A model of resource partitioning between foraging bees
 Thibault Dubois, Cristian Pasquaretta, Andrew B. Barron, Jacques Gautrais, Mathieu Lihoreau

To cite this version:

Thibault Dubois, Cristian Pasquaretta, Andrew B. Barron, Jacques Gautrais, Mathieu Lihoreau. A model of resource partitioning between foraging bees. 2020. hal-03028117v1

HAL Id: hal-03028117
 https://hal.science/hal-03028117v1

Preprint submitted on 27 Nov 2020 (v1), last revised 16 Nov 2021 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1

A model of resource partitioning between foraging bees

Thibault Dubois ${ }^{1,2}$, Cristian Pasquaretta ${ }^{1}$, Andrew B. Barron ${ }^{2}$, Jacques Gautrais ${ }^{1}$, Mathieu Liho-
reau ${ }^{1 *}$
${ }^{1}$ Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS,
University Paul Sabatier - Toulouse III, Toulouse, France.
${ }^{2}$ Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
*These authors contributed equally to the work
Thibault Dubois : thibault.dubois@univ-tlse3.fr
Cristian Pasquaretta : cristian.pasquaretta@univ-tlse3.fr
Andrew B. Barron : andrew.barron@mq.edu.au
Jacques Gautrais : jacques.gautrais@univ-tlse3.fr
Mathieu Lihoreau : mathieu.lihoreau@univ-tlse3.fr

 Running title: Modeling resource partitioning in bees
 Type: Major Article
 Word count abstract: 161
 Word count manuscript: 5107
 Number of references: 67
 Number of Figures and Tables: 3

Statement of authorship

CP, TD and ML designed the study. TD and JG developed the models. CP and TD performed the analyses. CP, TD and ML wrote the first draft of the manuscript. All authors contributed substantially to revisions.

Correspondance

Mathieu Lihoreau : mathieu.lihoreau@univ-tlse3.fr
Centre de Biologie Intégrative de Toulouse (CBI),
CNRS, Université Paul Sabatier - Toulouse III
Bat 4R3-b2 - porte 205
118, route de Narbonne
31062 Toulouse cedex 09

Abstract

Central place foraging pollinators tend to develop multi-destination routes (traplines) to exploit several patchily distributed plant resources. While the formation of traplines by individual pollinators has been studied in details, how populations of individuals exploit resources in a common area is an open question difficult to address experimentally. Here we explored conditions for the emergence of resource partitioning among traplining bees using agent-based models built from experimental data of bumblebees foraging on artificial flowers. In the models, bees learn to develop routes as a consequence of feedback loops that change their probabilities of moving between flowers. While a positive reinforcement of route segments leading to rewarding flowers is sufficient for the emergence of resource partitioning when flowers are evenly distributed, a negative reinforcement of route segments leading to unrewarding flowers is necessary when flowers are patchily distributed. In these more complex environments, the negative experiences of individual bees favour the spatial segregation of foragers and high levels of collective foraging efficiency.

Keywords: bumblebees; competition; resource partitioning; trapline foraging; vector navigation

Introduction

Animals competing for food resources are expected to self-distribute on feeding sites in order to maximize their individual energy gain (Fretwell and Lucas 1969; Giraldeau and Caraco 2000). Resource partitioning between individuals of different species is well documented, and often results from functional (Fründ et al. 2010; 2013) or behavioral (Nagamitsu and Inoue 1997; Valdovinos et al. 2016) differences. By contrast, how individuals of the same species optimally interact to exploit resources in a common foraging area is less understood (Johst et al. 2008; Tinker et al. 2012).

For pollinators, such as bees that individually exploit patchily distributed floral resources in environments with high competition pressure, efficient resource partitioning appears a prodigious problem involving the quality of food resources, their spatial distribution, their replenishment rate, and the activity of other pollinators. As central place foragers, bees often visit familiar feeding sites in a stable sequence or trapline (Janzen 1971; Thomson et al. 1997). Individual bees with exclusive access to an array of artificial flowers tend to develop traplines minimizing travel distances to visit all the necessary flowers to fill their nectar crop and return to the nest (e.g. bumblebees: Ohashi et al. 2008, Lihoreau et al. 2012a, Woodgate et al. 2017; honey bees: Buatois and Lihoreau 2016). This routing behavior involves spatial memories that can persist several days or weeks (Thomson et al. 1996; Lihoreau et al. 2010).

How bees partition resources, when several conspecifics exploit a common foraging area, is however still an open question. Experimentally the problem is challenging to address as it requires monitoring the movements of several bees simultaneously over large spatial and temporal scales. In theory, bees should develop individualistic traplines that minimize travel distances and spatial overlap with other foragers, thereby improving their own foraging efficiency and minimizing the costs of competition (Ohashi and Thomson 2005; Lihoreau et al. 2016). Best available data supporting this hypothesis come from observations of small numbers of bumblebees foraging on potted plants (e.g. Makino and Sakai 2005, Makino 2013) or artificial flowers (Lihoreau et al. 2016, Pasquaretta et al. 2019) in large flight tents. In these rather simple foraging conditions, bees tended to avoid spatial overlaps as a consequence of competition by exploitation (when bees visited empty flowers) and interference (when bees interacted on flowers) (Pasquaretta et al. 2019).

Computational modeling is a powerful approach to further explore how such partitioning might emerge from spatial learning and competitive interactions. At the individual level, trapline formation has
been modeled using an iterative improvement algorithm by which a bee compares the net length of the route it has just traveled (sum of the lengths of all movement vectors comprising the flower visitation sequence) to the length of the shortest route experienced so far (Lihoreau et al. 2012b). If the new route is shorter (or equivalent), the bee increases its probability of using all the movement vectors composing the new route in its subsequent foraging bout. After several iterations, this route-based learning algorithm typically leads to the discovery and selection of a short (if not the shortest possible) trapline. While this approach can accurately replicate observations across a wide range of experimental conditions (Reynolds et al. 2013), it makes the strong assumption that bees can compute, memorize and compare the lengths of multi-leg routes upon return to their nest. Recently, it was proposed that such behavior could also emerge from vector-based learning (Le Moël et al. 2019), which is more parsimonious and plausible considering the current understanding of spatial computation in the insect brain (Stone et al. 2017). So far, however, none of these traplining models have accounted for social interactions and current models of pollinator populations do not take into account individual specificities of movements based on learning and memory (Becher et al. 2014; 2016; 2018). Thus presently, there has been no realistic exploration of how resource partitioning between interacting bees might form.

Here, we investigated the behavioral mechanisms underpinning resource partitioning among traplining bees by comparing predictions of agent-based models integrating route learning and social interactions. First, we developed models implementing biologically plausible vector navigation based on positive and negative reinforcements of route segments leading to flowers. We used different models to test the individual and combined influences of these feedback loops on route learning. Next, we explored how these simple learning rules at the individual level can promote complex patterns of resource partitioning at the collective level, using simulations with multiple foragers in environments with different resource distributions.

METHODS

Model overview

We developed two agent-based models in which bees learn to develop routes in an array of flowers (Fig. 1). In both models, all flowers contain the same quality and volume of nectar that is refilled between foraging
bouts (flower visitation sequence, beginning and ending at the colony nest entrance). In simulations with multiple bees, all bees start their foraging bout synchronously and the flowers are filled after the last bee has returned to the nest. At each foraging bout, each bee attempts to collect nectar from five different flowers in order to fill its nectar crop (stomach) to capacity. For simplicity, this rule was set constant across all simulations. For each bee, flower choice is described using movement vectors (orientated jump between two flowers or between the nest and a flower). The initial probability of using each possible movement vector is based on movement vector length. This probability is then modulated through learning when the bee uses a vector for the first time. The learning rule varied depending on the model. If the ending flower of the vector contains nectar, it is rewarding and the probability to reuse the vector later increased (positive reinforcement, models 1 and 2). If the flower is empty, it is not rewarding and the probability to reuse the vector is either left unchanged (model 1) or decreased (negative reinforcement, model 2). A flower is empty if it has previously been visited in the same foraging bout by the same bee or another bee (exploitation competition). If two bees visit a flower at the same time, a fight to secure the possible reward occurs (interference competition). Only one bee can stay on the flower and access the potential nectar reward with a random probability. The winner bee takes the reward if there is one. The loser reacts as for an empty flower. Both bees update their probabilities to reuse the vector accordingly. Route learning thus depends on the experience of the bee and its interactions with other foragers. For simplicity, we restricted our analysis to two bees, but the same models can be used to simulate interactions among more bees (see examples with five bees in Video S1, Appendix S1). The complete R code is available at https://gitlab.com/jgautrais/resourcepartitioninginbees/-/releases.

Environment

Simulations with one foragers

To calibrate our models, we ran simulations in environments replicating published experimental studies in which individual bumblebees (Bombus terrestris) were observed developing traplines between five equally rewarding artificial flowers in a large open field (Lihoreau et al. 2012b; Woodgate et al. 2017). To our knowledge, these studies provide the most detailed available datasets on trapline formation by bees. Lihoreau et al. (2012b) used a positive array of flowers (regular pentagon, Fig. S1A) in which the distance and direction between flowers were positively linked, i.e. nearest neighbor flowers could be visited using lowest
angular deviation between consecutive vectors. The authors tracked seven bumblebees, which we judged enough to run quantitative comparisons with model simulations (raw data are available in Table S1 of Lihoreau et al. 2012b). Woodgate et al. (2017) used a negative array of flowers (narrow pentagon, Fig. S1B) in which the distance and direction between flowers were negatively linked. Here, however, the small sample size of the original dataset (three bumblebees, data shared by J. Woodgate) only enabled a qualitative comparison with the model simulations (Appendix S2).

Simulations with two foragers

We explored conditions leading to resource partitioning by running model simulations with two foragers. Here we simulated environments containing 10 flowers (each bee had to visit five rewarding flowers to fill its crop to capacity). To test whether model predictions were robust to variations in resource spatial distribution, we simulated three types of environments characterized by different levels of resource patchiness: (i) a patch of 10 flowers, (ii) two patches of five flowers each, and (iii) three patches of five, three and two flowers respectively (see examples in Fig. S2). We generated flower patches into a spatial range comparable to the one used in both experimental setups (Lihoreau et al. 2012b; Woodgate et al. 2017): about $500 \mathrm{~m}^{2}$ with a minimum distance of 160 m between each patch center. Within a patch, flowers were randomly distributed according to two constraints: (i) flowers were at least 20 m apart from each other, (ii) the maximum distance of each flower from the center of the patch was 40 m . This ensured that each patch had a maximum diameter of 80 m and inter-flower distances were smaller between all flowers of the same patch than between all flowers of different patches.

Movements

At each step, a bee chooses to visit a target location (flower or nest) based on a matrix of movement probabilities (Fig. 1). This matrix is initially defined using the inverse of the square distance between the current position of the bee and all possible target locations (Lihoreau et al. 2012b; Reynolds et al. 2013). The probability of moving from location i to the location j among n possible targets, is initially set to:

$$
\begin{equation*}
P(i \rightarrow j)=\frac{1}{d^{2}{ }_{i j}} / \sum_{k \neq j} \frac{1}{d_{i k}^{2}} \tag{1}
\end{equation*}
$$

Where $d_{i j}$ is the distance between locations i and j. Before choosing its destination, the bee lists all possible target locations. For simplicity, the bee excludes its current location, thus preventing looping flights to and from the same flower or nest, which are rare in experienced bumblebee foragers (Ohashi et al. 2007; Saleh and Chittka 2007; Lihoreau et al. 2010; Lihoreau et al. 2012a; Lihoreau et al. 2012b; Woodgate et al. 2017). The bee also excludes the location it had just come from. This simulates the tendency of bumblebees to avoid recently visited (and thus depleted) flowers (Ohashi et al. 2007; Saleh and Chittka 2007; Lihoreau et al. 2010; Lihoreau et al. 2012a; Lihoreau et al. 2012b; Woodgate et al. 2017). The foraging bout ends if: (i) the bee fills its crop to capacity, (ii) the bee chooses the nest as a target destination, or (iii) the bee reaches a maximum travelled distance of 3000 m . The latest was added to avoid endless foraging trips in the model. Its value was chosen based on the observation that bumblebees typically forage within a distance of less than 1 km from their nest (Osborne et al. 1999; Wolf and Moritz 2008; Woodgate et al. 2016).

Learning

Learning modulates the probability of using movement vectors as soon as the bee experiences the chosen target (online learning) and only once within a foraging bout (the first time the movement vector is used; Fig. 1). This approach has the advantage of implementing vector navigation (Stone et al. 2017; Le Moël et al. 2019) and thus avoids unrealistic assumptions about computation and comparison of complete routes (Lihoreau et al. 2012b; Reynolds et al. 2013). Positive reinforcement was implemented in models 1 and 2. It occurs when a bee uses a vector leading to a rewarding flower. The probability of using this vector is then multiplied by 1.5 (other vectors probabilities are scaled accordingly to ensure that all sum up to 1). This positive reinforcement is based on the well-known tendency of bumblebees to return to nectar rewarding places through appetitive learning (Goulson 2010). Negative reinforcement was implemented in model 2 only. It occurs when a bee uses a vector leading to a non-rewarding flower. The bee reduces the probability of using that vector by multiplying it by 0.75 (here also rescaling the other ones). This negative reinforcement rule is based on the tendency of bumblebees to reduce their frequency of revisits to unrewarded flowers with experience (Pasquaretta et al. 2019). We applied a lower value to negative reinforcement because bees are much more effective at learning positive stimuli (visits to rewarding flowers)
than negative stimuli (visits to non-rewarding flowers) (review in Menzel 1990). Sensitivity analyses of these two parameters show that increasing positive and/or negative reinforcement increases the speed and level of resource partitioning (see Appendix S1).

Competitive interactions

We implemented competitive interactions between foragers in the form of exploitation and interference (Fig. 1). Exploitation competition occurs when a bee lands on a flower whose nectar reward has already been collected by another bee. If the flower is empty, the probability to reuse the vector is either left unchanged (model 1) or decreased (negative reinforcement, model 2). Interference competition occurs when two bees encounter on a flower. Only one bee can stay on the flower and access the potential nectar reward with a random probability $(\mathrm{p}=0.5)$. After the interaction, the winner bee takes the reward if there is one. The loser bee reacts as for an empty flower.

Statistical Analyses

All analyses were performed in R version 3.3 (R Development Core Team 2018).

Simulations with one forager

For each model, we compared the results of the simulations to the reference observational data, either quantitatively (for Lihoreau et al. 2012b) or qualitatively (for Woodgate et al. 2017; see Appendix S2). We stopped the simulations after 50 foraging bouts to match the experimental conditions of the published data (22-37 foraging bouts in Lihoreau et al. 2012b; 47-61 foraging bouts in Woodgate et al. 2017). We run 500 simulations for each model (without and with negative reinforcement) and we estimated how models fitted the experimental data using two main measures:
(i) the quality of each route $Q L$, calculated as:
(2) $Q L=\frac{\frac{F^{2}}{d}{ }^{* 1}}{Q L_{o p t}}$

Where F is the number of rewarding flowers visited during a foraging bout and d is the net length of all vectors traveled during the foraging bout. $Q L$ is standardized in $[0 ; 1]$ by the quality of the optimal route in each array $Q L_{o p t}$ (shortest possible route to visit all flowers).
(ii) a similarity index $S I_{a b}$ between flower visitation sequences experienced during two consecutive foraging bouts a and b as follows:

$$
\begin{equation*}
S I_{a b}=\frac{s_{a b}}{2 l_{a b}} \tag{3}
\end{equation*}
$$

Where $S_{a b}$ represents the number of vectors between two flowers found in both sequences, and $l_{a b}$ the length of the longest flower visitation sequence between i and j multiplied by 2 to make sure that $S I_{a b}=1$ occurs only when two consecutive sequences sharing the same vectors also have the same length.

We applied generalized linear mixed effect models (GLMM) with binomial error, using the glmer function in 'lme4' package (Bates et al. 2014), to assess whether the estimated trends across foraging bouts for $Q L$ and $S I_{a b}$ obtained from model simulations with one forager differed from trends obtained from observational data. In each model, we used a random structure to account for the identity of bees.

Simulations with two foragers
We generated 10 arrays of flowers for each of the three types of environment, and ran 100 simulations for each of the two models (6000 simulations in total). We compared the simulation outcomes of both models using four measures:
i) the frequency at which each bee experienced exploitation competition (i.e. flower visits when the reward has already been collected by another bee) and interference competition (i.e. flower visits when two bees encounter);
ii) the similarity index $S I_{a b}$ between successive foraging bouts by the same bee;
iii) the degree of resource partitioning among bees, based on network modularity Q (Pasquaretta and Jeanson 2018; Pasquaretta et al. 2019). Q is calculated using the computeModules function implemented in the R package 'bipartite' (Dormann et al. 2008) using the DIRTLPAwb+ algorithm recently developed by Beckett (2016). Although Q ranges between 0 (the two bees visit the same flowers) and 1 (the two bees do not visit any flower in common), the comparison of modularity between networks requires normalization because the magnitude of modularity depends on network configuration (e.g., total number of flower visits) (Dormann and Strauss 2014; Beckett 2016). For each network, we computed :

$$
\begin{equation*}
Q_{\text {norm }}=\frac{Q}{Q_{\max }} \tag{4}
\end{equation*}
$$

where $Q_{\text {max }}$ is the modularity in a rearranged network that maximizes the number of modules (Pasquaretta and Jeanson 2018).
${ }^{i v}$) an index of collective foraging efficiency, $Q L_{\text {group }}$, computed for each foraging bout i, to estimate the cumulated efficiency of all foraging bees, as:

$$
\begin{equation*}
Q L_{\text {group }, i}=\frac{\sum_{j=1}^{n} Q L_{j, i}}{Q L_{\text {optimal }}} \tag{5}
\end{equation*}
$$

where $Q L_{j, i}$ is the route quality of the individual j during bout i, n the number of bees and $Q L_{\text {optimal }}$ is the maximum value of all the possible sums of individual route qualities.

To assess whether the trends across foraging bouts obtained from simulations with two bees differed between models (Fig. 1) and type of environments (Fig. S2), we applied GLMMs for each of the following response variables: (i) frequency of competition types (Poisson error distribution), (ii) $S I_{a b}$
(Binomial error distribution), (iii) $Q_{\text {norm }}$ (Binomial error distribution) and (iv) $Q L_{\text {group }}$ (Binomial error distribution). In each model, we used a random structure to account for bee identity nested in flower arrays (i.e. 100 simulations of each spatial array for each model). To statistically compare the trends across foraging bouts we estimated the marginal trends of the models, as well as their 95% confident intervals using the emtrends function in 'emmeans' package (Lenth 2018). When the 95\% confidence intervals of the estimated trends included zero, the null hypothesis was not rejected. Statistical models were run using the glmer function in 'lme4' package (Bates et al. 2014).

RESULTS

Simulations with one forager

We first tested the ability of our models to replicate trapline formation by real bees, by comparing simulations with one forager to published experimental data. In the positive array of flowers (Fig. S1A), real bees developed routes of increasing quality and similarity with experience $\left(\mathrm{GLMM}_{\text {route }}\right.$ quality: Estimate $=$ $0.128 \pm 0.021, P<0.001 ;$ GLMM $_{\text {route similarity }}:$ Estimate $\left.=0.148 \pm 0.027, P<0.001\right)$. Simulated bees with positive and negative reinforcements (model 2) or positive reinforcement only (model 1) developed routes of similar qualities as real bees (Fig. 2A; GLMM model 1 : Estimate $=0.024 \pm 0.021, P=0.244 ;$ GLMM $_{\text {model } 2}$: Estimate $=0.017 \pm 0.021, P=0.416$). In both models, the simulated bees also increased route similarity as much as real bees (Fig. 2B; GLMM ${\text { model } 1: \text { Estimate }=0.048 \pm 0.027, P=0.074 ; \text { GLMM }_{\text {model } 2}: \text { Estimate }=}$ $0.044 \pm 0.027, P=0.105$). In the negative array of flowers (Fig. S1B), a qualitative match between the simulations of both models and the experimental data was also observed (Fig. S5; see Appendix S2). Thus, overall, positive reinforcement was sufficient to replicate the behavioral observations. The addition of negative reinforcement had no major effect on route quality and similarity.

Simulations with two foragers

Exploitation and interference competition

Having calibrated our models with one forager, we next explored conditions for the emergence of resource partitioning within pairs of foragers. Here experimental data are not available for comparison. We first analyzed exploitation competition by quantifying the frequency of visits to non-rewarding flowers by each
bee during each foraging bout. Simulated bees with positive and negative reinforcements (model 2) decreased their frequency of visits to non-rewarding flowers with time, irrespective of the type of environment (Fig. 3A; GLMM one patch Estimate $=-8.94 \mathrm{e}-03,95 \% C I=-9.16 \mathrm{e}-03 \mid-8.71 \mathrm{e}-03 ;$ GLMM $_{\text {two patches }}$: Estimate $=-1.88 \mathrm{e}-02,95 \% C I=-1.91 \mathrm{e}-02 \mid-1.86 \mathrm{e}-02 ;$ GLMM $_{\text {three patches }}:$ Estimate $=-1.05 \mathrm{e}-02,95 \% C I=-$ $1.07 \mathrm{e}-02 \mid-1.03 \mathrm{e}-02$). However, with positive reinforcement only (model 1), bees behaved differently in the different environments. In the one patch environment, bees decreased their visits to non-rewarding flowers (Fig. 3A; GLMM one patch Estimate $=-4.26 \mathrm{e}-03,95 \% C I=-4.47 \mathrm{e}-03 \mid-4.05 \mathrm{e}-03$), whereas in the two and three patch environments, bees tended to increase their visits to non-rewarding flowers (Fig. 3A; GLMM two patches: : Estimate $=6.27 \mathrm{e}-03,95 \% C I=6.09 \mathrm{e}-03 \mid 6.44 \mathrm{e}-03 ;$ GLMM $_{\text {three patches }}:$ Estimate $=6.65 \mathrm{e}-03,95 \% C I=6.46 \mathrm{e}-$ 03 |6.84e-03).

We analyzed interference competition by quantifying the number of interactions on flowers at each foraging bout between the two bees. Bees with positive and negative reinforcements (model 2) decreased their frequency of encounters on flowers with time irrespective of the type of environment (Fig. 3B; GLMM one patch: Estimate $=-1.53 \mathrm{e}-02,95 \% C I=-1.61 \mathrm{e}-02 \mid-1.45 \mathrm{e}-02 ; \mathrm{GLMM}_{\text {two patches }}:$ Estimate $=-1.66 \mathrm{e}-02,95 \% C I$ $=-1.73 \mathrm{e}-02 \mid-1.59 \mathrm{e}-02 ;$ GLMM $_{\text {three patches }}:$ Estimate $\left.=-1.01 \mathrm{e}-02,95 \% C I=-1.07 \mathrm{e}-02 \mid-0.94 \mathrm{e}-02\right)$. Here again, bees with positive reinforcement only (model 1) behaved differently in the different environments. In the one patch environment, bees decreased their frequency of encounters on flowers (Fig. 3B; GLMM one patch : Estimate $=-4.57 \mathrm{e}-03,95 \% C I=-5.29 \mathrm{e}-03 \mid-3.85 \mathrm{e}-03)$, whereas in the two and three patch environments, bees increased their frequency of interactions (Fig. 3B; GLMM two patches : Estimate $=1.05 \mathrm{e}-02,95 \% C I=$ $1.01 \mathrm{e}-02 \mid 1.10 \mathrm{e}-02 ;$ GLMM $_{\text {three patches }}:$ Estimate $\left.=9.16 \mathrm{e}-03,95 \% C I=8.64 \mathrm{e}-03 \mid 9.68 \mathrm{e}-03\right)$.

Thus overall, negative reinforcement was necessary for reducing exploitation and interference competition. By allowing bees to avoid empty flowers, negative reinforcement facilitated the discovery of new flowers and thus gradually relaxed competition. In the absence of negative reinforcement, both types of competition increased in environments with several flower patches.

Route similarity

We analyzed the tendency of bees to develop repeated routes by comparing the similarity between flower visitation sequences of consecutive foraging bouts for each individual (Fig. 3C). In the two models, bees increased route similarity through time in all types of environments (Fig. 3C model 1; GLMM one patch :

Estimate $=8.68 \mathrm{e}-02,95 \% C I=8.56 \mathrm{e}-02 \mid 8.80 \mathrm{e}-02 ;$ GLMM $_{\text {two patches }}:$ Estimate $=8.07 \mathrm{e}-02,95 \% C I=7.96 \mathrm{e}-$ $02 \mid 8.19 \mathrm{e}-02 ;$ GLMM $_{\text {three patches }}:$ Estimate $=6.77 \mathrm{e}-02,95 \% C I=6.66 \mathrm{e}-02 \mid 6.88 \mathrm{e}-02$; Fig. 3C model 2; GLMM $_{\text {one patch }}:$ Estimate $=6.80 \mathrm{e}-02,95 \% C I=6.69 \mathrm{e}-02 \mid 6.91 \mathrm{e}-02 ; \mathrm{GLMM}_{\text {two patches }}:$ Estimate $=5.40 \mathrm{e}-02$, $95 \% C I=5.29 \mathrm{e}-02 \mid 5.50 \mathrm{e}-02 ;$ GLMM three patches Estimate $=3.56 \mathrm{e}-02,95 \% C I=3.46 \mathrm{e}-02 \mid-3.65 \mathrm{e}-02)$. Note however that the presence of negative reinforcement (model 2) reduced the final level of route similarity. In these conditions bees learned to avoid revisits to empty flowers and showed greater variation in their visitation sequences, as a result of searching for new flowers.

Resource partitioning

We analyzed the level of resource partitioning by quantifying the tendency of the two bees to use different flowers. With positive and negative reinforcements (model 2), pairs of bees showed a significant increase of resource partitioning with time for all types of environments (Fig. 3D; GLMM one path : Estimate $=-3.82 \mathrm{e}-02$, $95 \% C I=3.69 \mathrm{e}-02 \mid 3.95 \mathrm{e}-02 ;$ GLMM $_{\text {two patches }}:$ Estimate $=2.91 \mathrm{e}-02,95 \% C I=2.78 \mathrm{e}-02 \mid 3.04 \mathrm{e}-02 ;$ GLMM three patches: Estimate $=2.66 \mathrm{e}-02,95 \% C I=2.53 \mathrm{e}-02 \mid 2.78 \mathrm{e}-02)$. With positive reinforcement only $($ model 1$)$, bees showed an increase of resource partitioning in environments with one patch (Fig. 3D; GLMM one patch : Estimate $=3.24 \mathrm{e}-02,95 \% C I=3.11 \mathrm{e}-02 \mid-3.36 \mathrm{e}-02)$, and a decrease in environments with two or three patches (Fig. 3D; GLMM two patches Estimate $=-1.06 \mathrm{e}-02,95 \% C I=-1.19 \mathrm{e}-02 \mid-0.93 \mathrm{e}-02 ;$ GLMM $_{\text {three patches }}$: Estimate $=-8.08 \mathrm{e}-03,95 \% C I=-9.40 \mathrm{e}-03 \mid-6.77 \mathrm{e}-03)$. In these patchy environments, negative reinforcement facilitates the movements of bees between more distant flowers in different patches and thus the establishment of spatially segregated routes.

Collective foraging efficiency

To quantify the collective foraging efficiency of bees, we analyzed the capacity of the two foragers to reach the most efficient combination of route qualities (i.e. minimum distance traveled by a pair of bees needed to visit the 10 flowers). With positive and negative reinforcements (model 2), pairs of bees increased their cumulated foraging efficiency with time in all types of environments (Fig. 3E; GLMM one patch : Estimate $=$ $3.05 \mathrm{e}-02,95 \% C I=2.91 \mathrm{e}-02 \mid 3.19 \mathrm{e}-02 ; \mathrm{GLMM}_{\text {two patches }}:$ Estimate $=3.05 \mathrm{e}-02,95 \% C I=2.91 \mathrm{e}-02 \mid 3.19 \mathrm{e}-02$; GLMM $_{\text {three patches }}:$ Estimate $\left.=1.85 \mathrm{e}-02,95 \% C I=1.73 \mathrm{e}-02 \mid 1.98 \mathrm{e}-02\right)$. With positive reinforcement only (model 1), bees increased their cumulated foraging efficiency in environments with one patch (Fig. 3E;

GLMM $_{\text {one patch }}:$ Estimate $\left.=3.24 \mathrm{e}-02,95 \% C I=3.11 \mathrm{e}-02 \mid 3.37 \mathrm{e}-02\right)$, but decreased or maintained low levels in environments with two or three patches (Fig. 3E; GLMM ${ }_{\text {two patches }}$: Estimate $=-5.05 \mathrm{e}-03,95 \% C I=-6.33 \mathrm{e}-$ $03 \mid-3.76 \mathrm{e}-03 ;$ GLMM three patches $: ~ E s t i m a t e ~=3.07 \mathrm{e}-03,95 \% C I=-1.42 \mathrm{e}-03 \mid 4.32 \mathrm{e}-03)$. Cumulated foraging efficiency thus follows the same pattern as resource partitioning. Note that bees can reach higher levels in environments with one patch than in environments with two or three patches because the probability to encounter new flowers within a patch is higher in environments with one patch.

Discussion

Central place foraging animals exploiting patchily distributed resources that replenish over time are expected to develop foraging routes minimizing travel distances and interactions with competitors (Possingham 1989; Ohashi and Thompson 2005; Lihoreau et al. 2016). Here we developed a cognitively plausible agent-based model to explore the behavioral mechanisms leading to resource partitioning between traplining bees. In the model, bees learn to develop routes as a consequence of feedback loops that modify the probabilities of moving between flowers. While a positive reinforcement of route segments leading to rewarding flowers is sufficient for resource partitioning to develop when resources are evenly distributed, a negative reinforcement of route segments leading to unrewarding flowers is necessary in environments with patchily distributed resources.

When considering bees foraging among uniformly distributed plant resources (one patch), the initial probabilities to encounter each resource are similar (Fig. S6), and the likelihood of bees to discover new rewarding resources after encountering unrewarding ones is high. Consequently, two bees are very likely, over time, to learn non-overlapping foraging routes and show resource partitioning. However, in environments with non-uniformly distributed resources (two or three patches), the added spatial complexity can interfere with this process. The initial likelihood of moving between distant patches is relatively low. Thus, the only implementation of positive reinforcement for route segments to rewarded flowers, often does not enable bees to explore all possible patches, so that the paths of competing bees overlap and interfere within a subset of the available patches. Adding a negative reinforcement for route segments to unrewarded flowers increases aversion for these flowers, the spatial segregation of foraging paths between competing bees and the collective exploitation of all available patches, even if the initial probabilities of moving to
distant patches are low. This interplay between the influences of positive and negative experiences at flowers on the spatial and competitive decisions of bees is in accordance with behavioral observations (Lihoreau et al. 2016; Pasquaretta et al. 2019).

The need of negative reinforcement rules to enhance discrimination between different options or stimuli is well known in both learning theory and behavioral studies (Beshers and Fewell 2001; Garrison et al. 2018; Kazakova et al. 2020). This is especially notable in collective decisions making by groups of animals and robots (Sumpter 2010), where negative feedbacks enable individuals to make fast and flexible decisions in response to changing environments (Robinson et al. 2005; Seeley et al. 2012). At the individual level, negative experiences also modulate learning. For both honey bees and bumblebees, adding negative reinforcement to a learning paradigm (e.g. quinine or salt in sucrose solution) enhances fine scale color discrimination (Avarguès-Weber et al. 2010) and performances in cognitive tasks requiring learning of rules of non-elemental associations (Giurfa 2004). The insect brain contains multiple distinct neuromodulatory systems that independently modulate negative and positive reinforcement (Schwaerzel et al. 2003) and the ability of bees to learn negative consequences is well-established (Vergoz et al. 2007). Even so, the utility of negative reinforcement to enhance efficient route learning and the consequences of this for the emergence of effective resource partitioning has not been commented on previously. It may be that this is a general phenomenon with applicability to other resource partitioning systems.

Our study implies that some very simple learning and interaction rules are sufficient for trapline formation and resource partitioning to emerge in bee populations. Several improvements of the model could be considered for future theoretical and experimental investigations of bee spatial foraging movements and interactions, for instance by implementing documented inter-individual variability in cognitive abilities and spatial strategies of bees (Chittka et al. 2003; Raine and Chittka 2012; Klein et al. 2017), the variability in the nutritional quality of resources (Wright et al. 2018; Hendriksma et al. 2019) and the specific needs of each colony (Kraus et al. 2019), or the well-known ability of bees to use chemical (Leadbeater and Chittka 2005) and visual (Dunlap et al. 2016) social information to decide whether to visit or avoid flowers. For instance, it is well-known that foragers of many species of bees leave chemical cues as footprints on the flowers they have visited (bumblebees and honeybees: Stout and Goulson 2001; several species of solitary bees: Yokoi and Fujisaki 2009). Bees learn to associate the presence or absence of a reward to these footprints and to revisit or avoid scented flowers (Leadbeater and Chittka 2011). Such a pheromone system is

435

an advantageous signal for all participants in the interaction (Stout and Goulson 2001). Our model suggests that this additional information could significantly enhance the negative value experienced by a bee thus increasing resource partitioning to the benefit of all bees coexisting in the patch (Appendix S3), even of different species that learn to use these cues (Stout and Goulson 2001; Dawson and Chittka 2013).

Our agent-based model thus builds on previous attempts to simulate trapline foraging by individual bees (Lihoreau et al. 2012b, Reynolds et al. 2013; LeMoël et al. 2019) and fills a major gap of current pollinator population dynamic models (Becher et al. 2014; 2016; 2018). As such, it constitutes a unique theoretical modeling framework to explore the spatial foraging movements and interactions of bees in ecologically relevant conditions within and between plant patches. This holds considerable promising tool to guide novel experiments in a wide range of pollinators exhibiting routing behavior. It can readily be used to test predictions with more than two bees (see examples Video S1 and Appendix S3), several colonies, or even different species of bees (e.g. honey bees) and may be used to complement current predictions about pollinator population dynamics (Becher et al. 2014; 2016; 2018). Ultimately, the robust predictions of the spatial movements and interactions of bees over large spatio-temporal scales, through experimental validations of the model, has the potential to help illuminate the influence of bees on plant reproduction patterns and pollination efficiency (Ohashi and Thomson 2009).

Acknowledgments

We thank Joe Woodgate for sharing raw flower visitation data of Woodgate et al. (2017). We are also grateful to Matthias Becher and Mickaël Henry for useful comments on a previous version of this manuscript.

Funding

CP and ML were supported by a research grant of the Agence Nationale de la Recherche (ANR-16-CE02-0002-01) to ML. TD was funded by a co-tutelle PhD grant from the University Paul Sabatier (Toulouse) and Macquarie University (Sydney). ABB was supported by the Templeton World Charity Foundation project grant TWCF0266

References

- Avarguès-Weber, A., de Brito Sanchez, M. G., Giurfa, M., and Dyer, A. G. 2010. Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PloS One 5:e15370.
- Bates, D., Mächler, M., Bolker, B. and Walker, S. 2014. Fitting linear mixed-effects models using lme4. Statistical Software arXiv Prepr:ArXiv1406.5823.
- Becher, M.A., Grimm, V., Knapp, J., Horn, J., Twiston-Davies, G. and Osborne, J.L. 2016. BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE. Ecological Modelling 340:126-133.
- Becher, M.A., Grimm, V., Thorbek, P., Horn, J., Kennedy, P.J. and Osborne, J.L. 2014. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure. Journal of Applied Ecology 51:470-482.
- Becher, M.A., Twiston Davies, G., Penny, T.D., Goulson, D., Rotheray, E.L. and Osborne, J.L. 2018. Bumble BEEHAVE: A systems model for exploring multifactorial causes of bumblebee decline at individual, colony, population and community level. Journal of Applied Ecology 55:2790-2801.
- Beckett, S.J. 2016. Improved community detection in weighted bipartite networks. Royal Society Open Science 3:140536.
- Beshers, S. N., and Fewell, J. H. 2001. Models of division of labor in social insects. Annual Review of Entomology 46:413-440.
- Buatois, A. and Lihoreau, M. 2016. Evidence of trapline foraging in honeybees. Journal of Experimental Biology 219:2426-2429.
- Chittka, L., Dyer, A.G., Bock, F. and Dornhaus, A. 2003. Bees trade off foraging speed for accuracy. Nature 424:388-388.
- Dawson, E. H., and Chittka, L. 2012. Conspecific and heterospecific information use in bumblebees. PloS One 7:e31444.
- Dormann C.F. and Strauss R. 2014. A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution 5:90-98.
- Dormann, C.F., Gruber, B. and Fründ, J. 2008. Introducing the bipartite package: analysing ecological networks. R news 8:8-11.
- Dunlap, A.S., Nielsen, M.E., Dornhaus, A. and Papaj, D.R. 2016. Foraging bumble bees weigh the reliability of personal and social information. Current Biology 26:1195-1199.
- Fretwell, S.D. and Lucas, H.L. 1969. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheorologica 19:16-36.
- Fründ, J., Dormann, C.F., Holzschuh, A. and Tscharntke, T. 2013. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94:2042-2054.
- Fründ, J., Linsenmair, K.E. and Blüthgen, N. 2010. Pollinator diversity and specialization in relation to flower diversity. Oikos 119:1581-1590.
- Garrison, L. K., Kleineidam, C. J., and Weidenmüller, A. 2018. Behavioral flexibility promotes collective consistency in a social insect. Scientific Reports 8:1-11.
- Giraldeau, L.A. and Caraco, T. 2000. Social Foraging Theory, Princeton University Press, Princeton.
- Giurfa, M. (2004). Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 91:228-231.
- Goulson, D. 2010. Bumblebees: Behaviour, Ecology, and Conservation. Oxford University Press, Oxford.
- Hendriksma, H.P., Toth, A.L. and Shafir, S. 2019. Individual and colony level foraging decisions of bumble bees and honey bees in relation to balancing of nutrient needs. Frontiers in Ecology and Evolution 7:177.
- Janzen, D.H. 1971. Euglossine bees as long-distance pollinators of tropical plants. Science 171:203205.
- Johst, K., Berryman, A. and Lima, M. 2008. From individual interactions to population dynamics: individual resource partitioning simulation exposes the causes of nonlinear intra-specific competition. Population Ecology 50:79-90.
- Kazakova, V. A., Wu, A. S., and Sukthankar, G. R. 2020. Respecializing swarms by forgetting reinforced thresholds. Swarm Intelligence 14:1-34.
- Kembro, J.M., Lihoreau, M., Garriga, J., Raposo, E.P. and Bartumeus, F. 2019. Bumblebees learn foraging routes through exploitation-exploration cycles. Journal of the Royal Society Interface 16:20190103.
- Klein, S., Pasquaretta, C., Barron, A.B., Devaud, J.M. and Lihoreau, M. 2017. Inter-individual variability in the foraging behaviour of traplining bumblebees. Scientific Reports 7:4561.
- Kraus, S., Gómez-Moracho, T., Pasquaretta, C., Latil, G., Dussutour, A. and Lihoreau, M. 2019. Bumblebees adjust protein and lipid collection rules to the presence of brood. Current Zoology 65:437-446.
- Le Moël, F., Stone, T.J., Lihoreau, M., Wystrach, A. and Webb, B. 2019. The central complex as a potential substrate for vector based navigation. Frontiers in Psychology 10:690.
- Leadbeater, E. and Chittka, L. 2005. A new mode of information transfer in foraging bumblebees? Current Biology 15:447-448.
- Leadbeater, E. and Chittka, L. 2011. Do inexperienced bumblebee foragers use scent marks as social information? Animal Cognition 14:915.
- Lenth R. 2018. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.1. https://CRAN.R-project.org/package=emmeans
- Lihoreau, M., Chittka, L. and Raine, N. E. 2016. Monitoring flower visitation networks and interactions between pairs of bumble bees in a large outdoor flight cage. PloS One 11:e0150844.
- Lihoreau, M., Chittka, L. and Raine, N.E. 2010. Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations. The American Naturalist 176:744-757.
- Lihoreau, M., Chittka, L., Le Comber, S.C. and Raine, N.E. 2012a. Bees do not use nearestneighbour rules for optimization of multi-location routes. Biology Letters 8:13-16.
- Lihoreau, M., Raine, N.E., Reynolds, A.M., Stelzer, R.J., Lim, K.S., Smith, A.D. ... and Chittka, L. 2012b. Radar tracking and motion-sensitive cameras on flowers reveal the development of pollinator multi-destination routes over large spatial scales. PloS Biology 10:e1001392.
- Makino, T.T. 2013. Longer visits on familiar plants? : testing a regular visitor's tendency to probe more flowers than occasional visitors. Naturwissenschaften 100:659-666.
- Makino, T.T. and Sakai, S. 2005. Does interaction between bumblebees (Bombus ignitus) reduce their foraging area? : Bee-removal experiments in a net cage. Behavioural Ecology and Sociobiology 57:617-622.
- Menzel, R. 1990. Learning, memory, and "cognition" in honey bees. In Neurobiology of Comparative Cognition. Ed. Kesner, R.P. and Olton, D.S. Lawrence Erlbaum Associates, Inc., Publishers. pp-237-292.
- Nagamitsu, T. and Inoue, T. 1997. Aggressive foraging of social bees as a mechanism of floral resource partitioning in an Asian tropical rainforest. Oecologia 110:432-439.
- Ohashi, K., and Thomson, J. D. 2005. Efficient harvesting of renewing resources. Behavioral Ecology, 16, 592-605.
- Ohashi, K., and Thomson, J. D. 2009. Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants. Annals of Botany 103:1365-1378.
- Ohashi, K., Leslie, A. and Thomson, J.D. 2008. Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance. Behavioral Ecology 19:936-948.
- Ohashi, K., Thomson, J. D., and D'souza, D. 2007. Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition. Behavioral Ecology 18:1-11.
- Osborne, J.L., Clark, S.J., Morris, R.J., Williams, I.H., Riley, J.R., Smith, A.D. ... and Edwards, A.S. 1999. A landscape scale study of bumble bee foraging range and constancy, using harmonic radar. Journal of Applied Ecology 36:519-533.
- Pasquaretta, C., and Jeanson, R. 2018. Division of labor as a bipartite network. Behavioral Ecology 29:342-352.
- Pasquaretta, C., Jeanson, R., Pansanel, J., Raine, N.E., Chittka, L. and Lihoreau, M. 2019. A spatial network analysis of resource partitioning between bumblebees foraging on artificial flowers in a flight cage. Movement Ecology 7:4.
- Possingham, H. P. 1989. The distribution and abundance of resources encountered by a forager. The American Naturalist 133:42-60.
- R Core Team 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Raine, N.E. and Chittka, L. 2012. No trade-off between learning speed and associative flexibility in bumblebees: a reversal learning test with multiple colonies. PloS One 7:e45096.
- Reynolds, A.M., Lihoreau, M. and Chittka, L. 2013. A simple iterative model accurately captures complex trapline formation by bumblebees across spatial scales and flower arrangements. PLoS Computational Biology 9:e1002938.
- Robinson, E. J., Jackson, D. E., Holcombe, M., and Ratnieks, F. L. 2005. 'No entry' signal in ant foraging. Nature 438:442-442.
- Saleh, N., and Chittka, L. 2007. Traplining in bumblebees (Bombus impatiens): a foraging strategy's ontogeny and the importance of spatial reference memory in short-range foraging. Oecologia 151:719-730.
- Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., and Heisenberg, M. 2003. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. Journal of Neuroscience 23:10495-10502.
- Seeley, T. D., Visscher, P. K., Schlegel, T., Hogan, P. M., Franks, N. R., and Marshall, J. A. 2012. Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science 335:108-111.
- Stone, T., Webb, B., Adden, A., Weddig, N.B., Honkanen, A., Templin, R., ... and Heinze, S. 2017. An anatomically constrained model for path integration in the bee brain. Current Biology 27:30693085.
- Stout, J. C., and Goulson, D. 2001. The use of conspecific and interspecific scent marks by foraging bumblebees and honeybees. Animal Behaviour 62:183-189.
- Sumpter, D. J. 2010. Collective animal Animal Behavior. Princeton University Press. New York
- Thomson, J.D. 1996. Trapline foraging by bumblebees: I. Persistence of flight-path geometry. Behavioral Ecology 7:158-164.
- Thomson, J.D., Slatkin, M. and Thomson, B.A. 1997. Trapline foraging by bumble bees: II. Definition and detection from sequence data. Behavioral Ecology 8:199-210.
- Tinker, T.M., Guimaraes Jr, P.R., Novak, M., Marquitti, F.M.D., Bodkin, J.L., Staedler, M., ... and Estes, J.A. 2012. Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecology Letters 15:475-483.
- Valdovinos, F. S., Brosi, B. J., Briggs, H. M., Moisset de Espanés, P., Ramos Jiliberto, R., and Martinez, N. D. (2016). Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecology Letters 19:1277-1286.
- Vergoz, V., Roussel, E., Sandoz, J.C. and Giurfa, M. 2007. Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PloS One 2:e288.
- Wolf, S. and Moritz, R.F. 2008. Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39:419-427.
- Woodgate, J. L., Makinson, J. C., Lim, K. S., Reynolds, A. M., and Chittka, L. 2016. Life-long radar tracking of bumblebees. PloS One 11:e0160333
- Woodgate, J.L., Makinson, J.C., Lim, K.S., Reynolds, A.M. and Chittka, L. 2017. Continuous radar tracking illustrates the development of multi-destination routes of bumblebees. Scientific Reports 7:17323.
- Wright, G.A., Nicolson, S.W. and Shafir, S. 2018. Nutritional physiology and ecology of honey bees. Annual Review of Entomology 63:327-344.
- Yokoi, T. and Fujisaki, K. 2009. Recognition of scent marks in solitary bees to avoid previously visited flowers. Ecological Research 24:803-809.

602

Figure legends

Figure 1. Flowchart summarizing the agent-based models (1 and 2). Rectangles represent actions performed by a bee. Diamonds indicate conditional statements. Arrows connect the different modules. Colored rectangles describe the negative reinforcement rule specific to model 2. R code is available in GitLab:

https://gitlab.com/jgautrais/resourcepartitioninginbees/-/releases

Figure 2. Comparisons of route qualities (A) and similarities (B) between simulations and experimental data for one forager (positive array of flowers as in Lihoreau et al. 2012b). Model 1: positive reinforcement only. Model 2: positive and negative reinforcements. For each dataset, we show the estimated average trends across foraging bouts (colored curves), along with their $95 \% \mathrm{CI}$ (gray areas). For the sake of eye comparison, in the simulation plot we represent estimated 95% confidence intervals for a random subsample of 7 simulated bees ($\mathrm{N}=7$ bees in Lihoreau et al. 2012b). Average trends were estimated over 100 simulation runs, using GLMM Binomial model with bee identity as random effect (bee identity nested in simulation identity for simulated data).

Figure 3. Results of simulations with two foragers in environments with 10 flowers. Light blue: simulations with positive reinforcement only (model 1). Dark blue: simulations with positive and negative reinforcement (model 2). The x axis is the number of completed foraging bouts by the two foragers. The y axis represents respectively: A) the estimated mean frequency of visits to empty flowers; B) the estimated mean frequency of encounters on flowers; C) the similarity index $S I_{a b}$ between two successive flower visitation sequences; D) the index of resource partitioning $Q_{\text {norm }}$ (0 : both bees visit the same set of flowers; 1 : bees do not visit any flower in common); E) the collective foraging efficiency index $Q L_{\text {group }}$. Average trends for each model are estimated across all types of environments (one patch, two patches and three patches; see Fig S2).

Supplementary materials

Appendix S1. Sensitivity analysis of positive and negative reinforcements.

We ran a sensitivity analyses for the two main parameters: the positive and negative reinforcement. As we had no a priori understanding of how the model behaved with different values of the two main parameters of the model (positive and negative reinforcement), we explored the spectrum of potential outcomes with different sets of parameters. We ran simulations on ranges of positive $(1,1.2,1.4,1.6,1.8,2)$ and negative $(0$, $0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1)$ reinforcement factors for a total of 66 sets of parameters, for each environment type explored (one, two and three patches, Fig. S2). We simulated 10 environments for each environment type and computed 100 simulations of 50 foraging bouts per iteration (i.e. 1000 simulations per environment type and set of parameters).

Since our observations focused on resource partitioning, we extracted the $Q_{\text {norm }}$ index values for these simulations and compared them. We plotted a heatmap showing the value of the mean $Q_{\text {norm }}$ index at the last foraging bout for each set of parameters and environment type (Fig. S3). In all types of environments, the positive reinforcement has a strong effect on the final $Q_{\text {norm }}$ index value. High values of resource partitioning are obtained for positive reinforcement values > 1.5. For the negative reinforcement factor, however, it appears that high values of resource partitioning were obtained for negative reinforcement values larger than 0.75 . Negative reinforcement has little to no impact on the environment type with only one patch.

We also looked at how this same index evolved over successive foraging bouts, for each pair of bees. Fig. S4 shows the dynamics of mean $Q_{\text {norm }}$ index across 50 foraging bouts for each combination of positive reinforcement $(1.0,1.2,1.4,1.6,1.8,2.0)$ and negative reinforcement $(0,0.1,0.2,0.3,0.4,0.5,0.6$, $0.7,0.8,0.9,1$) parameters, and each environment type (one patch, two patches, three patches). Higher values of both positive and negative reinforcement factors most often lead to faster resource partitioning (with some uncertainty due to the probabilistic nature of the model). Combinations of values in which the negative reinforcement factor is missing (violet gradient curves) led to a decrease in partitioning.

Appendix S2. Qualitative analysis for the negative array case.

We ran simulations with one forager to compare model outcomes to observational data using a second reference field study (Woodgate et al. 2017). In this study, the authors used a 'negative array' (narrow pentagon, Fig. S1B) in which the distance between flowers and the directionality of movement were negatively linked, i.e. moving between nearest neighbor flowers required bees to make sharp deviations between consecutive vectors. Four bumblebees were tested during 27 to 61 foraging bouts each (flower visitation sequences were provided by Joe Woodgate). One of these bumblebees was tested over different days and was therefore removed from the analyses. In these conditions, none of the bumblebees developed a stable trapline, although all individuals significantly increased their foraging efficiency with time (e.g. reduced travel distance and duration, increased similarity between two consecutive flower visitation sequences).

The addition of a negative reinforcement had no major effect on route quality nor on route similarity trends (Fig. S5). Model simulations showed good qualitative fit the traplining behavior observed in real bees exploiting a negative array of flowers - i.e. there is a trend of increasing route similarities across foraging bouts. Note however that the model tends to overestimate the bee ability to develop stable routes in arrays of flowers where proximity and directionality are negatively linked (Woodgate et al. 2017). This imperfect match could be due to the low amount of available experimental data (three individuals in Woodgate et al. 2017). Alternately, the model does not integrate any kind of stochastic exploration so that at each new step, bees do not provide the possibility to choose unknown spatial targets. Real bees, on the contrary, show phases of stochastic explorations during and after trapline formation (Woodgate et al. 2017; Kembro et al. 2019). Future experiments with more bees in a larger diversity of arrays of flowers will be useful to further quantitatively calibrate the model.

Appendix S3. Predictions with more than two bees.

Here we explored the emergence of resource partitioning in groups of 5 bees, and how this varies as a consequence of number of available flowers and number of foraging bees in environments of 20, 25, 30, 40, 50,70 and 100 flowers, thus encompassing a gradient of competition pressures from conditions where there is not enough flowers for all bees (20) to conditions where there is four times more flowers than necessary for all bees (100). For simplicity, in all these environments, flowers were evenly distributed (i.e. environment with one patch). The positive reinforcement factor was set at 1.5 , and the negative reinforcement factor was
set at 0.75 . For each flower density, we generated 10 environments, and ran 100 simulations of 100 foraging bouts, for a total of 1000 simulations per density value. We extracted the resource partitioning index ($Q_{\text {norm }}$) at each foraging bout. Unsurprisingly, the mean final $Q_{\text {norm }}$ was higher in environments with most flowers (Fig. S7). Plotting the mean final $Q_{\text {norm }}$ (final foraging bout) as a function of the number of available flowers confirms that bees converge to a plateau where increasing the number of flowers only provokes increase of partitioning (i.e. around 50 flowers) (Fig. S7).

Figure S1. Arrays of artificial flowers for the experimental dataset. A. 'Positive array' (regular pentagon) in which the distance between flowers and the directionality of movement are positively linked, i.e. nearest neighbor flowers can be linked using lowest angular deviation between consecutive vectors. Modified from Lihoreau et al. (2012b). B. 'negative array' (narrow pentagon) in which the distance between flowers and the directionality of movement are negatively linked, i.e. moving between nearest neighbor flowers requires bees to make sharp deviations between consecutive vectors. Modified from Woodgate et al. (2017)

Figure S2. Examples of simulated environments. Distribution of 10 flowers (gray circles) and a nest (black pentagon) in three environments defined by different levels of resource patchiness. A flower patch was characterized by: 1) a uniform distribution of flowers, 2) a lower distance between flowers within the patch than between all flowers from different patches.

Figure $\mathbf{S 3}$ Heatmap showing the mean $Q_{\text {norm }}$ Index value after 50 foraging bouts (mean over 1000 simulations on 10 arrays of the same environment type), for each combination of positive reinforcement (1.0, 1.2, $1.4,1.6,1.8,2.0)$ and negative reinforcement $(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1)$ parameters, and for each environment type (one patch, two patches, three patches). For simplicity we inverted the values of negative reinforcement here. 0 being models without negative reinforcement.

Figure S4. Dynamic of the mean $Q_{\text {norm }}$ Index across foraging bouts for each combination of positive (1.0, $1.2,1.4,1.6,1.8,2.0)$ and negative $(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1)$ reinforcement factors and
for each environment type (one patch, two patches, three patches). For simplicity we inverted the values of negative reinforcement here. 0 being models without negative reinforcement.

Figure S5. Qualitative comparisons of route qualities (A) and similarities (B) between simulations and experimental data (negative array of flowers as in Woodgate et al. 2017) for one forager. Light blue: simulations with positive reinforcement only (model 1). Dark blue: simulations with positive and negative reinforcement (model 2). For each dataset, we show the estimated average trends across foraging bouts (colored curves), along with their 95\% CI (gray areas). For simplicity, in the simulation plot we only represent a subsample of three random bees with their estimated 95% CI. Average trends were estimated using GLMM Binomial model with bee identity as random effect (bee identity nested in simulation identity for simulated data).

Figure S6. Boxplot representing the distribution of the initial probabilities of visiting each flower in different environments (one patch with uniformly distributed flowers; two patches with five uniformly distributed flowers per patch; three patches of five, three and two uniformly distributed flowers; see examples Fig. S1). Median (solid horizontal line), first and third quartiles (box) and maximum and minimum values are represented.

Figure S7. Evolution of the mean final $Q_{\text {norm }}$ index (after 100 foraging bouts) as a function of increase resources availability. The model run has the positive reinforcement factor set at 1.5 , and the negative reinforcement factor set at 0.75 with 5 bees in environments of one patch.

Video S1. Example of simulation of five bees foraging in an environment with one patch of 50 flowers. Both positive and negative reinforcement rules are implemented (model 2). Bees performed 100 foraging bouts.
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.13.381012; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
$760 \quad$ Figure 1

Figure 3
 (C) one patch $\begin{gathered}\text { Route similarity } \\ \text { two patches }\end{gathered}$ three patches

 foraging bout

Resource partitioning
(d) 1.00^{-}

(e)
one patch two patches three patches

800

Positive reinforcement

Figure S4
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.13.381012; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Foraging bout

Figure S5

Figure S7
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.13.381012; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

