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Abstract

This research gauges the ability of deep reinforcement learning (DRL) techniques to assist the
control of conjugate heat transfer systems. It uses a novel, “degenerate” version of the proxi-
mal policy optimization (PPO) algorithm to train a neural network in optimizing said system
only once per learning episode, and an in-house stabilized finite elements environment combining
variational multiscale (VMS) modeling of the governing equations, immerse volume method, and
multi-component anisotropic mesh adaptation to compute the numerical reward fed to the neural
network. Several test cases of natural and forced convection are used as testbed for developing
the methodology, that proves successful to alleviate the heat transfer enhancement related to the
onset of convection in a two-dimensional, differentially heated square cavity, and to improve the
homogeneity of temperature across the surface of two and three-dimensional hot workpieces under
impingement cooling. Beyond adding value to the shallow literature on this subject, these findings
establish the potential of single-step PPO for reliable black-box optimization of computational fluid
dynamics (CFD) systems, and pave the way for future progress in the optimal control of conjugate
heat transfer using this new class of methods.

Keywords: Deep Reinforcement Learning; Artificial Neural Networks; Conjugate heat transfer;
Computational fluid dynamics; Thermal control.

1. Introduction1

Thermal control, defined as the ability to finesse the thermal properties of a volume of fluid2

(and of the solid objects inside) into a certain desired state, is a field of tremendous societal and3

economical importance. For instance, heat/cool exchangers are used in a broad range of indus-4

trial applications to regulate process temperatures by heat or cool transfer between fluid media,5

which in turn ensures that machinery, chemicals, water, gas, and other substances remain within6

safe operating conditions. Green building engineering is another field relying on such ability to7

manage indoor thermal conditions (temperature, humidity) under substantial variations of the am-8

bient conditions to provide high-quality living and working environments. In many manufacturing9

processes, thermal conditioning is also intended to improve the final mechanical (e.g., hardness,10

toughness, resistance), electrical, or optical properties of the product, the general picture being11

that high temperature gradients are useful to speed up the process but generally harm the quality12

of the outcome because of heat transfer inhomogeneities caused by the increased convection by the13

fluid particles. All such problems fall under the purview of this line of study.14

Numerous strategies have been implemented to control fluid mechanical systems (including con-15

jugate heat transfer systems combining thermal conduction in the solid and convective transfer in16

the fluid), either open-loop with passive appendices (e.g., end plate, splitter plate, small secondary17

cylinder, or flexible tail), or open-loop with actuating devices (e.g., plasma actuation, boundary18

temperatures, steady or unsteady base bleeding, rotation) or closed-loop (e.g. via transverse mo-19

tion, perturbations of the thermal boundary layer, blowing/suction, rotation, all relying on an20

appropriate sensing of flow variables). Nonetheless, many of the proposed strategies are trial and21
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error, and therefore require extensive and costly experimental or numerical campaigns. This has22

motivated the development of analytical methods and numerical algorithms for the optimal control23

of Navier–Stokes systems [1–3], and the maturing of mathematical methods in flow control and24

discrete concepts for PDE constrained optimization. Applications to the heat equation [4] and the25

coupled Navier–Stokes and heat equations [5–8] have also been considered, including fresh devel-26

opments meant to alter the linear amplification of flow disturbances [9], but the general picture27

remains that the optimal control of conducting, convecting fluids has not been extensively studied.28

The premise of this research is that the related task of selecting an optimal subset of control29

parameters can alternatively be assisted by machine learning algorithms. Indeed, the introduction30

of the back-propagation algorithm [10] has progressively turned Artificial Neural Networks (ANN)31

into a family of versatile non-parametric tools that can be trained to hierarchically extract informa-32

tive features from data and to provide qualitative and quantitative modeling predictions. Together33

with the increased affordability of high performance computational hardware, this has allowed34

leveraging the ever-increasing volume of data generated for research and engineering purposes into35

novel insight and actionable information, which in turn has entirely transformed scientific disci-36

plines, such as robotics [11, 12] or image analysis [13]. Owing to the ability of neural networks37

to handle stiff, large-scale nonlinear problems [14], machine learning algorithms have also been38

making rapid inroads in fluid mechanics, as a mean to solve the Navier–Stokes equations [15] or39

to predict closure terms in turbulence models [16]; see also Ref. [17] for an overview of the current40

developments and opportunities.41

Neural networks can also be used to solve decision-making problems, which is the purpose of42

Deep Reinforcement Learning (DRL, where the deep terminology generally weighs on the sizable43

depth of the network), an advanced branch of machine learning. Simply put, a neural network44

trains in finding out which actions or succession of actions maximize a numerical reward signal,45

with the possibility for a given action to affect not only the immediate but also the future rewards.46

Successful applications of DRL range from AlphaGo, the well-known ANN that defeated the top-47

level human player at the game of Go [18] to the real-word deployment of legged robots [19], to48

breakthroughs in computer vision (e.g., filtering, or extracting image features) [20] and optimal49

control problems [21, 22]. Despite the many achievements, DRL remains surprisingly sparsely50

used in fluid mechanics, with a limited amount of literature barely scratching the surface of the51

performance improvements to be delivered in low-Reynolds-number flow control [23–25] and shape52

optimization [26]. The literature on thermal control is even more sparse, with only Ref. [27]53

addressing the control of natural convection dominated heat transfer (this is a recent effort similar54

to the present work, conducted in the same time frame, that we became aware of during the55

redaction of this manuscript), plus a few other publications dealing with energy efficiency in civil56

engineering from low-dimensional thermodynamic models basically unrelated to the equations of57

fluid dynamics [28, 29].58

This research assesses the feasibility of using proximal policy optimization (PPO [22]) for control59

and optimization purposes of conjugate heat transfer systems, as governed by the coupled Navier–60

Stokes and heat equations. The objective here is to keep shaping the capabilities of the method61

(PPO is still a relatively newcomer that has quickly emerged as the go-to DRL algorithm due to62

its data efficiency, simplicity of implementation and reliable performance) and to narrow the gap63

between DRL and advanced numerical methods for multiscale, multi-physics computational fluid64

dynamics (CFD). We investigate more specifically the “degenerate” single-step PPO algorithm65

introduced in [26], in which the neural network gets only one attempt per learning episode at66

finding the optimal. Several problems of conjugate heat transfer in two and three dimensions are67

used as testbed to push forward the development of this novel approach, whose high potential as68

a reliable black-box optimizer for CFD problems (where only the final configuration is of interest)69

has been recently assessed for aerodynamic applications [30]. To the best of the authors knowledge,70

this constitutes the first attempt to achieve DRL-based control of forced convection (with [27] being71

the first attempt to achieve DRL control of natural convection, to give credit where it is due).72

The organization is as follows: section 2 outlines the main features of the finite element CFD73

environment used to compute the numerical reward fed to the neural network, that combines74

variational multiscale (VMS) modeling of the governing equations, immerse volume method, and75

multi-component anisotropic mesh adaptation. The baseline principles and assumptions of DRL76

and PPO are presented in section 3, together with the specifics of the single-step PPO algorithm.77
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Section 4 revisits the natural convection case of [27] for the purpose of validation and assessment78

part of the method capabilities. In section 5, DRL is used to control conjugate heat transfer in79

a model setup of two-dimensional workpiece cooling by impingement of a fluid. An extension to80

three-dimensional workpieces is proposed in section 6.81

2. Computational fluid dynamics82

The focus of this research is on conjugate heat transfer and laminar, incompressible fluid flow83

problems in two and three-dimensions, for which the conservation of mass, momentum and energy84

is described by the nonlinear, coupled Navier–Stokes and heat equations85

∇ · u = 0 , (1)
ρ(∂tu+ u · ∇u) = ∇ · (−pI + 2µε(u)) +ψ , (2)

ρcp(∂tT + u · ∇T ) = ∇ · (λ∇T ) + χ , (3)

where u is the velocity field, p is the pressure, T is the temperature, ε(u) = (∇u+∇uT )/2 is the86

rate of deformation tensor, ψ and χ are source terms (modeling, e.g., buoyancy or radiative heat87

transfer), and we assume here constant fluid density ρ, dynamic viscosity µ, thermal conductivity88

λ, and specific heat cp.89

2.1. The immersed volume method90

The numerical modeling of conjugate heat transfer mostly depends upon a heat transfer co-91

efficient to ensure that the proper amount of heat is exchanged at the fluid/solid interface via92

thermal boundary conditions. Computing said coefficient is no small task (as it requires solving93

an inverse problem to assimilate experimental data, which in turn requires relevant experimental94

data to be available), and is generally acknowledged to be a limiting issue for practical applica-95

tions where one must vary, e.g., the shape, number and position of the solid, or the fluid and/or96

solid material properties. We thus rather use here the immerse volume method (IVM) to combine97

both the fluid and solid phases into a single fluid with variable material properties. Simply put,98

we solve equations formally identical to (1)-(3) on a unique computational domain Ω, but with99

variable density, dynamic viscosity, conductivity, and specific heat, which removes the need for a100

heat transfer coefficient since the amount of heat exchanged at the interface then proceeds solely101

from the individual material properties on either side of it. In order to ensure numerical accu-102

racy, such an approach must combine three key ingredients, that are briefly reviewed in the next103

paragraphs: an interface capturing method, anisotropic mesh adaptation to achieve a high-fidelity104

description of said interface, and relevant mixing laws to describe the properties of the composite105

fluid. One point worth being mentioned is that the interface here is static, although the same106

numerical framework can be used to dynamically track moving interfaces, and thus to encompass107

the effect of solid displacements. This is because the solid is fixed once an action has been taken108

by the PPO agent, although not fixed over the course of optimization, as the solid position can109

very well be the quantity subjected to optimization, as illustrated in section 5.3.4.110

111

- Level set method:. the level set approach is used to localize the fluid/solid interface by the zero112

iso-value of a smooth function. In practice, a signed distance function φ is used to localize the113

interface and initialize the material properties on both either side of it, with the convention that114

φ > 0 (res. φ < 0) in the fluid (resp. the solid).115

116

- Anisotropic mesh adaptation:. the interface may intersect arbitrarily the mesh elements if it117

is not aligned with the element edges, in which case discontinuous material properties across118

the interface can yield oscillations of the numerical solutions. We thus use the anisotropic mesh119

adaptation technique presented in [31] to ensure that the material properties are distributed as120

accurately and smoothly as possible over the smallest possible thickness around the interface. This121

is done computing modified distances from a symmetric positive defined tensor (the metric) whose122

eigenvectors define preferential directions along which mesh sizes can be prescribed from the related123
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eigenvalues. The metric used here is isotropic far from the interface, with mesh size set equal to124

h∞ in all directions, but anisotropic near the interface, with mesh size equal to h⊥ in the direction125

normal to the interface, and to h∞ in the other directions, which can be written for an intended126

thickness δ as127

M = K(φ)n⊗ n+ 1
h∞

I with K(φ) =

 0 if |φ| ≥ δ/2 ,
1
h2
⊥
− 1
h2
∞

if |φ| < δ/2 , (4)

where n = ∇φ/||∇φ|| is the unit normal to the fluid/solid interface computed from the level set128

gradient. A posteriori anisotropic error estimator is then used to minimize the interpolation error129

under the constraint of a fixed number of edges in the mesh. A unique metric can be built from130

multi-component error vectors [31–34], which is especially relevant for conjugate heat transfer op-131

timization, as it allows each learning episode to use an equally accurate mesh adapted from the132

velocity vector and magnitude, the temperature field, and the level set.133

134

- Mixing laws:. the composite density, dynamic viscosity and specific heat featured in equations (1)-135

(3) are computed by linear interpolation of the fluid and solid values, for instance the composite136

density is137

ρ = ρfHε(φ) + ρs(1−Hε(φ)) , (5)

where Hε is the smoothed Heaviside function defined as138

Hε(φ) =


0 if φ < −ε ,
1
2(1 + φ

ε
+ 1
π

sin(πφ
ε

)) if |φ| ≤ ε ,
1 if φ > ε ,

(6)

and ε is a regularization parameter proportional to the mesh size in the normal direction to the139

interface, set here to ε = 2h⊥. Doing so for the thermal conductivity would however lead to inac-140

curate results [35], hence the inverse of the thermal conductivity is linearly interpolated according141

to142

1
λ

= 1
λf
Hε(φ) + 1

λs
(1−Hε(φ)) , (7)

to ensure conversation of the heat flux.143

2.2. Variational multiscale approach (VMS)144

In the context of finite element methods (that remain widely used to simulate engineering145

CFD systems due to their ability to handle complex geometries), direct numerical simulation146

(DNS) solves the weak form of (1)-(3), obtained by integrating by parts the pressure, viscous and147

conductive terms, to give148

(ρ(∂tu+ u · ∇u) , w) + (2µε(u) , ε(w))− (p , ∇ ·w) + (∇ · u , q) = (ψ , w) , (8)
(ρcp(∂tT + u · ∇T ) , s) + (λ∇T , ∇s) = (χ , s) , (9)

where ( , ) is the L2 inner product on the computational domain, w, q and s are relevant test149

functions for the velocity, pressure and temperature variables, and all fluid properties are those150

mixed with the smoothed Heaviside function defined in (6).151

We use here the variational multiscale (VMS) approach [36–38] to solve a stabilized formulation152

of (8)-(9), which allows circumventing the Babuska—Brezzi condition (that otherwise imposes that153

different interpolation orders be used to discretize the velocity and pressure variables, while we154

use here simple continuous piecewise linear P1 elements for all variables) and prevents numerical155

instabilities in convection regimes at high Reynolds numbers. We shall not go into the extensive156

details about the derivation of the stabilized formulations, for which the reader is referred to [39, 40].157

Suffice it to say here that the flow quantities are split into coarse and fine scale components, that158
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correspond to different levels of resolution. The fine scales are solved in an approximate manner159

to allow modeling their effect into the large-scale equations, which gives rise to additional terms in160

the right-hand side of (8)-(9), and yields the following weak forms for the large scale161

(ρ(∂tu+ u · ∇u) , w) + (2µε(u) , ε(w))− (p , ∇ ·w) + (∇ · u , q) = (ψ , w)

+
∑
K∈Th

[(τ1RM , u · ∇w)K + (τ1RM , ∇q)K + (τ2RC , ∇ ·w)K ] , (10)

(ρcp(∂tT + u · ∇T ) , s) + (λ∇T , ∇s) = (χ , s)

+
∑
K∈Th

[(τ3RT , u · ∇s)K + (τ4RT , u‖ · ∇s)K ] , (11)

where ( , )K is the inner product on element K, and the R terms are residuals for the governing162

equations defined by163

−RC = ∇ · u , −RM = ρ(∂tu+ u · ∇u) +∇p−ψ −RT = ρcp(∂tT + u · ∇T )− χ , (12)

In (10), τ1,2 are ad-hoc mesh-dependent stabilization parameters defined in [41, 42]. In (11), u‖ is164

the projection of the velocity along the direction of the temperature gradient, and τ3,4 are mesh-165

independent stabilization parameters acting both in the direction of the solution and of its gradient,166

that proceed from the stabilization of the ubiquitous convection-diffusion-reaction equation [43, 44],167

whose definition is given in [45, 46].168

The governing equations are solved sequentially, i.e., we solve first (10), then use the resulting169

fluid velocity to solve (11). All linear systems are preconditioned with a block Jacobi method170

supplemented by an incomplete LU factorization, and solved with the GMRES algorithm, with171

tolerance threshold set to 10−6 for the Navier–Stokes equations, and 10−5 for the heat equation.172

The time derivatives, source and VMS stabilization terms are approximated explicitly with the173

forward Euler scheme. The viscous, pressure and divergence terms of the Navier–Stokes equations174

are integrated implicitly with the backward Euler scheme. The convection term is discretized175

semi-implicitly using the first-order backward Newton–Gregory formula, which yields176

(ρ(u
i+1 − ui

∆t + ui · ∇ui+1) , w) + (2µε(ui+1) , ε(w))− (pi+1 , ∇ ·w) + (∇ · ui+1 , q) = (ψi , w)

+
∑
K∈Th

[(τ i1Ri+1
M , ui · ∇w)K + (τ i1Ri+1

M , ∇q)K + (τ i2Ri+1
C , ∇ ·w)K ] , (13)

with residuals177

−Ri+1
C = ∇ · ui+1 , −Ri+1

M = ρ(u
i+1 − ui

∆t + ui · ∇ui+1) +∇pi+1 −ψi , (14)

where the i superscript refers to the solution at time ti = i∆t. The convection and conduction178

terms of the heat equation are integrated implicitly with the backward Euler scheme, to give179

(ρcp(
T i+1 − T i

∆t + ui+1 · ∇T i+1) , s) + (λ∇T i+1 , ∇s) = (χi , s)

+
∑
K∈Th

[(τ i3Ri+1
T , ui+1 · ∇s)K + (τ i4Ri+1

T , ui+1
‖ · ∇s)K ] , (15)

with residual180

−Ri+1
T = ρcp(

T i+1 − T i

∆t + ui+1 · ∇T i+1)− χi . (16)

We solve (13)-(15) with an in-house VMS solver whose accuracy and reliability with respect to the181

intended application has been assessed in a series of previous papers; see especially [42, 47] for a182

detailed presentation of the mathematical formulation relevant to the IVM of a rigid body in an183

incompressible fluid and [40, 48] for an application to conjugate heat transfer analysis.184
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Figure 1: Fully connected neural network with two hidden layers, modeling a mapping from R3 to R2.

3. Deep reinforcement learning and proximal policy optimization185

3.1. Neural networks186

A neural network (NN) is a collection of artificial neurons, i.e., connected computational units187

that can be trained to arbitrarily well approximate the mapping function between input and output188

spaces. Each connection provides the output of a neuron as an input to another neuron. Each189

neuron performs a weighted sum of its inputs, to assign significance to the inputs with regard to the190

task the algorithm is trying to learn. It then adds a bias to better represent the part of the output191

that is actually independent of the input. Finally, it feeds an activation function that determines192

whether and to what extent the computed value should affect the outcome. As sketched in figure 1,193

a fully connected network is generally organized into layers, with the neurons of one layer being194

connected solely to those of the immediately preceding and following layers. The layer that receives195

the external data is the input layer, the layer that produces the outcome is the output layer, and196

in between them are zero or more hidden layers.197

The design of an efficient neural network requires a proper optimization of the weights and198

biases, together with a relevant nonlinear activation function. The abundant literature available199

on this topic points to a relevant network architecture (e.g., type of network, depth, width of each200

layer), finely tuned hyper parameters (i.e., parameters whose value cannot be estimated from data,201

e.g., optimizer, learning rate, batch size) and a sufficiently large amount of data to learn from as202

being the key ingredients for success; see, e.g., Ref. [49] and the references therein.203

3.2. Deep reinforcement learning204

Deep reinforcement learning (DRL) is an advanced branch of machine learning in which deep205

neural networks train in solving sequential decision-making problems. It is a natural extension of206

reinforcement learning (RL), in which an agent (the neural network) is taught how to behave in207

an environment by taking actions and by receiving feedback from it under the form of a reward208

(to measure how good or bad the taken action was) and information (to gauge how the action209

has affected the environment). This can be formulated as a Markov Decision Process, for which a210

typical execution goes as follows (see also figure 2):211

• assume the environment is in state st ∈ S at iteration t, where S is a set of states,212

• the agent uses wt, an observation of the current environment state (and possibly a partial213

subset of st) to take action at ∈ A, where A is a set of actions,214

• the environment reacts to the action and transitions from st to state st+1 ∈ S,215

• the agent is fed with a reward rt ∈ R, where R is a set of rewards, and a new observation216

wt+1,217

This repeats until some termination state is reached, the succession of states and actions defining218

a trajectory τ =
(
s0, a0, s1, a1, ...

)
. In any given state, the objective of the agent is to determine219

the action maximizing its cumulative reward over an episode, i.e., over one instance of the scenario220
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Environment
st 7→ st+1

Agent
rt

at

wt

Figure 2: RL agent and its interactions with its environment.

in which the agent takes actions. Most often, the quantity of interest is the discounted cumulative221

reward along a trajectory defined as222

R(τ) =
T∑
t=0

γtrt , (17)

where T is the horizon of the trajectory, and γ ∈ [0, 1] is a discount factor that weighs the relative223

importance of present and future rewards (the agent being short-sighted in the limit where γ → 0,224

since it then cares solely about the first reward, and far-sighted in the limit where γ → 1, since it225

then cares equally about all rewards).226

There exist two main types of RL algorithms, namely model-based methods, in which the227

agent tries to build a model of how the environment works to make predictions about what the228

next state and reward will be before taking any action, and model-free methods, in which the agent229

conversely interacts with the environment without trying to understand it, and are prominent in230

the DRL community. Another important distinction to be made within model-free algorithms231

is that between value-based methods, in which the agent learns to predict the future reward of232

taking an action when provided a given state, then selects the maximum action based on these233

estimates, and policy-based methods, in which it optimizes the expected reward of a decision policy234

mapping states to actions. Many of the most successful algorithms in DRL (including proximal235

policy optimization, whose assessment for flow control and optimization purposes is the primary236

motivation for this research) proceed from policy gradient methods, in which gradient ascent is237

used to optimize a parameterized policy with respect to the expected return, as further explained238

in the next section. The reader interested in a more thorough introduction to the zoology of RL239

methods (together with their respective pros and cons) is referred to Ref. [50].240

3.3. From policy methods to Proximal policy optimization241

This section intended for the non-specialist reader briefly reviews the basic principles and as-242

sumptions of policy gradient methods, together with the various steps taken for improvement.243

244

- Policy methods.. A policy method maximizes the expected discounted cumulative reward of a245

decision policy mapping states to actions. It resorts not to a value function, but to a probability246

distribution over actions given states, that fully defines the behavior of the agent. Since policies247

are most often stochastic, the following notations are introduced:248

• π(s, a) is the probability of taking action a in state s under policy π,249

• Qπ(s, a) is the expected value of the return of the policy after taking action a in state s (also250

termed state-action value function or Q-function)251

Qπ(s, a) = Eπ
[
R(τ)|s, a

]
, (18)
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• V π(s) is the expected value of the return of the policy in state s (also termed value function252

or V-function)253

V π(s) = Eπ
[
R(τ)|s

]
. (19)

The V and Q functions are therefore such that254

V π(s) =
∑
a

π(s, a)Qπ(s, a) , (20)

so V π(s) can also be understood as the probability-weighted average of discounted cumulated255

rewards over all possible actions in state s.256

- Policy gradient methods.. A policy gradient method aims at optimizing a parametrized policy257

πθ, where θ denotes the free parameters whose value can be learnt from data (as opposed to the258

hyper parameters). In practice, one defines an objective function based on the expected discounted259

cumulative reward260

J(θ) = Eτ∼πθ
[
R(τ)

]
, (21)

and seeks the parameterization θ∗ maximizing J(θ), hence such that261

θ∗ = arg max
θ

Eτ∼πθ
[
R(τ)

]
, (22)

which can be done on paper by plugging an estimator of the policy gradient ∇θJ(θ) into a gradient262

ascent algorithm. This is no small task as one is looking for the gradient with respect to the policy263

parameters, in a context where the effects of policy changes on the state distribution are unknown264

(since modifying the policy will most likely modify the set of visited states, which will in turn affect265

performance in some indefinite manner). The most commonly used estimator, derived in [50] using266

the log-probability trick, reads267

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0
∇θ log (πθ(st, at))R(τ)

]
∼ Eτ∼πθ

[
T∑
t=0
∇θ log (πθ(st, at))Aπ(s, a)

]
, (23)

where the rightmost term is a convenient approximation relying on the advantage function268

Aπ(s, a) = Qπ(s, a)− V π(s) , (24)

that measures the improvement (if A > 0, otherwise the lack thereof) associated with taking action269

a in state s compared to taking the average over all possible actions. This is because the value270

function does not depend on θ, so taking it off changes neither the expected value, nor the gradient,271

but it does reduce the variance, and speeds up the training. Furthermore, when the policy πθ is272

represented by a neural network (in which case θ simply denotes the network weights and biases273

to be optimized), the focus is rather on the policy loss defined as274

L(θ) = Eτ∼πθ

[
T∑
t=0

log (πθ(at|st))Aπ(s, a)
]
, (25)

whose gradient is equal to the (approximated) policy gradient (23) (since the gradient operator acts275

only on the log-policy term, not on the advantage) and is computed with respect to each weight276

and bias by the chain rule, one layer at the time, using the back-propagation algorithm [10].277

278

- Trust regions.. The performance of policy gradient methods is hurt by the high sensitivity to the279

learning rate, i.e., the size of the step to be taken in the gradient direction. Indeed, small learning280

rates are detrimental to learning, but large learning rates can lead to a performance collapse if the281

agent falls off the cliff and restarts from a poorly performing state with a locally bad policy. This282

is all the more harmful as the learning rate cannot be tuned locally, meaning that an above average283
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Figure 3: Agent network example used to map states to policy. The input state s0, here of size 2, is mapped to a
mean µ and a standard deviation σ vectors, each of size 2. All activation functions are ReLu, except for that of the
last layer, which are linear for the µ output, and softplus for the σ output. Orthogonal weights initialization is used
throughout the network.

learning rate will speed up learning in some regions of the parameter space where the policy loss284

is relatively flat, but will possibly trigger an exploding policy update in other regions exhibiting285

sharper variations. One way to ensure continuous improvement is by imposing a trust region con-286

straint to limit the difference between the current and updated policies, which can be done by287

determining first a maximum step size relevant for exploration, then by locating the optimal point288

within this trust region. We will not dwell on the intricate details of the many algorithms developed289

to solve such trust region optimization problems, e.g., natural policy gradient (NPG [51]), or trust290

region policy optimization (TRPO [52]). Suffice it to say that they use the minorize-maximization291

algorithm to maximize iteratively a surrogate policy loss (i.e. a lower bound approximating locally292

the actual loss at the current policy), but are difficult to implement and can be computationally293

expensive, as they rely on an estimate of the second-order gradient of the policy log probability.294

295

- Proximal policy optimization.. Proximal policy optimization (PPO) is another approach with296

simple and effective heuristics, that uses a probability ratio between the two policies to maximize297

improvement without the risk of performance collapse [22]. The focus here is on the PPO-clip298

algorithm1, that optimizes the surrogate loss299

L(θ) = E(s,a)∼πθ

[
min

(
πθ(a|s)
πθold(a|s)A

πθ (s, a), g(ε, Aπθ (s, a))
)]

, (26)

where300

g(ε, A) =
{

(1 + ε)A A ≥ 0 ,
(1− ε)A A < 0 ,

(27)

and ε ∈ [0.1, 0.3] is the clipping range, a small hyper parameter defining how far away the new301

policy is allowed to go from the old. In practice, a state-action pair yielding a positive advantage302

will cause πθ(a|s) to increase for the action to become more likely. By doing so, if it increases303

in a way such that πθ(a|s) > (1 + ε)πθold(a|s), the min kicks in (26) and its argument hits a304

ceiling of (1 + ε)Aπθ (s, a). Conversely, a state-action pair yielding a negative advantage will cause305

πθ(a|s) to decrease for the action to become less likely. If it increases in a way such that πθ(a|s) <306

(1−ε)πθold(a|s), the max kicks in and its argument hits a ceiling of (1−ε)Aπθ (s, a). In neither case307

does the new policy has any incentive to step too far away from the current policy, which ensures308

that both policies will behave similarly.309

The strengths of the approach lie in the fact that the clipped surrogate itself is cheap to310

compute, and that it needs only an estimate of the first-order gradient of the policy log probability311

1There is also a PPO-Penalty variant which uses a penalization on the average Kullback–Leibler divergence
between the current and new policies, but PPO-clip performs better in practice.
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s0 Agent Parallel
envs.

at

rt

θt → θt+1

Figure 4: Action loop for single-step PPO. At each episode, the input state s0 is provided to the agent, which in
turn provides n actions to n parallel environments. The latter return n rewards, that evaluate the quality of each
action taken. Once all the rewards are collected, an update of the agent parameters is made using the PPO loss
(26).

(like policy gradient methods). Refinements have been proposed recently, for instance the Trust312

region PPO (TRGPPO) that adaptively adjusts the clipping range within the trust region [53], but313

classic PPO is generally acknowledged to be one of the most successful DRL method, combining314

ease of implementation and tuning, together with state-of-the-art performance across a wide range315

of challenging tasks.316

3.4. Single-step PPO317

We now come to the single-step PPO method proposed in [26], a “degenerate” version of PPO318

in which the agent and the environment get to exchange only one single triplet (s, a, r) per learning319

episode. This represents a significant difference with respect to classic Markov-based methods. and320

amounts to view the agent as a parameterized mapping fθ from state to action.321

As sketched in figure 3, the agent is consistently fed with the same input state s0 (usually a322

vector of zeros), and outputs a policy π that can be represented by mean and standard deviation323

vectors (denoted by µ and σ, respectively) whose size matches the dimension of the action required324

by the environment. The optimization loop is as follows: first, the agent implements a random325

mapping fθ0 from s0 to an initial policy determined by the initialization of the network parameters326

θ0. At each iteration, a population of actions at = fθt(s0) is drawn from the current policy, the327

reward associated to each set of action is computed and the agent is returned incentives (through328

the rewards) to update the free parameters in a way such that the next population of actions329

at+1 ∼ fθt+1(s0) will yield higher rewards (see also figure 4). This is done following for the most330

part the various steps described in section 3.3, only one seeks in practice the optimal mapping331

fθopt such that aopt ∼ fθopt(s0), not the optimal set of actions aopt itself, and the loss is computed332

from (26) by substituting a normalized averaged reward for the advantage function.333

It is worth noticing that an accurate estimation of the policy gradient requires evaluating a large334

amount of actions drawn from the current policy, which comes at the expense of computing the same335

amount of reward evaluations. One key issue in the context of CFD applications is thus the ability336

to distribute a given set of actions to a parallel environment running on large computer clusters,337

as we show in the following that the CPU cost of solving the present steady-state optimization338

problems ranges from a few tens to several thousand hours.339

The present workflow relies on the online PPO implementation of Stable Baselines, a toolset of340

reinforcement learning algorithms dedicated to the research community and industry [54], for which341

a custom OpenAI environment has been designed using the Gym library [55]. The instant reward342

rt used to train the neural network is simply the quantity subjected to optimization (modulo a343

plus or minus sign to tackle both maximization and minimization problems). A moving average344

reward is also computed on the fly as the sliding average over the 100 latest values of rt (or the345

whole sample if the latter has size smaller than 100). All other relevant hyper parameters are346

documented in the next sections, with the exception of the discount factor (since single-step PPO347

computes only one single reward per episode).348
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Figure 5: Schematic of the two-dimensional Rayleigh–Bénard set-up.

4. Control of natural convection in 2-D closed cavity349

4.1. Case description350

We address first the control of natural convection in the two-dimensional differentially heated351

square cavity schematically illustrated in figure 5(a). This is a widely studied benchmark system for352

thermally-driven flows, relevant in nature and technical applications (e.g., ocean and atmospheric353

convection, materials processing, metallurgy), that is thus suitable to validate and compare nu-354

merical solution algorithms while enriching the knowledge base for future projects in this field.355

A Cartesian coordinate system is used with origin at the lower-left edge, horizontal x-axis, and356

vertical y-axis. The cavity has side L, its top and bottom horizontal walls are perfectly insulated357

from the outside, and the vertical sidewalls are isothermal. Namely, the right sidewall is kept at358

a constant, homogeneous “cold” temperature Tc, and the left sidewall is entirely controllable via a359

constant in time, varying in space “hot” distribution Th(y) such that360

〈Th〉 > Tc , (28)

where the brackets denote the average over space (here over the vertical position along the sidewall).361

In the following, we neglect radiative heat transfer (χ = 0) and consider a Boussinesq system362

driven by buoyancy, hence363

ψ = ρ0β(T − Tc)gey , (29)

where g is the gravitational acceleration parallel to the sidewalls, β is the thermal expansion364

coefficient, and we use the cold sidewall temperature as Boussinesq reference temperature. By365

doing so, the pressure featured in the momentum equation (2) and related weak forms must be366

understood as the pressure correction representing the deviation from hydrostatic equilibrium. The367

governing equations are solved with no-slip conditions u = 0 on ∂Ω and temperature boundary368

conditions369

∂yT (x, 0, t) = ∂yT (x, L, t) = 0 , T (0, y, t) = 〈Th〉+ T̃h(y) , T (L, y, t) = Tc , (30)

where T̃h is a zero-mean (in the sense of the average over space) distribution of hot temperature370

fluctuations subjected to optimization, whose magnitude is bounded by some constant ∆Tmax371

according to372

|T̃h(y)| ≤ ∆Tmax , (31)

to avoid extreme and nonphysical temperature gradients. All results are made non-dimensional373

using the cavity side, the heat conductivity time, and the well-defined, constant in time difference374

between the averaged sidewall temperatures. The retained fluid properties yield values of the375

Rayleigh and Prandtl numbers376

Ra = gβ(〈Th〉 − Tc)L3

να
= 104 , Pr = ν

α
= 0.71 , (32)
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(a) (b) (c)

Figure 6: Iso-contours of the uncontrolled steady state (a) temperature and (b) velocity magnitude. (c) Adapted
mesh. The circle symbols in (b) mark the positions of the maximum horizontal and vertical velocity along the
centerlines reported in table 1.

Present Ref. [57] Ref. [56] Ref. [58] Ref. [59] Ref. [60]

Ra = 104

Nu
max u(0.5, y)
ymax
max v(x, 0.5)
xmax

2.267
16.048
0.823

19.067
0.120

2.245
16.179
0.824

19.619
0.121

2.238
16,178
0.823

19.617
0.119

2.201
–

0.832
–

0.113

2.245
16.262
0.818

19.717
0.119

2.245
16.178
0.827

19.633
0.123

Table 1: Comparison of the present numerical results in the absence of control with reference benchmark solutions
from the literature.

where α = λ/(ρcp) is the thermal diffusivity.377

In order to assess the accuracy of the numerical framework, the uncontrolled solution has378

been computed by performing 60 iterations with time step ∆t = 0.5 to march the initial solution379

(consisting of zero velocity and uniform temperature, except at the hot sidewall) to steady state.380

At each time step, an initially isotropic mesh is adapted under the constraint of a fixed number381

of elements nel = 4000 using a multiple-component criterion featuring velocity and temperature,382

but no level-set. This is because the case is heat transfer but not conjugate heat transfer, as the383

solid is solely at the boundary ∂Ω of the computational domain, where either the temperature is384

known, or the heat flux is zero. It is thus implemented without the IVM and without a level set385

(although accurate IVM numerical solutions have been obtained in [40] using thick sidewalls with386

high thermal conductivity). The solution shown in figure 6(a,b) features a centered roll confined387

by the cavity walls, consistently with the fact that Ra exceeds the critical value Rac ∼ 920 for the388

onset of convection (as extrapolated from the near-critical benchmark data in [56]) by one order389

of magnitude, and heat transfer is thus driven by both conduction and convection. This shows in390

the Nusselt number, i.e., the non-dimensional temperature gradient averaged over the hot sidewall391

Nu = −〈∂xT 〉 , (33)

whose present value Nu = 2.27 (as computed from 68 points uniformly distributed along the392

sidewall) exceeds that Nu = 1 of the purely conductive solution, and exhibits excellent agreement393

with benchmark results from the literature. This is evidenced in table 1 where we also report the394

magnitude and position of the maximum horizontal velocity u (resp. the vertical velocity v) along395

the vertical centerline (resp. the horizontal centerline). The corresponding adapted mesh shown in396

figure 6(c) stresses that all boundary layers are sharply captured via extremely stretched elements,397

and that the adaptation strategy yields refined meshes near high temperature gradients and close398

to the side walls. Note however, the mesh refinement is not only along the boundary layers but also399

close to the recirculation regions near the cavity center, while the elements in-between are coarse400

and essentially isotropic.401
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4.2. Control402

The question now being raised is whether DRL can be used to find a distribution of temperature403

fluctuations T̃h capable of alleviating convective heat transfer. To do so, we follow [27] and train a404

DRL agent in selecting piece-wise constant temperature distributions over ns identical segments,405

each of which allows only two pre-determined states referred to as hot or cold. This is intended406

to reduce the complexity and the computational resources, as large/continuous action spaces are407

known to be challenging for the convergence of RL methods [61, 62]. Simply put, the network408

action output consists of ns values T̂hk∈{1...ns} = ±∆Tmax, mapped into the actual fluctuations409

according to410

T̃hk = T̂hk − 〈T̂hk〉

maxl{1,
|T̂hl − 〈T̂hl〉|

∆Tmax
}
, (34)

to fulfill the zero-mean and upper bound constraints.2 Ultimately, the agent receives the reward411

rt = −Nu to minimize the space averaged heat flux at the hot sidewall.412

All results reported herein are for ∆Tmax = 0.75 (so the hot temperature varies in the range413

[0.25; 1.75]) and ns = 10 segments, as [27] report that ns = 20 was computationally too demanding414

for their case, and that ns = 5 yielded poor control efficiency. The agent is a fully-connected415

network with two hidden layers, each holding 2 neurons. The resolution process uses 8 environments416

and 2 steps mini-batches to update the network for 32 epochs, with learning rate 5 × 10−3, and417

PPO loss clipping range ε = 0.2.418

4.3. Results419

For this case, 120 episodes have been run, each of which follows the exact same procedure as420

above and performs 60 iterations with time step ∆t = 0.5 to march the zero initial condition to421

steady state. This represents 960 simulations, each of which is performed on 4 cores and lasts422

20s, hence 5h of total CPU cost. We present in figure 7 representative iso-contours of the steady-423

state temperature and velocity magnitude computed over the course of the optimization. The424

latter exhibit strong temperature gradients at the hot sidewall, together with a robust steady roll-425

shaped pattern accompanied by a small corner eddy at the upper-left edge of the cavity, whose size426

and position depends on the specifics of the temperature distribution. The corresponding meshes427

are displayed in figure 7(c) to stress the ability of the adaptation procedure to handle well the428

anisotropy of the solution caused by the intrinsic flow dynamics and the discontinuous boundary429

conditions.430

We show in figure 8 the evolution of the controlled averaged Nusselt number, whose moving431

average decreases monotonically and reaches a plateau after about 90 episodes, although we no-432

tice that sub-optimal distributions keep being explored occasionally. The optimal computed by433

averaging over the 10 latest episodes (hence the 800 latest instant values) is 〈Nu〉opt ∼ 0.57, with434

variations ±0.01 computed from the root-mean-square of the moving average over the same interval,435

which is a simple yet robust criterion to assess qualitatively convergence a posteriori. Interestingly,436

the optimized Nusselt number is almost twice as small as the purely conductive value (Nu = 1),437

meaning that the approach successfully alleviates the heat transfer enhancement generated by the438

onset of convection, although it does not alleviates convection itself, as evidenced by the consistent439

roll-shaped pattern in figure 9. Similar results are reported in [27], for a different set-up in which440

the horizontal cavity walls are isothermal and control is applied at the bottom at the cavity (hence441

a different physics because of buoyancy), albeit with lower numerical and control efficiency since442

the authors report an optimal Nusselt number Nu ∼ 1 using up to 512 DRL environments with443

learning rate of 2.5 × 10−4. The reason for such discrepancies probably lies in different ways of444

achieving and assessing control, as we use single-step PPO to optimize the steady-state Nusselt445

2Another possible approach would have been to penalize the reward passed to the DRL for those temperature
distributions deemed non-admissible (either because the average temperature is non-zero or the temperature mag-
nitude is beyond the threshold). However, this would have made returning admissible solutions part of the tasks
the network is trained on (not to mention that non-zero average temperatures amount to a change in the Rayleigh
number), which would likely have slowed down learning substantially.
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(a) (b) (c)

Figure 7: (a,b) Steady-state (a) temperature and (b) velocity magnitude against zero-mean temperature distributed
at the left sidewall. (c) Adapted meshes.

number via a time-independent control, which requires choosing a sidewall temperature, march-446

ing the controlled solution to steady state, then computing the reward. The problem considered447

in [27] is more intricate, as classic PPO is used to optimize the reward accumulated over time via448

a time-dependent control temperature updated with a certain period scaling with the convection449

time in the cavity (the so-determined optimal control being ultimately time-independent for the450

considered value of Ra, but truly time-dependent for Rayleigh numbers above ∼ 105).451
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Figure 8: Evolution per learning episode of the instant (in grey) and moving average (in black) Nusselt number.
The horizontal dashed line marks the uncontrolled value.

(a) (b) (c)

Figure 9: (a,b) Steady-state (a) temperature and (b) velocity magnitude for the optimal zero-mean temperature
distribution. (c) Adapted mesh.

5. Control of forced convection in 2-D open cavity452

5.1. Case description453

This second test case addresses the control of actual conjugate heat transfer in a model setup454

for the cooling of a hot solid by impingement of a fluid; see figure 10(a). A Cartesian coordinate455

system is used with origin at the center of mass of the solid, horizontal x-axis, and vertical y-axis.456

The solid has rectangular shape with height h and aspect ratio 2:1, and is initially at the hot457

temperature Th. It is fixed at the center of a rectangular cavity with height H and aspect ratio458

4:1, whose walls are isothermal and kept at temperature Tw. The top cavity side is flush with nj459

identical holes of width ei whose distribution is subjected to optimization, each of which models460

the exit plane of an injector blowing cold air at velocity Vi and temperature Tc, and is identified by461

the horizontal position of its center xk∈{1...nj}. In order to allow releasing hot air from the cavity,462

the sidewalls are blown with two identical exhaust areas of height eo, identified by the vertical463

position of their center (e0 −H)/2.464

For this case, both buoyancy and radiative heat transfer are neglected (hence, ψ = 0 and465

χ = 0), meaning that temperature evolves as a passive scalar, similar to the mass fraction of a466

reactant in a chemical reaction. All relevant parameters are provided in Table 2, including the467

material properties used to model the composite fluid, that yield fluid values of the Reynolds and468

Prandtl numbers469

Re = ρVie

µ
= 200 , Pr = 2 . (35)

Note the very high value of the ratio of the solid to fluid viscosities, that ensures that the velocity470

is zero in the solid domain and that the no-slip interface condition is satisfied. By doing so, the471
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(a) (b)

Figure 10: (a) Schematic of the 2-D forced convection set-up. (b) Sensors positions in the solid domain.

H h ei eo Vi Tw Tc Th

1 0.2 0.2 0.2 1 10 10 150

µ ρ λ cp
fluid 0.001 1 0.5 1000
solid 1000 100 15 300

Table 2: Numerical parameters used in the 2-D forced convection problem. All values in SI units, with the exception
of temperatures given in Celsius.

convective terms drop out in the energy equation, that reduces to the pure conduction equation472

for the solid. The governing equations are solved with no-slip isothermal conditions u = 0 and473

T = Tw on ∂Ω, except at the injection exit planes (u = −Viey, T = Tc), and at the exhaust474

areas, where a zero-pressure outflow condition is imposed (p = ∂xu = ∂xT = 0). No thermal475

condition is imposed at the interface, where heat exchange is implicitly driven by the difference in476

the individual material properties.477

5.2. Control478

The quantity being optimized is the distribution of the injectors center positions xk∈{1...nj},479

each of which is forced to sit in an interval [x−k ;x+
k ] whose edge values are determined beforehand480

of recomputed on the fly (depending on the control strategy), and bounded according to481

|x±k | ≤ xm , (36)

where we set xm = 2H − 0.75ei to avoid numerical issues at the upper cavity edges. The network482

action output therefore consists of nj values x̂ ∈ [−1; 1], mapped into the actual positions according483

to484

xk =
x+
k (x̂k + 1)− x−k (x̂k − 1)

2 . (37)

In order to compute the reward passed to the DRL, we distribute uniformly 15 probes in the485

solid domain, into nx = 5 columns and ny = 3 rows with resolutions ∆x = 0.09 and ∆y = 0.075,486

respectively; see figure 10(b). Selected tests have been carried out to check that the outcome487

of the learning process does not change using ny = 5 rows of nx = 5 probes (not shown here).488

The magnitude of the tangential heat flux is estimated by averaging the norm of the temperature489

gradient over all columns and rows, i.e., i-th column (resp. the j-th row) as490

〈||∇‖T ||〉i = 2
ny − 1 |

∑
j 6=0

sgn(j)||∇T ||ij | , 〈||∇‖T ||〉j = 2
nx − 1 |

∑
i 6=0

sgn(i)||∇T ||ij | , (38)

where subscripts i, j and ij denote quantities evaluated at x = i∆x, y = j∆y and (x, y) =491

(i∆x, j∆y), respectively, and symmetrical numbering is used for the center probe to sit at the492

intersection of the zero-th column and row. The numerical reward rt = −〈||∇‖T ||〉 fed to the DRL493

agent deduces ultimately by averaging over all rows and columns, to give494

〈||∇‖T ||〉 = 1
nx + ny

∑
i,j

〈||∇‖T ||〉i + 〈||∇‖T ||〉j , (39)
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Figure 11: (a) Steady-state temperature against arrangements of 3 injectors, with admissible values under the fixed
domain decomposition strategy S1 delimited by the dashed lines. (b) Adapted meshes colored by the magnitude of
velocity.

which especially yields rt = 0 for a perfectly homogeneous cooling.495

All results reported in the following are for nj = 3 injectors. The agent is a fully-connected496

network with two hidden layers, each holding 2 neurons. The resolution process uses 8 environments497

and 2 steps mini-batches to update the network for 32 epochs, with learning rate set to 5× 10−3,498

and PPO loss clipping range to ε = 0.3.499

5.3. Results500

5.3.1. Fixed domain decomposition strategy501

We consider first the so-called fixed domain decomposition strategy S1 in which the top cavity502

wall is split into nj equal subdomains, and each injector is forced to sit in a different subdomain.503

The edge values for the position xk of the k-th injector read504

x−k = −xm + (k − 1)2xm + ei
nj

, x+
k = x−k + 2xm − (nj − 1)ei

nj
. (40)

It can be checked that x−k = x+
k−1 + ei, so it is possible to end up with two side-by-side injectors,505

which is numerically equivalent to having nj − 1 injectors, nj − 2 of width ei plus one of width 2ei.506

For this case, 60 episodes have been run, each of which performs 1500 iterations with time step507

∆t = 0.1 to march the same initial condition (consisting of zero velocity and uniform temperature,508

except in the solid domain) to steady state, using the level set, velocity and temperature as multiple-509

component criterion to adapt the mesh (initially pre-adapted using the sole level set) every 5510

time steps under the constraint of a fixed number of elements nel = 15000. This represents 480511

simulations, each of which is performed on 8 cores and lasts 10mn, hence 80h of total CPU cost.512

It is out of the scope of this work to analyze in details the many flow patterns that develop when513

the blown fluid travels through the cavity. Suffice it to say that the outcome depends dramatically514

on the injectors arrangement, and features complex rebound phenomena (either fluid/solid, when515

a jet impinges on the cavity walls or on the workpiece itself, or fluid/fluid, when a deflected jet516

meets the crossflow of another jet), leading to the formation of multiple recirculations varying in517

number, position and size. Several such cases are illustrated in figure 11 via iso-contours of the518

steady-state temperature distributions, together with the corresponding adapted meshes colored by519

the magnitude of velocity to illustrate the ability of the numerical framework to capture accurately520

all boundary layers and shear regions via extremely stretched elements.521

One point worth being mentioned is that the individual position signals are best suited to draw522

robust quantitative conclusion, as there is noise in the reward signal shown in figure 12(a). The523
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Figure 12: (a) Evolution per learning episode of the instant (in grey) and moving average (in black) rewards under
the fixed domain decomposition strategy S1. (b) Same as (a) for the injectors center positions, with admissible
values delimited by the dashed lines.

(b)(a)

Figure 13: Same as figure 11 for the optimal arrangement of 3 injectors under the fixed domain decomposition
strategy S1.

issue, we believe, is twofold: on the one hand, the reward is approximated from pointwise tem-524

perature data (similar to experimental measurements) that are more sensitive to small numerical525

errors (e.g., the interpolation error at the probes position) than an integral quantity. On the other526

hand, the mesh adaptation procedure is not a deterministic process, as the outcome depends on527

the processors and number of processors used, and any initial difference propagates over the course528

of the simulation because the meshes keep being adapted dynamically. In return, two exact same529

control parameters can thus yield different rewards on behalf of different interpolation errors at530

the probes position. This likely slows down learning and convergence, but we show in figure 12(b)531

that the moving average distribution does converge to an optimal arrangement after roughly 25532

episodes. The latter consists of an injector at the right-end of the left subdomain (x1opt = −0.75)533

and two side-by-side injectors sitting astride the center and right subdomains (x2opt = 0.55 and534

x3opt = 0.75), that enclose the workpiece in a double-cell recirculation; see figure 13. These values535

have been computed by averaging the instant positions of each injector over the 10 latest episodes,536

with variations ±0.002 computed from the root-mean-square of the moving average over the same537

interval, a procedure that will be used consistently to assess convergence for all cases reported in538

the following. The efficiency of the control itself is estimated by computing the magnitude of tan-539

gential heat flux averaged over the same interval, found to be 〈||∇‖T ||〉opt ∼ 8.3. Note, the position540

x2opt is actually obtained by averaging the absolute value of the instant position x2 (although the541

true, signed value is depicted in the figure), which is because the center injector keeps oscillating542

between two end positions ±0.55 on behalf of reflectional symmetry with respect to the vertical543

centerline.544

5.3.2. Follow-up strategy545

We consider now the so-called follow-up strategy S2, in which all injectors are distributed546

sequentially the ones with respect to the others. The corresponding edge values547

x−1 = −xm , x+
1 = xm − (nj − 1)ei , (41)

x−k = x+
k−1 + ei , x+

k = xm − (nj − k)ei , (42)
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Figure 14: (a) Steady-state temperature against arrangements of 3 injectors, with admissible values under the
follow-up strategy S2 delimited by the dashed lines. (b) Adapted meshes colored by the magnitude of velocity.

(c)(b)(a)

Figure 15: Evolution per learning episode of the instant (in grey) and moving average (in black) injectors center
positions under the follow-up strategy S2, with admissible values delimited by the dashed lines.

readily express that the k-th injector is forced to sit between the k− 1-th one and the upper-right548

cavity edge while leaving enough space to distribute the remaining nj−k injectors, which increases549

the size of the control parameter space while again leaving the possibility for side-by-side injectors550

(since x−k = x+
k−1 + ei by construction). 75 episodes have been run for this case following the551

exact same procedure as above, i.e., marching the zero initial condition in time up to t = 150 with552

∆t = 0.1, hence 600 simulations, each of which is performed on 8 cores and lasts 10mn, hence 100h553

of total CPU cost.554

When it comes to the computed flow patterns, the results closely resemble those obtained555

under the previous fixed domain decomposition strategy, although figure 14 exhibits increased556

dissymmetry when two or more injectors move simultaneously to the same side of the cavity. We557

show in figure 15 that the moving average distribution converges after roughly 60 episodes, with558

the optimal arrangement consisting of one injector roughly midway between the left cavity sidewall559

and the workpiece (x1opt = −0.96), and two side-by-side injectors at the right end of the cavity560

(x2opt = 1.65 and x3opt = 1.85). The variations over the same interval are by ±0.006; see also561

figure 16 for the corresponding flow pattern. Convergence here is much slower than under S1, as the562

search for an optimal is complicated by the fact that all injector positions are interdependent the563

ones on the others and it is up to the network to figure out exactly how. Another contingent matter564

is that the agent initially spans a fraction of the control parameter space because the large values565

of x1 considered limit the space available to distribute the other two injectors. This is all the more566

so as such configurations turn to be far from optimality, for instance the magnitude of tangential567

heat flux is 〈||∇‖T ||〉 ∼ 41.3 for x1 = 1.45, x2 = 1.65 and x3 = 1.85, but 〈||∇‖T ||〉opt ∼ 6.3 at568

optimality. The latter value is smaller than the optimal achieved under S1, consistently with the569

fact that all positions spanned under S1 are admissible under S2, hence the S1 optimal is expected570
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Figure 16: Same as figure 14 for the optimal arrangement of 3 injectors under the follow-up strategy S2.

to be a S2 sub-optimal.571

5.3.3. Free strategy572

We examine now a third strategy S3 referred to as the free strategy, in which all injectors are573

independent and free to move along the top cavity wall. The edge values for the position xk of the574

k-th injector read575

x−k = −xm , x+
k = xm , (43)

so two injectors can end up side-by side and even overlapping one another if |xl − xm| < ei. If576

so, we implement a single injector of width ei + |xl − xm| and maintain the blowing velocity (not577

the flow rate) for the purpose of automating the set-up design process, meaning that having nj578

injectors, two of which overlap exactly (i.e., |xl−xm| = 0) is rigorously equivalent to having nj −1579

injectors. 60 episodes have been run for this case following the exact same procedure as above.580

All flow patterns are reminiscent of those obtained under the previous fix decomposition S1581

and follow-up S2 strategies, even when two injectors overlap; see figure 17. Other than that, we582

show in figures 18 that the moving average distribution converges to an optimal consisting of two583

injectors almost perfectly overlapping one another at the left end of the cavity (x1opt = −1.85584

and x2opt = −1.82), and a third injector at the right end of the cavity (x3opt = 1.85). The585

variations over the same interval are by ±0.007, and the associated flow pattern shown in figure 19586

is symmetrical and features two large recirculations on either side of the workpiece. Convergence587

occurs after roughly 40 episodes, i.e., faster than under S2 (consistently with the fact that there588

is no need to learn anymore about how the network outputs depend the ones on the others) but589

slower than under S1 (consistently with the fact that the size of the control parameter space has590

increased substantially). It is worth noticing that the system is invariant by permutations of the591

network outputs, meaning that there exist 2nj−2 distributions (hence 6 for nj = 3) associated with592

the same reward. Nonetheless, a single optimal is selected, which is essentially fortuitous since the593

agent does not learn about symmetries under the optimization process (otherwise S1 would have594

similarly selected a single optimal). The magnitude of tangential heat flux is 〈||∇‖T ||〉opt ∼ 11.2 at595

optimality, i.e., larger than that achieved under S2. This can seem surprising at first, because all596

positions spanned under S2 are admissible under S3, and the S2 optimal is thus expected to be a597

S3 sub-optimal. However, the argument does not hold here because the overlap in the S3 optimal598

reduces the flow rate to that of a two-injectors set-up, so the comparison should be with the S2599

optimal with nj = 2.600

5.3.4. Inverse strategy601

Finally, we propose here to make the most of the numerical framework flexibility to solve a602

different optimization problem consisting in selecting first an injector distribution, then in finding603

which position x0 of the solid center of mass minimizes the magnitude of the tangential heat flux604

defined by (38)-(39). The so-called inverse strategy S4 considered herein features two injectors at605

each end of the cavity (x1 = −1.85 and x2 = 1.85), identical to the optimal arrangement of 3606

injectors under the free strategy S3. The center of mass can take any value in [−x0m;x0m] where607

we set x0m = 2(H − h) to avoid numerical issues at the sidewalls. The same coordinate system608

as above is used, but with reference frame attached to the cavity, not the moving solid (hence all609

results obtained under the previous strategies pertain to x0 = 0 in the new system).610
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Figure 17: (a) Steady-state temperature against arrangements of 3 injectors, with admissible values under the free
strategy S3 delimited by the dashed lines and overlaps marked by the dark grey shade. (b) Adapted meshes colored
by the magnitude of velocity.

(c)(b)(a)

Figure 18: Evolution per learning episode of the instant (in grey) and moving average (in black) injectors center
positions under the free strategy S3, with admissible values delimited by the dashed lines.

(b)(a)

Figure 19: Same as figure 17 for the optimal arrangement of 3 injectors under the free strategy S3.

A total of 60 episodes have been run for this case using the exact same DRL agent, the only611

difference being in the network action output, now made up of a single value x̂0 ∈ [−1; 1], mapped612

into the actual position using613

x0 = x0mx̂0 . (44)

A large variety of flow patterns is obtained by doing so, that closely resemble those computed614

under the previous strategies, only the outcome is now also altered by the width of the gap be-615

tween the cavity sidewalls and the workpiece, as illustrated in figure 20. We show in figure 21616

that the position of the solid center of mass converges to an optimal position x0opt = 0.42 (the617

variations over the same interval being by ±0.005), the associated magnitude of tangential heat618

flux 〈||∇‖T ||〉opt ∼ 4.1, being smaller than that achieved under S3 using a centered workpiece.619

The fact that the optimal position is offset from the horizontal centerline is a little surprising at620

first, because intuition suggests that the simplest way to achieve homogeneous heat transfer is621
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Figure 20: (a) Steady-state temperature against solid center of mass position, with admissible domains under the
inverse strategy S4 marked by the dashed lines. (b) Adapted meshes colored by the norm of velocity.

Figure 21: Evolution per learning episode of the instant (in grey) and moving average (in black) center of mass
positions under the inverse strategy S4, with admissible values delimited by the dashed lines.

(b)(a)

Figure 22: Same as figure 20 for the optimal center of mass position under the inverse strategy S4.

by having injectors symmetrically distributed with respect to the vertical centerline. Nonetheless,622

examining carefully the norm of the temperature gradient in the solid domain shows that x0 = 0623

achieves close to perfect horizontal symmetry but vertical asymmetry, owing to the formation of624

two large-scale, small velocity end vortices entraining heat laterally downwards; see figure 23(a).625
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(a) (b)

Figure 23: (a,b) Norm of the temperature gradient in the solid domain with superimposed streamlines of the
underlying velocity field, as computed for (a) x0 = 0, and (b) x0opt = 0.45, i.e., the optimal position selected under
the inverse strategy S4. (c) Cuts along the two leftmost columns of probes. The solid and dashed lines refer to
x0 = 0 and x0opt = 0.45, respectively, and the symbols mark the probe values. (d) Same as (c) for cuts along the
lower and upper rows of columns.

Conversely, for x ∼ x0opt, the workpiece it almost at the core of the closest recirculation region,626

hence the surrounding fluid particles have small velocities and wrap almost perfectly around its627

surface, as illustrated in figure 23(b). This restores excellent vertical symmetry, as evidenced by628

relevant cuts along the two leftmost columns of probes in figure 23(c), and along the lower and629

upper rows in figure 23(d), which explains the improved the reward.630

5.4. Discussion631

Figure 24 reproduces the optimal temperature distributions computed under the various strate-632

gies considered above. For benchmarking purposes, we also provide in table 3 relevant convergence633

data computed over the 10 latest episodes. To recap, the most homogeneous cooling is achieved634

under the follow-up strategy S2, but the DRL agent seems more easily trained under the fixed635

decomposition domain strategy S1 and the free strategy S3. Another interesting point is the ex-636

tent to which the workpiece is actually cooled, for which S2 seems more relevant, on behalf of the637

dissymmetry in the left and right flow rates that creates order one velocities at the bottom of the638

cavity. This stresses S2 as a possible compromise to achieve efficient and homogeneous cooling,639

although a true optimal with this regards can be computed rigorously by applying the same ap-640

proach to compound functionals weighing, e.g., the magnitude of the tangential heat flux and the641

solid center temperature (which we defer to future work).642

These results provide a basis for future self-assessment of the method and identifies potential643

for improvement regarding the convergence efficiency. The approach can certainly benefit from644

a fine tuning of the reward computation, as having sufficient spatial resolution on the relevant645

state of the system is an obvious requirement to allow a successful control. Adjusting the trade-off646

between exploration and exploitation is also worth consideration to better handle the existence of647
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(d)(c)

Figure 24: (a-c) Optimal arrangements of 3 injectors under the (a) fixed decomposition domain strategy S1, (b)
follow-up strategy S2 and (c) free strategy S3. (b) Optimal position of the workpiece under the inverse strategy S4.

nj nep x0 x1 x2 x3 〈||∇‖T ||〉
S1 3 60 0 −0.75 ±0.55 0.75 8.3
S2 3 75 0 −0.96 1.65 1.85 6.3
S3 3 60 0 −1.85 −1.82 1.85 11.2
S4 2 60 0.42 −1.85 1.85 – 4.1

Table 3: Numerical data for the optimal arrangements computed under strategies S1−4. All values computed by
averaging the instant signal over the 10 latest learning episodes.

Figure 25: Schematic of the 3-D forced convection set-up.

multiple global optima (whether they stem from symmetries of from the topology of the reward648

itself) which could be done using non-normal probability density functions.649

6. Extension to 3-D forced convection650

6.1. Case description651

The model cooling set up considered in section 5 is extended here to 3-D to assess the extent to652

which the approach carries over to three-dimensional conjugate heat transfer. The main differences653

between 2-D and 3-D are as follows: a Cartesian coordinate system is used with origin at the center654

of mass of the solid, horizontal x-axis, vertical y-axis, and the z-axis completes the direct triad; see655

figure 25. The solid is a rectangular prism with aspect ratio 2:1:1, and is fixed at the center of a656

24



H h di do δo Vi Tw Tc Th

1 0.2 0.2 0.24 0.16 1 10 10 150

µ ρ λ cp
fluid 0.01 1 0.5 1000
solid 1000 100 15 300

Table 4: Numerical parameters used in the 3-D forced convection problem. All values in SI units, with the exception
of temperatures given in Celsius.

rectangular cavity with height H and aspect ratio 4:1:1. We consider nj circular-shaped injectors657

with diameter di, whose exit planes are forced to be symmetrical with respect to z = 0, hence each658

injector is identified by the horizontal position of its center xk∈{1...nj}. We also use circular-shaped659

exhaust areas with diameter do, offset by a distance δo from the bottom of the cavity, and whose660

exit planes are also symmetrical with respect to z = 0, hence each exhaust area is identified by the661

vertical position of its center (d0 + δo −H)/2. The governing equations are solved with the exact662

same boundary conditions as in section 5. All parameters are provided in Table 4, including the663

material properties used to model the composite fluid, that yield fluid values of the Reynolds and664

Prandtl numbers665

Re = ρVidi
µ

= 20 , Pr = 20 . (45)

6.2. Control strategy666

We keep here the same control objective and compute the reward fed to the DRL from 45667

probes arranged symmetrically into nz = 3 transverse layers with resolution ∆z = 0.075, each668

of which distributes uniformly 15 probes into nx = 5 columns and ny = 3 rows with resolutions669

∆x = 0.09 and ∆y = 0.075. In practice, the 3-D reward is simply the average over z of the 2-D670

reward defined in section 5, hence rt = −〈||∇‖T ||〉 with671

〈||∇‖T ||〉 = 1
(nx + ny)nz

∑
i,j,k

〈||∇‖T ||〉ik + 〈||∇‖T ||〉jk , (46)

with672

〈||∇‖T ||〉ik = 2
ny − 1 |

∑
j 6=0

sgn(j)||∇T ||ijk| , 〈||∇‖T ||〉jk = 2
nx − 1 |

∑
i 6=0

sgn(i)||∇T ||ijk| , (47)

and the subscripts ik, jk and ijk denote quantities evaluated at (x, z) = (i∆x, k∆z), (y, z) =673

(j∆y, k∆z) and (x, y, z) = (i∆x, j∆y, k∆z), respectively.674

All results reported in the following are for nj = 3 injectors. The edge values needed to map the675

network action output into the actual injectors positions deduce straightforwardly from (40)-(43)676

substituting the diameter di of the 3-D injectors for the length ei of the 2-D injectors. The same677

DRL agent is used, that consists of two hidden layers, each holding 2 neurons, and the resolution678

process uses 8 environments and 2 steps mini-batches to update the network for 32 epochs. Each679

environment performs 1250 iterations with time step ∆t = 0.1 to march the same initial condition680

(consisting of zero velocity and uniform temperature, except in the solid domain) to steady state,681

using the level set, velocity and temperature as multiple-component criterion to adapt the mesh682

(initially pre-adapted using the sole level set) every 10 time steps under the constraint of a fixed683

number of elements nel = 120000. This is likely insufficient to claim true numerical accuracy, but684

given the numerical cost (320 3-D simulations per strategy, each of which is performed on 8 cores685

and lasts 2h30, hence 800h of total CPU cost), we believe this is a reasonable compromise to assess686

feasibility while producing qualitative results to build on.687
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Figure 26: Representative steady-state temperature distributions at the solid/fluid interface together with 3-D
streamlines colored by the magnitude of velocity.

6.3. Results688

Only the fixed domain decomposition S1 strategy (in which the top cavity wall is split into689

nj equal subdomains and each injector is forced to sit in a different subdomain) and the free S3690

strategy (in which the injectors are entirely independent and free to move along the top cavity691

wall) are considered here to save computational resources, as learning has been seen to be slower692

in 2-D under the follow-up S2 strategy.693
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Figure 27: Evolution per learning episode of the instant (in grey) and moving average (in black) injectors center
positions under the three-dimensional fixed domain decomposition strategy S1, with admissible values delimited by
the dashed lines.

Figure 28: Optimal 3 injector arrangement under the three-dimensional fixed decomposition domain strategy S1.

A total of 60 episodes have been run under the fixed domain decomposition strategy S1. Several694

representative flow patterns computed over the course of optimization are shown in figure 26 via695

iso-contours of the steady-state temperature at the fluid-solid interface and 3-D streamlines colored696

by the magnitude of velocity, to put special emphasis on transverse inhomogeneities and display697

the increased degree of complexity due to the formation of large-scale horseshoe vortices wrapped698

around the nozzle jets. We show in figure 27 that the distribution slowly converges to an optimal699

arrangement consisting of one injector at the left end of the left subdomain (x1opt = −1.63),700

another one at the left end of the center subdomain (x2opt = −0.55), and a third one at the701

left end of the right subdomain (x3opt = 0.87), as has been determined by averaging the instant702

positions of each injector over the latest 10 learning episodes, with variations by roughly ±0.04703

computed from the root-mean-square of the moving average over the same interval. This is larger704

by one order of magnitude than the variations reported in 2-D, as the agent keeps exploring slightly705

sub-optimal positions of the lateral injectors, which likely simply reflects the challenging nature706

of performing three-dimensional optimal control. The 3-D S1 optimal somehow resemble its 2-D707

counterpart, namly the center injector is at the exact same position, while the lateral injectors708

(especially the leftmost one) have been pushed towards the cavity sidewalls. The associated flow709

pattern is reported in figure 28. The associated optimal reward computed over the same interval710

is 〈||∇‖T ||〉opt ∼ 19.5, i.e. twice as large than in 2-D, although it is difficult to compare further711

because of the difference in the Reynolds and Prandtl number.712

Another 40 episodes have been run under the free strategy S3, for which the results are almost713

identical to their 2-D counterparts, as the distribution converges in figure 29 to an optimal ar-714

rangement consisting of two overlapping injectors at the left end of the cavity (x1opt = −1.83 and715

x2opt = −1.82), and a third injector at the right end (x3opt = 1.83), with variations by with ±0.01716
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Figure 29: Evolution per learning episode of the instant (in grey) and moving average (in black) injectors center
positions under the three-dimensional free strategy S3, with admissible values delimited by the dashed lines.

Figure 30: Optimal 3 injector arrangement under the three-dimensional free strategy S3.

nj nep x0 x1 x2 x3 〈||∇‖T ||〉
S1 3 60 0 −1.63 −0.55 0.87 19.5
S3 3 40 0 −1.83 −1.82 1.83 4.7

Table 5: Numerical data for the optimal arrangements computed in three-dimensions under strategies S1 and S3.
All values computed by averaging the instant signal over the 10 latest learning episodes.

for the lateral injectors, but ±0.03 for the center injector, for which the agent keeps occasionally717

exploring sub-optimal positions. The corresponding flow pattern shown in figure 30 is thus again718

symmetrical with two large, 3-D recirculations on either side of the workpiece. The associated719

optimal reward computed over the same interval is 〈||∇‖T ||〉opt ∼ 4.7 substantially smaller than720

that achieved under the 3-D S1 strategy, which again demonstrates the feasibility to improve per-721

formances by allowing overlaps. All relevant numerical data are reported in table 5 for the sake of722

completeness.723

7. Conclusion724

This research assesses the ability of deep reinforcement learning (DRL) to guide the optimization725

and control of conjugate heat transfer systems. It combines a novel, “degenerate” version of the726

proximal policy optimization (PPO) algorithm, that trains a neural network in optimizing the727

system only once per learning episode, and an in-house stabilized finite elements environment728

combining variational multiscale (VMS) modeling of the governing equations, immerse volume729

method, and multi-component anisotropic mesh adaptation, that computes the numerical reward730

fed to the neural network. The approach is shown capable of optimizing two- and three dimensional731

28



systems exhibiting natural and forced convection dominated heat transfer. It is especially applied732

to identify optimal distribution of injectors and optimal position of a hot workpiece to reduce733

inhomogeneous impingement cooling under various control strategies.734

Fluid dynamicists have just begun to gauge the relevance of deep reinforcement learning tech-735

niques to assist the design of optimal control strategies. This research weighs in on this issue and736

adds values to the shallow literature on this subject by showing that the proposed single-step PPO737

holds a high potential as a reliable, go-to black-box optimizer for complex conjugate heat transfer738

problems. Future research in this field should aim at consolidating the acquired knowledge, at739

improving the computational efficiency (by a fine-tuning of the hyper parameters, or using pre-740

trained deep learning models) and at boosting the convergence capabilities (via coupling with a741

surrogate model trained on-the-fly, or using non-normal probability density functions, or modifying742

the balance between exploration and exploitation, as the PPO loss is specifically built to avoid a743

performance collapse by preventing large updates of the policy). The design of relevant numerical744

rewards under partial state information is another issue that deserves consideration.745

Scope is another key ingredient to pushing forward the state of the art. A short-term objec-746

tive would be to quickly tackle more complex test cases exhibiting time-dependent dynamics and747

turbulence, which the numerical framework is perfectly suited to do via a combination of Reynolds-748

averaged Navier–Stokes modeling [63, 64] and second-order, semi-implicit time discretization [65].749

We believe that this will highlight even more clearly the relevance of the methodology, as it is750

speculated in [30] that DRL should be able to handle chaotic systems without suffering from751

the shortcomings and limitations of the adjoint method, and [27] consistently report that DRL752

outperforms a canonical linear proportional-derivative controller in controlling turbulent natural753

convection. The long-term objective would be to enrich the description of the test cases using754

multi-physics modeling (e.g., radiative heat transfer, phase transformation), to pave the way to-755

ward flexible, ready-to-use control of industrially relevant applications, such as thermal comfort756

for building design or manufacturing processes.757
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