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Abstract: A novel estimation strategy for inertial navigation in indoor/outdoor environments
is proposed with a specific attention to the sporadic nature of the non-periodic measurements.
After introducing the inertial navigation model, we introduce an observer providing an
asymptotic estimate of the plant state. We use a hybrid dynamical systems representation for
our results, in order to provide an effective, and elegant theoretical framework. The estimation
error dynamics with the proposed observer shows a peculiar cascaded interconnection of three
subsystems (allowing for intuitive gain tuning), with perturbations occurring either on the jump
or on the flow dynamics (depending on the specific subsystem under consideration). For this
structure, we show global exponential stability of the error dynamics. Hardware-in-the-loop
results confirm the effectiveness of the proposed solution.
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1. INTRODUCTION

Navigation and localization of mobile vehicles represents
an important research field witnessing significant efforts in
the study of Inertial Navigation Systems (INSs) Hamel and
Mahony (2006); Fossen (2011); Zhang et al. (2012). The
growing interest in this field mainly arises from the in-
creasing use of autonomous vehicles to accomplish certain
tasks that can be dangerous or that require special effort
from the human operator. However, autonomous vehicles
need precise knowledge of their position and orientation
for trajectory tracking or more general navigation and
positioning tasks Fossen (1994, 2002); Paull et al. (2014).

Most INSs are based on a 9 degrees of freedom (DOF) Iner-
tial Measurement Unit (IMU). IMUs are indeed typically
equipped with three accelerometers for the acceleration
measurements in the body frame, three gyros for the mea-
surement of the angular velocity vector, referred to as the
Earth Centered Inertial (ECI) frame, three magnetometers
allowing for attitude estimation, and a micro-controller in
charge of processing the measurement data acquired from
the above sensors. A common data fusion process is the
strap-down method, consisting in transforming the body
frame accelerometer measurements into inertial frame co-
ordinates, by means of the attitude measurements (com-
ing from the estimation of the gravity vector fused with
the magnetometers) and then performing an open-loop
double integration to estimate the speed and position of
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the vehicle (Woodman (2007); Zhang et al. (2012); Grip
et al. (2013)). It is well known that the strap-down method
provides inaccurate estimates, due to the noise and sensor
biases combined with the open-loop integration of the
acceleration signals. In particular, drifts in the speed and
position estimates must be suitably compensated. Con-
sequently, the IMU-based INS works correctly for short
time windows, but its behavior degrades rapidly as the
integration time increases (Grip et al. (2013)).

In order to cope with this estimation problem, besides the
IMU measurements, further position sensors are typically
required. In particular, outdoor localization is based on
the Global Positioning System (GPS), since it allows
for tracking of a mobile object on the Earth, whenever
the object can receive the satellite signals. While GPS
systems are based on Time-of-Flight (ToF) algorithms,
for indoor scenarios different techniques can be used,
such as the Received Signal Strength Indicator (RSSI),
the Time Difference of Arrival (TDoA) and the ToF
distance measurements. Moreover, for indoor scenarios,
many communication methods between fixed and mobile
devices can be used, like WiFi networks, ultrasonic waves,
optical lasers or UltraWideBand radio signals. The recent
surveys (Liu et al. (2007); Yassin et al. (2016)) describe
different technologies and methods for indoor localization.

In this context, the main challenge is the sensor fusion
between the inertial and position measurements coming
from various sensors implementing different technologies,
operating at different sampling frequencies. Several works
have been published to address this challenge. For ex-
ample (Vik and Fossen (2001)) presents one of the first



nonlinear observers for GPS and IMU sensor data fu-
sion. In (Zhao and Slotine (2005)), based on contraction
theory, a deterministic nonlinear observer is proposed,
which takes into account the sampled-data and sporadic
nature of the measurements, but using additional veloc-
ity measurements (not used in this paper). When these
velocity measurements are available, a nonlinear observer
for inertial navigation is proposed in Grip et al. (2013),
which uses a quaternion-based attitude representation.
That work was then extended in Bryne et al. (2014) by
introducing time-varying observer gains. Similar results
relying on velocity measurements are given in Fusini et al.
(2014), which addresses nonlinear position, velocity and
attitude estimation for Unmanned Aerial Vehicles (UAVs).

In this paper we propose a novel estimation strategy for
inertial navigation in indoor/outdoor environments, with
specific attention to the sporadic nature of position-only
measurements (namely we do not assume the presence of
any velocity sensors). The motivation for our work is that,
especially when operating with beacons and non-periodic
or unreliable communication channels, it is well known
that the sampled position measurements are far from being
available at a fixed frequency. To rigorously represent this
scenario, we adopt the hybrid dynamical systems modeling
framework of Goebel et al. (2012), which provides an
effective and elegant notation, in addition to a number
of useful well-posedness results. This hybrid framework
has been already used in other works dealing with the
design of observers with sporadic measurements Ferrante
et al. (2016); Li et al. (2018); Sferlazza et al. (2019);
Ferrante et al. (2019), due to its suitability for obtaining
accurate models of systems with sampled measurements
and non-periodic time-of-arrival. While those approaches
can solve the estimation problem addressed here, the
explicit solution that we build in this paper is more
effective in terms of the tunability of the estimation error
dynamics due to its peculiar cascaded structure.

The structure of this paper is as follows. After introducing
the inertial navigation model in Section 2, we illustrate
the dynamics of the proposed observer in Section 3,
first discussing the implementation and then deriving the
error dynamics and their cascaded structure. Finally, in
Section 4, we present some experiments carried out using
a hardware-in-the-loop method. The experiments confirm
the effectiveness of the proposed solution in providing
accurate estimates also in the presence of measurement
noise.

Notation: Rn denotes the n-dimensional Euclidean space.
R≥0 denotes the set of nonnegative real numbers. Z de-
notes the set of all integers, while Z≥0 denotes the set
of nonnegative integers. B denotes the closed unit ball, of
appropriate dimensions, in the Euclidean norm. Iq denotes
the identity matrix of dimension q ∈ Z≥0. λm(S) and
λM (S) denote, respectively, the minimum and the max-
imum eigenvalues of a symmetric matrix S. x+ denotes
the state of a hybrid system after a jump. |x| denotes the
Euclidean norm of a vector x ∈ Rn. B, and N denote
the BODY and NED (North-East-Down) reference frames,
respectively.

2. SPORADIC POSITION MEASUREMENTS IN AN
INERTIAL NAVIGATION SYSTEM

Consider the strap-down model of an Inertial Navigation
System (INS) given by: (Bryne et al., 2014, Eq.s (2)-(3)):

v̇n = V (ξnb )γb + g, (1)

ṗn = vn. (2)

where pn := [px py pz]
>

and vn := [vx vy vz]
>

are
respectively the position and velocity vectors expressed

in N coordinates (x, y, z), g := [0 0 g]
>

is the gravity

acceleration referred to the N -frame, γb :=[γxγyγz]
>

is the
acceleration measurement provided by the IMU expressed

in the B-frame, ξnb := [ξ0 ξ1 ξ2 ξ3]
>

is the quaternion
vector, describing the orientation of the B-frame relative
to the N -frame, and matrix V (ξnb ) is the rotation matrix
from the B-frame to the N -frame, as a function of the
associated quaternion, corresponding to
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]
.

The inertial model (1), (2) is obtained under the assump-
tion that the Earth angular velocity about the z-axis of the
Earth-Centered Inertial (ECI) frame is small, so that it can
be neglected (Grip et al., 2013, Remark 2). For further
details about (1), (2) the reader is referred to (Alonge
et al., 2019, Section II).

The strap-down inertial navigation algorithm (Zhao and
Slotine (2005); Grip et al. (2013)) is not robust, because
the speed and the position vectors are obtained by open-
loop integration of the acceleration and this leads to drift
problems. To solve these observability problems, a position
measurement is used, provided by a Global Positioning
System (GPS), for outdoor navigation, or beacons, for
indoor navigation. Consequently, problems arise because
these position measurements are available with a signifi-
cantly lower sampling rate, as compared to the IMU sig-
nals. Moreover the time between two consecutive position
measurements is not constant, thus providing a so-called
sporadic position measurements situation Ferrante et al.
(2016, 2019). In order to formalize the above described
setting, we assume in this paper that no velocity mea-
surement is available and that the only output of system
(1)-(2) is represented by the vector y = pn, only accessible
at discrete instants of time, resulting in a sequence of 3-
dimensional vectors yk, k ∈ Z≥1, defined as:

yk = pnk := pn(tk), (3)

where tk, k ∈ Z≥1, is a sequence of increasing non-negative
real numbers that satisfies the following assumption:

Assumption 1. There exist scalars Tm and TM , with 0 <
Tm ≤ TM , such that:

Tm ≤ |tk+1 − tk| ≤ TM , ∀ k ∈ Z≥1. (4)

Assumption 1 essentially requires that the sporadic mea-
surements yk be available with intersample times that are
lower and upper bounded by positive constants Tm ≤ TM
whose knowledge is not required by the estimation al-
gorithm proposed here. As a consequence, Assumption 1
appears to be an extremely mild assumption ruling out the
defective cases of Zeno behaviors (because Tm is greater



than zero) and the situation of sporadic measurements
whose occurrence becomes increasingly rare as time grows.

Using the hybrid systems formalism of Goebel et al.
(2012), it is possible to represent the sampled-data system
associated with setting (1)–(3) as follows:

v̇n = V (ξnb )γb + g,

ṗn = vn,

τ̇ = 1,

(vn,pn, τ) ∈ C, (5a)


vn+ = vn,

pn+ = pn,

τ+ = 0,

(vn,pn, τ) ∈ D, (5b)

y = pn, (5c)

where the timer τ is an additional state variable keeping
track of the elapsed time since the last measurement, while
sets C and D are respectively the so-called flow set and
jump set, defined as:

C :=R3 × R3 × [0, TM ], (6)

D :=R3 × R3 × [Tm, TM ]. (7)

The impulsive nature of the available measurement is
represented by the extra property that y = pn is only
available at the jump times.

3. CONTINUOUS-DISCRETE OBSERVER
ARCHITECTURE

3.1 Observer dynamics

In this paper, we propose an observer whose structure
implicitly complies with the restriction specified in As-
sumption 1 about the available measurements. Our ob-
server is capable of providing an asymptotic estimate of
the plant state, for any sequence of sampling times tk at
which the sampled output is available, as long as these
times satisfy Assumption 1 for some (not known) values
of 0 < Tm ≤ TM .

The hybrid structure of the proposed observer is the
following one

˙̂vn = V (ξnb )γb + g,
˙̂pn = v̂n,

τ̇ = 1,
˙̃p = 0,

(v̂n, p̂n, τ, p̃)∈C×R3,

(8a)
v̂n+ = v̂n+(1−αv)

(
pn − p̂n − p̃

τ

)
,

p̂n+ = p̂n+(1−αp)(pn − p̂n),

τ+ = 0,

p̃+ = αp(p
n − p̂n)

(v̂n, p̂n, τ, p̃)∈D×R3,

(8b)

where p̃ is an auxiliary “zero-order hold” state vector
propagating the last position correction term across the
intersample interval, and αv and αp are two positive gains
that may be tuned to suitably adjust the estimation error
transient. Note that the measurement y = pn is only
used in the jump dynamics of our observer, which is then
compliant with the measurement constraints imposed by
Assumption 1.

ẽv evSPEED ERROR POSITION ERROR
DYNAMICS DYNAMICSDYNAMICS

ẽv

Fig. 1. Block diagram of the speed and position error
dynamics.

As compared to the architecture used in Alonge et al.
(2019), observer (8) considers a different jump map with
an extra auxiliary state vector p̃. This is necessary be-
cause Alonge et al. (2019) addresses a simpler problem
where both the position and the speed are simultaneously
measured. In the setting addressed here, where only the
sampled position measurement is available, a more sophis-
ticated dynamic correction is required.

3.2 Error Dynamics and Main Result

The main result of this work proves stability and conver-
gence of the estimation error in the extended error space
corresponding to the error variables

e :=

[
ev
ep

]
:=

[
vn

pn

]
−
[
v̂n

p̂n

]
(9a)

ẽv := ep − p̃− τev (9b)

and provides design rules to select the tuning gains αv and
αp in (8). In particular, with the error variables (9), the
corresponding error dynamics issued from (5)-(8) is well
represented by the cascaded structure schematically shown
in Figure 1. In this figure, the upper subsystem, governed
by the dynamics of ẽv, converges to zero in finite time
at the first measurement instant; the middle subsystem,
governed by the velocity error dynamics ev, provides a con-
stant continuous-time behavior in the inter-measurement
periods and a discretely converging dynamics (tunable by
adjusting αv) at the measurement instants, perturbed by
input ẽv. Finally, the third subsystem, governed by the po-
sition error dynamics ep, provides a constant continuous-
time behavior perturbed by the velocity error ev in the
inter-measurement periods, and a discretely converging
dynamics (tunable by adjusting αp) at the measurement
instants.

For clarity of exposition, we write the three dynamics
represented in Figure 1 as three different systems, even
though it is emphasized that the variable τ governing the
jumps is the same one for all of them. By considering (5)
and (8), the hybrid position error dynamics can be written
as: {

ėp = ev,
τ̇ = 1,

(ep, τ) ∈ R3 × [0, TM ], (10a){
ep

+ = αpep,
τ+ = 0,

(ep, τ) ∈ R3 × [Tm, TM ], (10b)

while, the speed error dynamics can be written as:{
ėv=0,
τ̇=1,

(ev, τ)∈R3×[0, TM ], (11a){
ev

+ =αvev+
αv−1

τ
ẽv,

τ+ =0,
(ev, τ)∈R3×[Tm, TM ]. (11b)

Finally, the dynamics of ẽv is governed by



(a) (b) (c)

Fig. 2. Reference position trajectory (a). Reference yaw angle (b). Evolution of the timer variable τ showing the sporadic nature of the
sampled position measurements (c).{

˙̃ev=0,
τ̇=1,

(ẽv, τ)∈R3×[0, TM ], (12a){
ẽv

+ =0,
τ+ =0,

(ẽv, τ)∈R3×[Tm, TM ]. (12b)

Remark 1. The cascaded interconnection represented in
Figure 1 and whose dynamics correspond to (10), (11) and
(12) is somewhat peculiar because: 1) the upper subsystem
converges to zero in finite time (at the first jump); 2)
the middle subsystem converges asymptotically to zero
being perturbed by the upper subsystem across jumps;
3) the lower subsystem converges asymptotically to zero
being perturbed by the upper subsystem along flows. This
somewhat peculiar continuous-discrete cascaded intercon-
nection naturally emerges from the continuous-discrete
nature of the observer. y

Our main result provides necessary and sufficient condi-
tions for the gains αp and αv in the observer dynamics
(8) to ensure global exponential stability (GES) of the
compact set (the attractor):

A :=
{

(e, ẽv, τ) : e=0, ẽv=0, τ ∈ [0, TM ]
}
, (13)

for the error dynamics (10), (11) and (12). The attractor
in (13) corresponds to the set where the estimation error
is zero, therefore our main result establishes necessary
and sufficient conditions for exponential estimation of the
unmeasured states pn and vn.

Theorem 1. Set A in (13) is globally exponentially stable
for the error dynamics (10), (11) and (12) if and only if
the gains αp and αv satisfy |αp| < 1 and |αv| < 1. In
particular, those conditions hold if and only if there exist
positive scalars κ and λ such that all solutions to (5)–(8)
satisfy[
vn(t, j)−v̂n(t, j)
pn(t, j)−p̂n(t, j)

]
=

[
ev(t, j)
ep(t, j)

]
≤κe−λ(t+j)

∣∣∣∣∣
[
ev(0, 0)
ep(0, 0)
ẽv(0, 0)

]∣∣∣∣∣ .
(14)

While the proof of Theorem 1 is omitted for lack of space,
we emphasize here that the error dynamics (10), (11)
and (12) satisfies the hybrid basic assumptions of (Goebel
et al., 2012, As. 6.5) (which in this single-valued case
corresponds to checking that the flow and jump sets are
closed and the flow and jump maps are continuous in these
respective sets). Therefore, since the attractor A in (13)
is compact, according to (Goebel et al., 2012, Ch. 7), the
established GAS property is uniform, namely the proposed
observer (8) provides uniformly convergent asymptotic

Fig. 3. Actual and estimated positions in test 1 (noise-free).

estimates of pn and vn under the stated assumptions on
the gains. Finally, due to (Goebel et al., 2012, Ch. 7),
sufficiently small modeling and measurement errors do not
destroy such a stability property, but provide a graceful
performance degradation in a semiglobal practical sense.

4. HARDWARE-IN-THE-LOOP RESULTS

We test observer (8) by running some hardware-in-the-
loop experiments. To this end, the hybrid dynamics (8)
has been implemented in a Raspberry-PI 3 with a sam-
pling frequency of 100 Hz. While, by means of Matlab R©-
simulink R©, a suitable realistic scenario has been simulated
resembling a possible path associated to the motion of a
mobile vehicle. The corresponding trajectory is shown in
Figures 2(a) and 2(b), which display the reference posi-
tion and yaw angle, respectively. In the hardware-in-the-
loop setup, sampled measurements of this trajectory, as
well as accelerations and attitude angles are sent to the
Raspberry. In particular, the IMU data corresponding to
the accelerations and attitude angles are provided to the
Raspberry periodically with a fixed frequency coinciding
with its operating frequency (100 Hz), while the sporadic
position measurements are available at random instants of
time satisfying Assumption 1 for some small enough Tm
and some large enough TM . Even though these values are
not important (the observer dynamics is independent of
them), here we selected Tm = 0.5s and TM = 1.5s. The
evolution of the timer variable τ is reported in Fig. 2(c),
showing that the measurements occur randomly in the
interval [Tm, TM ], according to the described dynamics.



Fig. 4. Actual and estimated velocities in test 1 (noise-free).

Fig. 5. Position errors ep (upper plot) and velocity errors ep
(bottom plot) in test 1 (noise-free).

Fig. 6. Actual and estimated positions in test 2 (noisy).

The parameters of the observer have been fixed at αv =
0.9 and αp = 0.9 and the initial conditions are pn0 =
[10 10 10] and vn0 = [−0.85 −0.85 −0.85]. Two tests have
been performed: in test 1 (noise-free case) the position
trajectory of Fig. 2(a) has been exactly sampled, at the
sporadic times discussed above, and fed to the observer.
Similarly, the accelerations γb and the attitude angles ξnb
have been fed to the observer in a noise-free scenario. In
test 2 (noisy case) for the same values of the observer
parameters and initial conditions, the measurements have
been corrupted by noise. In particular, the accelerations

Fig. 7. Actual and estimated velocities in test 2 (noisy).

Fig. 8. Position errors ep (upper plot) and velocity errors ep
(bottom plot) in test 2 (noisy).

Fig. 9. Waveforms of the position error ep (upper plot) and of the
velocity error ep (bottom plot) for different values of αp and
αv .

have been corrupted by a Gaussian zero mean white noise
having standard deviation equal to 0.04 m/s2, while the
position has been corrupted by a Gaussian zero mean
white noise having standard deviation equal to 0.5 m.

The results of the noise-free test 1 are shown in Figures 3-
5. In particular Figures 3 and 4 show the real and the
estimated positions and velocities. It is apparent that
the estimated variables exponentially converge to the
corresponding state variables (all the errors exponentially
converge to zero). The hybrid behavior of the estimate



is clearly visible, especially during the initial transient.
Indeed, in Fig. 5 the velocity error is constant during
flowing, and decreases across jumps, as expected from the
theoretical results Theorem 1, while the position error
respects the bound given in Theorem 1. Figure 5 provides
further insight by showing suitably zoomed (transient and
steady-state) areas from Figure 5.

Similar tests have been provided for test 2 (noisy case),
and are reported in Figures 6-8. These noisy tests confirm
that the observer is able to cope with noisy measurements,
since both the position and the velocity are well estimated
by a suitable filtering action of the measurement noise.

Finally Figure 9 shows the position error ep and the
velocity error ev for different values of αp and αv. As
one may expect from the error dynamics characterized in
Theorem 1, the closer αp and αv are to zero, the higher
the convergence rate of the estimation error will be, but a
higher convergence rate leads to a reduced filtering action
on the measurement noise. The choice of αp and αv then
should be carried out as a trade-off between these two
goals. Note also that the convergence rate is influenced by
the values of Tm and TM . Indeed, if the measurements are
accessible less frequently, then the convergence rate results
to be slower.

5. CONCLUSIONS

In this paper, a novel estimation strategy for inertial
navigation in indoor/outdoor environments has been pro-
posed with specific attention to the sporadic nature of the
sampled-data measurements. After introducing the iner-
tial navigation model, an observer providing exponentially
converging position and velocity estimates has been pro-
posed. A hybrid dynamical systems framework has been
used for presenting our results. The main theorem proves
uniform exponential convergence to zero of the estimation
error, together with an intuitive selection of the observer
gains. Hardware-in-the-loop experiments confirmed the ef-
fectiveness of the proposed approach and the capability
of the described observer to also deal with measurement
noise.
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