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Introduction

Floating wood has a significant impact on river morphology [START_REF] Gurnell | Large wood and fluvial processes[END_REF][START_REF] Gregory | Ecology and management of wood in world rivers[END_REF][START_REF] Wohl | Floodplains and wood[END_REF][START_REF] Wohl | Wood and sediment storage and dynamics in river corridors[END_REF]. It is both a component of stream ecosystems and a source of risk for human activities [START_REF] Comiti | Spatial density and characteristics of woody debris in five mountain rivers of the Dolomites (Italian Alps)[END_REF][START_REF] Badoux | Damage costs due to bedload transport processes in Switzerland[END_REF][START_REF] Lucía | Dynamics of large wood during a flash flood in two mountain catchments[END_REF]. The deposition of wood at given locations can cause a reduction of the cross-sectional area, which can both increase upstream water levels (and the risk for neighboring communities), and laterally concentrate the flow downstream, which can lead to damaged infrastructure [START_REF] Lyn | Debris accumulation at bridge crossings: laboratory and field studies[END_REF][START_REF] Lagasse | Decadal changes in distribution and frequency of wood in a free meandering river, the Ain River, France[END_REF][START_REF] Mao | The effects of large wood elements during an extreme flood in a small tropical basin of Costa Rica[END_REF][START_REF] Badoux | Damage costs due to bedload transport processes in Switzerland[END_REF][START_REF] Ruiz-Villanueva | Large wood transport as significant influence on flood risk in a mountain village[END_REF][START_REF] Cicco | In-channel wood-related hazards at bridges: A review: In-channel wood-related hazards at bridges: A review[END_REF][START_REF] Mazzorana | Assessing and mitigating large wood-related hazards in mountain streams: recent approaches[END_REF]. Therefore, understanding and monitoring the dynamics of wood within a river is fundamental to assess and mitigate risk. An important body of work on this topic has grown over the last two decades, which has led to the development of many monitoring techniques [START_REF] Marcus | Mapping the spatial and temporal distributions of woody debris in streams of the Greater Yellowstone Ecosystem[END_REF]MacVicar et al., 2009a;[START_REF] Macvicar | Implementation and validation of video monitoring for wood budgeting in a wandering piedmont river, the Ain River (France)[END_REF][START_REF] Benacchio | Automatioc imagery analysis to monitor wood flux in rivers[END_REF][START_REF] Ravazzolo | Tracking log displacement during floods in the Tagliamento River using RFID and GPS tracker devices[END_REF][START_REF] Ruiz-Villanueva | Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges: Large Wood Dynamics[END_REF][START_REF] Ghaffarian | Video-monitoring of wood discharge: first inter-basin comparison and recommendations to install video cameras[END_REF][START_REF] Zhang | Video monitoring of in-channel wood fluxes: critical events, flux prediciton and sampling window[END_REF] and conceptual and quantitative models [START_REF] Braudrick | When do logs move in rivers?[END_REF][START_REF] Martin | Patterns of Instream Wood Recruitment and Transport at the Watershed Scale[END_REF][START_REF] Abbe | Patterns and processes of wood debris accumulation in the Queets river basin, Washington[END_REF][START_REF] Gregory | Ecology and management of wood in world rivers[END_REF][START_REF] Seo | Scale-dependent controls upon the fluvial export of large wood from river catchments[END_REF][START_REF] Seo | Dynamics of large wood at the watershed scale: a perspective on current research limits and future directions[END_REF]. A recent review by [START_REF] Ruiz-Villanueva | Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges: Large Wood Dynamics[END_REF], however, argues that the area remains in relative infancy compared to other river processes such as the characterization of channel hydraulics and sediment transport. Many questions remain open areas of inquiry including wood hydraulics, which is needed to understand wood recruitment, movement and trapping, and wood budgeting, where better parametrization is needed to understand and model the transfer of wood in watersheds at different scales.

In this domain, the quantification of wood mobility and wood fluxes in real rivers is a fundamental limitation that constrains model development. Most early works were based on repeated field surveys [START_REF] Keller | Effects of large organic material on channel form and fluvial processes[END_REF][START_REF] Lienkaemper | Dynamics of large woody debris in streams in old-growth Douglas-fir forests[END_REF], with more recent efforts taking advantage of aerial photos or satellite images [START_REF] Marcus | High spatial resolution hyperspectral mapping of in-stream habitats, depths, and woody debris in mountain streams[END_REF][START_REF] Lejot | Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform[END_REF]Lassettre et al., 2008;[START_REF] Senter | Large wood aids spawning Chinook salmon (Oncorhynchus tshawytscha) in marginal habitat on a regulated river in California[END_REF][START_REF] Boivin | Interannual kinetics (2010-2013) of large wood in a river corridor exposed to a 50-year flood event and fluvial ice dynamics[END_REF] to estimate wood delivery at larger time scales of 1 year up to several decades.

Others have monitored wood mobility once introduced by tracking wood movement in floods [START_REF] Jacobson | Transport, retention, and ecological significance of woody debris within a large ephemeral river[END_REF][START_REF] Haga | Transport and retention of coarse woody debris in mountain streams: An in situ field experiment of log transport and a field survey of coarse woody debris distribution[END_REF][START_REF] Warren | Dynamics of large wood in an eastern US mountain stream[END_REF]. Tracking technologies such as active and passive Radio Frequency Identification transponders (MacVicar et al., 2009a;[START_REF] Schenk | Large wood budget and transport dynamics on a large river using radio telemetry[END_REF] or GPS emitters and receivers [START_REF] Ravazzolo | Tracking log displacement during floods in the Tagliamento River using RFID and GPS tracker devices[END_REF] can improve the precision of this strategy. To better understand wood flux, specific trapping structures such as reservoirs or hydropower dams can be used to sample the flux over time interval windows [START_REF] Moulin | Characteristics and temporal variability of large woody debris trapped in a reservoir on the River Rhone(Rhone): implications for river basin management[END_REF][START_REF] Seo | Factors controlling the fluvial export of large woody debris, and its contribution to organic carbon budgets at watershed scales[END_REF][START_REF] Turowski | The mass distribution of coarse particulate organic matter exported from an Alpine headwater stream[END_REF]. Accumulations upstream of a retention structure can also be monitored where they trap most or all of the transported wood, as was observed by [START_REF] Boivin | The raft of the Saint-Jean River, Gaspé (Québec, Canada): A dynamic feature trapping most of the wood transported from the catchment[END_REF], to quantify wood flux at the flood event or annual scale. All these approaches allow the assessment of wood budget and the in-channel wood exchange between geographical compartments within a given river reach and over a given period [START_REF] Schenk | Large wood budget and transport dynamics on a large river using radio telemetry[END_REF][START_REF] Boivin | The raft of the Saint-Jean River, Gaspé (Québec, Canada): A dynamic feature trapping most of the wood transported from the catchment[END_REF][START_REF] Boivin | Interannual kinetics (2010-2013) of large wood in a river corridor exposed to a 50-year flood event and fluvial ice dynamics[END_REF].

For finer scale information on the transport of wood during flood events, video recording of the water surface is suitable for estimating instantaneous fluxes and size distributions of floating wood in transport [START_REF] Ghaffarian | Video-monitoring of wood discharge: first inter-basin comparison and recommendations to install video cameras[END_REF]. Classic monitoring cameras installed on the river bank are cheap and relatively easy to acquire, setup and maintain. As is seen in Table 1, a wide range of sampling rates and spatial/temporal scales have been used to assess wood budgets in rivers. [START_REF] Macvicar | Implementation and validation of video monitoring for wood budgeting in a wandering piedmont river, the Ain River (France)[END_REF] and [START_REF] Zhang | Video monitoring of in-channel wood fluxes: critical events, flux prediciton and sampling window[END_REF] (in review), for instance, monitored wood fluxes at 5 frames per second (fps) and a resolution of 640 × 480 up to 800 × 600 pixels. [START_REF] Boivin | Interannual kinetics (2010-2013) of large wood in a river corridor exposed to a 50-year flood event and fluvial ice dynamics[END_REF] used a similar camera and frame rate as [START_REF] Macvicar | Implementation and validation of video monitoring for wood budgeting in a wandering piedmont river, the Ain River (France)[END_REF] to compare periods of wood transport with and without the presence of ice. [START_REF] Senter | Wood export varies among decadal, annual, seasonal, and daily scale hydrologic regimes in a large, mediterranean climate, mountain river watershed[END_REF] analyzed the complete daytime record of 39 days of videos recorded at 4 fps and a resolution of 2048 × 1536 pixels. Conceptually similar to the video technique, time-lapse imagery can be substituted when large rivers where surface velocities are low enough and the field of view is large. [START_REF] Kramer | Estimating fluvial wood discharge using time-lapse photography with varying sampling intervals[END_REF]; [START_REF] Kramer | The pulse of driftwood export from a very large forested river basin over multiple time scales, Slave River, Canada[END_REF] applied this technique in the Slave River (Canada) and recorded one image every 1 and 10 minutes.

Where possible, wood pieces within the field of view are then visually detected and measured using simple software to measure the length and diameter of the wood to estimate wood flux (piece/s) or wood volume (𝑚 3 /𝑠) (MacVicar and [START_REF] Macvicar | Implementation and validation of video monitoring for wood budgeting in a wandering piedmont river, the Ain River (France)[END_REF][START_REF] Senter | Wood export varies among decadal, annual, seasonal, and daily scale hydrologic regimes in a large, mediterranean climate, mountain river watershed[END_REF]. Critically for this approach, the time it takes for the researchers to extract information about wood fluxes has limited the fraction of the time that can be reasonably analyzed. Given the outdoor location for the camera, the image properties depend heavily on lighting conditions (e.g. surface light reflections, low light, ice, poor resolution or surface waves) which may also limit the accuracy of frequency and size information [START_REF] Muste | Large-scale particle image velocimetry for measurements in riverine environments[END_REF]MacVicar et al., 2009a). In such situations, simpler metrics such as a count of wood pieces, a classification of wood transport intensity, or even just a binary presence/absence may be used to characterize the wood flux [START_REF] Boivin | Interannual kinetics (2010-2013) of large wood in a river corridor exposed to a 50-year flood event and fluvial ice dynamics[END_REF][START_REF] Kramer | The pulse of driftwood export from a very large forested river basin over multiple time scales, Slave River, Canada[END_REF].

Table 1

A fully automatic wood detection and characterization algorithm can greatly improve our ability to exploit the vast amounts of data on wood transport that can be collected from streamside video cameras.

From a computer science perspective, however, automatic detection and characterization remain challenging issues. In computer vision, detecting objects within videos typically consists of separating the foreground (the object of interest) from the background [START_REF] Roussillon | Automatic computation of pebble roundness using digital imagery and discrete geometry[END_REF][START_REF] Cerutti | A parametric active polygon for leaf segmentation and shape estimation[END_REF][START_REF] Cerutti | Understanding leaves in natural images-a model-based approach for tree species identification[END_REF]. The basic hypothesis is that the background is relatively static and covers a large part of the image, allowing it to be matched between successive images. In the riverine environments, however, such an assumption is unrealistic because the background shows a flowing river, which can have rapidly fluctuating properties [START_REF] Ali | Unsupervised Video Analysis for Counting of Wood in River during Floods[END_REF]. Floating objects are also partially submerged in water that has high suspended material concentrations during floods, making them only partially visible (e.g. a single piece of wood may be perceived as multiple objects) (MacVicar et al., 2009b). Detecting such an object in motion within a dynamic background is an area of active research [START_REF] Ali | Space-time spectral model for object detection in dynamic textured background[END_REF][START_REF] Ali | Adding a rigid motion model to foreground detection: application to moving object detection in rivers[END_REF][START_REF] Lemaire | Automatically monitoring driftwood in large rivers: preliminary results[END_REF][START_REF] Piégay | Automatically monitoring driftwood in large rivers: preliminary results[END_REF][START_REF] Benacchio | A new methodology for monitoring wood fluxes in rivers using a ground camera: Potential and limits[END_REF]. Accurate object detection typically relies on the assumption that objects of a single class (e.g. faces, bicycles, animals, etc.) have a distinctive aspect or set of features that can be used to distinguish between types of objects. With the help of a representative dataset, machine learning algorithms aim at defining the most salient visual characteristics of the class of interest [START_REF] Lemaire | Automatically monitoring driftwood in large rivers: preliminary results[END_REF][START_REF] Viola | Object recognition system[END_REF]. When the objects have a wide intra-class aspect range, a large amount of data can compensate by allowing the application of deep learning algorithms [START_REF] Gordo | Deep image retrieval: Learning global representations for image search[END_REF][START_REF] Liu | Deep learning for generic object detection: A survey[END_REF]. To our knowledge, such a database is not available in the case of floating wood.

The camera installed on the Ain River in France has been operating more or less continuously for over 10 years and vast improvements in data storage mean that this data can be saved indefinitely [START_REF] Zhang | Video monitoring of in-channel wood fluxes: critical events, flux prediciton and sampling window[END_REF]. The ability to process this image database to extract the wood fluxes allows us to integrate this information over floods, seasons and years, which would allow us to significantly advance our understanding of the variability within and between floods over a long time period. An unsupervised method to identify floating wood in these videos by applying intensity, gradient and temporal masks was developed by [START_REF] Ali | Unsupervised Video Analysis for Counting of Wood in River during Floods[END_REF] and [START_REF] Ali | Wood detection and tracking in videos of rivers[END_REF]. In this model, the objects were tracked through the frame to ensure that they followed the direction of flow. An analysis of about 35 minutes of the video showed that approximately 90% of the wood pieces was detected (i.e. about 10% of detection were missed), which confirmed the potential utility of this approach. An additional set of false detection related to surface wave conditions amounted to approximately 15% of the total detection. However, the developed algorithm was not always stable and was found to perform poorly when applied to a larger data set.

The objectives of the presented work are to describe and validate a new algorithm and computer interface for quantifying floating wood pieces in rivers. First, the algorithm procedure is introduced to show how wood pieces are detected and characterized. Second, the computer interface is presented to show how manual annotation is integrated with the algorithm to train the detection procedure. Third, the procedure is validated using data from the Ain River. The validation period occurred over six days in January and December 2012 where flow conditions ranged from ~400 𝑚 3 /𝑠, which is below bankfull discharge but above the wood transport threshold, to more than 800 𝑚 3 /𝑠. The developed algorithm can be used to characterize wood pieces for a large image database at the study site. Future applications of this approach at a wide range of sites should lead to new insights on the variability of wood pieces at the reach and watershed scales in world rivers.

Methodological procedure for automatic detection of wood

The algorithm for wood detection comprises a number of steps that seek to locate objects moving through the field of view in a series of images and then identify the objects most likely to be wood. The algorithm used in this work modifies the approach described by [START_REF] Ali | Wood detection and tracking in videos of rivers[END_REF]. The steps work from a pixel to image to video scale, with the context from the larger scale helping to assess whether the information at the smaller scale indicates the presence of floating wood or not. In a still image, a single pixel is characterized by its location within the image, its color and its intensity. Looking at its surrounding pixels, on an image scale, allows that information to be spatially contextualized. Meanwhile, the video data adds temporal context, so that previous and future states of a given pixel can be used to assess its likeliness of representing floating wood. Since an image is only a discrete 2D representation of the real 3D world, details about the camera parameters such as optical image deformations, geographic situation, perspective deformations or behavior regarding luminosity can be used to infer what wood should look like and where it should occur.

On a video scale, the method can embed expectations about how wood pieces should move through frames, how big they should be, and how lighting and weather conditions can evolve to change the expectations of wood appearance, location, and movement. vantage of this approach is that it is computationally very fast. However, misclassification is possible, particularly when light condition changes.

Fig 2

The second mask, called the dynamic probability mask, outlines each pixel's recent history. The corresponding question is: "is this pixel likely to represent wood now, given its past and present characteristics?".

Again, this step is based on what is most common in our database: it is assumed that a wood pixel is darker than a water pixel. Depending on lighting conditions like shadows cast on water or waves, this is not always true, i.e. water pixels can be as dark as wood pixels. However, pixels displaying successively water then wood tend to become immediately and significantly darker, while pixels displaying wood then water tend to become significantly lighter. Meanwhile, pixels that keep on displaying wood tend to be rather stable. Thus, we assign wood pixel probability according to an updated version of the function proposed by Ali et al. probability mask from the inter-frame pixel value. On a probability map, a pixel value ranges from -1 (likely not wood) to 1 (likely wood). The temporal mask value for a pixel at location (𝑥, 𝑦) and at time 𝑡 is 𝑃 𝑇 (𝑥, 𝑦, 𝑡)= 𝐻(∆ 𝑡 , 𝐼) + 𝑃 𝑇 (𝑥, 𝑦, 𝑡 -1). We apply a threshold to the output of 𝑃 𝑇 (𝑥, 𝑦, 𝑡) so that it always stays within the interval [0,1]. The idea is that a pixel that becomes suddenly and significantly darker is assumed to be likely wood. 𝐻(∆ 𝑡 , 𝐼) is such that under those conditions, it increases the pixel probability map value (parameters 𝜏 and 𝛽). A pixel that becomes lighter over time is unlikely to correspond to wood (parameter 𝛼). A pixel which intensity is stable and that was previously assumed to be wood shall still correspond to wood, while a pixel which intensity is stable and which probability to be wood was low is unlikely to represent wood now. A small decay factor (𝛿) was introduced in order to prevent divergence (in particular, it prevents noisy areas from being activated too frequently).

Fig 3

The final wood probability mask is created using a combination of both the static and dynamic probability masks. Wood objects thus had to have a combination of the correct pixel color and the expected temporal behavior of water-wood-water color. The masks were combined assuming that both probabilities are independent, which allowed us to use the Bayesian probability rule in which the probability masks are simply multiplied, pixel by pixel, to obtain the final probability value for each pixel of every frame.

Wood object identification and characterization

From the probability mask it is necessary to group pixels with high wood probabilities into objects and then to separate these objects from the background to track them through the image frame. For this purpose, pixels were classified as high-or low-probability based on a threshold applied to the combined probability mask. Then, the high-probability pixels were grouped into connected components (that is, small, contiguous regions on the image) to define the objects. At this stage, a pixel size threshold was applied on the detected objects so that only the bigger objects were considered to represent woody objects on the water surface (Fig

4.a the big white region at the middle).

A number of smaller components were often related to non-wood objects, for example waves, reflections, or noise from the camera sensor or data compression.

After the size thresholding step, movement direction and velocity were used as filters to distinguish real objects from false detections. The question here is, "is this object moving through the image frame the way we would expect floating wood to move?". To do this, the spatial and temporal behavior of components were analyzed. First, to deal with partly immersed objects, we agglomerated multiple objects within frames as components of a single object if the distance separating them was less than a set threshold. Second, we associated wood objects in successive frames together to determine if the motion of a given object was compatible with what is expected from driftwood. This can be achieved according to the dimensionless parameter "𝑃𝑇 ∆𝑇 ⁄ ", which provides a general guideline for the distance an object pass between two consecutive frames [START_REF] Zhang | Video monitoring of in-channel wood fluxes: critical events, flux prediciton and sampling window[END_REF]. Here 𝑃𝑇 (passing time) is the time that one piece of wood passes through the camera field of view and ∆𝑇 is the time between two consecutive frames and practically it is recommended to use videos with 𝑃𝑇 ∆𝑇 ⁄ > 5 in this software. In our case, tracking wood is rather difficult for classical object tracking approaches in computer vision: the background is very noisy, the acquisition frequency is low and the objects appearance can be highly variable due to temporarily submerged parts and highly variable 3D structures. Given these considerations it was necessary to use very basic rules for this step. The rules are therefore based on loose expectations, in terms of pixel intervals, on the motions of the objects, depending on the camera location and the river properties. How many pixels is the object likely to move between image frames from left to right? How many pixels from top to bottom? How many appearances are required? How many frames can we miss because of temporary immersions? Using these rules, computational costs remained low and the analysis could by run in real-time while also providing good performance.

Fig 4

The final step was to characterize each object, which at this point in the process are considered wood objects. Each appears several times in different frames and a procedure is needed to either pick a single representative occurrence or use a statistic tool to analyse multiple occurrences to estimate characterization data. Here we assumed that the biggest occurrence, in terms of pixels number, was the most representative state. This assumption is based on the principle that a bigger number of pixels corresponds to a better or a fuller view (the object is less immersed than on other occurrences, for instance). This approach also matched the manual annotation procedure where we tended to pick the view where the object covers the largest area to make measurements. For the current paper, every object as characterized from the raw image based on its size and its location (in pixels).

Image rectification

Warping images according to a perspective transform results in an important loss of quality. On warped images, areas of the image farther to the camera provide little detail and are overall very blurry and noninformative. Therefore, given the topology of our images, image rectification was necessary to calculated wood length, velocity, volume and other characteristics from the saved pixel-based characterization of each object. To do so, the fisheye lens distortion was first corrected. A fisheye lens distortion is a characteristic of the lens that produces visual distortion intended to create a wide panoramic or hemispherical image. This effect was corrected by a standard Matlab process using the ComputerVisionToolbox TM .

Ground-based cameras have also an oblique angle of view, which means that pixel to meter correspondence is variable and images need to be orthorectified to obtain estimates of object size and velocity in real terms [START_REF] Muste | Large-scale particle image velocimetry for measurements in riverine environments[END_REF]. Orthorectification refers to the process by which image distortion is removed and the image scale is adjusted to match the actual scale of the water surface. Translating from pixels to cartesian coordinates required us to assume that our camera follows the pinhole camera model and that the river can be assimilated to a plane of constant altitude. Under such conditions, it is possible to translate from pixel coordinates to a metric 2D space thanks to a perspective transform assuming a virtual pinhole camera on the image and estimating the position of the camera and its principal point (center of the view). An example of orthorectification on a detected wood piece in a set of continuous frames and pixel coordinates ( To achieve better accuracy, it is advised to acquire additional points and to solve the subsequent over-determined system with the help of a Least Square Regression (LSR).

Robust estimators such as RANSAC can provide useful to prevent acquisition noise. After identifying the virtual camera position, the perspective transform matrix then becomes parameterized with the water level.

Handling the variable water level was performed for each piece of wood, by measuring the relative height between the camera and the water level at the time of detection based on information recorded at the gauging station to which the camera was attached.

Fig 5

User interface

The software was developed to provide a single environment for the analysis of wood pieces on the From within a module, a menu bar on the left side of the interface allows operators to switch from one module to another. In the following sections, the operation of each of these modules are described. The detection process is intended to work as a video file player. The idea is to load a video file (or a stream url), and to let the software read the video until the end. When required, the reader generates a visual output, showing how the masks behave by adding color and information to the video content (see Figure 7).

A small textual display area shows the frequency of past detections. Meanwhile, the software generates a series of files summarizing the positive outputs of the detection. They consist in YAML and CSV files, as well as image files to show the output of different masks, the original frames, etc. A configuration tab is available, and provides many parameters organized by various categories. The main configuration tab is divided in seven parts. The first part is dedicated to general configurations such as frame skipped between each computation and defining the areas within the frame where wood is not expected (e.g. bridge pier or river bank). In the second and third parts, the parameters of the intensity and temporal masks are listed (see Sect 2.1). The default values are 𝜇 = 0.2 and 𝜎 = 0.08 for the intensity mask, and 𝜏 = 0.25 and 𝛽 = 0.45

for the temporal mask. In the fourth and fifth parts, object tracking and characterization parameters are defined respectively as described in Sect 2.2. Detection time is defined in the sixth part using an optical character recognition technique. Finally, the parameters of the orthorectification (see Sect 2.3) are defined in the seventh part. The detection software can be used to process videos in batch ("script" tab), without generating a visual output to save computing resources.

Fig 7 Annotation

As mentioned in Sec. 2, the detection procedure requires the classification of pixels and objects into wood and non-wood categories. To train and validate the automatic detection process, a ground-truth or set of videos with manually annotations are required. Such annotations can be performed using different techniques. For example, objects can be identified with the help of a bounding box or selection of endpoints, as in MacVicar and Piégay(2012); [START_REF] Ghaffarian | Video-monitoring of wood discharge: first inter-basin comparison and recommendations to install video cameras[END_REF] and [START_REF] Zhang | Video monitoring of in-channel wood fluxes: critical events, flux prediciton and sampling window[END_REF]. It is also possible to sample wood pixels without specifying instances or objects, or to sample pixels within annotated objects. Finally, objects and/or pixels can be annotated multiple times in a video sequence to increase the amount and detail of information in such an annotation database. However, this annotation process is time-consuming, so a trade-off must be made between training and accuracy for different lighting conditions, camera parameters, wood properties, and river hydraulics.

Given that the tool is meant to be as flexible as possible, the annotation tool was developed to allow operator to perform as fine annotation as they wish. As it is shown in et al., (2015), while still allowing the possibility of finer pixel-scale annotation.

Fig 8

The principle of this module is to associate annotations with the frames of a given video. Annotating a piece of wood is like drawing its shape, directly on a frame of the video, using the drawing tools provided by the module. It is possible to add a text description to each annotation. Each annotation is linked to a single frame of the video; however, a frame can contain several annotations. An annotated video, therefore, consists of a video file, as well as a collection of drawings, possibly with textual descriptions, associated with frames.

It is possible to link annotations from one frame to another to signify that they belong to the same piece of wood. These data can be used to learn the movement of pieces of wood in the frame.

Performance

The performance module allows the operator to set rules to compare automatic and manual wood detection results. This section also allows the operator to use a bare, pixel-based annotation or specify an orthorectification matrix to extract wood-size metrics directly from the output of an automatic detection.

For this module an automatic detection file is first loaded and then the result of this detection is compared with a manual annotation for that video, if the latter is available. Comparison results are then saved in the form of a summary file (*.csv format), allowing the operator to perform statistical analysis of the results or the performance of the detection algorithm. A manual annotation file can only be loaded if it is associated with an automatic detection result.

The performance of the detected algorithm can be realized on several levels:

• Object. The idea is to annotate one (or more) occurrences of a single object, and to operate the comparison at bounding box scale. A detected object may comprehend a whole sequence of occurrences, on several frames. It is validated when only a single occurrence happens to be related to an annotation. This is the minimum possible effort required to have an extensive overview of the object frequency on such an annotations database. This approach can however lead us to misjudge overall wrongly detected sequences as True Positives (see below), or vice-versa.

• Occurrence. The idea is to annotate, even roughly, every occurrence of every woody object, so that the comparison can happen between bounding boxes rather than at pixel level. Every occurrence of any detected object can be validated individually. This option requires substantially more annotation work than the object annotation.

• Pixel. This case implies that every pixel of every occurrence of every object is annotated as wood.

It is very powerful in the event of evaluating the algorithm performances, and eventually refining its parameters with the help of some machine learning technique. However, it requires an extensive annotation work.

Performance assessment

To assess the performance of the automatic detection algorithm, we used a set of videos from the Ain River in France that were both comprehensively manually annotated and automatically analyzed. According to the data annotated by the observer, the performance of the software can be affected by different conditions:

(i) wood piece length, (ii) distance from the camera, (iii, iv) wood X, Y position, (v) flow discharge, (vi) daylight, and (vii, viii) light and darkness of the frame (see Table 2). If for example software detects a 1 cm piece at a distance of 100 m from the camera, there is a high probability that this is a false positive detection.

Therefore, knowing the performance of the software in different conditions, it is possible to develop some rules to enhance the quality of data. The advantage of this approach is that all eight parameters introduced here are accessible easily in the detection process. In this section the monitoring details and annotation methods are introduced before the performance of the software is evaluated by comparing the manual annotations with the automatic detections.

Table 2 Material and methods

Monitoring site and annotation

The Ain River is a piedmont river with a drainage area of 3630 𝑘𝑚 2 at the gauging station of Chazeysur-Ain, with a mean flow width of 65 m, a mean slope of 0.15%, and a mean annual discharge of 120 𝑚 3 /𝑠.

The lower Ain River is characterized by an active channel shifting within a forested floodplain (Lassettre et al., 2008). An AXIS221 Day/Night TM camera with a resolution of 768 × 576 pixels was installed at this station to continuously record the water surface of the river at a maximum frequency of 5 fps (Fig 9). This camera replaced a lower resolution camera at the same location used by MacVicar and [START_REF] Macvicar | Implementation and validation of video monitoring for wood budgeting in a wandering piedmont river, the Ain River (France)[END_REF]. The specific location of the camera is on the outer bank of a meander, on the side closest to the thalweg, at a height of 9.8 m above the base flow elevation. The meander and a bridge pier upstream help to steer most of the floating wood so that it passes relatively close to the camera where it can be readily detected with a manual procedure The survey period examined on this river was during 2012 from which two flood events, (January 1-7

and December 15) were selected for annotation. A range of discharges from 400𝑚 3 /𝑠 to 800 𝑚 3 /𝑠 occurred during these periods (Fig 11), which is above a previously observed wood transport threshold of ~300 𝑚 3 /𝑠 (MacVicar and [START_REF] Macvicar | Implementation and validation of video monitoring for wood budgeting in a wandering piedmont river, the Ain River (France)[END_REF]. The flow discharge is available from the website (www.hydro.eaufrance.fr).

On January 3 rd and 5 th , a spider was active in front of the camera, which prevented a good video recording and these days were therefore removed from the database. Detection was only possible during the daylight.

A summary of automated and manual detections for the six days is shown in Table 3.

Fig 11

Assessment Methodology

Ghaffarian et al. ( 2020), [START_REF] Zhang | Video monitoring of in-channel wood fluxes: critical events, flux prediciton and sampling window[END_REF] show that the wood discharge can be measured from flux or frequency of wood objects. An object level detection was thus sufficient for the larger goals of this research at the Ain River, which is to get a complete budget of transported wood volume.

A comparison of annotated with automatic object detections gives rise to three options:

1-True Positive (𝑇𝑃): an object is correctly detected and is recorded in both the automatic and annotated database 2-False Positive (𝐹𝑃): an object is incorrectly detected and is recorded only in the automatic database.

3-False Negative (𝐹𝑁): an object is not detected automatically and is only recorded in the annotated Despite overlapping occurrences of wood objects in the two databases, the objects could vary in position and size between them. For the current study we set the TP threshold as the case where either at least 50% of the automatic and annotated bounding box areas were common or at least 90% of an automatic bounding box area was part of its annotated counterpart.

In addition to the raw counts of 𝑇𝑃𝑠, 𝐹𝑃𝑠, and 𝐹𝑁𝑠, we defined two measures of the performances of the application, where:

• Recall Rate (𝑅𝑅) is the fraction of wood objects that are automatically detected ( 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)); and

• Precision Rate (𝑃𝑅) is the fraction of detected objects that are wood (𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)).

The higher the 𝑃𝑅 and the 𝑅𝑅 are, the more accurate our application is. However, both rates tend to interact. For example, it is possible to design an application that displays a very high 𝑅𝑅 (which means that it doesn't miss many objects), but suffers from a very low 𝑃𝑅 (it outputs a high amount of inaccurate data), and vice-versa. Thus, we have to find a balance that is appropriate to each application.

Factors used to understand variation in performance

It was well known from previous manual efforts to characterize wood pieces and develop automated detection tools that it is easier to detect certain wood objects than others. In general, the ability to detect the wood objects in the dynamic background of a river in flood was found to vary with the size of the wood object, its position in the image frame, the flow discharge, the amount and variability of the light, interference from other moving objects such as spiders, and other weather conditions such as wind and rain. In this section, we describe and define the metrics that were used to understand the variability of the detection algorithm performance.

In general, more light results in better detection. The light condition can be varied by variation of a set of factors such as weather conditions or amount of sediment which is carried by the river. In any case, the daylight is a factor that can change the light condition systematically, i.e. low light early in the morning (Fig Detection is also strongly affected by the frame 'roughness', defined here as the variation in light over small distances in the frame. The change in light is important for the recognition of wood objects, but light roughness can also occur when there is a region with relatively light pixels due to something such as reflection of the surface of the water, and dark roughness can occur when there is a region with relatively dark pixels due to something such as shadows from the surface water waves. Detecting wood is typically more difficult around light roughness, which results in false negatives, while the color-map of a darker surface is often close to that of wood, which results in false positives. Both of these conditions can be seen in Fig 12 which is highlighted in Fig 12 .a. In general, the frame roughness increases in windy days or when there is an obstacle in the flow, such as downstream of the bridge pier in the current case. The light roughness was calculated for the current study by defining a light intensity threshold and calculating the ratio of pixels of higher value among the frame. The dark roughness is calculated in the same way, but in this case the pixels less than the threshold were counted. In this work thresholds equal to 0.9 and 0.4 were used for light and dark roughness, respectively.

The oblique view of the camera means that the distance of the wood piece from the camera is another important factor in detection (Fig 13). The effect of distance on detection interacts with wood length, i.e.

shorter pieces of wood that are not detectable near the camera may not be detectable toward the far bank due to the pixel size variation [START_REF] Ghaffarian | Video-monitoring of wood discharge: first inter-basin comparison and recommendations to install video cameras[END_REF]. Moreover, if a piece of wood passes through a region with high roughness (Fig 13) or amongst bushes or trees (Fig 13 right hand side) it is more likely that the software is unable to detect it. In our case, one day of video record could not be analyzed due to the presence of a spider that moved around in front of the camera.

Fig 13

Flow discharge is another key variable in wood detection. Increasing flow discharge generally means that water levels are higher, which brings wood close to the near bank of the river closer to the camera. This change can make small pieces of wood more visible, but it also reduces the angle between the camera position and pixels, which makes wood farther from the camera harder to see. High flows also tend to increase surface waves and velocity, which can increase the roughness of the frame and lead to the wood being intermittently submerged or obscured. More suspended sediment is carried during high flows which can change water surface color and increase the opacity of the water.

Detection performance

Automatic detection software performance was evaluated based on the event based 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 raw numbers and the precision (PR) and recall rates (RR) using the default parameters in the software. On average, manual annotation resulted in the detection of approximately twice as many wood pieces as the detection software (Table 3). Measured over all the events, RR = 29%, which indicates that many wood objects were not detected by the software, while among detected objects about 36% were false detections (𝑃𝑅 = 64%).

Table 3

To better understand model performance, we first tested the correlation between the factors identified in the previous section (Table 4). As shown, the pairs of dark/light roughness, length/distance and discharge/time were highly correlated (𝐶𝑜𝑟𝑟. = 0.59, 0.46, 0.37 respectively). For this reason, they were considered together to evaluate the performance of the algorithm within a given parameter space. The X/Y positions were also considered as a pair despite a relatively low correlation (0.15) because they represent the position of an object. As a note, the correlation between time and dark roughness is higher than discharge and time, but we used the discharge/time pair because discharge has a good correlation only with time. As recommended by MacVicar and [START_REF] Macvicar | Implementation and validation of video monitoring for wood budgeting in a wandering piedmont river, the Ain River (France)[END_REF], wood lengths were determined on a log base 2 transformation to better compare different classes of floating wood, similar to what is done for sediment sizes.

Table 4 Fig 14

The presentation of model performance by pairs of correlated parameters clarifies certain strengths and weaknesses of the software (Figure 14). As expected, the results of Fig 14 .b indicate that first, the software is not so precise for small pieces of wood (less than the order of 1 m), and second there is an obvious link between wood length and the distance from the camera so that by increasing the distance from the camera, the software is precise only for larger pieces of wood. Having a small number of detections on the left side of the frame results in the small value of 𝐹𝑁 which followed by high values of 𝑅𝑅 in this region (𝑅𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). Therefore, while the position of detection plays a significant role in the recall rate, it is completely dependent on the operator bias. By contrast, frame roughness, daytime, and flow discharge do not play a significant role in the recall rate (Fig 14. i,l).

Post-processing

This section is separated into two main parts. First, we show how to improve the precision of the software by a posteriori distinction between 𝑇𝑃 and 𝐹𝑃. After removing 𝐹𝑃𝑠 from the detected pieces, in the second part, we test a process to predict the annotated data that the software missed i.e. false negatives.

Precision improvement

To improve the precision of the automatic wood detection we first ran the software to detect pieces and extracted the eight key parameters for each piece as described in Sect 4.1.3. We then estimated the total precision of each object, as the average of four precisions from each sub-figure of Fig 14 . In the current study the detected piece was considered to be a true positive if the total precision exceeded 50%. To check the validity of this process, we used cross-validation by leaving one day out, calculating the precision matrices based on five other days, and applying the calculated 𝑃𝑅 matrices on the day that was left out. As is seen in Table 5, this post-processing step increases the precision of the software to 85%, an enhancement of 21%.

The degree to which the precision is improved is dependent on the day left out for cross-validation. If, for example, the day left out had similar conditions to the mean, the 𝑃𝑅 matrices were well trained and were able to distinguish between 𝑇𝑃 and 𝐹𝑃 (e.g. 2 nd Jan with 42% enhancement). On the other hand, if we have an event with new characteristics (e.g. very dark and cloudy weather or at discharges different from what we have in our database), the PR matrices were relatively blind and offered little improvement (e.g. 15 th Dec with 10% enhancement).

Table 5 One difficulty with the post-processing reclassification of wood piece is that this new step can also introduce error by classifying real objects as false positives (making them a false negative) or vice-versa.

Using the training data, we were able to quantify this error and categorized them as post-processed false negatives (𝑭𝑵 𝒑𝒑 ) with an associated recall rate (𝑹𝑹 𝒑𝒑 ). As shown in Table 5, the precision enhancement process lost only around 14% of 𝑇𝑃𝑠 (𝑅𝑅 𝑝𝑝 = 86%).

Instead of using all eight key parameters (four 𝑃𝑅 matrices) to calculate the overall precision, it is also and the raw data. The reason that configurations like (2,4) or (1,3,4) with a better precision rate were not used here was that in these cases the post-processed recall rate 𝑅𝑅 𝑝𝑝 was low (around 60%) meaning that by using these configurations many of true positives was removed. Therefore, to have the best precision enhancement with maximum post-processed recall rate all 4 different precision matrices are used (Fig 15,dark red scatters).

Fig 15

Modeling missed wood pieces based on the recall rate

The automated software detected 29% of the number of manually annotated wood pieces (Table 5). In the previous section, it was described how to enhance the precision of the software to ensure that these automatically detected pieces are 𝑇𝑃𝑠. The larger question, however, is how to model the missing pieces. Based on Fig 14, the software work well for very large objects in most areas of the image and in most lighting conditions. However, the smaller pieces were found to be harder to detect, making the wood length the most important factor governing the recall rate. Based on this idea, the final step in the post processing is to apply a model to account for the smaller wood pieces.

The model is based on the concept of a threshold piece length. Above the threshold, wood pieces are likely to be accurately counting using the automatic software. Below the threshold, on the other hand, the In the next step we wanted to estimate the pieces less than 2.5 m that the software missed. During the automatic detection process, when the software detects a piece of wood, according to Fig 14 (third column), the 𝑅𝑅 can be calculated for this piece (same protocol as precision enhancement in Sect 4.3.1). Therefore, if for example the average recall rate for a piece of wood is 50%, there is likely to be another piece in the same condition (defined by the eight different parameters described in Table 2) that the software could not detect.

To correct for these missed pieces, additional virtual pieces were added to the database. Fig 16 .a, shows the length distribution after adding these virtual pieces to the database (blue line, total of 5841 pieces). The result shows a good agreement between this and the operator annotations (green line, total of 6249 pieces), which results in a relative error of only 6.5% in the total number of wood pieces. shown, the raw detection results underestimate wood volume by almost one order of magnitude. After processing, the results show some scatter but are distributed around the 1:1 slope, which indicates that they follow the manual annotation results. There is a slight difference for days with lower fluxes (Jan 4 and 7),

where the post-processing tends to over-estimate wood volumes, but in terms of an overall wood balance the volume of wood on these days are negligible. In total, 125 𝑚 3 wood was annotated by the operator and the software automatically detected only 46 𝑚 3 , some of which represent false positives. After post-processing, 142 𝑚 3 wood was estimated to have passed in the analyzed videos for a total error of 13.5%.

Fig 17

Conclusion

Here, we present new software for the automatic detection of wood pieces on the river surface. After presenting the corresponding algorithm and the user interface, an example of automatic detection was presented. We annotated 6 days of flood events that were used to first check the performance of the software and then develop post-processing steps to both remove possibly erroneous data and model data that were possibly missed by the software.

To evaluate the performance of the software, we used precision and recall rates. The automatic detection software detects around one third of all annotated wood pieces with 64% precision rate. Then using the operator annotations as the ultimate goal, the post-processing part was applied to extrapolate data extracted from detection results, aiming to come as close as possible to the annotations. It is shown that using four pair of key factors: (i) light and dark roughness of the frame, (ii) daytime and flow discharge, (iii) X, Y coordinates of detection position, and (iv) distance of detection as a function of piece length, it is possible to detect false positives and increase the software precision to 86%. Using the concept of a threshold piece length for detection it is shown that it is then possible to model the missed wood pieces (false negatives). In the presented results, the final recall rate results in a relative error of only 6.5% for piece number and 13.5% for wood volume.

This work shows the feasibility of the detection software to detect wood pieces automatically. Automation will significantly reduce the time and expertise required for manual annotation, making video monitoring a powerful tool for researchers and river managers to quantify the amount of wood in rivers. The 

  The specific steps followed by the algorithm are shown in a simple flow chart (Fig 1.a). An example image with a wood piece in the middle of the frame is also shown for reference (Fig 1.b).
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  2011) (Fig 3.a) that takes 4 parameters. This function 𝐻 is an updating function, which produces a temporal

  Fig 5.b) is presented in Fig 5.c in metrics coordinates. The transform matrix is obtained with the help of at least 4 noncolinear points (Fig 5.a blue GCPs (Ground Control Points) acquired with DGPS) from which we know both the relative 2D metric coordinates for a given water level (Fig 5.c blue points), and their corresponding localization within the image(Fig 5.b blue points).

  surface of the water from streamside videos. It consists of four distinct modules: Detection, Annotation, Learning, and Performance. The home screen (Fig 6) allows the operator to select any of these modules.
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  Fig 8, this module contains three main parts: (i) The column on the far left allows operator to switch to another module (detection, learning or performance), (ii) the central part consists of a video player with a configuration tab for extracting the data, and (iii) the right part where the tools to generate, create, visualize and save annotations are located. The tools allow rather quick coarse annotation, similar to what was done by MacVicar and Piégay (2012) and Boivin

(

  Fig 9 Fig 10

  Fig 12

  Based on Fig 14.e, the software precision is usually better on the right side of the frame than the left side. It would be reasonable, as the software requires to detect a patch at least in 5 continuous frames to recognize it as a piece of wood (see Sect 2.2 and Fig 4 for more information). Therefore, most of the true positives are on the right side of the frame, where 5 continuous frames have already established. Also, the presence of the bridge pier (at X ≅ -30 to -40 m based on Fig 10)in the upstream, produces lots of waves that decreases the precision of the software. Also, Fig 14.h shows that the software is much more precise during the morning when there is enough light rather than evening when the sunshine decreases. However, at low flow (𝑄 < 550 𝑚 3 /𝑠) the software precision decreases significantly. Finally, based on Fig 14.k, the software does not work well in two roughness conditions: (i) in a dark smooth flow (light roughness ≅ 0) when there are some dark patches (shadows ) on the surface (dark roughness ≅ 0.3), and (ii) when both roughness increases and there are many noises in a frame.To estimate the fraction of wood pieces that the software did not detect, the recall rate 𝑅𝑅 is calculated in different conditions and a linear interpolation was applied on 𝑅𝑅 as it is presented in Fig14, third column.According to Fig 14.c, 𝑅𝑅 is fully dependent on piece length so that for the lengths at the order of 10 m (𝐿 = 𝑂(10)) 𝑅𝑅 is very good. By contrast when 𝐿 = 𝑂(0.1~1) the 𝑅𝑅 is too small. There is a transient region when 𝐿 = 𝑂(1) which is slightly depends on the distance from the camera. One can say, the wood length is the most crucial parameter that affects the recall rate independent of the operator annotation. Based on Fig 14.f, the 𝑅𝑅 is much better on the left side of the frame than on the right side. It can be because the operator's eye needs some time to detect a piece of wood, so most of the annotations are on the right side of the frame.

  possible to use other configurations by combining different matrices as it is shown in Fig 15. In this figure, the precision matrices 1 to 4 are the same as the matrices presented in Fig 14 and different colors show different combinations of these matrices. As it is seen, some configurations (e.g. (2,4) or (1,3,4)) result in better precision and some cases (e.g. (1,2) or (1,3)) there is almost no difference between post-processed 𝑃𝑅

  automatic detection software is likely to deviate from the manual counts. The actual length distribution was first determined based on the manual annotations (𝑇𝑃 + 𝐹𝑁)(Fig 16.a). Also shown are the raw results of the automatic detection software (𝑇𝑃 + 𝐹𝑃) and the raw results with the false positives removed (𝑇𝑃). At this stage, the difference between the 𝑇𝑃 and the 𝑇𝑃 + 𝐹𝑁 lines are the false negatives (𝐹𝑁) that the software has missed. Comparison between the two lines shows that they tend to deviate between 2-3 m. The correlation coefficient between them was calculated for thresholds varying from 1 cm to 15 m length and 2.5 m length was defined as the optimum threshold length for recall modeling(Fig 16.b).

Fig 16

 16 Fig 16On the Ain River by separating videos to 15 min segments, MacVicar and Piégay, (2012) and[START_REF] Zhang | Video monitoring of in-channel wood fluxes: critical events, flux prediciton and sampling window[END_REF] proposed the following equation for calculating wood discharge from the wood flux:
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 a2356774089111374917 Fig 1 a) Flowchart of the detection software and b) an example of frame on which these different flowchart steps are applied.
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9.

Calculating length, position, and distance.

Distance

Objects closer to the camera are easier to detect.

X position Some particular areas of turbulent flow in the field of view affect detection (e.g. presence of a bridge pier). Y position

Discharge

Flow discharge affects water color, turbulence and the amount of wood.

Recorded water elevation data and calibrated rating curve at hydrologic station.

Time

Luminosity of the frames varies with time of day. Time of day as indicated on top of each frame.

Dark roughness

Small spots with sharp contrast (either lighter or darker) affect detection.

% of pixels below an intensity threshold

Light roughness % of pixels above an intensity threshold 723