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Context/Objective: This is a preliminary study of movement finalities prediction in manual wheelchairs
(MWCs) from electromyography (EMG) data. MWC users suffer from musculoskeletal disorders and need
assistance while moving. The purpose of this work is to predict the direction and speed of movement in
MWCs from EMG data prior to movement initiation. This prediction could be used by MWC to assist
users in their displacement by doing a smart electrical assistance based on displacement prediction. Design:
Experimental study.

Setting: Trained Subject LAMIH Laboratory.

Participants: Eight healthy subjects trained to move in manual wheelchairs.

Interventions: Subjects initiated the movement in three directions (front, right and left) and with two
speeds (maximum speed and spontaneous speed) from two hand positions (on the thighs or on the
handrim). A total of 96 movements was studied. Activation of 14 muscles was recorded bilaterally at
the deltoid anterior, deltoid posterior, biceps brachii, pectoralis major, rectus abdominis, obliquus externus
and erector spinae. Outcome Measures: Prior amplitude, prior time and anticipatory postural adjustments
were measured. A hierarchical multi-class classification using logistic regression was used to create a
cascade of prediction models. We performed a stepwise (forward—backward) selection of variables using
the Bayesian information criterion. Percentages of well-classified movements have been measured
through the means of a cross-validation.

Results: Prediction is possible using the EMG parameters and allows to discriminate the direction / speed
combination with 95% correct classification on the 6 possible classes (3 directions * 2 speeds). Conclusion:
Action planning in the static position showed significant adaptability to the forthcoming parameters
displacement. The percentages of prediction presented in this work make it possible to envision an
intuitive assistance to the initiation of the MWC displacement adapted to the user’s intentions.

Keywords: Prediction, EMG, Logistic regression, Manual wheelchairs, Initiation

Introduction
A manual wheelchair (MWC) is a highly used techni-cal assistance device used to increase the mobility of
people with a wide range of disabilities in a variety of situations and activities.! However, it is often the
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cause of musculoskeletal disorders, including those
affecting the upper limbs, with a prevalence of 19%
to 61%.”

Several researchers have been interested in improving
human locomotion (with or without MWCs) by study-
ing the prediction of the forthcoming displacement.
Potential applications of these predictions include acti-
vation of electrical assistance on the MWC based on
user’s intentions. Some of them based their investi-
gations on brain-computer interfaces. When central
and peripheral nervous system level activations
precede the movement, electroencephalogram (EEG)
changes can be observed, for example, 1.5 s before the
execution of a slow movement.>* In addition, these acti-
vations are related to the movement parameters which
probably imply a specificity and an adaptability. The
study by Bai er al.* aimed to determine if, and when,
it is possible to predict with certainty the voluntary
human movement before it occurs, from EEG signals,
online and in real-time. The main result is that predic-
tion, based on EEG signals, is possible 0.62 s + 0.25 s
before the real movement controlled by EEG signals.
Under certain conditions, human voluntary movement
can be predicted before any segmental displacement.

More recently, the study by Wentink ez al.”> aimed to
study the feasibility of detecting the intention to gait
initiation in real-time in tibial amputee subjects. In
this study, the EMG activity of 9 muscles was analyzed
for 10 healthy subjects. Inertial sensor data were also
collected by placing a sensor in the middle of the heel
and the first metacarpal head of each foot. Only data
available in amputees were used to determine whether
gait initiation can be predicted within a compatible
delay with the control of a transfemoral prosthesis and
to generate “push-off” while ensuring stability. The
results show that the “toe-off” and the “heel-strike”
can be predicted using the EMG signal and kinematic
data in non-amputees around 130-260 ms in advance.
The authors hypothesize that similar results can be
found in transtibial amputees, which would allow a sat-
isfactory control of the prosthesis during the gait
initiation. Other authors have also hypothesized that
EMG signals contain information to detect the user’s
intention.®® However, despite the advantage of indicat-
ing the intention of movement early, brain-computer
interfaces generally offer poor performance if based
only on surface EEGs.®

Recent advances in electric wheelchair control based
on EMG signals can satisfy the needs of users with
limited limb movements and provide a high-perform-
ance control. Therefore, electric wheelchairs controlled
by EMG signals may be appropriate for elderly and

disabled users.””'® EMG signals at the biceps brachii
and triceps brachii levels,!' as well as in the neck
muscles,'? have been used to assist people who do not
have sufficient power to propel using the handrim. The
signals have also been used to detect how much power
is applied and predict the forthcoming displacement.
These predictive elements are sensitive to or influenced
by the parameters of the movement, and thus are
likely to be flexible and adaptable.'?

While past studies indicate that EMG can provide a
useful signal for drive control of power wheelchairs, its
usefulness as a tool to assist the propulsion of manual
wheelchairs has not been explored. The objective of
this study is to investigate whether EMG data obtained
in a static position is predictive of the speed and direc-
tion of manual wheelchair displacement. Based on
prior observations of the level of adaptability and
arm-trunk coordination observed during the displace-
ment initiation in MWCs,'* the hypothesis is that it is
possible to use EMG data collected in the static position
to predict the speed and direction of the forthcoming
displacement in MWCs. To assess this, we will develop
a hierarchical multi-class classification model using
logistic regression to predict movements among 6 possi-
bilities (3 directions: front / left / right * 2 speeds: spon-
taneous / maximum).

Materials and methods

Participants

Eight right-handed healthy male subjects volunteered to
participate in the study. Mean and standard deviations
for age, weight, height and BMI were, respectively,
21.3 + 1.8 years, 73.8 = 8 kg, 180 = 10 cm and 22.3 =
1.3 kg/m?. All subjects are students in the Bachelor of
Sport Science program at Valenciennes University,
France. All subjects were familiar with MWC displace-
ment and signed an informed consent approved by the
university’s institutional review board. The experiments
were conducted following the principles of the
Declaration of Helsinki.'?

Sensors

EMG

The electrodes were placed bilaterally on the following
muscles: postural component; rectus abdominis (RA),
obliquus externus (OE), and erector spinae (ES); focal
component; deltoid anterior (DA), deltoid posterior
(DP), biceps brachii (BB), and pectoralis major (PM).
This step was carried out in accordance with the rec-
ommendations of Hermens er al.'® A Bipolar Zero
Wire 16-channel Aurion amplifier was used to record
muscle activity with 1000 Hz data sampling.
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Video sequences

A camcorder was used for video recording at 25 Hz and
synchronized with the EMG system. The videos allow
the identification of the moment of MWC movement
initiation named TO0. The sequence TO was visually
identified by observation of the images every 40 ms.

Variables and measures

Prior time

The time ranged from the onset to the TO. Onset is the
moment of muscle activation.

Prior amplitude
The amplitude ranged from the onset to the TO.

The level of muscle contraction was calculated
according to the method of Clancy et al,'” consisting
of: (a) high pass signal filtering at 35 Hz to remove
most part of the artefact from ECG'®' (the filter
used was an IIR Butterworth order 4 with the
forward-backward process); (b) removal of the sector
artefact by a notch filter between 48 and 52 Hz (IIR
Butterworth order 8 with the forward-backward
process); (c) rectification of the signal by computing
the absolute value and application of a low pass filter
at 12 Hz, in order to get an estimate of the instantaneous
power (IIR Butterworth order 4 with the forward back-
ward process); (d) amplitude normalization using a
maximal voluntary contraction previously recorded.
Each treatment was performed on MATLAB.?

Onset instants were calculated in two steps. First, the
derivative of the instantaneous power was calculated.
Second, the onset of muscle activation was fixed to a
local maximum of this derivative. The first local
maximum was taken, and those whose value was
greater than the threshold fixed at the 93rd percentile

A

of the signal allow a better adaptation to the current
signal.

Anticipatory postural adjustment (APA)

The amplitude of the APA was calculated between 100
and 50 ms respecting T. T is the first onset activation
of all focal muscle. The set of details is mentioned in
the studies by Clancy et al.'” and Chikh et al.**

Task

The subjects were informed of all steps of the exper-
iment and provided their informed consent before the
experiment began. The electrodes were placed bilaterally
on the muscles mentioned above (2.2. sensors). A stan-
dardized warm up was carried out by each subject for
5 min; each subject then performed three passages
without recording. Maximal voluntary contractions
were measured for focal component muscles. All exper-
imental displacements were then set up in a counterba-
lanced order. The rear wheels were positioned
according to the direction of displacement requested
(front, right or left). Subjects then received information
about the hand position (thighs vs handrim) and the
speed (spontaneous vs maximum) while sitting in the
MWC in a static position. After that, recording was
initiated (Figure 1). After a random period (2-5 s), a
verbal start signal (“Go”) was given by the exper-
imenter. The subjects had to then initiate the movement
and make a displacement over a distance of 5 m with
spontaneous push recovery cycle. A total of 12 different
displacements (2 speeds * 3 directions *2 hand pos-
itions) was performed by each subject. Each condition
was repeated three times, for a total of 36 displacements
per subject. Finally, only one repetition of each con-
dition was retained for further analysis. The repetition

Figure 1

Example of left displacement (A: hands on the thighs) and right displacement (B: hand on the hand rim).
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selected was the one closest to the average test of the
three repetitions. A total of 96 movements (8 subjects
* 3 directions * 2 speeds * 2 hand positions) was studied.

Predictive modeling

The objective was to predict the forthcoming movement
among the 6 possibilities (3 directions: front / left / right
* 2 speeds: spontaneous and maximum) using EMG
variables (APA, prior time and prior amplitude). A
total of 22 possible explanatory variables was studied.
Six variables for the postural component muscles were:
RA, OE, and ES bilaterally (measurement of APA).
Sixteen variables for the focal component muscles
were: BB, DA, DP, and PM bilaterally (measurement
of prior time, prior amplitude).

Seven binary classifiers using logistic regression were
performed: (1) lateral vs. front movement (all speeds
combined); (2) right vs. left (all speed combined, only
lateral movements); (3) maximum speed vs. spontaneous
speed (all directions combined); (4) maximum speed vs.
spontaneous speed (front movement only); (5)
maximum speed vs. spontaneous speed (left movement
only); (6) maximum speed vs. spontaneous speed
(right movement only); and (7) maximum speed vs.
spontaneous speed (lateral movement only). For each
of these binary classifiers, a stepwise (forward—back-
ward) variables selection was performed using the
Bayesian information criterion (BIC) to avoid overfit-
ting of the model.”” Once the variable was selected, a
cross-validation (leave-one-out) was used to measure
the best classified percentage for each classifier.”! The

Strat 1: classifier 3
Strat 2: classifier 5
Strat 3: classifier 7

threshold probability for being in one class or another
was set to 0.5 for all 7 classifiers. Ultimately, a hierarch-
ical multi-class classifier was built using a cascade of the
previously computed binary classifiers ** (Figure 2).

Concerning classifiers 3—7, which have the purpose
of predicting the movement speed, the objective was
to test if it is more efficient to train a global classifier
for all directions (3) with a larger input number, but
with possible non-linearity, or to train a specialized
linear classifier inside each subgroup (corresponding
to directions) with small input numbers but with less
possible non-linearity. Three strategies were tested to
predict the speed of movement using either a global
classifier or specific classifiers as presented in Figure
2. Strategy 1 consists of using the same classifier for
all movement directions (classifier 3). Strategy 2 con-
sists of using a second classifier for left movement
and a third classifier for right movement. Strategy 3
consists of using a first classifier for front movement
and a second classifier for lateral movement
(common for left and right). The strategy that provides
the best classification rate was ultimately kept. The
final criterion was the percentage of well-classified
movement among the 6 possibilities.

Results

Results of the binary classifications

Each binary classifier distinguishes two types of displa-
cements. Seven prediction models were used as follows.

All

movements

Calssifier 2

Calssifier 1

Strat 1: classifier 3
Strat 2: classifier 4
Strat 3: classifier 4

Strat 1: classifier 3
Strat 2: classifier 6
Strat 3: classifier 7

Left Left Right
Maximum Spontaneous Maximum
Speed Speed Speed

Right Front Front
Spontaneous Maximum Spontaneous
Speed Speed Speed

Figure 2 The hierarchical multi-class classifier used to predict the forthcoming movement with the 3 possible strategies for

predicting the speed of movement.
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Prediction of the direction

The purpose of classifier 1 is to perform a first dichot-
omy to predict whether the next movement will be per-
formed front or lateral (all speeds combined). The
percentage of accurate prediction obtained by cross-vali-
dation was 100% (Table 1). This prediction is possible
from prior times of DA-Right (DA-R) and DA-Left
(DA-L). This prior time observed in DA muscle is
shorter for front than for lateral direction.

The purpose of classifier 2 is to perform a second
dichotomy to predict whether the next movement will
be realized left or right (all speeds combined). The per-
centage of accurate prediction obtained by cross-vali-
dation was 100% (Table 1). This prediction is possible
from prior times of PM-L. This prior time is shorter
for right than for left direction.

The purpose of classifier 3 is to predict whether the
next movement will be realized with spontaneous or
maximum speed (all direction combined). The percen-
tage of accurate prediction obtained by cross-validation
was 91% (Table 1). This prediction is possible from:

BB_R_Prior Time; BB_R_Prior Amplitude;
BB_L_Prior Amplitude; DP_R_Prior Amplitude;
DP_L_Prior Amplitude; DA_R_Prior Amplitude;
Table 1 Prediction of directions (front vs. left vs. right) and

speeds (maximum speed vs. spontaneous speed) with EMG
signals.

Movement and % of prediction Variables

Classifier 1 100% DA_R_PT; DA_L_PT
Front vs. Lateral
Classifier 2 100% PM_L_PT
Right vs. Left
Classifier 3 91%  BB_R_PT; BB_R_PA;
Maximum speed vs. Spontaneous BB_L_PA
speed DP_R_PA; DP_L_PA;
DA_R_PA
PM_L_PA,;
OE_L_APA
Classifier 4 97%  DA_R_PA
Front-Maximum speed vs. Front- PM_R_PA
Spontaneous speed OE_L_APA
Classifier 5 75%  PM_L_PT
Left-Maximum speed vs. Left- BB_R_PA
Spontaneous speed
Classifier 6 81% BB_L_PA
Right-Maximum speed vs. Right- OE_R_APA

Spontaneous speed

Classifier 7 94%  DA_L_PT; BB_R_PT;

Lateral-Maximum speed vs. DP_L_PT

Lateral-Spontaneous speed BB_R_PA;
DP_R_PA; DP_L_PA
DP_R_PT

APA, anticipatory postural adjustment; BB, biceps brachii; DA,
deltoid anterior; DP, deltoid posterior; L, left; OE, obliquus
externus; PA, prior amplitude; PM, pectoralis major; PT, prior time;
R, right.

PM_L_Prior Amplitude and OE_L_APA. Maximum
speed is characterized by a great amplitude compared
with spontaneous speed.

The purpose of classifier 4 is to predict whether the
next movement will be realized front with maximum
speed or front with spontaneous speed. The percentage
of accurate prediction obtained by cross-validation
was 97% (Table 1). This prediction is possible from
DA_R_Prior Amplitude; PM_R_Prior Amplitude and
OE_L_APA.

The purpose of classifier 5 is to predict whether the
next movement will be realized left with maximum
speed or left with spontaneous speed. The percentage
of accurate prediction obtained by cross-validation
was 75% (Table 1). This prediction is possible from
PM_L_Prior Time and BB_R_Prior Amplitude.

The purpose of classifier 6 is to predict whether the
next movement will be realized right with maximum
speed or right with spontaneous speed. The percentage
of accurate prediction obtained by cross-validation
was 81% (Table 1). This prediction is possible from
BB_L_Prior Amplitude and OE_R_APA.

The purpose of classifier 7 is to predict whether the
next movement will be realized lateral with maximum
speed or lateral with spontaneous speed. The percentage
of accurate prediction obtained by cross-validation was
94% (Table 1). This prediction is possible from
DA_L Prior Time, BB_R_Prior Time, DP_L_Prior
Time, BB_R_Prior Amplitude, DP_R_Prior
Amplitude, DP_L_Prior Amplitude and DP_R_Prior
Time.

All 7 classifiers with the percentages of correct predic-
tion and the variables used are presented in Table 1.

Results of multi-class hierarchical classification
Given the results of the different binary classifiers (Table
1), it appears that the best strategy for predicting speed
using our hierarchical classifier is strategy 3 (Figure 2).
It consists of predicting the speed using a specific classi-
fier (4) for the front movements and classifier 7 for the
lateral movements (left or right).

Table 2 corresponds to the attached size and attached
proportions. The case located at line i, column j of the
table gives the number of movement type i that has
been classified as movement type j by our classifier.
The correctly classified elements are those on the diag-
onal. Thus, the percentage of correctly classified
elements within the 6 possible classes with our final
model is 95% (Table 2). Regarding the 5% error, the pre-
dicted direction was correct, but the speed was incorrect.
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Table 2 Percentage of solutions correctly classified using classifiers 1, 2, 4 and 7.

Predicted Solution

F-SS F-MS L-SS L-MS R-SS R-MS Total
F-SS 15 (15.6%) 1(1.0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6 (16.7%)
F-MS 0 (0%) 16 (16.7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6 (16.7%)
L-SS (0%) 0 (0%) 14 (14.6%) 2(2.1%) 0 (0%) 0 (0%) 6 (16.7%)
L-MS 0 (0%) 0 (0%) 1(1.0%) 15 (15.6%) 0 (0%) 0 (0%) 6 (16.7%)
R-SS (0%) 0 (0%) 0 (0%) 0 (0%) 15 (15.6%) 1(1.0%) 6 (16.7%)
R-MS 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 16 (16.7%) 6 (16.7%)
Total 15 (15.6%) 17 (17.7%) 15 (15.6%) 17 (17.7%) 15 (15.6%) 17 (17.7%) 6 (100.0%)
Correctly classified 95%

F, front; L, left; MS, maximum speed; R, right; SS, spontaneous speed.

Reliability of prediction models

In order to test if the model is robust and can be applied
to other subjects, we have tried to realize a one-subject-
out-cross correlation. More precisely, for each subject,
we measured the performance of a model tested on the
seven other subjects. Using this validation method, the
performance of the classifier is reduced by only 2%
(93% well classified versus 95% not). Moreover, 100%
of subjects would be classified as good if we considered
only the direction (front, left, right). These results indi-
cate that this model seems valid for every subject who
meets the inclusion criteria.

Discussion

The objective of this study was to determine if it is poss-
ible to predict speeds and directions of movement in
MWCs, from EMG data prior to the displacement, in
healthy subjects using a binary logistic regression. The
prediction percentages confirm the initial hypothesis.
Prediction is possible and consists of discriminating
among 3 directions and between 2 speeds regardless of
the initial position of the hands (thigh or handrim).
The EMG parameters predict the speed and direction
of movement in MWCs in very interesting proportions.
Two possible hand positions at the start (thigh or
handrim) showed the reliability of percentages and pre-
dictor variables. Despite two different starting con-
ditions, the predictive models make it possible to
predict the forthcoming movement. It seems that one
advantage of using this method is that it can be
applied to all subjects and the model does not need to
be adapted for a new subject.

The predictor variables of the speed, chosen by the
model, are different from those for the direction.
Speed is predicted by amplitude variables while the
direction is predicted by temporal variables. Also,
more predictors were observed for speed than direction,
which can be explained by a greater difficulty in differ-
entiating speed movement than direction. Sensitivity to

speed appears to be more important than sensitivity to
the direction. This result confirms the concept of adap-
tability to speed, also called speed sensitivity strategy.>
The APA observations at the OE level, predictive of the
speed, confirm previous explanations concerning the
adaptability of the APA to the parameters of the forth-
coming movement such as the speed.'® Another possible
explanation would lie in a greater ease of speed control
than direction control, or by an effect of the initial pos-
ition of the hands more specifically. Because of the
demand for speed to be maximal or spontaneous, it is
possible that at maximum speed the absence of
‘dosage’ of the effort by the subject leads to greater
reproducibility of movement. In all cases, the subjects
in our study were asked to use their maximum effort
at the intensity level required to be at maximum speed.
In summary, to change speed, the subject must vary
the amplitude of their muscular contraction (ie. they
must use more amplitude if the speed increases),
whereas to change direction, it is necessary to change
the chronological order of the muscular contractions
(for example, to go straight, the right DA and the left
DA activate simultaneously, while to turn left, the
right DA activates before the left DA). This principle
of temporal chronology related to the direction has
also been used to predict the direction in an electric
wheelchair.'!

The researchers used a direction discrimination func-
tion which is limited to discriminate between a forward
or a backward displacement. They compared the EMG
signal during the grip phase at biceps brachii (BB) and
triceps brachii (TB) and gave a sign as follows: when
the BB signal is more important than the TB signal,
the signal is positive, whereas when the BB signal is
lower than the TB signal, it is negative. The shorter
prior time observed in front than lateral direction
could be explained by a more important arm-trunk
coordination for lateral direction. Also, it has been
shown a shorter prior time for right than left direction.
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All subjects were right-handed which could facilitate
turning to the right.

In the literature, during wheelchair propulsion, it has
been shown that DA and BB have a major role in the
‘traction’ phase. Anatomically, the BB is a flexor of
the elbow and the DA is a flexor-stabilizer of the
shoulder. These two muscles ensure contact with the
handrim by a significant activation of the DA during
the pushing phase.”**> The PM shows significant par-
ticipation or contraction during push phase.”> The PM
is an adductor of the arm, which ensures contact and
pushing inward with the handrim. By its contraction,
it thus indirectly ensures the stability of the trunk.
Initiating movement while using an MWC requires pro-
pulsion on the handrims. This propulsion is generated
by the activation of muscles with the hand on the
handrim with a condition for which the APA are suffi-
ciently specific and reproducible. This logic has been
used by Wentink ez al.” in the study of the feasibility
of detecting gait initiation intention in real-time in
tibial amputees. The main result shows the possibility
of predicting walking initiation 130-260 ms in
advance. The prediction was based on activations
prior to gait initiation. The analysis of the EMG activi-
ties, muscle by muscle, makes it possible to predict the
initiation of the displacement in 81-95% of the tests,
according to the considered muscle. By using an acceler-
ometer or gyroscope, their prediction level increases to
95%. In our study, the prediction of the displacement
initiation in an MWC was not only studied at the level
prior to a simple forward movement but also with a vari-
ation of the finality in terms of speed and direction. The
parameters studied allow much more accurate predic-
tion of the displacement initiation in an MWC than in
the study of Wentink ez al.> However, not all prediction
percentages are at a 100% level. As a rule, the percentage
of prediction depends on the adaptability of the vari-
ables to each condition. It also depends on the repeat-
ability or the redundancy of the variables in the same
condition, that is, the ability to reproduce the same be-
havior for the same displacement finalities.

Study limitations and future perspectives

Some limitations were present in this study. First, the
determined models are from healthy subjects, all of
whom are young, male and right-handed. It might not
be possible to generalize this model for all MWC
users, as members of the disabled population would
likely perform the tests differently from healthy subjects.
However, these models could be used as references for a
variety of MWC users. It would be possible to involve
the prediction models in a displacement assistance

system and specify it for each person via a learning
program that would consider the specific characteristics
of each individual and his or her MWC. Also, the
sample population is healthy and small. The actual
users of MWCs are very heterogeneous. Thus, it
would be interesting to study the effect of the character-
istics of spinal cord injuries by different injury levels on
a larger population. The literature also shows that the
presence of a spinal cord injury as well as the level of
the spinal cord injury®®>® could influence muscular
recruitment mode and movement execution parameters.

Secondly, the predicted type of displacement is not
continuous in either speed or direction. However, at
this time we do not have a quantitative numerical
output, that is, we do not know how much speed and
what angle of rotation in the direction were actually
used. It would be interesting to measure the actual
speed and direction. Our research only showed the
ability to predict the initiation of movement from the
static position, while the user of an MWC may have
more possibilities (e.g. accelerate, brake, stop).
Similarly, the data used is limited to EMG, and it
would be interesting to supplement them with other
types of variables such as center of pressure displace-
ment on the MWC seat and accelerometers at the
MWC and the user level.”’ Finally, the MWCs are
very variable in terms of characteristics and setting
and the displacement surface could vary in terms of
angle and difficulties. So, the predictive models should
be tested according to these different parameters.

Conclusions

The prediction of the speed and direction of MWC dis-
placement is possible from the prior EMG data and the
use of a logistic regression. Speed prediction, based on
amplitude variables, presents more variables than
direction prediction, based on temporal variables.
The prediction percentage is 95%. This prediction
reinforces the theory of control adapted to the charac-
teristics of the forthcoming movement (i.e. the central
nervous system adapts the motor commands to reach
the intention). Nevertheless, further studies will be
needed to enrich the present research. These studies
should focus on studying prediction in a diverse popu-
lation with other quantitative finalities of displacement
and using other measurement tools to vary input vari-
ables (e.g. center of pressure, accelerometer). The
results presented in this work make it possible to envi-
sion EMG-controlled, power-assist MWC designs that
provide propulsion assistance adapted to the user’s
intentions.
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