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Abstract: In this article, we investigate the behavior of InGaN–GaN Multiple Quantum Well (MQW)
photodetectors under different excitation density (616 µW/cm2 to 7.02 W/cm2) and temperature
conditions (from 25 ◦C to 65 ◦C), relating the experimental results to carrier recombination/escape
dynamics. We analyzed the optical-to-electrical power conversion efficiency of the devices as a
function of excitation intensity and temperature, demonstrating that: (a) at low excitation densities,
there is a lowering in the optical-to-electrical conversion efficiency and in the short-circuit current
with increasing temperature; (b) the same quantities increase with increasing temperature when
using high excitation power. Moreover, (c) we observed an increase in the signal of photocurrent
measurements at sub-bandgap excitation wavelengths with increasing temperature. The observed
behavior is explained by considering the interplay between Shockley–Read–Hall (SRH) recombination
and carrier escape. The first mechanism is relevant at low excitation densities and increases with
temperature, thus lowering the efficiency; the latter is important at high excitation densities, when the
effective barrier height is reduced. We developed a model for reproducing the variation of JSC

with temperature; through this model, we calculated the effective barrier height for carrier escape,
and demonstrated a lowering of this barrier with increasing temperature, that can explain the increase
in short-circuit current at high excitation densities. In addition, we extracted the energy position of
the defects responsible for SRH recombination, which are located 0.33 eV far from midgap.

Keywords: efficiency; gallium nitride; multiple quantum wells photodetectors; photodetectors; wide
bandgap semiconductors

1. Introduction

Nitride alloys containing indium are being widely employed in the fabrication of blue light-emitting
diodes (LEDs) and laser diodes (LDs). Owing to the wide operating limits and high reliability of
GaN devices, several research groups have started investigating the use of GaN as a material for
the fabrication of photodetectors and solar cells. Early devices were based on the simple p-n and
p-i-n approach; recently, more complex structures were considered, based on InGaN/GaN Multiple
Quantum Wells (MQW) or SuperLattices (SL) [1].

These structures have been experimentally studied by varying the epitaxial design, the thickness
of the barriers [2–4], the number of quantum wells [5], and the alloy composition [6]. In addition,
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the dependence of the performance and the main operative parameters of the devices were investigated
under different conditions, for example, light concentration [7,8] or temperature [9,10]. The high
reliability of this kind of structures in harsh environments [11] and under very high illumination
densities [12] enables them to be used for novel applications, such as high-power photodetectors or
receivers for Li-Fi systems and wireless energy transmission [13], also in space applications. Similar
structures may be of interest also for the design of GaN-based solar cells.

Despite the great potential of InGaN/GaN-based photodetectors and solar cells, no comprehensive
analysis of the physical mechanisms that limit the performance of such devices has been published so far
in the literature. Moreover, several applications require a study of these devices under monochromatic
excitation and very high power [13–15]. In literature, these kinds of structures have been analyzed
mainly under solar AM0 or AM1.5 illumination with excitation ranging from one sun to few hundreds
of sun [7,8,12] and there are very few studies under monochromatic excitation [16]. Simulative
approaches were used to understand the transport model inside the solar cells [17,18].

The aim of this paper is to contribute to the understanding in this field, by presenting an extensive
analysis of the dependence of the main parameters of MQW InGaN photodetectors (short-circuit
current, open-circuit voltage, quantum efficiency) on the operating conditions (excitation density,
temperature) under monochromatic 405 nm illumination. We investigate how Shockley–Read–Hall
(SRH) recombination, thermionic escape, and carrier tunneling contribute to the overall cell efficiency
in the various temperature and excitation regimes, and describe the related trends. We propose a
semi-quantitative recombination-escape model based on these considerations and we use it to fit
experimental data.

2. Materials and Methods

The samples under test are based on a p-GaN–i-In0.15Ga0.85N–n-GaN MQW structure, grown on
c-plane sapphire by metal-organic chemical vapor deposition. Over the sapphire substrate, there is a
2 µm thick n-GaN (Si doping 5 × 1018 cm−3) layer, over which there is the MQW structure made by
25 periodical layer GaN (4.8 nm thick)–In0.15Ga0.85N (2.2 nm thick), topped with a 100 nm thick p-GaN
(Mg doping 5 × 1017 cm−3) layer. The structure is schematized in Figure 1a. The approximate density
of dislocation was derived to be 2.7 × 108 cm−2 and InGaN quantum wells were determined to be
pseudomorphic grown on GaN layer with biaxial strain. Additional details on device structure can be
found in previous reports [19,20]. The device under test is a 1 mm × 1 mm photodetector.

The device under test (DUT) was connected through tungsten microtips mounted on x-y-z
micropositioners and the I–V curves of the devices were collected by means of a HP 4155A
Semiconductor Parameter Analyzer. A 405 nm GaN-based LD (nominal optical output power >

2 W), mounted in a Thorlabs TCLDM9 Peltier-cooled fixture and controlled by a Thorlabs ITC4005
controller, was used as light source for illuminated I–V characterization. The spot size was determined
to be around 1.41 × 0.15 mm2 by optical measurements. Optical intensity was controlled by changing
the driving current of the laser diode. In addition to this, to obtain very low intensities, neutral optical
density filters were used (Thorlabs NE05A and NE2A, with optical densities of 0.5 and 2 respectively).
The laser intensity was calibrated by means of a Thorlabs S142C integrating sphere. A Thorlabs
BSF10-A fused silica beam sampler was employed to redirect a portion of the optical beam on a
Thorlabs PDA36A photodiode to obtain feedback on the illumination intensity.

Photocurrent characterization was carried out by using a wide-spectrum 300 W gas discharge
xenon lamp, coupled with a Newport CS130 1/8m grating monochromator. The photocurrent signal
was amplified by a Merlin lock-in amplifier. The device temperature was controlled by a Thorlabs
HT24S2 ceramic heater, driven by a Thorlabs TC200 controller. The experimental set-up is shown in
Figure 1b.

By using pulsed measurements the illuminated I–V curves were measured. From these curves,
the short-circuit current (i.e., the current a 0 V), the open-circuit voltage (i.e., the voltage required to
have no current flowing in the device) and the maximum power (i.e., the IxV product) were calculated
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at the various intensities and baseplate temperatures. The optical-to-electrical power conversion
efficiency was calculated as the ratio between the maximum electrical power that can be extracted
from the cell and the optical power delivered to the cell. From photocurrent measurements at 0 V,
the spectral external quantum efficiency (EQE) was calculated by means of a previous calibration of
the system.
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3. Results

The DUTs were characterized by means of spectral photocurrent measurements at different
temperatures ranging from 25 ◦C to 65 ◦C, allowing to calculate external quantum efficiency, shown
in Figure 2. With increasing temperature, we observed two main changes: (1) a decrease in the peak
quantum efficiency, at about 380 nm, and (2) an increase in the quantum efficiency in the yellow band
region, below 475 nm (see Figure 2c). The first effect is ascribed to the increase in SRH non-radiative
recombination, which reduces the amount of photogenerated hole–electron pairs that can be extracted
from the MQW structure. The second effect can be attributed to an increased emission of carriers from
the deep levels responsible for yellow luminescence in GaN (EC—0.9 eV), typically carbon [21], VGa-O
complexes [22] or VGa-H [23]. By increasing temperature, we also noticed a shift of the band-to-band
absorption of the InGaN (edge around 465 nm), that is ascribed to bandgap narrowing. The edge shift
has been fitted to estimate the Varshni law parameters with the formula

Eg(T) = Eg(0) −
αT2

T + β
, (1)

finding Eg(0) = 2.83 eV, α = 0.324 meV/K and β = 571 K. The value for Eg(0) is in good agreement with
the value calculated in [24] for In0.15Ga0.85N.

The DUT was characterized under 405 nm monochromatic light at different excitation densities
ranging from 616 µW/cm2 to 7.02 W/cm2. Figure 3 reports the I–V curves obtained from this analysis.
By increasing excitation density, the short-circuit current density JSC (Figure 4a) increases (in absolute
value) from 10−5 A/cm2 to 10−1 A/cm2. There is a linear relationship between excitation density and
short-circuit current, meaning that in short-circuit condition the incoming photons are converted into
electron–hole pairs that can be extracted from the device with minimum loss. To obtain a rough
evaluation of the losses in the analyzed devices, we estimated the ideal theoretical value of JSC by
calculating the power Pabs absorbed by the InGaN quantum wells by the Lambert–Beer law and
dividing it by the photon energy Eph. In a best-case scenario, we assumed a unit internal quantum
efficiency and extraction efficiency (i.e., every absorbed photon generates an electron–hole pair that is
extracted from the device with no loss) and we considered the reflection only at the upper air–GaN
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interface with reflection coefficient R, thus multiplying the optical power on the device P0 by the
factor 1-R, that is the fraction of light that is not reflected and goes through the air–GaN interface.
We obtained the formula:

JSC =
Pabs
Eph

=
P0(1−R)

(
1− e−N·α·Lw

)
Eph

, (2)

where Eph = 3.06 eV, R = 0.184 (assuming nGaN = 2.5 [25]), N is the number of quantum wells, α is
the absorption coefficient for 2.2 nm In0.15Ga0.85N quantum wells, that can be estimated to be around
104 cm−1 [26], and Lw is the well thickness. The calculated theoretical value is approximately four
times higher than the experimental value. This result indicates the existence of parasitic recombination
paths, as described above, and a non-ideal carrier extraction, and suggest possible pathways for
device optimization.

Figure 4b shows that with increasing excitation level, the open-circuit voltage increases significantly
(from 1.65 V to 1.75 V), until saturation is reached. Figure 5 shows that the main trend is a lowering
of VOC with increasing temperature, by an amount dependent on the excitation density. To better
understand these results, we consider that a photodetector can be modeled as a diode (the p—n
junction) in parallel with a current generator (the photogenerated charge). When the device is in
open-circuit, V = VOC, the open-circuit voltage can be written as:

VOC =
kBT

q
ln

(
1 +

IL

IS

)
. (3)

The open-circuit voltage is logarithmically proportional to one plus the ratio between the
photogenerated current (IL) and the reverse saturation current (IS), according to Equation (3).

Referring to Figure 4b, at low excitation (region 1) the photogenerated carriers incur in SRH
recombination and thus the open-circuit voltage is constant and decreases with increasing temperature.
At intermediate excitation densities, SRH recombination saturates and the open-circuit voltage increases
logarithmically (region 2), since the density of light-generated carriers increases, and remains constant
by increasing temperature. At very high excitation densities (region 3) the open-circuit voltage saturates,
possibly due to band filling effects, since incoming photons cannot generate more charge inside the
quantum wells and thus the potential needed to have an open-circuit condition (i.e., no current)
becomes constant. The self-heating of the device can also contribute, causing a slight reduction in the
open-circuit voltage. The lowering in the VOC in this regime can be possibly due to the additional
contribution of bandgap narrowing and enhanced carrier escape in this high-occupancy condition.
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Figure 3. I–V behavior at different excitation densities, with the device at 35.0 ◦C (a) and series resistance
calculated from illuminated I–V (b).
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(a) and open-circuit voltage (b) with respect to excitation density at various baseplate temperatures.
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Figure 5. Short-circuit current density (a) and open-circuit voltage (b), both normalized at 25 ◦C,
with respect to baseplate temperature at various excitation densities.

In Figure 6a, I–V curves at various temperatures for the two extremal excitation densities are
plotted. The solid lines correspond to a very low excitation density of 616 µW/cm2; in the range between
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0 V and 1.5 V (i.e., when the electrical power can be extracted from the cell and thus the cell acts as a
current generator), the short-circuit current is around 10 µA/cm2. For higher voltages, i.e., when the cell
absorbs current, the IV curves show a double-slope behavior, with an inflexion around 2.6 V. Such effect
can be ascribed to the presence of two conduction processes, the first (for voltages lower than 2.6 V)
being related to the presence of lattice defects within the active region. By increasing temperature,
the reverse (photogenerated) current slightly decreases, possibly due to the stronger recombination
occurring through Shockley–Read–Hall processes, which results in stronger carrier losses [27]. On the
other hand, at the highest excitation density (7.02 W/cm2), a very high photogenerated current is
measured. In addition, the defect-related components are not visible in the forward-regime, possibly
due to the saturation of non-radiative recombination by the high density of injected carriers.
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Figure 6. (a) I–V behavior at different baseplate temperatures with an excitation of 616 nW/cm2 (solid
lines, right scale) and 7.02 W/cm2 (dashed lines, left scale) and (b) shunt resistance calculated from
illuminated I–V characterizations.

By varying the excitation power, the variation of the (optical-to-electrical) power conversion
efficiency was calculated (Figure 7, where all data were normalized to the value at 25 ◦C). A decrease in
the efficiency is observed with increasing temperature at low excitation densities (up to 10 mW/cm2);
this behavior is ascribed to the fact that, at low excitation densities, non-radiative SRH recombination
(whose rate increases with temperature) plays the dominant role. Consequently, carriers can recombine
through non-radiative defects before being extracted to generate a photocurrent signal. For higher
excitation levels, SRH defects are saturated by a large number of generated carriers, thus defects no
longer limit the efficiency of the devices. Power conversion efficiency increases with temperature due
to the increased extraction of carriers [28]: to be extracted from the wells, thus being collected at the
contacts, electrons and holes must overcome a potential barrier of 420 meV and 180 meV respectively,
assuming a 600 meV In0.15Ga0.85n/GaN bandgap discontinuity [24] with 70:30 ratio between conduction
and valence band discontinuities [29]. This process is enhanced at higher temperatures, leading to an
increase in conversion efficiency.

The effects of parasitic series and shunt resistances are limited. Shunt resistance mainly affects VOC.
We observe that the VOC behavior in Figure 4b does not fully match the decrease in shunt resistance
with increasing excitation power and temperature seen in Figure 6b. Moreover, the behavior of the
short-circuit current (Figure 5a) cannot be explained by the variation in shunt and series resistance.
Thus, there must be other physical phenomena that explain the JSC and VOC dependence on the
excitation density and on the temperature.
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4. Discussion

To fully understand the temperature dependence of the short-circuit current (Figure 5a) and of
the optical-to-electrical power conversion efficiency (Figure 7) we developed a model based on the
physical processes that lead to carrier generation, escape, and recombination, that are schematized in
Figure 8. Because of the nanometric thickness of the well, energy levels inside the wells are quantized.
The photogenerated carriers can both recombine radiatively (R) or non radiatively (NR), or can escape
from the quantum well by thermionic emission (TE) or tunneling (T) through the GaN barrier [30].
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The total current that is collected from the device is proportional to the sum of the probabilities of
single processes, which are proportional to the reciprocal of the lifetime of each mechanism:

JSC ∝
1
τT

+
1
τTE
−

1
τR
−

1
τNR

(4)

There is a minus sign for radiative and non-radiative recombination terms because they prevent
photogenerated carriers from escaping from the wells and thus lower short-circuit current.
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Analyzing the various contributions to the short-circuit current, the non-radiative recombination
is mainly due to SRH recombination, whose rate, assuming the same rate of capture for electrons and
holes, is proportional to the number of trap states NT [31]:

1
τNR

≈
1

τSRH
= NTvnσn

[
1 + cosh

( ∆E
kBT

)]−1
, (5)

where vn is the electron thermal velocity, σn is the capture cross section of the traps and ∆E = ET − EFi,
where ET is the trap energy level and EFi is the intrinsic Fermi level energy.

Radiative recombination rate is given by:

1
τR
∝

∑
n,n′

[∣∣∣∣〈ϕe,n
∣∣∣ϕh,n′

〉∣∣∣∣2 ∫
gred(E) fc(1− fv)E dE

]
, (6)

where
〈
ϕe,n

∣∣∣ϕh,n′
〉

is the overlap integral between electron and holes, gred is the reduced density of states
and fc and fv are the conduction and valence band occupancy, respectively. Usually, this recombination
has a lower impact since it is slower than tunneling and thermionic emission [32], so carriers can easily
escape before recombining radiatively.

The tunneling rate can be calculated in the case of a single tunneling barrier. This can be extended
to the case of multiple barriers, obtaining [33]:

1
τT

=
n}π

2L2
wm∗i

exp

−
2Lb

√
2mb,iH′i (F)

}

 i = e, h, (7)

where Lb is the barrier width, Lw is the well width, mi is the effective mass in the well, mb,i is the effective
mass in the barrier and H’i is the field-dependent effective barrier height for tunneling. We can assume
that the tunneling rate is not dependent on the intensity, since we are working with similar electric
fields. Tunneling is the main escape mechanism in the case of thin barriers [30].

Thermionic escape current is given by the relation [34]:

1
τTE
∝ JTE = enc

√
kBT

2πm∗i L
2
w

exp
(
−

Hi(F)
kBT

)
i = e, h, (8)

where nc is the total carrier density in the well and Hi is the field-dependent effective barrier height for
escape. This barrier lowers with increasing intensity, since higher energy levels inside the wells are
being occupied by photogenerated carriers.

At temperatures near room temperature, the main process that allows carriers to escape from
the wells is tunneling, which can be assumed constant with respect to temperature. By increasing
temperature, both SRH recombination and thermionic escape are enhanced; however, thermionic
escape is not very effective when excitation density is low and only the first energetic level in the well
is occupied, because the effective barrier height is high and thermionic escape rate is limited by the
exponential factor in Equation (8). At high intensities, JSC increases with increasing temperature since
thermionic escape becomes more effective due to the increase in thermal energy. This is clearly visible in
the normalized short-circuit current in Figure 5a. To obtain a quantitative estimation of the thermionic
escape barrier height, we fitted the experimental short-circuit current at different temperatures with
the function:

JSC = A(I) ·
√

T · exp
(
−

Hi(F)
kBT

)
− B(I) ·

[
1 + cosh

( ∆E
kBT

)]−1
+ C(I). (9)

In this equation, we calculated the short-circuit current as the sum of the three contributions from
thermionic escape, SRH recombination and tunneling respectively. We parameterized the unknown
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variables as intensity-dependent coefficients and we made the temperature dependencies explicit. It is
possible to delete the constant by calculating the difference between the short-circuit current at the
temperatures Tk and T0:

∆JSC = A(I)
[
√

Tk · exp
(
−

Hi(F)
kBTk

)
−
√

T0 · exp
(
−

Hi(F)
kBT0

)]
−

B(I) ·
{[

1 + cosh
(

∆E
kBTk

)]−1
−

[
1 + cosh

(
∆E

kBT0

)]−1
}
.

(10)

To calculate the values of the parameter A(I) we assumed that, at the three highest excitation
densities, only thermionic escape contributes to the JSC variation, since the three normalized curves do
not increase further with temperature, possibly due to the fact that SRH recombination is negligible
at such high excitation levels and the carriers occupy the highest energy level available in the wells.
By fitting the ∆JSC with respect to the temperature with Equation (10) under the constraint B(I) = 0 we
obtained ad estimation of A(I) and of the effective barrier height. We then assumed that A(I) has a
linear dependence on the excitation density, since it depends on the carrier population inside the wells,
and thus we performed a linear fit to have an estimation of its value over the whole excitation range.

We similarly estimated the value of the trap level for SRH recombination by assuming no
thermionic escape at the lowest intensity, thus fitting the ∆JSC with the Equation (10) assuming
A(I) = 0. From this fit, we estimated a deep level with an energy of 0.33 eV from the midgap. We then
repeated this fit for the lowest excitation densities to obtain the value of the coefficient B(I) at the
lowest intensities and then we linearly fitted these values to estimate the B(I) coefficient for the whole
excitation power range.

Having an estimation of the coefficients A(I) and B(I) and of the energy of the trap level for SRH
recombination, we fitted the ∆JSC data with Equation (10), leaving Hi as the fitting parameter. By doing
so, we obtained a rough estimation of the effective barrier height, which represents the average effective
barrier height for electrons and holes in the 25 quantum wells. From Figure 9 it is possible to see that
the effective barrier height needed to fit the experimental data decreases as intensity increases and its
values are in agreement with the well depth previously calculated. We thus demonstrated that it is
possible to describe the variation in the experimental JSC data with a model that takes into account
SRH recombination and thermionic escape from the wells, the first lowering the short circuit current
with increasing temperature, the latter increasing the short-circuit current.

Electronics 2020, 9, x FOR PEER REVIEW 9 of 12 

 

repeated this fit for the lowest excitation densities to obtain the value of the coefficient B(I) at the 
lowest intensities and then we linearly fitted these values to estimate the B(I) coefficient for the whole 
excitation power range. 

Having an estimation of the coefficients A(I) and B(I) and of the energy of the trap level for SRH 
recombination, we fitted the ΔJSC data with Equation (10), leaving Hi as the fitting parameter. By doing 
so, we obtained a rough estimation of the effective barrier height, which represents the average 
effective barrier height for electrons and holes in the 25 quantum wells. From Figure 9 it is possible 
to see that the effective barrier height needed to fit the experimental data decreases as intensity 
increases and its values are in agreement with the well depth previously calculated. We thus 
demonstrated that it is possible to describe the variation in the experimental JSC data with a model 
that takes into account SRH recombination and thermionic escape from the wells, the first lowering 
the short circuit current with increasing temperature, the latter increasing the short-circuit current. 

 
Figure 9. Estimation of the effective barrier height H from the fit of ΔJSC with Equation (10). The points 
at the three highest intensities are fitted neglecting the contribution of SRH recombination. 

Summarizing, with this model it is possible to account for the efficiency variation seen in the 
experimental results. SRH recombination effect is clearly seen in the negative temperature coefficient 
of the short-circuit current (Figure 5) and of the optical-to-electrical power conversion efficiency 
(Figure 7) at low excitation densities: the loss of photogenerated carriers by SRH recombination has 
a detrimental effect on the device performance, also affecting the VOC as seen in Figure 4b. 
Additionally, EQE (Figure 2) is measured at low excitation densities, thus its peak lowers with 
increasing temperature, whilst the absorption by deep levels is enhanced. At higher excitation 
densities the temperature coefficient becomes positive due to enhanced thermionic emission from 
wells with a reduced effective barrier height, which effect overcomes the loss of carriers by SRH 
recombination. 

5. Conclusions 

In conclusion, we studied InGaN–GaN multiple quantum well photodetectors by analyzing 
their external quantum efficiency at different wavelengths and extrapolating their main operating 
parameter under monochromatic excitation at different intensities and temperatures. We found that 
at low excitation densities short-circuit current, optical-to-electrical conversion efficiency and 
quantum efficiency decrease with increasing temperature, whereas at high excitation densities, these 
parameters increase as temperature increases. 

This behavior has been attributed to the competition between SRH recombination and 
thermionic escape from the wells. The first is relevant at low excitation densities and increases with 
temperature, leading to a decrease in efficiency. The latter is predominant at higher excitation 

 

0.01 0.1 1 10

0.25

0.3

0.35

0.4

TE
 e

ffe
ct

iv
e 

ba
rri

er
 h

ei
gh

t (
eV

)

Intensity (W/cm2)

Figure 9. Estimation of the effective barrier height H from the fit of ∆JSC with Equation (10). The points
at the three highest intensities are fitted neglecting the contribution of SRH recombination.

Summarizing, with this model it is possible to account for the efficiency variation seen in the
experimental results. SRH recombination effect is clearly seen in the negative temperature coefficient
of the short-circuit current (Figure 5) and of the optical-to-electrical power conversion efficiency
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(Figure 7) at low excitation densities: the loss of photogenerated carriers by SRH recombination has a
detrimental effect on the device performance, also affecting the VOC as seen in Figure 4b. Additionally,
EQE (Figure 2) is measured at low excitation densities, thus its peak lowers with increasing temperature,
whilst the absorption by deep levels is enhanced. At higher excitation densities the temperature
coefficient becomes positive due to enhanced thermionic emission from wells with a reduced effective
barrier height, which effect overcomes the loss of carriers by SRH recombination.

5. Conclusions

In conclusion, we studied InGaN–GaN multiple quantum well photodetectors by analyzing
their external quantum efficiency at different wavelengths and extrapolating their main operating
parameter under monochromatic excitation at different intensities and temperatures. We found that at
low excitation densities short-circuit current, optical-to-electrical conversion efficiency and quantum
efficiency decrease with increasing temperature, whereas at high excitation densities, these parameters
increase as temperature increases.

This behavior has been attributed to the competition between SRH recombination and thermionic
escape from the wells. The first is relevant at low excitation densities and increases with temperature,
leading to a decrease in efficiency. The latter is predominant at higher excitation densities, when wells
are filled and the effective barrier for thermionic escape is reduced, thus enhancing escape and raising
the efficiency.

We developed a model to reproduce the experimental JSC data: the results indicated that the
effective barrier height for thermionic escape lowers with increasing excitation density, and allowed us
to estimate the position of the defect center responsible for SRH recombination, located 0.33 eV far
from midgap.
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