Supporting Information

Ionothermal Synthesis of Polyanionic Electrode Material Na₃V₂(PO₄)₂FO₂ Through Topotactic Reaction

Jacob Olchowka ^{a,c,d,*}, Long H.B. Nguyen ^{a,b,c}, Emmanuel Petit ^{a,c}, Paula Sanz Camacho ^a, Christian Masquelier ^{b,c,d}, Dany Carlier ^{a,c,d}, Laurence Croguennec _{a,c,d}

^a CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB UMR 5026, F-33600, Pessac, France.

^b Laboratoire de Réactivité et de Chimie des Solides, CNRS-UMR# 7314, Université de Picardie Jules Verne, F-80039 Amiens Cedex 1, France.

^c RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, F-80039 Amiens Cedex 1, France.

^d ALISTORE-ERI European Research Institute, FR CNRS 3104, Amiens, F-80039 Cedex 1, France.

Figure S1. XRD pattern of the synthesized precursor α -VOPO₄·2H₂O. All the reflections fit well to the theoretical pattern (ICSD: 01-084-0111) marked with red sticks. The shoulder observed for the diffraction peak at 12°, which corresponds to (001) reflection, most probably comes from stacking faults.

Figure S2. Comparison between XRD pattern of samples obtained by solid-state synthesis (red) and ionothermal approach (blue). Reflections attributed to $Na_{0.5}VOPO_4 \cdot 2H_2O$ impurities are marked with asterisks. For sample obtained by ionothermal synthesis, (002) reflection is intense and (220) has a lower intensity compared to (113) one due to platelet-like morphology. The rotating capillary measurement did not allow to minimize enough this preferential orientation to perform a Rietveld refinement of quality.

The impurity was indexed from the ICSD database 01-081-1929.

Figure S3. SEM images of $Na_3V_2(PO_4)_2FO_2$ synthesized by solid-state method. The particles are polydispersed (from several hundred of nanometers to micrometer range) and have no particular shape.

Figure S4. Thermogravimetric analysis of α-VOPO₄·2H₂O under air. At 140 °C, a weight loss of around 20.6% is observed and is attributed to the loss of 2 water molecules. The dehydration process is characterized by two steps: The first one below 100 °C most probably corresponds to the departure of free water molecules localized into the interlayer space and the second one between 100 and 140 °C to the water molecules involved in the vanadium coordination spheres.

Figure S5. Galvanostatic charge/discharge curves of NVPFO₂-iono performed in a half-cell versus Na metal at C/20. After the first cycle, the profile of the curve remains unchanged and perfectly reversible.

Figure S6. Comparison between the specific capacities of NVPFO₂-iono (in black) and NVPFO₂-ss (in red) obtained at different current densities.

Material	Capacity	Cycling rate	Reference in the manuscript
$Na_3V_2(PO_4)_2F_3$	93.5 mAh.g ⁻¹	C/10	20
$Na_3V_2(PO_4)_2F_3$	~80 mAh.g ⁻¹	C/10	21
c- Na ₃ V ₂ (PO ₄) ₂ F ₃ -SPS	~100 mAh.g ⁻¹	C/10	21
Na ₃ V ₂ (PO ₄) ₂ FO ₂	~95 mAh.g ⁻¹	C/10	51
Na ₃ V ₂ (PO ₄) ₂ F _{2.2} O _{0.8}	~80 mAh.g ⁻¹	C/10	51
$Na_3V_2(PO_4)_2FO_2$	~100 mAh.g ⁻¹	C/10	52
$Na_3V_2(PO_4)_2FO_2$	∼95 mAh.g ⁻¹	C/20	53
$Na_3V_2(PO_4)_2FO_2$	~35 mAh.g ⁻¹	C/2	54
Na ₃ V ₂ (PO ₄) ₂ FO ₂ /rGO (solvothermal)	~100 mAh.g ⁻¹	C/2	54
$Na_3V_2(PO_4)_2FO_2$	~100 mAh.g ⁻¹	C/20	55
Na ₃ V ₂ (PO ₄) ₂ FO ₂ /rGO	~120 mAh.g ⁻¹	C/20	55
$Na_3V_2(PO_4)_2F_3$	~88 mAh.g ⁻¹	C/2	56
Na ₃ V ₂ (PO ₄) ₂ F ₃ -SWCNT	~117 mAh.g ⁻¹	C/2	56
Na ₃ V ₂ (PO ₄) ₂ FO ₂ -iono	~110 mAh.g ⁻¹	C/10	(this work)

Table S1. Comparison of specific capacities obtained in half Na cells at different cycling rates for NVPFO₂-iono (this work) and for a series of $Na_3V_2(PO_4)_2(F,O)_3$ compositions reported in literature.