion, to
the origin being globally asymptotically stable for (4) in
the frictionless case, i.e., Fs = 0. The assumption in (5)
corresponds then to tuning a stabilizing PID controller and
is hence not restrictive. Consider for Ĥ in (4) the attractor

Â := {x̂ = (σ̂, φ̂, v̂) : σ̂ = 0, |φ̂| ≤ Fs, v̂ = 0}, (6)

corresponding to the set of all possible equilibria. We state
then the next result.

Theorem 1. Under the controller gain selection in (5), Â
in (6) is globally asymptotically stable for Ĥ in (4).

System Ĥ in (4) coincides with the model in Bisoffi et al.
(2018) where Theorem 1 was proven via a discontinuous
Lyapunov function. The motivation of this paper is to
provide an alternative hybrid proof of Theorem 1 (see
Section 5.2), based on the hybrid model Hδ presented
below (see (21)). The ingredients of this proof are: (a) the

solutions to Ĥ have a semiglobal dwell time (see Lemma 1)
and are bounded (see Lemma 4), (b) the solutions to

Ĥ are semiglobally contained in the solutions to Hδ
(see Lemma 2), (c) the stability analysis of the hybrid
model Hδ (see Section 5.1) is significantly simplified by
the smooth, instead of discontinuous, Lyapunov function.
Moreover, Section 6 sketches the benefit of Hδ for design-
ing reset laws to improve the PID-control performance.

3. SEMIGLOBAL DWELL TIME OF SOLUTIONS

Given the sets (intuitively associated with incipient slip or
stick phases)

Ŝ1 := {x̂ : v̂ = 0 ∧
(
φ̂ > Fs ∨ (φ̂ = Fs ∧ σ̂ > 0)

)
} (7)

Ŝ−1 := {x̂ : v̂ = 0 ∧
(
φ̂ < −Fs ∨ (φ̂ =−Fs ∧ σ̂ < 0)

)
} (8)

Ŝ0 := {x̂ : v̂ = 0 ∧ σ̂ > 0 ∧ φ̂ ∈ [−Fs, Fs)}



∪ {x̂ : v̂ = 0 ∧ σ̂ < 0 ∧ φ̂ ∈ (−Fs, Fs]}, (9)

we summarize the results from (Bisoffi et al., 2018,
Lemma 1 and Claim 1) that we exploit in this paper.

Fact 1. (i) From each initial condition x̂0 ∈ R3, there

exists a unique and complete solution x̂ to Ĥ. (ii) For

each initial condition x̂0 = (σ̂0, φ̂0, v̂0) ∈ Ŝ1 or with v̂0 > 0

(x̂0 = (σ̂0, φ̂0, v̂0) ∈ Ŝ−1 or with v̂0 < 0, respectively), there

exists T > 0 such that the unique solution x̂ to Ĥ coincides

over [0, T ] with the unique solution x̂l := (σ̂l, φ̂l, v̂l) to

˙̂xl = Ax̂l − b ( ˙̂xl = Ax̂l + b, respectively), (10)

with A and b in (4). (iii) For each initial condition x̂0 ∈ Ŝ0

or x̂0 = (0, φ̂0, 0) with |φ̂0| ≤ Fs, there exists T > 0 such

that the unique solution x̂ to Ĥ coincides over [0, T ] with
the unique solution x̄ := (σ̄, φ̄, v̄) to

˙̄x := ( ˙̄σ, ˙̄φ, ˙̄v) = (0, σ̄, 0). (11)

The interval [0, T ] in Fact 1(ii) might not be uniform
with respect to the initial conditions, and we need this
uniformity for building a hybrid model of (4) with desir-
able stability properties. Indeed, we have the property of
solutions to Ĥ established in the next lemma, which entails
a uniform dwell-time in a semiglobal fashion. Note that
the presence of a guaranteed uniform dwell time allows
ruling out Zeno phenomena (see Goebel et al. (2012) and
references therein) in the following.

Lemma 1. Under selection (5), for each M > 0, there

exists δ > 0 such that for each initial condition x̂0 ∈ Ŝ1 ∩
MB (x̂0 ∈ Ŝ−1 ∩MB, respectively), the unique complete

solution x̂ = (σ̂, φ̂, v̂) to Ĥ from the initial condition x̂0

satisfies v̂(t) ≥ 0 (v̂(t) ≤ 0, respectively) for all t ∈ [0, δ].

Proof. We consider only the case x̂0 ∈ Ŝ1, because the case
x̂0 ∈ Ŝ−1 is proven with similar arguments. By Fact 1(ii),

the solution x̂ satisfies ˙̂x = Ax̂− b on some [0, T ]. The last
equation can be made homogeneous as

˙̃x = Ax̃ with x̃ = (σ̃, φ̃, ṽ) := (σ̂, φ̂− Fs, v̂), (12)

so that x̂ ∈ Ŝ1 if and only if x̃ ∈ S̃1, where

S̃1 := {x̃ : ṽ = 0 ∧
(
φ̃ > 0 ∨ (φ̃ = 0 ∧ σ̃ > 0)

)
}. (13)

Consider an initial condition x̃0 ∈ S̃1 and note that
0 /∈ S̃1, hence |x̃0| 6= 0. Because the dynamics in (12) is
homogeneous, consider the unitary-norm initial condition
ñ0 := x̃0/|x̃0| without loss of generality. We parameterize

ñ0 as ñ0 = (cos(θ̃0), sin(θ̃0), 0) with θ̃0 ∈ [0, π) (π is

excluded because φ̃0 = 0 and σ̃0 < 0 do not belong to S̃1).
Then, the solution to (12) with initial condition ñ0 is given

by x̃(t) = (σ̃(t), φ̃(t), ṽ(t)) = exp(At)ñ0, and by expanding
the matrix exponential into its powers, straightforward
computations yield

ṽ(t)=cos(θ̃0)( t
2

2 +O(t3))+sin(θ̃0)(t− kdt
2

2 +O(t3)), (14)

where O(t3) denotes the terms of order t3 or higher in the
Taylor expansion. Based on (14), we show below for each

θ̃0 ∈ [0, π) the existence of Tv > 0 such that

ṽ(t) > 0 for all t ∈ (0, Tv), ṽ(Tv) = 0. (15)

Then, we prove the existence of a uniform δ. For θ̃0 ∈
[0, π/2], we are considering a compact set of values of

θ̃0 where both cos(θ̃0) and sin(θ̃0) are nonnegative. Since
in (14) the coefficients of their dominant powers (t2/2 and
t, respectively) are a positive constant, δ1 can be found
independently of θ0 so that both Taylor expansions are
(strictly) positive on (0, δ1). As a consequence, Tv ≥ δ1
and the claim of the lemma is proven for θ̃0 ∈ [0, π/2].

For θ̃0 ∈ (π/2, π), the existence of Tv > 0 in (15) follows

from the positive coefficient sin(θ̃0) of the dominant power
t in (14), but uniformity of δ might not hold. Note that

θ̃0 ∈ (π/2, π) corresponds to σ̃0 < 0, which we then assume
in the rest of the proof without loss of generality. This
implies by (12), (15) and ki > 0 in (5) that

σ̃(Tv) = σ̃0 +
∫ Tv

0

(
− kiṽ(τ)

)
dτ ≤ σ̃0 < 0. (16)

Since A is Hurwitz by (5) and x̃ satisfies (12) until t = Tv
by Fact 1(ii), there exist positive c and λ such that
|x̃(t)| = | exp(At)x̃0| ≤ c exp(−λt)|x̃0|. Define

δ2 := Fs/(|A|cM) > 0 (17)

where |A| > 0 is the (induced) 2-norm of matrix A. If
Tv ≥ δ2, the claim of the lemma is proven. If Tv < δ2, we
show that the velocity remains zero for a uniform interval.
Note first that ˙̃v(Tv) ≤ 0 otherwise ṽ would not cross zero

as in (15). Hence 0 ≥ ˙̃v(Tv) = φ̃(Tv) − kdṽ(Tv) = φ̃(Tv),

so φ̃(Tv) ≤ 0. Also, φ̃(Tv) > −Fs as we conclude in (18).

Indeed, for t ∈ [0, Tv] (x̂0 ∈ Ŝ1 ∩MB implies x̃0 ∈MB)

| ˙̃φ(t)| = | ddt
(

[ 0 1 0 ] exp(At)x̃0

)
| = | [ 0 1 0 ]A exp(At)x̃0|

≤ |A|c exp(−λt)|x̃0| ≤ |A|cM = Fs/δ2

by (17). Hence, for t ∈ [0, Tv], φ̃(t) = φ̃0+
∫ t

0
˙̃
φ(τ)dτ ≥ φ̃0−∫ t

0
| ˙̃φ(τ)|dτ ≥ φ̃0 − tFsδ2 . In particular then,

φ̃(Tv) ≥ φ̃0 − Tv Fsδ2 ≥ −
Tv
δ2
Fs > −Fs (18)

because φ̃0 ≥ 0 and Tv < δ2. Then, ṽ(Tv) = 0 by (15),

σ̃(Tv) < 0 by (16) and −Fs < φ̃(Tv) ≤ 0, i.e.,

v̂(Tv) = 0, σ̂(Tv) < 0, 0 < φ̂(Tv) ≤ Fs. (19)

We may now continue the solution to Ĥ from the “initial”
condition in (19). Fact 1(iii) shows that the solution x̂ to

Ĥ coincides with the solution x̄ to (11) as long as φ̄ ≥ −Fs.
Since, from (11), φ̄(t) = φ̄(Tv)+ σ̄(Tv)(t−Tv) with t ≥ Tv,
φ̄(Tv) = φ̂(Tv) ∈ (0, Fs] and |σ̄(Tv)| = |σ̂(Tv)| = |σ̃(Tv)| ≤
|x̃(Tv)| ≤ c exp(−λTv)|x̃0| ≤ cM , we have φ̄(t) ∈ [−Fs, Fs]
for all t ∈ [Tv, Tv + δ3] with δ3 := Fs

cM > 0. In turn, the

solution component v̂ to Ĥ remains zero over the same
interval, whose uniform length is δ3. Therefore,

δ := min{δ1, δ2, δ3, 2Fs/M} > 0 (20)

proves the lemma, where 2Fs/M has been introduced
without loss of generality for the sake of Lemma 2. �

4. PROPOSED HYBRID MODEL

With the quantity δ from Lemma 1 in mind, we introduce a
hybrid model enabling a hybrid-based proof of Theorem 1.
Consider δ > 0, and for the state

x := (σ, φ, v, τ, q) ∈ R3 × [0, 2δ]× {−1, 0, 1}, (21a)

define the hybrid system Hδ as

Hδ :

 ẋ = f(x), x ∈ C := Cslip ∪ Cstick

x+ ∈ G(x), x ∈ D :=
⋃

i∈{1,−1,0}
Di

(21b)

(21c)



Cslip

q = 1
Cslip

q = −1
Cstick
q = 0

x ∈ D−1 x ∈ D1

x ∈ D0 x ∈ D0

σ

φ

v Cslip

D0

σ

φ

vq = 0

Cslip

q = −1 q = 1

D0

D1

D−1

σ

φ

v

Cstick

v = 0

−Fs

Fs
Fs−Fs

Fig. 1. Top: hybrid automaton underlying (21). Bottom:
“projections” to the (σ, φ, v) space of the flow and
jump sets in (21f)-(21j).

where the flow and jump maps are given by

f(x) :=


−kiv
σ − kpv

−kdv + |q|φ− qFs
1− dz(τ/δ)

0

, G(x) :=
⋃

i : x∈Di

{gi(x)}, (21d)

the different jump maps are given by

g1(x) :=

[
σ
φ
v
0
1

]
, g−1(x) :=

[ σ
φ
v
0
−1

]
, g0(x) :=

[
σ
φ
v
τ
0

]
(21e)

and the flow and jump sets are given by

Cslip :={x : |q| = 1, qv ≥ 0} (21f)

Cstick :={x : q = 0, v = 0, |φ| ≤ Fs} (21g)

D1 :={x : q = 0, v = 0, φ ≥ Fs, τ ∈ [δ, 2δ]} (21h)

D−1 :={x : q = 0, v = 0, φ ≤ −Fs, τ ∈ [δ, 2δ]} (21i)

D0 :={x : |q| = 1, v = 0, qφ ≤ Fs}. (21j)

The flow and jump maps for τ ensure the invariance of
the set [0, 2δ] for τ , as per (21a). Since Di ∩ Dk = ∅
for i, k ∈ {−1, 0, 1} and i 6= k, G is actually always a
single-valued mapping. A pictorial representation of (21)
is in Figure 1, which gives a clear hybrid automaton
interpretation of (21).

As an important observation, the first three components
of the flow map in (21d) coincide in Cslip and Cstick with
the affine right-hand sides in (10) and (11), to which the
differential inclusion in (4) has been shown to “reduce”
in Fact 1. Then, it is intuitive that a solution to Hδ
captures the solution to Ĥ when the condition τ ∈ [δ, 2δ]
is absent from (21h)-(21i). In such a case, however, (21)
would also have nonconverging Zeno solutions (e.g., with
v = 0, φ = Fs, σ 6= 0) that would nullify the desired
attractivity property of Section 5.1. The timer in Hδ
prevents these Zeno solutions, and translates the inherent
dwell-time property of solutions to (4) in Lemma 1. Indeed,
after solutions to Hδ exit a stick phase and enter a slip
phase jumping from D1 or D−1, the timer is reset to zero
via g1 or g−1 and enforces that a time δ passes before
solutions exit a stick phase again (due to the condition
τ ∈ [δ, 2δ]), which corresponds to the property of solutions
to (4) in Lemma 1. For the sake of Lemma 2, note that due
to Fact 1(i), for each x̂0 ∈ R3, the set of maximal solutions
SĤ(x̂0) contains one single element x̂.

Lemma 2. Under selection (5), for each M > 0, there
exists δ > 0 such that for each initial condition x̂0 ∈ R3 ∩
MB, there exist τ0 and q0 such that, for some solution
x = (σ, φ, v, τ, q) ∈ SHδ((x̂0, τ0, q0)), for all t ≥ 0

σ(t, j(t)) = σ̂(t), φ(t, j(t)) = φ̂(t), v(t, j(t)) = v̂(t), (22)

where x̂ = (σ̂, φ̂, v̂) ∈ SĤ(x̂0).

The intuition behind Lemma 2 is that there exists one
solution to (21) that can jump so as to reproduce the
solution to (4), although there might be other solutions
to Hδ that are not complete. The proof of Lemma 2 is in
Appendix A.

5. STABILITY ANALYSIS

In this section, we first provide a stability analysis for Hδ
and then, as a result of the relationship between the
solution sets of Ĥ and Hδ shown in Section 4, we obtain a
hybrid proof of Theorem 1.

5.1 Stability analysis of A for Hδ

We study the global asymptotic stability of the following
attractor for Hδ in (21)

A :={(0, φ, 0, τ, q) : τ ∈ [0, 2δ], q ∈ {−1, 0, 1}, φ∈Fs Sign(q)},
(23)

which is compact. Note that Â in (6) is essentially the

“projection” of A for Ĥ in the directions σ̂, φ̂, v̂. Consider
the smooth Lyapunov function

V (x) :=

[
σ
v

]>[kd
ki
−1

−1 kp

][
σ
v

]
+|q|(φ−qFs)2+(1−|q|)(dzFs(φ))2.

(24)
From (5) and x as in (21a), A corresponds to the zero-level
set of V . We can prove the following relations.

Lemma 3. Consider the hybrid system Hδ in (21) with
δ > 0. Then, V in (24) satisfies:

〈∇V (x),f(x)〉=−2(kpkd−ki)v2 ∀x ∈ Cslip ∪ Cstick (25a)

V (g1(x))− V (x) = 0 ∀x ∈ D1 (25b)

V (g−1(x))− V (x) = 0 ∀x ∈ D−1 (25c)

V (g0(x))− V (x) = (dzFs(φ))2 − (φ− qFs)2 ≤ 0

∀x ∈ D0. (25d)

Proof. As for (25a), some computations yield

〈∇V (x), f(x)〉 = 2 [ σv ]
>
[ kd
ki
−1

−1 kp

] [
−kiv

−kdv+|q|φ−qFs

]
+ 2
(
|q|(φ− qFs) + (1− |q|) dzFs(φ)

)
(σ − kpv)

(26)

from (24) and (21d). (25a) follows readily from (26) by
considering separately the cases of |q| = 1 (Cslip) and q = 0
(Cstick). Next, consider (25b). D1 in (21h) and g1 in (21e)
yield V (g1(x))− V (x) = (φ− Fs)2 − (dzFs(φ))2, which is
zero for φ ≥ Fs. (25c) follows analogously. (25d) follows
from (21j) and g0 in (21e) updating q from |q| = 1 to 0. �

The next proposition establishes GAS of A for Hδ.
Proposition 1. Under selection (5), consider Hδ in (21)
with δ > 0. A in (23) is globally asymptotically stable
for Hδ.

Proof. The proof exploits (Seuret et al., 2019, Thm. 1). The
set A in (23) is compact and Hδ in (21) satisfies the hybrid
basic conditions (Goebel et al., 2012, Assumption 6.5).
G(D ∩ A) ⊂ A follows from the fact that σ, φ, v remain
constant across jumps, and the Lyapunov nonincrease
conditions hold due to Lemma 3.



Hence, we only need to prove that no complete solution
xbad to Hδ keeps V constant and nonzero. To this end,
first note that the dwell time property enforced by τ
implies that complete solutions exhibit an infinite amount
of flow (cf. Fig. 1, top). Due to the decrease property in
(25a), and since v remains constant across jumps, the only
possibility for xbad to exist is that it flows outsideA (where
V is nonzero) with velocity v identically equal to zero
(otherwise V would decrease from (25a) in any arbitrarily
small interval of variation of v). Such flowing (with v ≡ 0)
is impossible in Cslip\A due to the linear representation
in (10) and (12), and the pair ([ 0 0 1 ] , A) being observable.
Hence, xbad could flow indefinitely only in Cstick. However,
this is also impossible because the components (σ, φ, v) of
any solution flowing in Cstick\A obey dynamics (11) and,
since the σ component of xbad must be nonzero (otherwise
xbad would be in A), the φ component of xbad would grow
unbounded, thereby contradicting the fact that xbad keeps
flowing in Cstick\A. hence, such solution xbad cannot exist
and the proof is completed. �

5.2 Hybrid proof of Theorem 1

The proof of Proposition 1 is significantly simplified be-
cause the automaton model Hδ allows using the smooth
Lyapunov function V in (24) (rather than the discontinu-
ous Lyapunov function used in Bisoffi et al. (2018)). The
proof of Theorem 1 is completed here through Lemma 2,
Proposition 1, and the next straightforward property of Ĥ.

Lemma 4. Under selection (5), solutions to Ĥ in (4) are
bounded.

Proof. By (5) (i.e., A is Hurwitz), the system ˙̂xl = Ax̂l −
bν is exponentially stable, hence bounded-input-bounded-
output stability of this linear system implies that solutions
to Ĥ are bounded (consider (4) with input |ν| ≤ 1). �
Proof of Theorem 1. Preliminarily, define Â5:={(σ̂, φ̂, v̂, τ, q) :

σ̂ = 0, |φ̂| ≤ Fs, v̂ = 0, τ ∈ [0, 2δ], q ∈ {−1, 0, 1}}, i.e., Â
in (6) written as a subset of R5 (instead of R3). Clearly

Â5 ⊃ A with A in (23). Then,

|x|A ≥ inf
y∈Â5

|x− y| = inf
y∈Â5

|(x̂, τ, q)− y| = |x̂|Â. (27)

For the proof, we need to show stability and global at-
tractivity of Â, where the latter entails by (Goebel et al.,
2012, Def. 7.1) that for each solution x̂ with x̂(0) ∈ R3,
x̂ is bounded and satisfies limt→∞ |x̂(t)|Â = 0 (because
solutions are complete from Fact 1(i)). Boundedness of so-
lutions is guaranteed by Lemma 4. Indeed, for each M > 0,
there exists M ′ ≥ M , such that x̂(0) ∈ MB implies, by
Lemma 4, that the range rge x̂ ⊂ M ′B. Then, Lemma 2
guarantees that there exists δ′ > 0 so that the solution x̂
(with rge x̂ ⊂ M ′B) coincides with the first three compo-
nents of one solution x to Hδ′ , as in (22). Global asymp-
totic stability of A for Hδ′ (Proposition 1) and complete-
ness of such x (due to (22)) ensure limt→∞ |x(t, j(t))|A = 0
and hence, by (27), limt→∞ |x̂(t)|Â = 0. Since both Hδ
and Ĥ satisfy the hybrid basic conditions (Goebel et al.,
2012, Ass. 6.5), global asymptotic stability of A for Hδ in
Proposition 1 actually implies uniform global asymptotic
stability (Goebel et al., 2012, Thm. 7.12), and uniform

global attractivity. Hence, also Â is uniformly globally
attractive. By (4) and Fact 1(iii), Â is strongly forward
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Fig. 2. Simulated response of σ (top) and φ (bottom), for
Hr (blue, solid) and Hδ (red, dash-dotted).

invariant because for every solution x̂ ∈ SĤ(Â), rge x̂ ⊂ Â.

Then Â is stable by (Goebel et al., 2012, Prop. 7.5). �

6. AUTOMATON MODEL Hδ FOR RESET DESIGN

Motivated by improving performance of mechatronics sys-
tems through PID-based reset controllers (see, e.g., Beerens
et al. (2018)), we design from (21) a reset integrator to
reduce the overshoot of its linear counterpart. In partic-
ular, we change sign to the controller state φ when the
generalized position error σ crosses zero. Such a design
ensures that the PI control force always points in the
direction of the setpoint. Secondly, a scaling of φ by a
factor α ∈ [0, 1) is required when the mass hits zero
velocity, after overshooting the reference, to leave intact
the global asymptotic stability properties.

As a baseline, we consider system Hδ in (21), and we
augment it with suitable jump sets and maps, correspond-
ing to the described controller resets. Let us introduce
a boolean state b ∈ {−1, 1}, characterizing whether the
mass moves towards the reference (b = 1), or away from
it (b = −1), when initialized properly. Consider the aug-
mented state xr := (x, b), and the resulting hybrid system
including the controller resets:

Hr:


ẋr = fr(xr), xr ∈ Cr

x+
r ∈

⋃
p : xr∈Dp,r

{gp,r(xr)}, xr ∈
⋃

p∈{1,−1,0,φ,α}

Dp,r

(28a)

(28b)

with flow map fr(xr) := (f(x), 0), and jump maps
g1,r(xr) := (g1(x), b), g−1,r(xr) := (g−1(x), b), g0,r(xr) :=
(g0(x), b), gφ,r(xr) := (σ,−φ, v, τ, q,−1), and gα,r(xr) :=
(σ, αφ, v, τ, q, 1). The flow and jump sets are given by
Cr := {(x, b) : x ∈ C, b ∈ {−1, 1}}, D1,r := {(x, b) : x ∈
D1, b = 1}, D−1,r := {(x, b) : x ∈ D−1, b = 1}, D0,r :=
{(x, b) : x ∈ D0, b = 1}, Dφ,r := {(x, b) : |q| = 1, qv ≥
0, b = 1, σ = 0}, Dα,r := {(x, b) : x ∈ D0, b = −1},
where Dφ,r and Dα,r are the jump sets implementing the
resets. We leave the robust detection of σ = 0 and v = 0
in Dφ,r and Dα,r as future work (with an approach similar
to (Beerens et al., 2018, Remark 1) and drawing from the
ideas in (Goebel et al., 2012, Example 4.18 and Chap. 4)).

Computer simulations ofHδ (i.e., with a classical PID con-
troller) and of Hr in (28) (i.e., with a reset enhancement)
are performed with δ sufficiently small. For a unitary mass,
we consider Fs = 0.981 m/s2, and select kp = 18 s-2,
ki = 35 s-3, kd = 2.5 s-1 (satisfying (5)), α = 0.95. The



generalized position error σ, and the PI control force φ
(illustrating the controller resets) are depicted in Fig. 2,
where the red dash-dotted line corresponds to the solution
to Hδ. Such solution enjoys the stability properties of The-
orem 1, but its settling time and overshoot are significantly
reduced by using the reset controller, while maintaining
global asymptotic stability. Indeed, the developments in
this paper pave the way for an analysis that shows 1) global
asymptotic stability for Hr, and 2) that global asymptotic
stability for Hr implies global asymptotic stability for the
corresponding inclusion model, augmented with the pro-
posed reset controller. In particular, the smooth Lyapunov
function in (24) can be extended to incorporate also b.

7. CONCLUSIONS

For PID-controlled motion systems subject to Coulomb
friction, we introduced a hybrid model exploiting some
intrinsic semiglobal dwell-time between stick and slip en-
joyed by the original solutions. This new model allows to
simplify the proof of GAS, which can now rely on a smooth
Lyapunov function, rather than the discontinuous one used
in previous work. The model and the smooth function
are important preliminary steps towards proving the ef-
fectiveness of certain hybrid resetting rules for the inte-
grator state, providing improved closed-loop performance
in mechatronics systems. While simulations illustrate this
fact here, a complete proof of GAS for the PID scheme
with resets is left as future work.

Appendix A. PROOF OF LEMMA 2

If a generic solution x = (σ, φ, v, τ, q) ∈ SHδ flows, its
components (σ, φ, v) satisfy also the differential inclusion
in (4). Indeed, flow according to (21d) is possible only on
a subset of Cslip ∪ Cstick given by Sa ∪ Sb ∪ Sc defined as

Sa := {x : (q = 1 ∧ v > 0) ∨ (q = 1 ∧ v = 0

∧ φ > Fs) ∨ (q = 1 ∧ v = 0 ∧ φ = Fs ∧ σ ≥ 0)}
Sb := {x : (q = 0 ∧ v = 0 ∧ φ ∈ [−Fs, Fs) ∧ σ > 0)

∨ (q = 0 ∧ v = 0 ∧ φ ∈ [−Fs, Fs] ∧ σ = 0)

∨ (q = 0 ∧ v = 0 ∧ φ ∈ (−Fs, Fs] ∧ σ < 0)}
Sc := {x : (q = −1∧v < 0)∨(q = −1∧v = 0

∧φ <−Fs)∨(q =−1∧v = 0∧φ =−Fs∧σ ≤ 0)}.

(A.1)

Define f̂ from f(x) =: (f̂(x), 1 − dz(τ/δ), 0). On Sa,

Sb, Sc, f in (21d) is such that, respectively, f̂(x) =

A
[
σ
φ
v

]
− b, f̂(x) =

[
0
σ
0

]
, f̂(x) = A

[
σ
φ
v

]
+ b (with A and

b in (4)). By Fact 1, the solution to (4) coincides with
the unique solution of the affine systems given by (10)

and (11), which coincide with the vector fields f̂ obtained
from (21d). Since solutions to Hδ are locally absolutely
continuous by (Goebel et al., 2012, Defs. 2.6 and 2.4),
this is sufficient to conclude that the components (σ, φ, v)
of x ∈ SHδ satisfy the differential inclusion in (4) when
flowing. Moreover, since the jump map in (21e) is such
that (σ+, φ+, v+) = (σ, φ, v), (22) holds for x ∈ SHδ for all
t ∈ [0, supt domx].

It now remains to prove that there exists a complete
solution to Hδ. To this end, the following observations
are made based on the above discussion on the sets
in (A.1). Whenever the solution x = (σ, φ, v, τ, q) cannot
flow with the given q (i.e., x(t, j) ∈ (Cstick ∪ Cslip)\(Sa ∪

Sb ∪ Sc)), the designed jump sets in (21h)-(21j) without
the condition τ ∈ [δ, 2δ] would ensure that x can jump
and, after at most two jumps, q takes a value such

that the flow map f corresponds to the affine system f̂
according to which (4) evolves; in particular, the complete
solution to (4) augmented with suitable components τ
and q would be a solution to (21), and (22) would hold.
Without the condition τ ∈ [δ, 2δ], however, (21) would also
have solutions with Zeno behavior nullifying the desired
stability property in Proposition 1. Then, it remains to
prove that for each x̂0 ∈MB such that x0 = (x̂0, τ0, q0) ∈
D1∪D−1, a solution x ∈ SHδ(x0) evolves without jumping
from D1 ∪ D−1 for at least t ∈ (0, δ), so that after that
time, jumps from D1 ∪ D−1 are enabled again thanks
to the flow map for τ . We address the case x0 ∈ D1

because x0 ∈ D−1 follows from similar arguments. Define
the set L1 := {x = (σ, Fs, 0, τ, 0) : σ ≤ 0}. Consider
first x0 = (x̂0, τ0, 0) ∈ D1 ∩ L1, x̂0 ∈ MB. A solution
x ∈ SHδ(x0) can flow in Cstick for at least [0, 2Fs/M ], and
actually x(t, 0) ∈ Cstick\(D1 ∪ D−1) for t ∈ (0, 2Fs/M)
with 2Fs/M ≥ δ by (20) in the proof of Lemma 1, and this
shows that x can evolve without jumping from D1 ∪D−1

for at least t ∈ (0, δ). Consider second x0 = (x̂0, τ0, 0) ∈
D1\L1, x̂0 ∈ MB. By selecting τ0 = δ and q0 = 0, we
have τ(0, 1) = 0 and q(0, 1) = 1. By using Tv defined
in (15) in the proof of Lemma 1, we have q(t, 1) = 1 for
t ∈ [0, Tv] and q(Tv, 2) = 0 corresponding to a jump from
D0. Then, x(t, 2) ∈ Cstick for t ∈ [Tv, Ts] with some time
Ts. Lemma 1 guarantees that Tv ≥ δ or Ts ≥ δ, which
shows that x can evolve without jumping from D1 ∪D−1

for at least t ∈ (0, δ).
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