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Abstract 8 

Wood flux (piece number per time interval) is a key parameter for 9 

understanding wood budgeting, determining the controlling factors, and 10 

managing flood risk in a river basin. Quantitative wood flux data is critically 11 

needed to improve the understanding of wood dynamics and estimate wood 12 

discharge in rivers. In this study, the streamside videography technique was 13 

applied to detect wood passage and measure instantaneous rates of wood 14 

transport. The goal was to better understand how wood flux responds to flood 15 

and wind events and then predict wood flux. In total, one exceptional wind and 16 

7 flood events were monitored on the Ain River, France, and around than 24000 17 

wood pieces were detected visually. It is confirmed that, in general, there is a 18 

threshold of wood motion in the river equal to 60% of bankfull discharge. 19 

However, in a flood following a windy day, no obvious threshold for wood motion 20 
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was observed, confirms that wind is important for the preparation of wood for 21 

transport between floods. In two multi-peaks floods, around two-thirds of the 22 

total amount of wood was delivered on the first peak, which confirms the 23 

importance of the time between floods for predicting wood fluxes. Moreover, we 24 

found an empirical relation between wood frequency and wood discharge, 25 

which is used to estimate the total wood amount produced by each of the floods. 26 

The data set is then used to develop a random forest regression model to 27 

predict wood frequency as a function of three input variables that are derived 28 

from the flow hydrograph. The model calculates the total wood volume either 29 

during day or night based on the video monitoring technique for the first time, 30 

which expands its utility for wood budgeting in a watershed. A one-to-one link 31 

is then established between the fraction of detected pieces of wood and the 32 

dimensionless parameter “ 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 × 𝑓𝑟𝑎𝑚𝑒𝑟𝑎𝑡𝑒 ”, which provides a 33 

general guideline for the design of monitoring stations. 34 

Keywords: Fluvial dynamics; Large wood in river; Random forest model; Wind 35 

condition; Multi-peaks discharge; Streamside video monitoring. 36 

1. Introduction 37 

Floating wood in rivers, known as driftwood, is a significant component of 38 

catchments, notably in forested temperate regions (Wohl, 2013; Ruiz-39 
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Villanueva et al., 2016a). It is delivered to the rivers by a set of processes 40 

(landslides, debris flows, blowdown, bank erosion and so on) which vary from 41 

upstream to downstream (Nakamura and Swanson, 1993; Montgomery et al., 42 

1996; Abbe and Montgomery, 2003; Gurnell and Petts, 2006). Among different 43 

recruitment processes, bank erosion probably delivers most of the large organic 44 

material into larger lowland rivers (Keller and Swanson, 1979). These large 45 

pieces of wood (i.e. greater than 1 m length and 10 cm diameter) induce 46 

variations in hydraulic and sediment dynamics, and contribute to flow resistance 47 

and obstructions within the channel (Young, 1991; Gippel, 1995; Shields and 48 

Gippel, 1995; Wilcox and Wohl, 2006; Comiti et al., 2008). Especially during a 49 

flood, the transport and deposition of large wood pieces represent a potential 50 

increase in the destructive power of floods, which increases the potential risks 51 

to human populations and infrastructures ( Lassettre and Kondolf, 2012; De 52 

Cicco et al., 2018; Mazzorana et al., 2018). For instance, a flow obstruction due 53 

to wood accumulation can lead to upstream bed aggradation, channel avulsion, 54 

and local scouring processes, which can in turn cause embankment or bridge 55 

collapse and floodplain inundation (Diehl, 1997; Lyn et al., 2003; Fischer, 2006; 56 

Waldner et al., 2007; Mao et al., 2008; Mazzorana et al., 2009; Comiti et al., 57 

2012; Ruiz-Villanueva et al., 2014a). Therefore, quantifying wood inputs, 58 

transport, deposition, and budgeting in general is crucial for understanding and 59 
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managing wood risk in rivers. 60 

Understanding the variability and the process-scale dynamics which control 61 

wood delivery and transport rate is also a critical challenge (Martin and Benda, 62 

2001; Benda et al., 2003; Marcus et al., 2011; Schenk et al., 2014; Boivin et al., 63 

2015). Wood budgeting can be explored at different time scales. The wood 64 

recruitment sites are often observed close to the preferential sites of deposition 65 

(Schenk et al., 2014; Ravazzolo et al., 2015), but not systematically, as shown 66 

along the Isère River, France (Piégay et al., 2017). Some pieces of wood can 67 

be transported over very long distances during a single flood (Gurnell et al., 68 

2002; Gurnell, 2012; Comiti et al., 2016; Kramer and Wohl, 2017). Moreover, 69 

the amount of wood can be documented at multi-annual and annual time 70 

intervals over long time periods by historical data (Seo et al., 2008; Seo and 71 

Nakamura, 2009; Ruiz-Villanueva et al., 2014b). Based on this long time scale, 72 

however, it is not possible to record continuous series and study wood transport 73 

processes during shorter but critical hydrological events such as floods, 74 

exceptional wind events, and landslides, which are known to drive wood fluxes 75 

in rivers (Lassettre and Kondolf, 2012; Ruiz Villanueva et al., 2014a). 76 

To generate wood input series in shorter time scales, Moulin and Piégay, 77 

(2004) used weekly time steps to measure the wood stored in a reservoir. The 78 

results quantified the timing and magnitude of Large Wood (LW) export during 79 
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flood events in the reservoir and allowed the recruitment and transport 80 

processes of LW at the watershed scale to be better understood. Benacchio et 81 

al. (2017) monitored wood delivery and calculated wood weight in a reservoir 82 

by an automated image processing technique using much finer time intervals 83 

(10 min). In addition to the reservoir-based monitoring, Kramer and Wohl,  84 

(2014) showed that in high-discharge, low-velocity rivers, the deployment of 85 

monitoring cameras with coarse frame rates (≥ 1 min) enables monitoring of 86 

LW transport at large spatial and long temporal scales. However, in smaller and 87 

steeper rivers the velocity of wood pieces is higher or the field of view is too 88 

small such that low frame rate photography cannot provide accurate estimates 89 

of wood delivery.  90 

Video monitoring of the water surface can be used to continuously monitor 91 

wood flux at a high temporal resolution. Lyn et al. (2003) were the first to apply 92 

this technique, using two stream-side video cameras to observe and detect 93 

wood accumulation on bridge pier in the Eel River, Unites States. Due to data 94 

storage issues, Lyn et al. (2003) downgraded the frame rate to 0.1 fps (frame 95 

per second) and applied image compression to the recorded frames through 96 

the monitoring period. Such issues were overcome by MacVicar et al. (2009), 97 

and MacVicar and Piégay (2012) who established a monitoring station at the 98 

Ain River, France, but transferred the full resolution images recorded at 5 fps to 99 
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a remote server for analysis. The high quality and frequency of the data, which 100 

is likely necessary in high gradient rivers, allowed them to compare LW 101 

dynamics with flood hydrograph and develop a quantitative relation between 102 

wood and water discharges. Other studies have implemented similar 103 

approaches (Boivin et al., 2015; Kramer et al., 2017; Senter et al., 2017; Ruiz-104 

Villanueva et al., 2018; Ghaffarian et al., 2020a) but overall the technique 105 

remains undersubscribed and models of the wood flux as a function of the flow 106 

hydrograph remain poorly parameterized.  107 

Overall, the success of a particular monitoring station will be determined by 108 

issues of wood size and image resolution (MacVicar and Piégay, 2012; 109 

Ghaffarian et al., 2020a). Ghaffarian et al. (2020a) monitored floods on the Isère 110 

River (France) and demonstrated the generalizability of technique to other 111 

rivers along with some limits, constraints, and methodological 112 

recommendations. The oblique angle of the camera means that it is particularly 113 

important to understand where wood will pass relative to the camera position 114 

(Ghaffarian et al., 2020a). Moreover, a problem remains that there are gaps 115 

within the data. Such gaps can occur due to the poor visibility in low light or 116 

cloudy weather, lost connections where data is transferred to a remote server 117 

for storage (Muste et al., 2008; MacVicar et al., 2009; MacVicar and Piégay, 118 

2012; Ghaffarian et al. 2020a), or simply to the time required to extract 119 
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information about floating wood from videos. Despite some efforts at automatic 120 

extraction (Ali and Tougne, 2009; Lemaire et al., 2014), the procedure to date 121 

remains predominantly manual. Improved modeling of wood fluxes as a 122 

function of flow hydrographs or other environmental conditions could be an 123 

effective strategy to reduce sampling effort and fill in missing data such that 124 

wood fluxes could be integrated over time to support wood budgeting in 125 

watersheds. 126 

The aim of the current study is to advance the video monitoring technique 127 

for wood flux measurement by addressing the following questions: i) is wood 128 

transported only above a discharge threshold, and if so, is the threshold a 129 

function of antecedent conditions? ii) Can wood flux be modelled as a function 130 

of the flood hydrograph? and iii) Can we accurately estimate wood flux from 131 

sampling? The analysis uses the database assembled by MacVicar and Piégay  132 

(2012) of sampled periods during three floods on the Ain River but significantly 133 

adds to this work by performing a complete analysis of the daytime videos from 134 

four new flood events and one period with low flow but an exceptional wind 135 

condition, which was then followed by a flood event. This much larger database 136 

comprises nearly 180 hours of annotated videos or around than 24,000 137 

annotated wood pieces, which substantially expands on the 18 hours and 7800 138 

wood pieces monitored by MacVicar & Piégay (2012). The windy day event with 139 
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35-year return period allowed us to address the first research question. A 140 

random forest (RF) model was used to answer the second question.  Flux and 141 

wood measurements from the MacVicar and Piégay (2012) database combined 142 

with the data of the present study are used to resolve the third question. 143 

2. Study site 144 

The study site is located on the lower Ain River, a sixth-order piedmont river 145 

flowing through a forested corridor in France. The channel is typically single 146 

thread with occasional islands, and a wandering system with prominent 147 

meander scrolls and cutoff channels (Figure 1.a) (MacVicar et al., 2009). The 148 

hydrograph shows a strong seasonal pattern, with low flows in the summer and 149 

most of floods occurring between October and April. Bed material sizes are 150 

gravel–cobble mix with a median size of 2.5 cm. The unvegetated channel width 151 

is 65 m in average at the study site, actively shifting so that significant amount 152 

of wood is delivered by bank erosion. Tree species established in the floodplain 153 

are a mix of soft and hardwood species dominated by black poplar (Populus 154 

nigra) that can reach up to 75 cm in diameter and 25 m in height (MacVicar and 155 

Piégay, 2012). Along the study site, wood influx has been estimated over 156 

several decades from the analysis of aerial photographs at 18 to 38 m3/km/yr 157 

(Lassettre et al., 2008).  158 
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Floating wood was counted on the river at Pont de Chazey, where a stream 159 

gauge is maintained by a regional authority (Figure 1.b, c). Along the river, the 160 

characteristic discharge of 1.5-year return period was 𝑄1.5 = 840  m3/s 161 

(Ghaffarian et al., 2020a), and at this study site, an estimated bankfull discharge 162 

(𝑄𝑏𝑓) of 530m3/s was confirmed by visual observation (MacVicar and Piégay, 163 

2012). At this point the flow discharge is calculated based on the water elevation 164 

measured at the gauging station. These data are available online from 1959 at 165 

(www.hydro.eaufrance.fr). Mean daily wind speed is also available from the 166 

Meteorological Station of Lyon-Bron (1949-2020) (see Figure 2). 167 
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Figure 1. Study site at Pont de Chazey: a) Location of the Ain River course in France 

and location of the gauging and meteorological stations, b) camera position and its 

view angle in yellow, c) overview of the gauging station with the camera installation 

point, d) view of the River channel from the camera 

3. Material and Methods 168 

3.1. Stream-side video camera 169 

Wood pieces were monitored at Pont-de-Chazey gauging station using an 170 

AXIS P221 Day/Night™ fixed network camera installed in the spring of 2007. 171 

Figure 1.d shows the camera field of view on the river surface. The video 172 
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camera can supply high resolution (HDTV720P) surveillance even in extreme 173 

low-light, though not at night time. The camera was located on the side of the 174 

river closest to the thalweg to provide a maximum resolution where the majority 175 

of wood pieces are observed. The camera elevation is 9.84 m above the base 176 

flow surface at a sufficiently wide angle to afford a view of the entire river width 177 

during most periods. Ethernet connectivity enables the automatic transfer of 178 

recorded videos to a central server where located at CNRS UMR 5600 – 179 

Environment Ville et Société, Site of École Normale Supérieure, Lyon, France. 180 

Videos were recorded continuously at a maximum frequency of 3 to 5 fps. Data 181 

was recorded with this camera from 2007 to 2011 at a resolution of 640×480 182 

pixels and from 2012 to 2016 at 768×576 pixels. The first three floods (events 183 

F1 to F3) thus have a lower resolution than the final four floods and windy period 184 

(events F4 to F7 and W1). At minimum compression, each video segment 185 

occupied approximately 94Mb of memory and approximately 15 minutes so that 186 

a 4TB hard drive stored approximately one year of video. Flood levels were 187 

reviewed every few days and videos of interest were saved for later analysis. 188 

3.2. Monitored events 189 

In total, 7 flood events were monitored in this study (Table 1). Three flood 190 

events from 2007 to 2008 were collected from MacVicar & Piégay (2012), 191 
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referred to herein as events F1 to F3 (Figure 2.a, red lines). A video camera 192 

has been recorded video at this location more or less continuously from 2007. 193 

For the current work, four additional flood events between 2012 to 2014 were 194 

selected for study and sampling and are referred to as events F4 to F7 (Figure 195 

2.a, blue lines). The floods range from 578 m3/s (≅ 𝑄𝑏𝑓) to 1020 m3/s (≅ 2𝑄𝑏𝑓). 196 

Event F7 was selected to assess whether wind has an effect on the wood 197 

delivery because it occurred just two days after an exceptional windy day. The 198 

windy day occurred on December 24, 2013 and is referred to herein as event 199 

W1 (Figure 2.b). The average daily wind speed on this day was 13.6 m/s, which 200 

is considered to be a one in 35 year event based on a Gumbel distribution of 201 

the over 70 years of record (Yue et al., 1999).  202 

Table 1 Wood sampling statistics at the Pont de Chazey for different events. 
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* Number of floating woods 

total daylight Rising limb falling limb 

22 to 24-Nov-2007 F1 578 576 6.6 06:15 09% 2800 38 

10 to 12-Dec-2007 F2 616 616 6.3 03:45 05% 968 93 

10 to 13-Apr-2008 F3 1050 1007 3.8 07:45 08% 3331 584 

01 to 07-Jan-2012 F4 808 807 4.9 57:00 34% 3681 1641 

15 to 16-Dec-2012 F5 932 821 4.9 17:15 36% 6901 798 

01 to 06-Feb-2013 F6 701 701 8.5 56:30 39% 1040 473 

24 to 25-Dec-2013 W1 134 134 13.6 08:45 37% 8 - 

25 to 27-Dec-2013 F7 600 580 5.6 25:45 36% 1443 43 

* Monitored fraction = monitored duration / total duration of an event 203 
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Figure 2. Monitored events a) the daily mean discharge series monitored by MacVicar 

& Piégay (2012) (red lines) and monitored in this work (blue lines) on the discharge 

series from 2007 to 2014. b) The daily mean wind velocity series from 1977 to 2013. 

3.3. Monitoring process 204 

In total 183 hours of video was analyzed, including 18 hours monitored by 205 

MacVicar & Piégay (2012) (Table 1). For this analysis, floating wood was 206 

visually detected by an operator and the position of each piece of wood was 207 

digitally annotated frame by frame via a graphical user interface.  208 

Two methods were applied for event monitoring: (i) 15-minute monitoring 209 

intervals for events F1 to F3; and (ii) continuous monitoring for events F4 to F7 210 

and W1. In the first approach, applied by MacVicar and Piégay (2012), a 15-211 

minute video segment was monitored for each daytime hour (e.g. from 8:30 to 212 
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8:45, 9:30 to 9:45, etc. to ~5:30) and, by multiplying the number of detected 213 

pieces by four, the wood flux per hour was extrapolated to be compared with 214 

other studies. A problem with this sampling strategy was noted by Ghaffarian 215 

et al. (2020a), who showed that a 15 min interval may not be sufficient to reliably 216 

estimate the hourly wood flux due to short term variability. For this reason, all 217 

daytime periods were monitored by an operator for the flood events added as 218 

part of the current analysis.  219 

By extracting the detection time for each piece of wood (indicated on top of 220 

each frame, see Figure 4.a), wood flux was calculated as the number of wood 221 

pieces within a time interval. In the current study, an hour time interval was 222 

selected to model the wood fluxes through the flood events (sections 4.1, and 223 

4.2), again for the reasons highlighted by Ghaffarian et al. (2020a). One and 224 

10-minute time intervals were used for analysis in section 4.3 to assess the 225 

importance of shorter-term pulses on overall wood fluxes. 226 

3.4. Observer bias  227 

The analyzed events in this work are based on two different operators 228 

(MacVicar and Zhang). During the detection process, the operator bias can play 229 

a role in the quantity of wood fluxes. To check this effect, 13 segments of 15-230 

minute videos from events F1 to F3 were selected and wood was detected by 231 
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both operators following the process used by Ghaffarian et al. (2020a). These 232 

video segments were selected such that they cover different light conditions 233 

(e.g. sunshine or cloudy weather or different day times) to evaluate the operator 234 

visions in this range of conditions. Also, the amount of wood pieces varies 235 

greatly among the videos (from 0 to more than 300 pieces), which allowed us 236 

to assess whether bias was affected by wood frequency.  Overall, there was a 237 

~7% difference in wood flux estimates between the two observers, with most 238 

discrepancies occurring when many small wood pieces pass through the image 239 

within a short time interval.  240 

3.5. Modeling wood flux  241 

A random forest (RF) non-linear regression algorithm was applied to model 242 

the link between wood flux and flow discharge in this study. It produces multiple 243 

decision trees (here, 500), each of which is trained on a randomly selected 244 

subset of the data (in-bag portion) while the remaining subset is used to test 245 

the regression and assess its performance (out-of-bag portion)(Breiman, 2001; 246 

Hastie et al., 2009; Belgiu and Drăguţ, 2016). The RF error corresponds to the 247 

residual sums of squares averaged across all the out-of-bag portions of the 248 

regression trees. The importance of a variable in the RF model can be assessed 249 

through a score that corresponds to the total decrease in error due to splits on 250 
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that particular variable, averaged across all trees (Breiman, 2001). 251 

For the current study, the response variable was the wood flux and the 252 

predictor variables were all derived from the flow time series. We considered 253 

three predictors that could influence the wood flux during flood including: (i) flow 254 

discharge 𝑄(𝑡), (ii) the time elapsed since the last time that 𝑄 was higher or 255 

equal to 𝑄(𝑡), known as 𝑇𝑄, and (iii) the gradient of discharge over a time lag (5 256 

min) 𝑑𝑄 𝑑𝑡⁄ . The application of these predictors in the model is presented in the 257 

results (section 4.2). Due to gaps in sampling (e.g., during night time), periods 258 

where the time interval between two consecutive detections exceeded 10 hr 259 

were removed from the data. In cases when several pieces of wood were 260 

annotated in the same image frame, we assume a time interval of 0.5 s between 261 

wood pieces.  262 

The RF and all related data-wrangling were carried out using the R software 263 

(R Core Team, 2019) and the Random Forest package (Liaw and Wiener, 2002). 264 

The random forest consisted of a default number of trees set to 500 and the 265 

sampling of in-bag/out-of-bag samples was made with replacement. The R 266 

notebook gathering all RF-related commands is available from 267 

https://github.com/lvaudor/wood_flux. 268 
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3.6. From wood flux to wood discharge 269 

In the study by MacVicar and Piégay (2012), wood discharge was 270 

calculated as m3/s by estimating the length and diameter of all detected floating 271 

wood pieces. This process is time consuming, and a decision was made for the 272 

current study that, rather than completing the size measurements, the wood 273 

pieces would only be counted for floods F4 through F7. The wood count allowed 274 

the calculation of the wood flux as a frequency (pieces/minute). This approach 275 

was justified by considering Figure 3, which shows that there was a strong 276 

correlation between wood flux and wood discharge for the 15 min video 277 

segments (see section 3.3) sampled by MacVicar and Piégay (2012) for F1, F2 278 

and F3 (𝑅2 = 0.83). This strong relation gives confidence that wood discharge 279 

and the total wood volume can be reliably estimated from the wood flux to allow 280 

comparison with other studies and models of the wood budget. Extrapolating 281 

this relation for other rivers would be an open question that can be the objective 282 

of future comparative works. 283 
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Figure 3. Wood discharge as a function of wood flux 

3.7. Sampling strategy 284 

Taking advantage of high temporal resolution videography, it is possible to 285 

capture all variations of wood flux during a critical event, while low frame rate 286 

photography can be used to detect only a fraction of wood fluxes in the river. 287 

To understand the link between the detected wood fluxes and the frame rate, 288 

here the concept of passing time (𝑃𝑇) is introduced as the time that one piece 289 

of wood passes through the camera field of view. As the camera has a large 290 

oblique view, 𝑃𝑇 varies a lot from the foreground to background (right side of 291 

Figure 4.a). Therefore, to measure 𝑃𝑇, the position where most of wood pieces’ 292 

pass is used. As it is seen in the left side of Figure 4.a, more than 75% of wood 293 

pieces pass from 150 to 250 pixels on j direction. The passing time at this region 294 

is around 𝑃𝑇 ≅ 5𝑠 (right side of Figure 4.a). Theoretically, in one snapshot of 295 
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the camera corresponds to time 𝑡𝑖 , this object can be detectable from 𝑡𝑖 −
𝑃𝑇

2
 to 296 

𝑡𝑖 +
𝑃𝑇

2
. 297 

 

Figure 4. a) wood flux position on video frame b) link between video time laps ∆𝐭 and 

the passing time 𝑷𝑻 

By introducing the frame rate (of frame per second 𝑓𝑝𝑠) as one over the 298 

time between two consecutive frames (𝑓𝑝𝑠 =
1

∆𝑡
=

1

𝑡𝑖+1− 𝑡𝑖 
), all the objects that 299 

pass from 𝑡𝑖 −
𝑃𝑇

2
 to 𝑡𝑖 +

𝑃𝑇

2
 or from 𝑡𝑖+1 −

𝑃𝑇

2
 to 𝑡𝑖+1 +

𝑃𝑇

2
 can be detected by the 300 

observer at each camera snapshot (see Figure 4.b). Consequently, if ∆𝑡 > 𝑃𝑇, 301 
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there can be some pieces that cannot be detected by the camera (red region in 302 

Figure 4.b, top), while if ∆𝑡 < 𝑃𝑇 , we can be sure that no wood piece is missed 303 

between each pair of frames (Figure 4.b, bottom). Therefore, the fraction of the 304 

detected wood pieces can be defined as the ratio between detected wood 305 

pieces in the green region in Figure 4.b and the summation of detected (green 306 

region) and missed pieces (red region). To study the link between the frame 307 

rate and the fraction of detected wood pieces, all detections in Table 1 were 308 

used. Knowing ∆𝑡 = 0.2𝑠 (5 𝑓𝑝𝑠) and 𝑃𝑇 ≅ 5 𝑠 on the Ain river, we know that 309 

∆𝑡 ≫ 𝑃𝑇 means that there is enough overlap between each pair of frames (the 310 

condition presented in the bottom of Figure 4.b) and wood can be detected.  311 

Note that while 𝑃𝑇 changes both with discharge conditions and the transvers 312 

position of detection, the value 𝑃𝑇 ≅ 5 𝑠 is a rough value for estimating the ratio 313 

between frame rate and passing time. Moreover, the ‘detectability’ of wood 314 

pieces does not account for wood that is not clearly visible in the frame (for e.g. 315 

small pieces far from the camera), which is a separate issue related to image 316 

resolution and camera angle/position. Given the detection time for each piece 317 

of wood (as recorded on top of each frame - see Figure 4.a), the effect of the 318 

frame rate on the number of detectable wood pieces was assessed by artificially 319 

changing the frame rate from 0.001 to 5 𝑓𝑝𝑠 (0.2𝑠 < ∆𝑡 < 1000𝑠).  Results are 320 

presented in section 4.3. 321 
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4. Results 322 

4.1. Estimate of wood fluxes during critical events 323 

Overall, the results show 3-stages of (i) rising from a threshold of motion, 324 

(ii) high but flat at discharges above the bankfull, and then (iii) around one order 325 

of magnitude lower on the falling limb (Figure 5 and Table 1). In Figure 5 the 326 

blue scatters from the new events are quite consistent with the events in red 327 

from MacVicar and Piégay (2012) which validates the sampling technique.  328 
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Figure 5. Comparison between wood flux based on sampling (red) and continuous 

(blue) monitoring and flood hydrograph (black line). The gray boxes show the night 

time when video monitoring was impossible. Different symbol shapes show different 

events and are consistent with some of the next figures. 

During the exceptional windy day (W1 from 8 to 17 hr) almost no wood was 329 
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detected on the river (Table 1). This means that the wood flux is only observed 330 

during flood events. As it is seen in Figure 5 in all cases but F7, there are almost 331 

no wood pieces in the river for flow discharge less than ~300 m3/s. In the case 332 

of the flood event F7 following W1 (the exceptional wind event), however, the 333 

threshold appears to be much lower or non-existent. For this event only, the 334 

wood flux increases immediately following the increase in flow discharge, which 335 

demonstrates the potential effect of W1, not in terms of transport of floating 336 

wood downstream, but in the wood transfer from the river banks to the channel 337 

where it can be readily mobilized in the subsequent flood.  338 

In Figure 5, events F4 and F6 are characterized by multi-peak hydrographs. 339 

Event F4, for example, is characterized by three peaks with similar discharges 340 

(Table 2), during which 3098, 1134 and 839 pieces of wood were observed 341 

respectively in the first to third peaks. Event F6 is characterized by two slightly 342 

lower peaks, and 995 and 427 pieces of wood were observed in two peaks, 343 

respectively (Table 2). Despite some differences in the timing of the floods with 344 

respect to daylight hours, these results do indicate that around two-thirds of the 345 

wood are mobilized in the first peak of a multi-peak flood. As the number of 346 

peaks increases, it also appears that the amount of transported wood 347 

progressively decreases. 348 
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Table 2 Wood flux in multi peak floods F4 and F6 

Flood event F4.1(Peak1) F4.2(Peak2) F4.3(Peak3) F6.1(Peak1) F6.2(Peak2) 

Qmax (m
3/s) 801 808 786 701 627 

Pieces number 3098 1134 839 995 427 

Fraction* 61% 23% 16% 71% 29% 

Flux on rising limb (num/hr) 268 211 82 97 35 

* Fraction = piece number during one peak / total piece number during an event. 349 

4.2. Predicting wood fluxes from the flow hydrograph  350 

As described in section 3.5, three predictors derived from the flow 351 

hydrograph that were thought to influence the wood flux during the flood were 352 

used to develop a RF model. Figure 6 shows the link between (i) flow discharge 353 

(𝑄(𝑡)) (Figure 6.a), (ii) the gradient of discharge over 5 min time lag (𝑑𝑄 𝑑𝑡⁄ ) 354 

(Figure 6.b), and (iii) the time elapsed since the last time that 𝑄 was higher or 355 

equal to 𝑄(𝑡) (𝑇𝑄) (Figure 6.c) from one hand, and the wood flux from the other 356 

hand. Regarding the first predictor, as is seen in Figure 6.a, 𝑄(𝑡) has a non-357 

linear positive relationship with the wood flux. Wood flux starts to respond to 358 

𝑄(𝑡) from a threshold almost equal to 450 m3/s and reaches its maximum value 359 

at around 850 m3/s. These values agree with observed values in Figure 5. For 360 

the second predictor, a comparison between positive and negative values of 361 

𝑑𝑄 𝑑𝑡⁄  (rising and falling limb) in Figure 6.b shows that while there is a strong 362 

effect of flow discharge gradient on the rising limb, there is almost no effect of 363 

the discharge gradient on the falling limb. Finally, as seen in Figure 6.c even 364 

with a strong initial fluctuation, the wood flux increases with increasing inter-365 
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flood time. 366 

 

Figure 6 Predicted value of wood flux (in blue) as a function of  a) flow discharge 𝑸 

(m3/s), b) discharge gradient 𝐝𝑸 𝒅𝒕⁄  (m3/s/1hr) and c) the time elapsed since the last 

time that 𝑸 was higher or equal to 𝑸(𝒕),  𝑻𝑸 (days). Dashed lines indicate the 90% and 

10% quantiles of the data. 

Figure 7 compares the observed and the modelled wood fluxes time series 367 

(aggregated by hour) for continuous (blue) and sampled (red) videos. The clear 368 

strength of the model is that the modelled flux is continuous and provides 369 

information during the night and other gaps in the wood sampling database. In 370 

terms of performance, the number of trees in the RF model (500) was sufficient 371 

to show a convergence on the minimum error possible from this data set. The 372 

final average R2 for the out-of-bag portion across all trees was 49.5%. When 373 

carrying out cross-validation for the RF as a whole (with 80% of the data 374 

randomly sampled –without replacement- as the training set and 20% as the 375 

test set) the R2 for training set was also 49.5% on average across all trees for 376 

the training set (estimated on the out-of-bag data) and 69.8% on the test set.  377 

The most important predictor is 𝑇𝑄 (responsible for 41% of the total increase in 378 
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node purity –as measured by the residual sum of squares-), followed by 𝑄 (32%) 379 

and 𝑑𝑄/𝑑𝑡  (27%). To assess the efficiency of the model more objectively, 380 

Figure 8 compares observed and modelled data on the rising and falling limbs 381 

of the hydrograph at each event. Each data point represents the sum of wood 382 

flux values over the entire limb of the flood during the daylight. As shown, the 383 

model predicts the observations with a precision estimated to about 95%.  384 



 

 

Video monitoring of in-channel wood 

27 

 

 

 

Figure 7. Wood fluxes based on continuous (blue) and sampled (red) videos and 
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modelled wood fluxes (green line) using RF model as a function of time.  

 

Figure 8. Comparison between observed and modelled piece number: filled and empty 

scatters show data on the rising and falling limbs of the hydrograph, respectively. Data 

are compared with a 1:1 line. There are 3 points for F4 and 2 points for F6 due to 

multiple peak floods. 

Based on the field observations and the RF modelled wood fluxes, it is 385 

possible to check both the wood mobility during the night and the critical 386 

threshold of motion. The critical threshold of motion is defined by the discharge 387 

which initiates the mobility of wood flux on the rising limb of the flood. Moreover, 388 

to be able to compare the wood volume in two different approaches 389 

(observation and model) the process described in section 3.6 was used. 390 

The new phenomenon that is observed here is the exceptional windy day 391 

W1 with low flow (𝑄 < 0.18𝑄𝑏𝑓) which is followed by a flood (𝑄 > 𝑄𝑏𝑓) F7. 392 

During this wind event, almost no wood flux was detected at the video 393 

monitoring station (only 2 m3). In the subsequent flood, however, the threshold 394 
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of wood motion was approximately 0.2𝑄𝑏𝑓 (95 m3/s), which is significantly less 395 

than the threshold at 0.6𝑄𝑏𝑓 for the other flood events (Table 3).  Note that in 396 

some cases the thresholds occurred during the night, in which case the 397 

presented values are the modelled results.  398 

Table 3 Wood volume and threshold of wood motion, modelled (M) or observed (O). 

Event F1 F2 F3 F4 F5 F6 W1 F7 

Modelled wood volume* (m3) 218.69 84.95 680.68 347.08 412.54 52.81 1.88 77.11 

Observed wood volume (m3) 88.75 32.41 120.01 118.29 235.05 26.12 0.03 29.36 

Threshold (m3/s) 275 300 300 300 350 356 <95 95 

Modelled/Observed M O O M M M O O 

* Modeled wood volume includes volume during both day and night time. 399 

4.3. Validation optimal wood flux estimate from sampling  400 

The temporal resolution of video monitoring plays a significant role on the 401 

quantity of monitored data. By introducing the passing time 𝑃𝑇 and the frame 402 

rate 1 ∆𝑡⁄  (as shown in Figure 4, section 3.7), Figure 9 shows the link between 403 

the fraction of detected wood fluxes as a function of the dimensionless 404 

parameter 𝑃𝑇 ∆𝑡⁄ . As a note, this figure shows the numerical link between frame 405 

rate, passing time, and the fraction of detected objects, while in practice other 406 

sources of uncertainty may be important as discussed in section 5.  From the 407 

Figure 9, it is nevertheless clear that frame rates less than the passing time are 408 

necessary for a full census monitoring of transported wood.  409 
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Figure 9. Effect of frame rate and passing time on the fraction of detected wood pieces. 

In addition to the fraction of detected wood pieces, the time interval can 410 

affect the detection of some short events like wood pulses, defined qualitatively 411 

as the delivery of large amount of wood in a short time period (on the order of 412 

minutes). Figure 10.a is an example of detected pulses in the event F4 where 413 

the wood flux is presented on 1 min intervals. As shown, short term pulses with 414 

fluxes much higher than the hourly average are common. To check the quality 415 

of detection for such short events, Figure 10.b shows one day detection of wood 416 

with one pulse at 10am 3th Jan 2012. As it is seen, the possibility to detect wood 417 

pulse decreases by decreasing frame rate (from red to blue) when considering 418 

the flow conditions observed on the Ain River station.  419 
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Figure 10. a) Wood fluxes as observed in 1-minute intervals. Beside short fluctuations 

of wood flux, pulses of wood can be defined qualitatively as the delivery of large 

amount of wood in a short period of time. The gray boxes show the night time when 

video monitoring was impossible. b) Effect of the temporal resolution on detecting 

short time events (a wood pulse). 

5. Discussions and conclusions 420 

5.1. The link between flow hydrographs and wood fluxes 421 

Our observations confirm that most of the wood pieces are mobilized on the 422 

rising limb of the hydrograph than the falling limb following MacVicar and Piégay, 423 

(2012), Kramer and Wohl, (2014) and Ghaffarian et al. (2020a). The peak in 424 

wood flux is generally reached before the flood peak. These observations 425 
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demonstrate some hysteresis of water discharge that agrees with MacVicar and 426 

Piégay (2012) and Ghaffarian et al. (2020a), who state that the peak discharge 427 

and the peak of wood flux do not occur simultaneously and normally wood 428 

transport rate decreased before the peak of hydrograph. This result has also 429 

been confirmed by the model of Ruiz-Villanueva et al.  (2016a). They show that 430 

wood flux increases with discharge until it attains an upper threshold or tipping 431 

point and then decreases or increases much more slowly.  432 

A flood hydrograph can be characterized by several peaks. We observed 433 

that the second or the third peaks, even when more intense, carry lower 434 

amounts of wood (Table 2). This result agrees with Moulin and Piégay (2004) 435 

who indicate that the deposited wood on channel edges  from the last event 436 

(such as: flood, wind and ice (Boivin et al., 2015)) is transmitted by the first 437 

rising of water depth. In addition, Kramer et al. (2017) showed that the 438 

sequence of peaks, flow discharge and the shape of hydrograph can influence 439 

the amount of wood during a flood. As it is seen in the Table 2, more than 60% 440 

of wood pieces are carried out on the first peak and then, only 30~40% of wood 441 

pieces are observed. This decrease in wood flux by increasing the peaks of the 442 

flood can be related to the rate of bank erosion and by the initial conditions of 443 

the channel in term of wood delivery by external drivers such as wind, ice and 444 

tree mortality. The first peak of hydrograph washes most of the wood available 445 
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within the channel and its edges and prepared over the previous no-flood period, 446 

only depositing few wood pieces on channel edges as new recruited material 447 

from bank erosion. There is also less green wood which is recruited by a new 448 

bank erosion process in the next peaks of hydrograph because the shear stress 449 

is not as high as the one observed during the first peak along the eroded bank 450 

because channel is now wider and not yet adjusted through vegetation 451 

encroachment on the accretion area on the other side of the channel. 452 

Moulin and Piégay (2004) show that the wood flux during flood events is 453 

not independent from previous floods. For comparison we can look at events 454 

F5 and F6, which occur one year and two months after a big flood event 455 

respectively. F5 has 5 times the wood flux of F6, which indicates that more 456 

wood was available for F5, likely from smaller events and external drivers within 457 

the inter-flood period that introduced wood pieces that are then flushed by F5. 458 

Therefore, wood flux can be a combination of fresh material as well as in-459 

channel stored and newly recruited material. These internal mechanisms are 460 

fairly important as shown by the RF results which showed 𝑇𝑄  is the most 461 

important predictor. This agrees with Ruiz-Villanueva et al. (2016a) which 462 

shows that a lot of wood material stored upstream of a dam spent some time 463 

as deposited wood in the river before being delivered to the reservoir.  464 

This is also potentially confirmed by observations done during and after the 465 
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exceptional wind event which played a critical role on wood delivery. In the 466 

current study, for example, some of the wood transported in event F7 was likely 467 

provided by W1. This result indicates that during a windy period, pieces of wood 468 

are recruited into the river, but there is not enough flow velocity and depth for 469 

moving these wood pieces further downstream. Later, when water depth and 470 

the wetted area of the river increases, the river flow is able to begin to move 471 

these wood pieces relatively easily, i.e. at thresholds less than the threshold of 472 

wood motion where exceptional wind events did not occur (0.6𝑄𝑏𝑓). Therefore, 473 

while the wind is not directly related to the mobility of wood, it can decrease the 474 

threshold of motion and prepare wood material to be exported during the next 475 

flood playing a significant role to explain the 𝑇𝑄  contribution. This result is the 476 

first example in which we were able to detect an effective role of a potential 477 

driver within the upper catchment.  478 

A practical recommendation that derives from this improved understanding 479 

of wood mobilization is that recording can largely be initiated strictly as a result 480 

of flow discharge, for example by setting the camera to record only when 𝑄 481 

exceeds 0.6𝑄𝑏𝑓 , which would minimize the storage needs for videos while 482 

capturing by far the largest contributions to the annual wood flux. However, the 483 

effect of wind that causes wood transport at lower discharges needs to be more 484 

deeply explored using longer time series to explain wood flux differences 485 
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between floods. This factor could be then added in the RF model if applied on 486 

a longer time series with more flood events. 487 

5.2. Continuous modeling of wood fluxes 488 

As it is described in section 3.5, a Random Forest model was used to model 489 

wood pieces during the night, when no wood is visible in relation to three 490 

predictors derived from a continuous flow hydrograph. Figure 6 shows that 491 

these three predictors and wood flux are correlated. Regarding the first 492 

predictor 𝑄(𝑡), MacVicar & Piégay, (2012) and Ghaffarian et al. (2020a), both 493 

showed that the wood flux is expected to have a non-linear positive relationship 494 

with flow discharge, which was reflected in Figure 6.a. Also, 𝑑𝑄 𝑑𝑡⁄ , as the 495 

second predictor, captures the effect of variations in water discharge on wood 496 

recruitment during rising (positive values) vs falling (negative values) limb. The 497 

direct link between 𝑑𝑄 𝑑𝑡⁄  and wood flux on the rising limb in Figure 6.b 498 

suggests that increasing the water level during the rising limb of the flow 499 

hydrograph can be considered as one of the key parameters on wood delivery 500 

in rivers.  501 

The third predictor, 𝑇𝑄 was introduced to account for wood input processes 502 

between floods. The RF modelling showed that this parameter was the most 503 

important predictor of wood flux for this data set, which is surprising given the 504 
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primary focus on water level and rate of increase in previous work.  Kramer et 505 

al. (2017) do show the strong effect of time between floods on the pulses of 506 

wood exported from the Slave River, Canada.  Ghaffarian et al. (2020a) also 507 

show that time between floods has a logarithmic relation with wood flux, which 508 

is confirmed in Figure 6.c.  The wood input processes are not modelled explicitly, 509 

however, and greater understanding at the process scale may help to develop 510 

models that are more readily adapted for different catchments. In conclusion, 511 

the good performance of the three predictors (𝑄 , 𝑇𝑄  and 𝑑𝑄 𝑑𝑡⁄ ) RF model 512 

shows that it can be used to predict the wood fluxes on the Ain River given a 513 

flow hydrograph. Similar models could be developed in other catchments for 514 

comparison and a more general result.  515 

5.3. Selecting an optimized frame rate 516 

A reduced frame rate may reduce wood detection rates so that considering 517 

frame rate and passing time is critical to optimize the wood detection. Because 518 

reducing the frame rate is a rational strategy to reduce recording costs, there is 519 

always a trade-off between the temporal resolution of video (and computer 520 

storage capacity) and the recording and post-processing costs to carefully 521 

consider.  For example, at a frame rate of twice the passing time, only about 522 

50% of the passing wood pieces are detectable (Figure 9). Figure 11, (solid 523 
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lines) shows the fraction of detected fluxes as a function of passing time 𝑃𝑇 524 

based on the model presented in Figure 9 for the frame rates used by three 525 

different studies: (i) Kramer and Wohl, (2014) on the Slave River, Canada with 526 

0.033 fps, (ii) Ghaffarian et al. (2020a) on the Isère River, France with 1 fps and 527 

(iii) MacVicar and Piégay (2012) and this study on the Ain River, France with 5 528 

fps. The link between 𝑃𝑇 and the fraction of detected fluxes is a function of 529 

camera frame rate on each river. This function which is presented as solid lines 530 

in Figure 11, is compared with the estimated passing time on each river (dashed 531 

lines). For all cases an increase of 𝑃𝑇 results in an exponential increase of the 532 

fraction of detected wood pieces, which is governed by ∆𝑡  (Figure 9). This 533 

exponential relation is a strength for the model because the fraction of detected 534 

wood pieces is not so sensitive to the 𝑃𝑇, so we do not need to select an exact 535 

∆𝑡 and it can be varied in the same order of magnitude. 536 

 

Figure 11. Fraction of detected woods based on passing time in different rivers. 
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Dashed lines show the estimated passing time on each river, green the Slave, blue, the 

Isère and red the Ain rivers respectively. 

The three studies vary in the fraction of detected wood due to differences 537 

in passing time and frame rate.  As shown by Ghaffarian et al. (2020a), the 538 

passing wood in the monitored sections in both the Ain and Isère Rivers was 539 

highly concentrated within a relatively narrow band of the wetted width.  As a 540 

result, 𝑃𝑇  was relatively consistent, with a mode of ~ 5 and 10  s in the 541 

respective channels (Figure 11, red and blue dashed lines respectively). In 542 

contrast, wood on the Slave River was laterally dispersed across the channel 543 

from 20 to 100 m (Kramer and Wohl, 2014) and the flow velocity on the Slave 544 

River was relatively low (~1/10th the velocity in Ain and Isère Rivers). Large 545 

variation in transport distance and low flow velocity both result in huge variation 546 

of 𝑃𝑇 on this river, roughly from 30𝑠 to 120𝑠 (Figure 11, green dashed line).  As 547 

a result, all wood on the Isère and Ain Rivers using the parameters as described 548 

by Ghaffarian et al. (2020a), MacVicar and Piégay (2012) and this work. In 549 

contrast, on the Slave River the frame rate is 0.033 𝑓𝑝𝑠 (∆𝑡 = 30𝑠) and 30𝑠 <550 

𝑃𝑇 < 120𝑠, as shown in Figure 11 (green dashed line), which indicates that not 551 

all the wood was detectable.   552 

To discuss the Slave River, it is necessary to distinguish between time-553 

lapse photography and videography techniques. Although time-lapse 554 
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photography and video monitoring use the same approach (photos are taken 555 

per unit time), time-lapse photography is intended to subsample wood flux and 556 

there is no expectation that all of the wood is recorded.  Missing data is 557 

expected and planned for.  In contrast, video capture is a method to store and 558 

record the entire sample of wood flux and each piece of wood is expected to be 559 

captured in multiple frames.  The condition near 𝑃𝑇 ≅ ∆𝑇, however, represents 560 

a transition zone between time-lapse photography and video monitoring where 561 

errors may occur. For example, at this frame rate a given piece of wood may 562 

be seen once or maybe a few times within the series of captured frames.  If it 563 

appears more than once the wood may be double-counted, particularly where 564 

visibility is poor, the wood changes in orientation or submergence, or changes 565 

in the surface reflections and lighting can fool the operator such that they flag 566 

the same piece of wood more than once.  Higher frame rates will decrease the 567 

differences between frames and the likelihood of double-counting along with it. 568 

Lower frame rates will remove the possibility of double counting and ensure that 569 

the monitoring captures only a sub-set of the passing wood, which can then be 570 

corrected for missing data as is expected for this technique.  The Slave River 571 

study is thus within the transition zone from time-lapse photography to video 572 

monitoring where double-counting remains a possibility.  573 

As a further practical recommendation, it is important to select an 574 
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appropriate frame rate for the camera based on a good estimate of velocity 575 

conditions in space and in time. Moreover, if the pattern of pulses or the source 576 

of wood pieces is important, the frame rate should be large enough to 577 

continuously detect wood pieces, while if there is a limitation on storage or long-578 

term data is needed it is recommended to decrease frame rate and adopt a 579 

time-lapse subsampling strategy but considering a continuous acquisition 580 

window of at least 30 minutes as shown by Ghaffarian et al. (2020a) to minimize 581 

uncertainties in wood frequency estimate due to short term pulses. 582 

5.4. Wood pulses 583 

During our observations, it is seen that in some cases the wood flux is 584 

mobilized in a sharp pulse, which is typically accompanied by some large pieces 585 

of wood that may be recent tree falls or a jam suddenly mobilized. The clarity 586 

of these pulses in the video monitoring technique directly relates to the temporal 587 

resolution of the camera (Figure 10.b). Moreover, such pulses are fully 588 

detectable only if continuous monitoring approach is applied. The difference 589 

between continuous monitoring and sampling is visible in Figure 5 where the 590 

blue scatters show more consistency through each day, which likely is due to 591 

the continuous sampling method (samples were the total per hour rather than 592 

15 min multiplied by 4 as for the red scatters).  593 
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It can be hypothesized that wood pulses are the result of either localized or 594 

distant wood delivery. Presumably, in such cases of local mobilization, the 595 

source of wood could be close to the camera and so the wood would be tightly 596 

grouped in time. Such pulses are observed at the Ain River location, where 597 

large wood with visible leaves and root wads are followed by large numbers of 598 

smaller pieces of wood.  In this case the pulse was attributed to local bank 599 

erosion or the sudden mobilization of a wood jam.  In contrast, the source of 600 

wood could be far upstream from the camera, which dispersed wood in 601 

transport tending to agglomerate over longer distances. Such a process of 602 

‘rafting’ or ‘clumping’ has been observed in the lab and field (Braudrick et al., 603 

1997; Kramer et al., 2017). Therefore, due to the dissipation, the wood pulse 604 

spreads out during transport in long distances. The pulses at the camera 605 

location would therefore be very spread out and come more or less regularly, 606 

which could mean that the inputs are random or that the distribution has been 607 

randomized by dissipation during transport. On the falling limb, despite the bank 608 

erosion due to the decrease in the soil pore pressure, the flow might not be 609 

enough to transport this wood. Also, some wood pieces have already been 610 

deposited in the highest possible locations with other wood jams on the 611 

upstream floodplain (Ruiz-Villanueva et al., 2016b; Wohl et al., 2018). A careful 612 

analysis of wood flux pattern thus provides some potentially key insights about 613 
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the processes that prepare the stock of available wood within a reach and 614 

should by the subject of further investigation.  615 
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