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Abstract 40 

Central place foraging pollinators tend to develop multi-destination routes (traplines) to exploit several 41 

patchily distributed plant resources. While the formation of traplines by individual pollinators has been stud-42 

ied in details, how populations of individuals exploit resources in a common area is an open question diffi-43 

cult to address experimentally. Here we explored conditions for the emergence of resource partitioning 44 

among traplining bees using agent-based models built from experimental data of bumblebees foraging on 45 

artificial flowers. In the models, bees learn to develop routes as a consequence of feedback loops that change 46 

their probabilities of moving between flowers. While a positive reinforcement of route segments leading to 47 

rewarding flowers is sufficient for the emergence of resource partitioning when flowers are evenly distribut-48 

ed, a negative reinforcement of route segments leading to unrewarding flowers is necessary when flowers are 49 

patchily distributed. In these more complex environments, the negative experiences of individual bees favour 50 

the spatial segregation of foragers and high levels of collective foraging efficiency. 51 

 52 
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Introduction 54 

Animals competing for food resources are expected to self-distribute on feeding sites in order to maximize 55 

their individual energy gain (Fretwell and Lucas 1969; Giraldeau and Caraco 2000). Resource partitioning 56 

between individuals of different species is well documented, and often results from functional (Fründ et al. 57 

2010; 2013) or behavioral (Nagamitsu and Inoue 1997; Valdovinos et al. 2016) differences. By contrast, how 58 

individuals of the same species optimally interact to exploit resources in a common foraging area is less un-59 

derstood (Johst et al. 2008; Tinker et al. 2012). 60 

For pollinators, such as bees that individually exploit patchily distributed floral resources in envi-61 

ronments with high competition pressure, efficient resource partitioning appears a prodigious problem in-62 

volving the quality of food resources, their spatial distribution, their replenishment rate, and the activity of 63 

other pollinators. As central place foragers, bees often visit familiar feeding sites in a stable sequence or 64 

trapline (Janzen 1971; Thomson et al. 1997). Individual bees with exclusive access to an array of artificial 65 

flowers tend to develop traplines minimizing travel distances to visit all the necessary flowers to fill their 66 

nectar crop and return to the nest (e.g. bumblebees: Ohashi et al. 2008, Lihoreau et al. 2012a, Woodgate et al. 67 

2017; honey bees: Buatois and Lihoreau 2016). This routing behavior involves spatial memories that can 68 

persist several days or weeks (Thomson et al. 1996; Lihoreau et al. 2010).  69 

How bees partition resources, when several conspecifics exploit a common foraging area, is however 70 

still an open question. Experimentally the problem is challenging to address as it requires monitoring the 71 

movements of several bees simultaneously over large spatial and temporal scales. In theory, bees should 72 

develop individualistic traplines that minimize travel distances and spatial overlap with other foragers, there-73 

by improving their own foraging efficiency and minimizing the costs of competition (Ohashi and Thomson 74 

2005; Lihoreau et al. 2016). Best available data supporting this hypothesis come from observations of small 75 

numbers of bumblebees foraging on potted plants (e.g. Makino and Sakai 2005, Makino 2013) or artificial 76 

flowers (Lihoreau et al. 2016, Pasquaretta et al. 2019) in large flight tents. In these rather simple foraging 77 

conditions, bees tended to avoid spatial overlaps as a consequence of competition by exploitation (when bees 78 

visited empty flowers) and interference (when bees interacted on flowers) (Pasquaretta et al. 2019).  79 

Computational modeling is a powerful approach to further explore how such partitioning might 80 

emerge from spatial learning and competitive interactions. At the individual level, trapline formation has 81 
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been modeled using an iterative improvement algorithm by which a bee compares the net length of the route 82 

it has just traveled (sum of the lengths of all movement vectors comprising the flower visitation sequence) to 83 

the length of the shortest route experienced so far (Lihoreau et al. 2012b). If the new route is shorter (or 84 

equivalent), the bee increases its probability of using all the movement vectors composing the new route in 85 

its subsequent foraging bout. After several iterations, this route-based learning algorithm typically leads to 86 

the discovery and selection of a short (if not the shortest possible) trapline. While this approach can accurate-87 

ly replicate observations across a wide range of experimental conditions (Reynolds et al. 2013), it makes the 88 

strong assumption that bees can compute, memorize and compare the lengths of multi-leg routes upon return 89 

to their nest. Recently, it was proposed that such behavior could also emerge from vector-based learning (Le 90 

Moël et al. 2019), which is more parsimonious and plausible considering the current understanding of spatial 91 

computation in the insect brain (Stone et al. 2017). So far, however, none of these traplining models have 92 

accounted for social interactions and current models of pollinator populations do not take into account indi-93 

vidual specificities of movements based on learning and memory (Becher et al. 2014; 2016; 2018). Thus 94 

presently, there has been no realistic exploration of how resource partitioning between interacting bees might 95 

form.   96 

Here, we investigated the behavioral mechanisms underpinning resource partitioning among 97 

traplining bees by comparing predictions of agent-based models integrating route learning and social interac-98 

tions. First, we developed models implementing biologically plausible vector navigation based on positive 99 

and negative reinforcements of route segments leading to flowers. We used different models to test the indi-100 

vidual and combined influences of these feedback loops on route learning. Next, we explored how these 101 

simple learning rules at the individual level can promote complex patterns of resource partitioning at the 102 

collective level, using simulations with multiple foragers in environments with different resource distribu-103 

tions. 104 

 105 

METHODS 106 

Model overview  107 

We developed two agent-based models in which bees learn to develop routes in an array of flowers (Fig. 1). 108 

In both models, all flowers contain the same quality and volume of nectar that is refilled between foraging 109 
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bouts (flower visitation sequence, beginning and ending at the colony nest entrance). In simulations with 110 

multiple bees, all bees start their foraging bout synchronously and the flowers are filled after the last bee has 111 

returned to the nest. At each foraging bout, each bee attempts to collect nectar from five different flowers in 112 

order to fill its nectar crop (stomach) to capacity. For simplicity, this rule was set constant across all 113 

simulations. For each bee, flower choice is described using movement vectors (orientated jump between two 114 

flowers or between the nest and a flower). The initial probability of using each possible movement vector is 115 

based on movement vector length. This probability is then modulated through learning when the bee uses a 116 

vector for the first time. The learning rule varied depending on the model. If the ending flower of the vector 117 

contains nectar, it is rewarding and the probability to reuse the vector later increased (positive reinforcement, 118 

models 1 and 2). If the flower is empty, it is not rewarding and the probability to reuse the vector is either 119 

left unchanged (model 1) or decreased (negative reinforcement, model 2). A flower is empty if it has 120 

previously been visited in the same foraging bout by the same bee or another bee (exploitation competition). 121 

If two bees visit a flower at the same time, a fight to secure the possible reward occurs (interference 122 

competition). Only one bee can stay on the flower and access the potential nectar reward with a random 123 

probability. The winner bee takes the reward if there is one. The loser reacts as for an empty flower. Both 124 

bees update their probabilities to reuse the vector accordingly. Route learning thus depends on the experience 125 

of the bee and its interactions with other foragers. For simplicity, we restricted our analysis to two bees, but 126 

the same models can be used to simulate interactions among more bees (see examples with five bees in 127 

Video S1, Appendix S1). The complete R code is available at 128 

https://gitlab.com/jgautrais/resourcepartitioninginbees/-/releases.  129 

 130 

Environment 131 

Simulations with one foragers  132 

To calibrate our models, we ran simulations in environments replicating published experimental studies in 133 

which individual bumblebees (Bombus terrestris) were observed developing traplines between five equally 134 

rewarding artificial flowers in a large open field (Lihoreau et al. 2012b; Woodgate et al. 2017). To our 135 

knowledge, these studies provide the most detailed available datasets on trapline formation by bees. Lihoreau 136 

et al. (2012b) used a positive array of flowers (regular pentagon, Fig. S1A) in which the distance and 137 

direction between flowers were positively linked, i.e. nearest neighbor flowers could be visited using lowest 138 
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angular deviation between consecutive vectors. The authors tracked seven bumblebees, which we judged 139 

enough to run quantitative comparisons with model simulations (raw data are available in Table S1 of 140 

Lihoreau et al. 2012b). Woodgate et al. (2017) used a negative array of flowers (narrow pentagon, Fig. S1B) 141 

in which the distance and direction between flowers were negatively linked. Here, however, the small sample 142 

size of the original dataset (three bumblebees, data shared by J. Woodgate) only enabled a qualitative 143 

comparison with the model simulations (Appendix S2).   144 

 145 

Simulations with two foragers 146 

We explored conditions leading to resource partitioning by running model simulations with two foragers. 147 

Here we simulated environments containing 10 flowers (each bee had to visit five rewarding flowers to fill 148 

its crop to capacity). To test whether model predictions were robust to variations in resource spatial 149 

distribution, we simulated three types of environments characterized by different levels of resource 150 

patchiness: (i) a patch of 10 flowers, (ii) two patches of five flowers each, and (iii) three patches of five, 151 

three and two flowers respectively (see examples in Fig. S2). We generated flower patches into a spatial 152 

range comparable to the one used in both experimental setups (Lihoreau et al. 2012b; Woodgate et al. 2017): 153 

about 500 m2 with a minimum distance of 160 m between each patch center. Within a patch, flowers were 154 

randomly distributed according to two constraints: (i) flowers were at least 20 m apart from each other, (ii) 155 

the maximum distance of each flower from the center of the patch was 40 m. This ensured that each patch 156 

had a maximum diameter of 80 m and inter-flower distances were smaller between all flowers of the same 157 

patch than between all flowers of different patches. 158 

 159 

Movements  160 

At each step, a bee chooses to visit a target location (flower or nest) based on a matrix of movement 161 

probabilities (Fig. 1). This matrix is initially defined using the inverse of the square distance between the 162 

current position of the bee and all possible target locations (Lihoreau et al. 2012b; Reynolds et al. 2013). The 163 

probability of moving from location i to the location j among n possible targets, is initially set to: 164 

 165 

(1)            ��� � �� �
�

����
∑���

�

���
�	  166 
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 167 

Where 
��  is the distance between locations i and j. Before choosing its destination, the bee lists all possible 168 

target locations. For simplicity, the bee excludes its current location, thus preventing looping flights to and 169 

from the same flower or nest, which are rare in experienced bumblebee foragers (Ohashi et al. 2007; Saleh 170 

and Chittka 2007; Lihoreau et al. 2010; Lihoreau et al. 2012a; Lihoreau et al. 2012b; Woodgate et al. 2017). 171 

The bee also excludes the location it had just come from. This simulates the tendency of bumblebees to avoid 172 

recently visited (and thus depleted) flowers (Ohashi et al. 2007; Saleh and Chittka 2007; Lihoreau et al. 2010; 173 

Lihoreau et al. 2012a; Lihoreau et al. 2012b; Woodgate et al. 2017). The foraging bout ends if: (i) the bee 174 

fills its crop to capacity, (ii) the bee chooses the nest as a target destination, or (iii) the bee reaches a 175 

maximum travelled distance of 3000 m. The latest was added to avoid endless foraging trips in the model. Its 176 

value was chosen based on the observation that bumblebees typically forage within a distance of less than 1 177 

km from their nest (Osborne et al. 1999; Wolf and Moritz 2008; Woodgate et al. 2016). 178 

 179 

Learning  180 

Learning modulates the probability of using movement vectors as soon as the bee experiences the chosen 181 

target (online learning) and only once within a foraging bout (the first time the movement vector is used; Fig. 182 

1). This approach has the advantage of implementing vector navigation (Stone et al. 2017; Le Moël et al. 183 

2019) and thus avoids unrealistic assumptions about computation and comparison of complete routes 184 

(Lihoreau et al. 2012b; Reynolds et al. 2013). Positive reinforcement was implemented in models 1 and 2. It 185 

occurs when a bee uses a vector leading to a rewarding flower. The probability of using this vector is then 186 

multiplied by 1.5 (other vectors probabilities are scaled accordingly to ensure that all sum up to 1). This 187 

positive reinforcement is based on the well-known tendency of bumblebees to return to nectar rewarding 188 

places through appetitive learning (Goulson 2010). Negative reinforcement was implemented in model 2 189 

only. It occurs when a bee uses a vector leading to a non-rewarding flower. The bee reduces the probability 190 

of using that vector by multiplying it by 0.75 (here also rescaling the other ones). This negative 191 

reinforcement rule is based on the tendency of bumblebees to reduce their frequency of revisits to 192 

unrewarded flowers with experience (Pasquaretta et al. 2019). We applied a lower value to negative 193 

reinforcement because bees are much more effective at learning positive stimuli (visits to rewarding flowers) 194 
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than negative stimuli (visits to non-rewarding flowers) (review in Menzel 1990). Sensitivity analyses of these 195 

two parameters show that increasing positive and/or negative reinforcement increases the speed and level of 196 

resource partitioning (see Appendix S1).  197 

 198 

Competitive interactions 199 

We implemented competitive interactions between foragers in the form of exploitation and interference (Fig. 200 

1). Exploitation competition occurs when a bee lands on a flower whose nectar reward has already been 201 

collected by another bee. If the flower is empty, the probability to reuse the vector is either left unchanged 202 

(model 1) or decreased (negative reinforcement, model 2). Interference competition occurs when two bees 203 

encounter on a flower. Only one bee can stay on the flower and access the potential nectar reward with a 204 

random probability (p=0.5). After the interaction, the winner bee takes the reward if there is one. The loser 205 

bee reacts as for an empty flower.  206 

 207 

Statistical Analyses 208 

All analyses were performed in R version 3.3 (R Development Core Team 2018).  209 

 210 

Simulations with one forager 211 

For each model, we compared the results of the simulations to the reference observational data, either 212 

quantitatively (for Lihoreau et al. 2012b) or qualitatively (for Woodgate et al. 2017; see Appendix S2). We 213 

stopped the simulations after 50 foraging bouts to match the experimental conditions of the published data 214 

(22-37 foraging bouts in Lihoreau et al. 2012b; 47-61 foraging bouts in Woodgate et al. 2017). We run 500 215 

simulations for each model (without and with negative reinforcement) and we estimated how models fitted 216 

the experimental data using two main measures:  217 

 218 

(i) the quality of each route ��, calculated as: 219 

 220 

(2)      �� �
��

�
��

�	��	
 221 
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 222 

Where F is the number of rewarding flowers visited during a foraging bout and d is the net length of all 223 

vectors traveled during the foraging bout. QL is standardized in [0 ; 1] by the quality of the optimal route in 224 

each array ��
�� (shortest possible route to visit all flowers).  225 

 226 

(ii) a similarity index �� between flower visitation sequences experienced during two consecutive foraging 227 

bouts a and b as follows: 228 

 229 

(3) �� �
�
�

��
�
    230 

 231 

Where ��  represents the number of vectors between two flowers found in both sequences, and ��  the 232 

length of the longest flower visitation sequence between i and j multiplied by 2 to make sure that �� = 1 233 

occurs only when two consecutive sequences sharing the same vectors also have the same length. 234 

 We applied generalized linear mixed effect models (GLMM) with binomial error, using the glmer 235 

function in ‘lme4’ package (Bates et al. 2014), to assess whether the estimated trends across foraging bouts 236 

for �� and �� obtained from model simulations with one forager differed from trends obtained from 237 

observational data. In each model, we used a random structure to account for the identity of bees.  238 

 239 

Simulations with two foragers 240 

We generated 10 arrays of flowers for each of the three types of environment, and ran 100 simulations for 241 

each of the two models (6000 simulations in total). We compared the simulation outcomes of both models 242 

using four measures: 243 

 244 

i) the frequency at which each bee experienced exploitation competition (i.e. flower visits when the reward 245 

has already been collected by another bee) and interference competition (i.e. flower visits when two bees 246 

encounter); 247 

 248 
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ii) the similarity index �� between successive foraging bouts by the same bee; 249 

 250 

iii) the degree of resource partitioning among bees, based on network modularity � (Pasquaretta and Jeanson 251 

2018; Pasquaretta et al. 2019). � is calculated using the computeModules function implemented in the R 252 

package ‘bipartite’ (Dormann et al. 2008) using the DIRTLPAwb+ algorithm recently developed by Beckett 253 

(2016). Although � ranges between 0 (the two bees visit the same flowers) and 1 (the two bees do not visit 254 

any flower in common), the comparison of modularity between networks requires normalization because the 255 

magnitude of modularity depends on network configuration (e.g., total number of flower visits) (Dormann 256 

and Strauss 2014; Beckett 2016). For each network, we computed : 257 

 258 

(4)  ��
�� �
�

��

    259 

 260 

where ���is the modularity in a rearranged network that maximizes the number of modules (Pasquaretta 261 

and Jeanson 2018).  262 

 263 

iv) an index of collective foraging efficiency, ����
��, computed for each foraging bout i, to estimate the 264 

cumulated efficiency of all foraging bees, as: 265 

 266 

(5)  ����
��,� �
∑ �	�,�
�
���

�	��	��
�
 267 

 268 

where ���,�  is the route quality of the individual j during bout i, n the number of bees and ��
�����  is the 269 

maximum value of all the possible sums of individual route qualities.  270 

 271 

To assess whether the trends across foraging bouts obtained from simulations with two bees 272 

differed between models (Fig. 1) and type of environments (Fig. S2), we applied GLMMs for each of the 273 

following response variables: (i) frequency of competition types (Poisson error distribution), (ii) �� 274 
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(Binomial error distribution), (iii) ��
�� (Binomial error distribution) and (iv) ����
�� (Binomial error 275 

distribution). In each model, we used a random structure to account for bee identity nested in flower arrays 276 

(i.e. 100 simulations of each spatial array for each model). To statistically compare the trends across foraging 277 

bouts we estimated the marginal trends of the models, as well as their 95% confident intervals using the 278 

emtrends function in ‘emmeans’ package (Lenth 2018). When the 95% confidence intervals of the estimated 279 

trends included zero, the null hypothesis was not rejected. Statistical models were run using the glmer 280 

function in ‘lme4’ package (Bates et al. 2014).  281 

 282 

RESULTS 283 

Simulations with one forager 284 

We first tested the ability of our models to replicate trapline formation by real bees, by comparing 285 

simulations with one forager to published experimental data. In the positive array of flowers (Fig. S1A), real 286 

bees developed routes of increasing quality and similarity with experience (GLMM route quality: Estimate = 287 

0.128 ± 0.021, P < 0.001; GLMM route similarity: Estimate = 0.148 ± 0.027, P < 0.001). Simulated bees with 288 

positive and negative reinforcements (model 2) or positive reinforcement only (model 1) developed routes of 289 

similar qualities as real bees (Fig. 2A; GLMM model 1: Estimate = 0.024 ± 0.021, P = 0.244; GLMM model 2: 290 

Estimate = 0.017 ± 0.021, P = 0.416). In both models, the simulated bees also increased route similarity as 291 

much as real bees (Fig. 2B; GLMM model 1: Estimate = 0.048 ± 0.027, P = 0.074; GLMM model 2: Estimate = 292 

0.044 ± 0.027, P = 0.105). In the negative array of flowers (Fig. S1B), a qualitative match between the 293 

simulations of both models and the experimental data was also observed (Fig. S5; see Appendix S2). Thus, 294 

overall, positive reinforcement was sufficient to replicate the behavioral observations. The addition of 295 

negative reinforcement had no major effect on route quality and similarity.  296 

 297 

Simulations with two foragers 298 

Exploitation and interference competition 299 

Having calibrated our models with one forager, we next explored conditions for the emergence of resource 300 

partitioning within pairs of foragers. Here experimental data are not available for comparison. We first 301 

analyzed exploitation competition by quantifying the frequency of visits to non-rewarding flowers by each 302 
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bee during each foraging bout. Simulated bees with positive and negative reinforcements (model 2) 303 

decreased their frequency of visits to non-rewarding flowers with time, irrespective of the type of 304 

environment (Fig. 3A; GLMM one patch: Estimate = -8.94e-03, 95%CI = -9.16e-03 | -8.71e-03; GLMM two patches: 305 

Estimate = -1.88e-02, 95%CI = -1.91e-02 | -1.86e-02; GLMM three patches: Estimate = -1.05e-02, 95%CI = -306 

1.07e-02 | -1.03e-02). However, with positive reinforcement only (model 1), bees behaved differently in the 307 

different environments. In the one patch environment, bees decreased their visits to non-rewarding flowers 308 

(Fig. 3A; GLMM one patch: Estimate = -4.26e-03, 95%CI = -4.47e-03 | -4.05e-03), whereas in the two and three 309 

patch environments, bees tended to increase their visits to non-rewarding flowers (Fig. 3A; GLMM two patches: 310 

Estimate = 6.27e-03, 95%CI = 6.09e-03 | 6.44e-03; GLMM three patches: Estimate = 6.65e-03, 95%CI = 6.46e-311 

03 | 6.84e-03).  312 

 We analyzed interference competition by quantifying the number of interactions on flowers at each 313 

foraging bout between the two bees. Bees with positive and negative reinforcements (model 2) decreased 314 

their frequency of encounters on flowers with time irrespective of the type of environment (Fig. 3B; GLMM 315 

one patch: Estimate = -1.53e-02, 95%CI = -1.61e-02 | -1.45e-02; GLMM two patches: Estimate = -1.66e-02, 95%CI 316 

= -1.73e-02 | -1.59e-02; GLMM three patches: Estimate = -1.01e-02, 95%CI = -1.07e-02 | -0.94e-02). Here again, 317 

bees with positive reinforcement only (model 1) behaved differently in the different environments. In the one 318 

patch environment, bees decreased their frequency of encounters on flowers (Fig. 3B; GLMM one patch: 319 

Estimate = -4.57e-03, 95%CI = -5.29e-03 | -3.85e-03), whereas in the two and three patch environments, 320 

bees increased their frequency of interactions (Fig. 3B; GLMM two patches: Estimate = 1.05e-02, 95%CI = 321 

1.01e-02 | 1.10e-02; GLMM three patches: Estimate = 9.16e-03, 95%CI = 8.64e-03 | 9.68e-03).  322 

Thus overall, negative reinforcement was necessary for reducing exploitation and interference 323 

competition. By allowing bees to avoid empty flowers, negative reinforcement facilitated the discovery of 324 

new flowers and thus gradually relaxed competition. In the absence of negative reinforcement, both types of 325 

competition increased in environments with several flower patches.   326 

 327 

Route similarity  328 

We analyzed the tendency of bees to develop repeated routes by comparing the similarity between flower 329 

visitation sequences of consecutive foraging bouts for each individual (Fig. 3C). In the two models, bees 330 

increased route similarity through time in all types of environments (Fig. 3C model 1; GLMM one patch: 331 
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Estimate = 8.68e-02 , 95%CI = 8.56e-02 | 8.80e-02 ; GLMM two patches: Estimate = 8.07e-02 , 95%CI = 7.96e-332 

02 | 8.19e-02 ; GLMM three patches: Estimate = 6.77e-02 , 95%CI = 6.66e-02 | 6.88e-02; Fig. 3C model 2; 333 

GLMM one patch: Estimate = 6.80e-02 , 95%CI = 6.69e-02 | 6.91e-02 ; GLMM two patches: Estimate = 5.40e-02 , 334 

95%CI = 5.29e-02 | 5.50e-02 ; GLMM three patches: Estimate = 3.56e-02 , 95%CI = 3.46e-02 | -3.65e-02). Note 335 

however that the presence of negative reinforcement (model 2) reduced the final level of route similarity. In 336 

these conditions bees learned to avoid revisits to empty flowers and showed greater variation in their 337 

visitation sequences, as a result of searching for new flowers. 338 

 339 

Resource partitioning 340 

We analyzed the level of resource partitioning by quantifying the tendency of the two bees to use different 341 

flowers. With positive and negative reinforcements (model 2), pairs of bees showed a significant increase of 342 

resource partitioning with time for all types of environments (Fig. 3D; GLMM one patch: Estimate = -3.82e-02, 343 

95%CI = 3.69e-02 | 3.95e-02; GLMM two patches: Estimate = 2.91e-02, 95%CI = 2.78e-02 | 3.04e-02; GLMM 344 

three patches: Estimate = 2.66e-02, 95%CI = 2.53e-02 | 2.78e-02). With positive reinforcement only (model 1), 345 

bees showed an increase of resource partitioning in environments with one patch (Fig. 3D; GLMM one patch: 346 

Estimate = 3.24e-02, 95%CI = 3.11e-02 | -3.36e-02), and a decrease in environments with two or three 347 

patches (Fig. 3D; GLMM two patches: Estimate = -1.06e-02, 95%CI = -1.19e-02 | -0.93e-02; GLMM three patches: 348 

Estimate = -8.08e-03, 95%CI = -9.40e-03 | -6.77e-03). In these patchy environments, negative reinforcement 349 

facilitates the movements of bees between more distant flowers in different patches and thus the 350 

establishment of spatially segregated routes.  351 

 352 

Collective foraging efficiency 353 

To quantify the collective foraging efficiency of bees, we analyzed the capacity of the two foragers to reach 354 

the most efficient combination of route qualities (i.e. minimum distance traveled by a pair of bees needed to 355 

visit the 10 flowers ). With positive and negative reinforcements (model 2), pairs of bees increased their 356 

cumulated foraging efficiency with time in all types of environments (Fig. 3E; GLMM one patch: Estimate = 357 

3.05e-02, 95%CI = 2.91e-02 | 3.19e-02; GLMM two patches: Estimate = 3.05e-02, 95%CI = 2.91e-02 | 3.19e-02; 358 

GLMM three patches: Estimate = 1.85e-02, 95%CI = 1.73e-02 | 1.98e-02). With positive reinforcement only 359 

(model 1), bees increased their cumulated foraging efficiency in environments with one patch (Fig. 3E; 360 
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GLMM one patch: Estimate = 3.24e-02, 95%CI = 3.11e-02 | 3.37e-02), but decreased or maintained low levels 361 

in environments with two or three patches (Fig. 3E; GLMM two patches: Estimate = -5.05e-03, 95%CI = -6.33e-362 

03 | -3.76e-03; GLMM three patches: Estimate = 3.07e-03, 95%CI = -1.42e-03 | 4.32e-03). Cumulated foraging 363 

efficiency thus follows the same pattern as resource partitioning. Note that bees can reach higher levels in 364 

environments with one patch than in environments with two or three patches because the probability to 365 

encounter new flowers within a patch is higher in environments with one patch.  366 

 367 

Discussion 368 

Central place foraging animals exploiting patchily distributed resources that replenish over time are expected 369 

to develop foraging routes minimizing travel distances and interactions with competitors (Possingham 1989; 370 

Ohashi and Thompson 2005; Lihoreau et al. 2016). Here we developed a cognitively plausible agent-based 371 

model to explore the behavioral mechanisms leading to resource partitioning between traplining bees. In the 372 

model, bees learn to develop routes as a consequence of feedback loops that modify the probabilities of 373 

moving between flowers. While a positive reinforcement of route segments leading to rewarding flowers is 374 

sufficient for resource partitioning to develop when resources are evenly distributed, a negative 375 

reinforcement of route segments leading to unrewarding flowers is necessary in environments with patchily 376 

distributed resources.  377 

When considering bees foraging among uniformly distributed plant resources (one patch), the initial 378 

probabilities to encounter each resource are similar (Fig. S6), and the likelihood of bees to discover new 379 

rewarding resources after encountering unrewarding ones is high. Consequently, two bees are very likely, 380 

over time, to learn non-overlapping foraging routes and show resource partitioning. However, in 381 

environments with non-uniformly distributed resources (two or three patches), the added spatial complexity 382 

can interfere with this process. The initial likelihood of moving between distant patches is relatively low. 383 

Thus, the only implementation of positive reinforcement for route segments to rewarded flowers, often does 384 

not enable bees to explore all possible patches, so that the paths of competing bees overlap and interfere 385 

within a subset of the available patches. Adding a negative reinforcement for route segments to unrewarded 386 

flowers increases aversion for these flowers, the spatial segregation of foraging paths between competing 387 

bees and the collective exploitation of all available patches, even if the initial probabilities of moving to 388 
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distant patches are low. This interplay between the influences of positive and negative experiences at flowers 389 

on the spatial and competitive decisions of bees is in accordance with behavioral observations (Lihoreau et al. 390 

2016; Pasquaretta et al. 2019). 391 

The need of negative reinforcement rules to enhance discrimination between different options or 392 

stimuli is well known in both learning theory and behavioral studies (Beshers and Fewell 2001; Garrison et 393 

al. 2018; Kazakova et al. 2020). This is especially notable in collective decisions making by groups of 394 

animals and robots (Sumpter 2010), where negative feedbacks enable individuals to make fast and flexible 395 

decisions in response to changing environments (Robinson et al. 2005; Seeley et al. 2012). At the individual 396 

level, negative experiences also modulate learning. For both honey bees and bumblebees, adding negative 397 

reinforcement to a learning paradigm (e.g. quinine or salt in sucrose solution) enhances fine scale color 398 

discrimination (Avarguès-Weber et al. 2010) and performances in cognitive tasks requiring learning of rules 399 

of non-elemental associations (Giurfa 2004). The insect brain contains multiple distinct neuromodulatory 400 

systems that independently modulate negative and positive reinforcement (Schwaerzel et al. 2003) and the 401 

ability of bees to learn negative consequences is well-established (Vergoz et al. 2007). Even so, the utility of 402 

negative reinforcement to enhance efficient route learning and the consequences of this for the emergence of 403 

effective resource partitioning has not been commented on previously. It may be that this is a general 404 

phenomenon with applicability to other resource partitioning systems.  405 

Our study implies that some very simple learning and interaction rules are sufficient for trapline 406 

formation and resource partitioning to emerge in bee populations. Several improvements of the model could 407 

be considered for future theoretical and experimental investigations of bee spatial foraging movements and 408 

interactions, for instance by implementing documented inter-individual variability in cognitive abilities and 409 

spatial strategies of bees (Chittka et al. 2003; Raine and Chittka 2012; Klein et al. 2017), the variability in 410 

the nutritional quality of resources (Wright et al. 2018; Hendriksma et al. 2019) and the specific needs of 411 

each colony (Kraus et al. 2019), or the well-known ability of bees to use chemical (Leadbeater and Chittka 412 

2005) and visual (Dunlap et al. 2016) social information to decide whether to visit or avoid flowers. For 413 

instance, it is well-known that foragers of many species of bees leave chemical cues as footprints on the 414 

flowers they have visited (bumblebees and honeybees: Stout and Goulson 2001; several species of solitary 415 

bees: Yokoi and Fujisaki 2009). Bees learn to associate the presence or absence of a reward to these 416 

footprints and to revisit or avoid scented flowers (Leadbeater and Chittka 2011). Such a pheromone system is 417 
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an advantageous signal for all participants in the interaction (Stout and Goulson 2001). Our model suggests 418 

that this additional information could significantly enhance the negative value experienced by a bee thus 419 

increasing resource partitioning to the benefit of all bees coexisting in the patch (Appendix S3), even of 420 

different species that learn to use these cues (Stout and Goulson 2001; Dawson and Chittka 2013).  421 

Our agent-based model thus builds on previous attempts to simulate trapline foraging by individual 422 

bees (Lihoreau et al. 2012b, Reynolds et al. 2013; LeMoël et al. 2019) and fills a major gap of current 423 

pollinator population dynamic models (Becher et al. 2014; 2016; 2018). As such, it constitutes a unique 424 

theoretical modeling framework to explore the spatial foraging movements and interactions of bees in 425 

ecologically relevant conditions within and between plant patches. This holds considerable promising tool to 426 

guide novel experiments in a wide range of pollinators exhibiting routing behavior. It can readily be used to 427 

test predictions with more than two bees (see examples Video S1 and Appendix S3), several colonies, or 428 

even different species of bees (e.g. honey bees) and may be used to complement current predictions about 429 

pollinator population dynamics (Becher et al. 2014; 2016; 2018). Ultimately, the robust predictions of the 430 

spatial movements and interactions of bees over large spatio-temporal scales, through experimental 431 

validations of the model, has the potential to help illuminate the influence of bees on plant reproduction 432 

patterns and pollination efficiency (Ohashi and Thomson 2009). 433 
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Figure legends 602 

Figure 1. Flowchart summarizing the agent-based models (1 and 2). Rectangles represent actions performed 603 

by a bee. Diamonds indicate conditional statements. Arrows connect the different modules. Colored 604 

rectangles describe the negative reinforcement rule specific to model 2. R code is available in GitLab: 605 

https://gitlab.com/jgautrais/resourcepartitioninginbees/-/releases 606 

 607 

Figure 2. Comparisons of route qualities (A) and similarities (B) between simulations and experimental data 608 

for one forager (positive array of flowers as in Lihoreau et al. 2012b). Model 1: positive reinforcement only. 609 

Model 2: positive and negative reinforcements. For each dataset, we show the estimated average trends 610 

across foraging bouts (colored curves), along with their 95% CI (gray areas). For the sake of eye comparison, 611 

in the simulation plot we represent estimated 95% confidence intervals for a random subsample of 7 612 

simulated bees (N = 7 bees in Lihoreau et al. 2012b). Average trends were estimated over 100 simulation 613 

runs, using GLMM Binomial model with bee identity as random effect (bee identity nested in simulation 614 

identity for simulated data).  615 

 616 

Figure 3. Results of simulations with two foragers in environments with 10 flowers. Light blue: simulations 617 

with positive reinforcement only (model 1). Dark blue: simulations with positive and negative reinforcement 618 

(model 2). The x axis is the number of completed foraging bouts by the two foragers. The y axis represents 619 

respectively: A) the estimated mean frequency of visits to empty flowers; B) the estimated mean frequency 620 

of encounters on flowers; C) the similarity index �� between two successive flower visitation sequences; 621 

D) the index of resource partitioning ��
�� (0: both bees visit the same set of flowers; 1: bees do not visit 622 

any flower in common); E) the collective foraging efficiency index ����
��. Average trends for each model 623 

are estimated across all types of environments (one patch, two patches and three patches; see Fig S2).  624 

 625 

 626 

 627 

 628 
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Supplementary materials 629 

 630 

Appendix S1. Sensitivity analysis of positive and negative reinforcements.  631 

We ran a sensitivity analyses for the two main parameters: the positive and negative reinforcement. As we 632 

had no a priori understanding of how the model behaved with different values of the two main parameters of 633 

the model (positive and negative reinforcement), we explored the spectrum of potential outcomes with 634 

different sets of parameters. We ran simulations on ranges of positive (1, 1.2, 1.4, 1.6, 1.8, 2) and negative (0, 635 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) reinforcement factors for a total of 66 sets of parameters, for each 636 

environment type explored (one, two and three patches, Fig. S2). We simulated 10 environments for each 637 

environment type and computed 100 simulations of 50 foraging bouts per iteration (i.e. 1000 simulations per 638 

environment type and set of parameters).  639 

 Since our observations focused on resource partitioning, we extracted the ��
�� index values for 640 

these simulations and compared them. We plotted a heatmap showing the value of the mean ��
�� index at 641 

the last foraging bout for each set of parameters and environment type (Fig. S3). In all types of environments, 642 

the positive reinforcement has a strong effect on the final ��
�� index value. High values of resource parti-643 

tioning are obtained for positive reinforcement values > 1.5. For the negative reinforcement factor, however, 644 

it appears that high values of resource partitioning were obtained for negative reinforcement values larger 645 

than 0.75. Negative reinforcement has little to no impact on the environment type with only one patch.  646 

 We also looked at how this same index evolved over successive foraging bouts, for each pair of 647 

bees. Fig. S4 shows the dynamics of mean ��
�� index across 50 foraging bouts for each combination of 648 

positive reinforcement (1.0, 1.2, 1.4, 1.6, 1.8, 2.0) and negative reinforcement (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 649 

0.7, 0.8, 0.9, 1) parameters, and each environment type (one patch, two patches, three patches). Higher val-650 

ues of both positive and negative reinforcement factors most often lead to faster resource partitioning (with 651 

some uncertainty due to the probabilistic nature of the model). Combinations of values in which the negative 652 

reinforcement factor is missing (violet gradient curves) led to a decrease in partitioning. 653 

 654 

 655 

Appendix S2. Qualitative analysis for the negative array case.  656 
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We ran simulations with one forager to compare model outcomes to observational data using a second 657 

reference field study (Woodgate et al. 2017). In this study, the authors used a ‘negative array’ (narrow 658 

pentagon, Fig. S1B) in which the distance between flowers and the directionality of movement were 659 

negatively linked, i.e. moving between nearest neighbor flowers required bees to make sharp deviations 660 

between consecutive vectors. Four bumblebees were tested during 27 to 61 foraging bouts each (flower 661 

visitation sequences were provided by Joe Woodgate). One of these bumblebees was tested over different 662 

days and was therefore removed from the analyses. In these conditions, none of the bumblebees developed a 663 

stable trapline, although all individuals significantly increased their foraging efficiency with time (e.g. 664 

reduced travel distance and duration, increased similarity between two consecutive flower visitation 665 

sequences).  666 

The addition of a negative reinforcement had no major effect on route quality nor on route 667 

similarity trends (Fig. S5). Model simulations showed good qualitative fit the traplining behavior observed in 668 

real bees exploiting a negative array of flowers – i.e. there is a trend of increasing route similarities across 669 

foraging bouts. Note however that the model tends to overestimate the bee ability to develop stable routes in 670 

arrays of flowers where proximity and directionality are negatively linked (Woodgate et al. 2017). This 671 

imperfect match could be due to the low amount of available experimental data (three individuals in 672 

Woodgate et al. 2017). Alternately, the model does not integrate any kind of stochastic exploration so that at 673 

each new step, bees do not provide the possibility to choose unknown spatial targets. Real bees, on the 674 

contrary, show phases of stochastic explorations during and after trapline formation (Woodgate et al. 2017; 675 

Kembro et al. 2019). Future experiments with more bees in a larger diversity of arrays of flowers will be 676 

useful to further quantitatively calibrate the model.  677 

 678 

Appendix S3. Predictions with more than two bees.  679 

Here we explored the emergence of resource partitioning in groups of 5 bees, and how this varies as a 680 

consequence of number of available flowers and number of foraging bees in environments of 20, 25, 30, 40, 681 

50, 70 and 100 flowers, thus encompassing a gradient of competition pressures from conditions where there 682 

is not enough flowers for all bees (20) to conditions where there is four times more flowers than necessary 683 

for all bees (100). For simplicity, in all these environments, flowers were evenly distributed (i.e. environment 684 

with one patch). The positive reinforcement factor was set at 1.5, and the negative reinforcement factor was 685 
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set at 0.75. For each flower density, we generated 10 environments, and ran 100 simulations of 100 foraging 686 

bouts, for a total of 1000 simulations per density value. We extracted the resource partitioning index (��
��) 687 

at each foraging bout. Unsurprisingly, the mean final ��
�� was higher in environments with most flowers 688 

(Fig. S7). Plotting the mean final ��
�� (final foraging bout) as a function of the number of available 689 

flowers confirms that bees converge to a plateau where increasing the number of flowers only provokes 690 

increase of partitioning (i.e. around 50 flowers) (Fig. S7).  691 

 692 

 693 

Figure S1. Arrays of artificial flowers for the experimental dataset. A. ‘Positive array’ (regular pentagon) in 694 

which the distance between flowers and the directionality of movement are positively linked, i.e. nearest 695 

neighbor flowers can be linked using lowest angular deviation between consecutive vectors. Modified from 696 

Lihoreau et al. (2012b). B. ‘negative array’ (narrow pentagon) in which the distance between flowers and the 697 

directionality of movement are negatively linked, i.e. moving between nearest neighbor flowers requires bees 698 

to make sharp deviations between consecutive vectors. Modified from Woodgate et al. (2017) 699 

 700 

Figure S2. Examples of simulated environments. Distribution of 10 flowers (gray circles) and a nest (black 701 

pentagon) in three environments defined by different levels of resource patchiness. A flower patch was 702 

characterized by: 1) a uniform distribution of flowers, 2) a lower distance between flowers within the patch 703 

than between all flowers from different patches.  704 

 705 

Figure S3 Heatmap showing the mean ��
�� Index value after 50 foraging bouts (mean over 1000 simula-706 

tions on 10 arrays of the same environment type), for each combination of positive reinforcement (1.0, 1.2, 707 

1.4, 1.6, 1.8, 2.0) and negative reinforcement (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) parameters, and 708 

for each environment type (one patch, two patches, three patches). For simplicity we inverted the values of 709 

negative reinforcement here. 0 being models without negative reinforcement.  710 

 711 

Figure S4. Dynamic of the mean ��
�� Index across foraging bouts for each combination of positive (1.0, 712 

1.2, 1.4, 1.6, 1.8, 2.0) and negative (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) reinforcement factors and 713 
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for each environment type (one patch, two patches, three patches). For simplicity we inverted the values of 714 

negative reinforcement here. 0 being models without negative reinforcement.  715 

 716 

 717 

 718 

Figure S5. Qualitative comparisons of route qualities (A) and similarities (B) between simulations and 719 

experimental data (negative array of flowers as in Woodgate et al. 2017) for one forager. Light blue: 720 

simulations with positive reinforcement only (model 1). Dark blue: simulations with positive and negative 721 

reinforcement (model 2). For each dataset, we show the estimated average trends across foraging bouts 722 

(colored curves), along with their 95% CI (gray areas). For simplicity, in the simulation plot we only 723 

represent a subsample of three random bees with their estimated 95% CI. Average trends were estimated 724 

using GLMM Binomial model with bee identity as random effect (bee identity nested in simulation identity 725 

for simulated data).  726 

 727 

Figure S6. Boxplot representing the distribution of the initial probabilities of visiting each flower in different 728 

environments (one patch with uniformly distributed flowers; two patches with five uniformly distributed 729 

flowers per patch; three patches of five, three and two uniformly distributed flowers; see examples Fig. S1). 730 

Median (solid horizontal line), first and third quartiles (box) and maximum and minimum values are 731 

represented.  732 
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 733 

Figure S7. Evolution of the mean final ��
�� index (after 100 foraging bouts) as a function of increase 734 

resources availability. The model run has the positive reinforcement factor set at 1.5, and the negative rein-735 

forcement factor set at 0.75 with 5 bees in environments of one patch.  736 

 737 

Video S1. Example of simulation of five bees foraging in an environment with one patch of 50 flowers. Both 738 

positive and negative reinforcement rules are implemented (model 2). Bees performed 100 foraging bouts. 739 

 740 
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Figure 2 762 
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Figure 3 773 
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Figure S1 782 
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Figure S2 798 
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Figure S3 801 

 802 

Figure S4 803 
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Figure S5 814 
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Figure S6 825 
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Figure S7 835 
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