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This research gauges the ability of deep reinforcement learning (DRL) techniques to assist the
optimization and control of fluid mechanical systems. It relies on single-step PPO, a novel, “degen-
erate” version of the proximal policy optimization (PPO) algorithm, intended for situations where
the optimal policy to be learnt by a neural network does not depend on state, as is notably the case
in open-loop control problems. The numerical reward fed to the neural network is computed with
an in-house stabilized finite elements environment implementing the variational multiscale (VMS)
method. Several prototypical separated flows in two dimensions are used as testbed. The method is
applied first to two relatively simple optimization test cases (maximizing the mean lift of a NACA
0012 airfoil and the fluctuating lift of two side-by-side circular cylinders, both in laminar regimes) to
assess convergence and accuracy by comparing to in-house DNS data. The potential of single-step
PPO for reliable black-box optimization of computational fluid dynamics (CFD) systems is then
showcased by tackling several problems of open-loop control with parameter spaces large enough to
dismiss DNS. The approach proves relevant to map the best positions for placement of a small con-
trol cylinder in the attempt to reduce drag in laminar and turbulent cylinder flows. All results are
consistent with in-house data obtained by the adjoint method, and the drag of a square cylinder at
Reynolds numbers in the range of a few thousands is reduced by 30%, which matches well reference
experimental data available from literature. The method also successfully reduces the drag of the
fluidic pinball, an equilateral triangle arrangement of rotating cylinders immersed in a turbulent
stream. Consistently with reference machine learning results from the literature, drag is reduced by
almost 60% using a so-called boat tailing actuation made up of a slowly rotating front cylinder and
two downstream cylinders rotating in opposite directions so as to reduce the gap flow in between
them.
Keywords: Deep Reinforcement Learning; Proximal Policy Optimization; Neural Networks; Computational8

fluid dynamics; Open-loop flow control; Adjoint method9

I. INTRODUCTION10

Flow control, defined as the ability to finesse a flow into a more desired state, is a field of11

tremendous societal and economical importance. In applications such as ocean shipping or airline12

traffic, reducing the overall drag by just a few percent while maintaining lift can help reducing fossil13

fuel consumption and CO2 emission while saving several billion dollars annually [1]. Many other14

scenario relevant to fluid mechanical systems call for similarly improved engineering design, e.g.,15

the airline industry is greatly concerned with reducing the structural vibrations and the radiated16

noise that occur under unsteady flow conditions [2, 3], while microfluidics [4] and combustion [5]17

both benefit from enhanced mixing (which can be achieved by promoting unsteadiness in some18

appropriate manner). All such problems fall under the purview of this line of study.19

Flow control is often benchmarked in the context of bluff body drag reduction. Numerous strate-20

gies have been implemented, either open-loop with passive appendices (e.g., end/splitter plates,21

small secondary cylinder, flexible tail), or open-loop with actuating devices (e.g., plasma actuation,22

base bleed, rotation) or closed-loop (e.g. transverse motion, blowing/suction, rotation, all relying23

on appropriate sensing of flow variables); see the comprehensive surveys of recent developments24

in [6–14]. Nonetheless, most strategies are trial and error and rely on extensive, costly experimental25

or numerical campaigns, which has motivated the development of rigorous mathematical formalisms26

capable of achieving optimal design and control with minimal effort. The adjoint method is one27

family of such algorithms, that has proven efficient at accurately computing the objective gradient28

with respect to the control variables in large optimization spaces, and has gained prominence in29

many applications ranging from atmospheric sciences [15] to aerodynamic design [16–19], by way30

of fresh developments meant to reshape the linear amplification of flow disturbances [20–25].31

Another promising option for selecting optimal subsets of control parameters is to rely on ma-32

chine learning algorithms running labeled data through several layers of artificial neural network33
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while providing some form of corrective feedback. Neural networks are a family of versatile non-34

parametric tools that can learn how to hierarchically extract informative features from data, and35

have gained traction as effective and efficient computational processors for performing a variety36

of tasks, from exploratory data analysis to qualitative and quantitative predictive modeling. The37

increased affordability of high performance hardware (together with reduced costs for data acqui-38

sition and storage) has indeed allowed leveraging the ever-increasing volume of data generated for39

research and engineering purposes into novel insight and actionable information, which in turn40

has reshaped entire scientific disciplines such as image analysis [26] or robotics [27, 28]. Since41

neural networks have produced most remarkable results when applied to stiff large-scale nonlin-42

ear problems [29], it is only natural to assume that they can successfully tackle the state-space43

models arising from the high-dimensional discretization of partial differential equation systems.44

Machine learning has thus been making rapid inroads in fluid mechanics, with consistent efforts45

aimed at solving the governing equations [30], predicting closure terms in turbulence models [31],46

building reduced-order models [32], controlling flows [33, 34], or performing flow measurements and47

visualization [35–37]; see also [38] for an overview of the current developments in this field.48

The focus here is on deep reinforcement learning (DRL), an advanced branch of machine learning49

in which deep neural networks learn how to behave in an environment so as to maximize some notion50

of long-term reward (a task compounded by the fact that each action affects both immediate and51

future rewards). Several notable works using DRL in mastering games (e.g., Go, Poker) have stood52

out for attaining super-human level [39, 40], but the approach has also breakthrough potential53

for practical applications such as robotics [41, 42], computer vision [43], self-driving cars [44] or54

finance [45], to name a few. There is also great potential for applying DRL to fluid mechanics,55

for which efforts are ongoing but still at an early stage, with only a handful of pioneering studies56

providing insight into the performance improvements to be delivered in shape optimization [46–48]57

and flow control [49–51]. Nonetheless, sustained commitment from the machine learning community58

has allowed expanding the scope from computationally inexpensive, low-dimensional reductions of59

the underlying fluid dynamics [52–54] to complex Navier–Stokes systems [55, 56]. Proximal policy60

optimization (PPO [41]) has quickly gained momentum as one of the go-to algorithms for this61

purpose, as evidenced by several recent publications assessing relevance for open- and closed-loop62

drag reduction in cylinder flows at Reynolds numbers in the range of a few hundreds [57–60].63

This research draws on this foundation to further shape the capabilities of PPO (still a newcomer64

despite its data efficiency, simplicity of implementation and reliable performance) for flow control,65

and help narrow the gap between DRL and advanced numerical methods for multiscale, multi-66

physics computational fluid dynamics (CFD). The main novelty is the use of single-step PPO, a67

novel “degenerate” algorithm intended for open-loop control problems, as the optimal policy to68

be learnt is then state-independent, and it may be enough for the neural network to get only one69

attempt per episode at finding the optimal. The objective is twofold: first, to prove feasibility70

using several prototypical separated flows in two dimensions as testbed. Second, to assess con-71

vergence and relevance in the context of turbulent flows at moderately large Reynolds number (in72

the range of a few thousands). This is a topic whose surface is barely scratched by the available73

literature, as our literature review did not reveal any other study considering DRL-based control74

of turbulent flows besides [61], another research effort conducted in the same time frame as the75

present work. Single-step PPO has been speculated to hold a high potential as a reliable black-box76

CFD optimizer [48], but we insist that it lies out of the scope of this paper to provide exhaus-77

tive performance comparison data against state-of-the art optimization techniques (e.g., evolution78

strategies or genetic algorithms). This would indeed require a tremendous amount of time and79

resources even though the efforts for developing the method remain at an early stage (to the best80

of our knowledge, no study in the literature has considered using DRL in a similar fashion) and81

new algorithms cannot be expected to reach right away the level of performance of their more82

established counterparts.83

The organization is as follows: section II introduces single-step PPO (together with the baseline84

principles of DRL and PPO), and outlines the main features of the finite element CFD environment85

used to compute the numerical reward fed to the neural network. Two simple lift optimization86

problems are presented in section III to assess convergence and accuracy by comparing against in-87

house DNS data. In section IV, the method is applied to two open-loop drag reduction problems88

whose parameter spaces are large enough to dismiss DNS, namely the placement of a small control89

cylinder (for which results computed under laminar and turbulent conditions are compared to90

in-house data obtained by the adjoint method), and the cylinder rotation of a turbulent fluidic91
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pinball. Finally, in section V, the method is thoroughly compared (in terms of scope, applicability92

and performances) to the adjoint method. Evolutionary strategies are also briefly reviewed to put93

our contribution in perspective and discuss the advantages that may be expected once single-step94

PPO is finely tuned and characterized.95

II. METHODOLOGY96

A. Deep reinforcement learning97

Reinforcement learning (RL) provides a consistent framework for modeling and solving decision-98

making problems through repeated interaction between an agent and an environment. We consider99

the standard formulation in which the agent takes an action at based on a partial observation of100

the current state st the environment is in. The environment transits to the next state st+1, and the101

agent is fed with a reward rt that acts as the quality assessment of the actions recently taken. This102

repeats until some termination state is reached, the objective of the agent being to determine the103

succession of actions maximizing its cumulative reward over an episode (this is the reference unit104

for agent update, best understood as one instance of the scenario in which it takes actions). Deep105

reinforcement learning (DRL) combines RL and deep neural networks, i.e., collections of connected106

units or artificial neurons, that can be trained to arbitrarily well approximate the mapping function107

between input and output spaces. We consider here fully connected networks in which neurons108

are stacked in layers and information propagates forward from the input layer to the output layer109

via “hidden” layers. Each neuron performs a weighted sum of its inputs to assign significance with110

regard to the task the algorithm is trying to learn, adds a bias to figure out the part of the output111

independent of the input, and feeds an activation function that determines whether and to what112

extent the computed value should affect the outcome.113

B. Proximal policy optimization114

Proximal policy optimization (PPO) [41] is a model free, on-policy gradient, advantage actor-115

critic reinforcement algorithm. The related key concepts can be summarized as follows:
116

- model free: the agent interacts with the environment itself, not with a surrogate model of117

the environment (the corollary here being that it needs no assumptions about the fluid dynamics118

underlying the control problems to be solved).
119

- policy gradient: the behavior of the agent is entirely defined by a probability distribution π(s, a)120

over actions given states, optimized by gradient ascent. In DRL, the policy is represented by a121

neural network. The free parameters learnt from data are the network weights and biases, with122

respect to which the gradient is computed backwards from the output to the input layer according123

to the chain rule, one layer at the time, using the back-propagation algorithm [62].
124

- on-policy: the algorithm improves the policy used to generate the training data (in contrast to125

off-policy methods that also learn from data generated with other policies).
126

- advantage: the policy gradient is approximated by that of the policy loss127

Eτ∼π

[
T∑
t=0

log (π(at|st)) Âπ(s, a)
]
, (1)

where τ = (s0, a0, . . . , sT , aT ) is a trajectory of state and actions with horizon T , Aπ is the advan-128

tage function measuring the gain associated with taking action a in state s, compared to taking129

the average over all possible actions, and Âπ is some biased estimator of the advantage, here its130

normalization to zero mean and unit variance.131

- actor-critic: the learning performance is improved by updating two different networks, a first132

one called actor that controls the actions taken by the agent, and a second one called critic, that133

estimates the advantage as134

Aπ(st, at) = rt + γV (st+1)− V (st) , (2)
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Figure 1. Action loop for single-step PPO. At each episode, the same input state s0 is provided to the agent,
which in turn provides n actions to n parallel environments. The latter return n rewards, that evaluate
the quality of each action taken. Once all the rewards are collected, an update of the agent parameters is
made using the PPO loss (3). The process is repeated until convergence.

where V (s) is the expected value of the return of the policy in state s and γ ∈ [0, 1] is a discount135

factor adjusting the trade-off between immediate and future rewards.
136

PPO uses conservative policy updates to alleviate the issue of performance collapse affecting137

standard policy gradient implementations1. We use here PPO-clip2 to optimize the surrogate loss138

E(s,a)∼π

[
min

(
π(a|s)
πold(a|s)

, 1 + ε sgn (Âπ(s, a))
)
Âπ(s, a)

]
, (3)

where ε is the clipping range defining how far away the new policy is allowed to go from the old.139

The general picture is that a positive (resp. negative) advantage increases (resp. decreases) the140

probability of taking action a in state s, but always by a proportion smaller than ε, otherwise the141

min kicks in (3) and its argument hits a ceiling of 1 + ε (resp. a floor of 1 − ε). This prevents142

stepping too far away from the current policy, and ensures that the new policy will behave similarly.143

There exist more sophisticated PPO algorithms (e.g., Trust region PPO [63], that determines first144

a maximum step size relevant for exploration, then adaptively adjusts the clipping range to find145

the optimal within this trust region), but standard PPO has simple and effective heuristics. It is146

computationally inexpensive, easy to implement (as it involves only the first-order gradient of the147

policy log probability), and remains regarded as one of the most successful RL algorithms, achieving148

state-of-the-art performance across a wide range of challenging tasks, including flow control [57].149

C. Single-step PPO150

We now come to single-step PPO (hereafter denoted by PPO-1 to ease the reading), a “de-151

generate” version of PPO introduced in [48] and intended for situations where the optimal policy152

to be learnt by the neural network is state-independent, as is notably the case in open-loop con-153

trol problems (closed-loop control problems conversely require state-dependent policies for which154

standard PPO is best suited). The main difference between standard and single-step PPO can155

be summed up as follows: where standard PPO seeks the optimal set of actions aopt yielding the156

largest possible reward, single-step PPO seeks the optimal mapping fθopt
such that aopt = fθopt

(s0),157

where θ denotes the network free parameters and s0 is some input state (usually a vector of zeros)158

consistently fed to the agent for the optimal policy to eventually embody the transformation from159

s0 to aopt. The agent initially implements a random state-action mapping fθ0 from s0 to an initial160

policy determined by the free parameters initialization θ0, after which it gets only one attempt161

per learning episode at finding the optimal (i.e., it interacts with the environment only once per162

1 Large policy updates can cause the agent to fall off the cliff and to restart from a poorly performing state with a
locally bad policy, which is all the more harmful as the step size for policy updating cannot be tuned locally (an
above average value can speed up learning in regions of the parameter space where the policy loss is relatively
flat, but trigger exploding updates in sharper variation regions).

2 As opposed to PPO-Penalty, a variant relying on a penalization on the average Kullback–Leibler divergence
between the current and new policies, but that tends to perform less well in practice.
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episode). This is illustrated in figure 1 showing the agent draw a population of actions at = fθt(s0)163

from the current policy, and being returned incentives from the associated rewards to update the164

free parameters for the next population of actions at+1 = fθt+1(s0) to yield larger rewards.165

In practice, the agent outputs a policy parameterized by the mean and variance of the probability166

density function of a d-dimensional multivariate normal distribution, with d the dimension of the167

action required by the environment. Actions drawn in [−1, 1]d are then mapped into relevant168

physical ranges, a step deferred to the environment as being problem-specific. The resolution169

essentially follows the process described in section II B, only the surrogate loss reads170

Ea∼π
[
min

(
π(a)
πold(a) , 1 + ε sgn (Âπ(a))

)
Âπ(a)

]
, (4)

and the advantage Aπ reduces to the whitened reward rt. This is because the trajectory consists171

of a single state-action pair, so the discount factor can be set to γ = 1 with no loss of generality. In172

return, the two rightmost terms cancel each other out in (2), meaning that single-step PPO can do173

without the value-function evaluations of the critic network (and is thus not actually actor-critic).174

D. Computational fluid dynamics environment175

The CFD resolution framework relies on the in-house, parallel, finite element library Cim-176

LIB_CFD [64], whose main ingredients are as follows:
177

- the variational multiscale approach (VMS) is used to solve a stabilized weak form of the178

governing equations using linear approximations (P1 elements) for all variables, which otherwise179

breaks the Babuska–Brezzi condition. The approach relies on an a priori decomposition of the180

solution into coarse and fine scale components [65–67]. Only the large scales are fully represented181

and resolved at the discrete level. The effect of the small scales is encompassed by consistently182

derived source terms proportional to the residual of the resolved scale solution, hence ad-hoc183

stabilization parameters comparable to local coefficients of proportionality.
184

- in laminar regimes, velocity and pressure come as solutions to the Navier–Stokes equations. In185

turbulent regimes, the focus is on phase-averaged velocity and pressure modeled after the unsteady186

Reynolds averaged Navier–Stokes (uRANS) equations. In order to avoid transient negative tur-187

bulent viscosities, negative Spalart–Allmaras [68] is used as turbulence model, whose stabilization188

proceeds from that of the convection-diffusion-reaction equation [69, 70].
189

- the immersed volume method (IVM) is used to immerse and represent all geometries inside a190

unique mesh. The approach combines level-set functions to localize the solid/fluid interface, and191

anisotropic mesh adaptation to refine the mesh interface under the constraint of a fixed, number192

of edges. This ensures that the quality of all actions taken over the course of a PPO optimization193

is equally assessed, even though the interface can depend on the action.
194

Substantial evidence of the flexibility, accuracy and reliability of this numerical framework is195

documented in several papers to which the reader is referred for exhaustive details regarding the196

level-set and mesh adaptation algorithms [71, 72], the VMS formulations, stabilization parameters197

and discretization schemes used in laminar and turbulent regimes [73–76], and the mathematical198

formulation of the IVM in the context of finite element VMS methods [77, 78].199

E. Numerical implementation200

In practice, actions are distributed to multiple environments running in parallel, each of which ex-201

ecutes a self-contained MPI-parallel CFD simulation and feeds data to the DRL algorithm (hence,202

two levels of parallelism related to the environment and the computing architecture). Here, all203

CFD simulations are performed on 12 cores of a workstation of Intel Xeon E5-2640 processors.204

The algorithm waits for the simulations running in all parallel environments to be completed, then205

shuffles and splits the rewards data set collected from all environments into several buffers (or206

mini-batches) used sequentially to compute the loss and perform a network update. The process207

repeats for several epochs, i.e., several full passes of the training algorithm over the entire data set,208

which ultimately makes the algorithm slightly off-policy (since the policy network ends up being209
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(a) (b)

Figure 2. Details of (a) the boundary layer mesh and (b) successive refinement steps of the background
mesh for the flow past a tandem arrangement of two circular cylinders. The blue line in (a) indicates the
zero iso-contour of the level set function.

Neural network
2 Nb. hidden layers
4 Nb. neurons/layer

TBS Nb. epochs
TBS Nb. environments
TBS Size of mini-batches

PPO

5× 10−3 Learning rate
0.3 Clipping range
1 Discount factor

Table I. Details of the network architecture and PPO hyper parameters. The number of epochs, environ-
ments and the size of the mini-batches are provided on a case-by-case basis in sections III and IV.

trained on samples generated by older policies, which is customary in standard PPO operation).210

This simple parallelization technique is key to use DRL in the context of CFD applications, as a211

sufficient number of actions drawn from the current policy must be evaluated to accurately esti-212

mate the policy gradient. This comes at the expense of computing the same amount of reward213

evaluations, and yields a substantial computational cost for high-dimensional fluid dynamics prob-214

lems (typically from a few to several hundred CFD simulations for the cases considered herein).215

In the same vein, it should be noted that the common practice in DRL studies to gain insight into216

the performances of the selected algorithm by averaging results over multiple independent training217

runs with different random seeds is not tractable, as it would trigger a prohibitively large compu-218

tational burden. The same random seeds have thus been deliberately used over the whole course219

of study to ensure a minimal level of performance comparison between cases. The remainder of220

the practical implementation details are as follows:
221

- the environment consists of CFD simulations of two-dimensional (2-D) flows described in a222

Cartesian coordinate system with drag positive in the +x direction. All equations are discretized223

on rectangular grids whose side lengths documented in the coming sections have been checked to224

be large enough not to have a discernible influence on the results (with the exception of the square225

cylinder flow in section IVA3 and the fluidic pinball in section IVB, for which we use respectively226

the values recommended in [79] and the same values as in [34]). Open flow conditions are used, that227

consist of a uniform inflow in the x direction, together with symmetric lateral, advective outflow228

and no-slip interface conditions. In turbulent regime, the ambient value of the Spalart–Allmaras229

variable is three times the molecular viscosity, as recommended to lead to immediate transition.230

Typical adapted meshes of the interface and wake regions are shown in figure 2, the latter also231

being accurately captured via successive refinement of the background elements.
232

- the instant reward is (up to a plus/minus sign) either the time-averaged or the root mean233

square (rms) value of the force coefficient (drag or lift per unit span length), to consider either234

the mean or fluctuating force acting on the immersed body. Instantaneous values are computed235
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(a) (b)

(c) (d)

Figure 3. Flow past a NACA 0012 - (a) Schematic diagram of the configuration. (b) Mean lift against
the angle of attack computed by DNS at Re = 100. The VS label indicates the angles for which the flow
exhibits unsteadiness in the form of periodic vortex formation and shedding. The blue lines and symbols
mark the optimal. The red symbol is the average over the 5 latest single-step PPO episodes, and the
red lines delimit the corresponding variance intervals. (c-d) Instantaneous vorticity fields computed at
Re = 100, for values marked by the circle symbols in (b), namely (c) α = 25 and (d) α = 40.

with a variational approach featuring only volume integral terms, reportedly less sensitive to the236

approximation of the body interface than their surface counterparts [80, 81]. Time averages are237

performed over an interval [ti; tf ] with edges large enough to dismiss the initial transient and achieve238

convergence to statistical equilibrium. Moving average rewards and actions are also computed as239

the sliding average over the 50 latest values (or the whole sample if it has insufficient size).
240

- the agent is a fully connected network with 2 hidden layers, each of which holds 4 neurons with241

hyperbolic tangent activation functions. We use the default online PPO implementation of Stable242

Baselines, a toolset of reinforcement learning algorithms dedicated to the research community243

and industry [82], for which a custom OpenAI environment has been designed with the Gym244

library [83]. Unlike other RL algorithms, PPO does not generally require significant tuning of the245

hyper parameters (i.e., parameters that are not estimated from data). Nonetheless, all values used246

in this study are documented in table I to ease reproducibility, including the learning rate (the size247

of the step taken in the gradient direction for policy update), the PPO clipping range (set to the248

upper edge of the recommended range) and the discount factor (set to the default PPO-1 value).249

III. APPLICATION TO FLOW OPTIMIZATION250

A. Flow past a NACA 0012 airfoil251

We consider first a NACA 0012 airfoil placed at incidence in a uniform stream, as depicted in252

figure 3(a). The origin of the coordinate system is at the airfoil pivot-point, set at quarter chord253

length from the leading edge. A laminar, time-dependent case at Reynolds number Re = U∞c/ν =254
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(a) (b)

Figure 4. Flow past a NACA 0012 at Re = 100 - (a) Evolution per episode for the instant (black line) and
moving average (over episodes, orange line) values of the mean lift (over time). The corresponding number
of CFD simulations (obtained multiplying by the number of environments) is displayed on the secondary
horizontal axis. (b) Same as (a) for the angle of attack. The blue lines mark the DNS optimal.

100 is modeled after the Navier–Stokes equations, where U∞ is the inflow velocity, c the straight255

chord distance and ν the kinematic viscosity. The objective is to maximize the mean lift cy, for256

which the sole control parameter is the angle of attack α measuring the incidence relative to the257

chord (in degrees and with the convention that α > 0 for the airfoil to generate positive lift. Also,258

we keep in mind that α is rather a state parameter than an adjustable control parameter in practical259

situations, but the methodology carries over to related optimization problems such as the design260

of multi-element high-lift systems). This is a problem simple enough to allow direct comparisons261

between PPO-1 and DNS (actually VMS, but the difference is clear from context), all the more so262

as lift varies smoothly with the incidence. This is evidenced in figure 3(b) showing reference data263

obtained from 15 DNS runs computing the mean lift to an accuracy of 3% with the simulation264

parameters documented in table II. The distribution changes slope near α ∼ 30◦ (because the265

system bifurcates from a steady to a time-periodic vortex-shedding regime; see figure 3(c-d) showing266

instantaneous vorticity fields computed on either side of the threshold) but otherwise exhibits a267

well-defined, smooth maximum at α? = 50.6, associated with cy ? = 0.94.268

For each PPO-1 learning episode, the network outputs a single value ξ in [−1; 1] mapped into269

α = ξαmax , (5)
for the angle of attack to vary in [−αmax;αmax] with αmax = 90◦. The reward r = cy is then270

computed using the same simulation parameters, after which the network is updated for 32 epochs271

using 8 environments and 4 steps mini-batches. 20 episodes have been run for this case, which272

represents 160 simulations, each of which lasts ∼ 25mn using 12 cores,3 hence ∼ 65h of total CPU273

cost (equivalently, ∼ 8h of resolution time). We show in figure 4(a) the evolution of the reward274

collected over the course of the optimization. The moving average increases almost monotonically275

and reaches a plateau after about 15 episodes, and the optimal lift computed as the average276

over the 5 latest episodes is cy ? = 0.93 ± 0.01 (the variations are computed from the rms of the277

moving average over the same interval, which is a simple yet robust criterion to assess qualitatively278

convergence a posteriori). The associated angle α? = 50.2◦ ± 1.2◦ varies by a larger factor, which279

is because lift is relatively insensitive to the exact incidence in the vicinity of the optimal. This is280

perfectly in line with the DNS, as illustrated by the red lines in figure 3(b) showing the limits of281

the so-computed variance intervals. Nonetheless, PPO-1 turns to be rather inefficient at finding282

the optimal, because it must span continuous ranges of angles while the one-dimensionality of the283

control space and the smoothness of the optimal allow DNS to test only a few discrete values (hence284

it can converge within ∼ 1h using the same level of CFD parallelization).285

3 This is the time needed to compute periodic vortex shedding solutions. It takes less than 10mn to march the
solution to steady state, but this barely affects the total CPU cost, as the time needed to complete an episode is
that of completing its longest simulation (so only the cost of those episodes exclusively computing steady state
solutions is reduced by a few minutes).
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Flow past the tandem arrangement of two circular cylinders - (a) Schematic diagram of the
configuration. (b) Fluctuating (rms) lift against the gap spacing computed by DNS at Re = 300. The red
symbol is the average over the 5 latest single-step PPO episodes, and the red lines delimit the corresponding
variance intervals. (c-f) Instantaneous vorticity fields computed at Re = 300, for values marked by the
circle symbols in (b), namely (c) G = 1, (d) G = 2, (d) G = 4, and (e) G = 6.

B. Flow past an arrangement of two side-by-side circular cylinders286

We examine now the side-by-side tandem arrangement of two identical circular cylinders in a287

uniform stream, whose configuration is sketched in figure 5(a). The origin of the coordinate system288

is at the center of the main cylinder, where we refer to the upstream and downstream cylinders as289

“main” and “surrounding”, respectively. A laminar, time-dependent case at Re = U∞D/ν = 300290

is modeled after the Navier–Stokes equations, where D is the diameter of either cylinder. The291

objective is to maximize the rms lift cy,rms of the two-cylinder system (for instance, to increase292

the amount of energy available for harnessing from fluid-structure interactions) for which the sole293

control parameter is the gap spacing G, i.e., the side-to-side distance between the two cylinders.294

On paper, this is another problem simple enough to allow direct comparisons between PPO-1 and295
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(a) (b)

Figure 6. Flow past the tandem arrangement of two circular cylinders at Re = 300 - (a) Evolution per
episode for the instant (black line) and moving average (over episodes, orange line) values of the rms lift.
(b) Same as (a) for the gap spacing. The light (resp. dark) blue lines mark the DNS global (resp. local)
maximum. The circles are high reward parameters close to the DNS global maximum.

DNS. In practice, the results are not so unequivocal, as evidenced in figure 5(b) showing reference296

data obtained from 30 DNS runs computing the rms lift to an accuracy of 5% with the simulation297

parameters documented in table II. A steep global maximum lies at G? = 2.35, associated with298

c ?y,rms = 1.99, but there is a smoother local maximum at G?? = 6.25, associated with c ??y,rms = 1.36,299

which reflects the high sensitivity of the pattern of flow unsteadiness to the center distance. Namely300

without going into too much detail (as this has been extensively discussed in the literature [84–87]),301

the instantaneous vorticity field computed for G = 1 in figure 5(c) shows that the gap flow between302

the two cylinders is initially steady, while the shear layers separating from the main cylinder engulf303

those of the surrounding cylinder and trigger vortex shedding in the far wake. For G = 2 (close to304

the global maximum), the gap flow is unsteady, but the gap vortices are not fully developed by the305

time they impinge on the surrounding cylinder, hence a single vortex street in the far wake; see306

figure 5(d). For G = 4, one pair of gap vortices fully develops, then impinges on the surrounding307

cylinder, which triggers a complex interaction in the near wake before a vortex street eventually308

forms further downstream; see figure 5(e). Finally for G = 6 (close to the local maximum) the309

wake of the surrounding cylinder is unsteady again, and both cylinders shed synchronized vortices310

close to anti-phase; see figure 5(f).311

For each PPO-1 learning episode, the network outputs a single value ξ in [−1; 1] mapped into312

G = 1 + ξ

2 Gmax , (6)

for the gap to vary in [0;Gmax] with Gmax = 10. This enables contact between the two cylinders and313

keeps the computational cost affordable, as pushing the surrounding cylinder further downstream314

would require extending the computational domain and increasing the numbers of grid points315

accordingly (all the more so as we do not anticipate such large distances to be relevant from the316

standpoint of optimization because the interaction between both cylinders will weaken increasingly317

at some point, although it can take up to several tens of diameters to do so). The reward r = cy,rms318

is then computed using the same simulation parameters, after which the network is updated for 32319

epochs using 16 environments and 4 steps mini-batches. Another 20 episodes have been run for this320

case. This represents 320 simulations, each of which lasts ∼ 60mn on 12 cores (much longer than in321

the NACA case due to the increased simulation time), hence ∼ 320h of total CPU cost (equivalently,322

∼ 20h of resolution time), still much more than by DNS because DRL keeps spanning continuous323

ranges of distances while DNS can settle for only a few discrete values despite the sharpness of the324

global maximum (hence it can converge within ∼ 3h using the same level of CFD parallelization).325

Figure 6(a) shows a plateau in the moving average reward after about 15 episodes. The optimal326

lift computed as the average over the 5 latest episodes is c ?y,rms = 1.34 ± 0.02, associated with327

G? = 6.31 ± 0.04, meaning that the agent misses the global maximum, but converges to a value328

close to the local maximum; see the red lines in figure 5(b) indicating the limits of the computed329
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(a) (b)

Figure 7. Flow past the tandem arrangement of two circular cylinders at Re = 300 - Time history of lift
computed by DNS for gap spacings (a) G = 2 (close to the DNS global maximum) and (b) G = 8.

cy α cy,rms G

0.93 50.2◦ PPO-1 1.34 6.31 PPO-1
Optimal0.94 50.6◦ DNS 1.99 2.35 DNS1.36 6.25

CFD
100 300 Reynolds number

0.125 » Time-step
[50; 150] [200; 300] Averaging time span

[−15; 40]× [−15; 15] » Mesh dimensions
115000 125000 Nb. mesh elements

0.001 » Interface ⊥ mesh size
12 » Nb. Cores

PPO-1
20 » Nb. DRL episodes
8 16 Nb. Environments

32 » Nb. Epochs
4 » Size of mini-batches

60h 320h CPU time
7.5h 20h Resolution time

Table II. Simulation parameters and convergence data for the flow past a NACA 0012 at Re = 100 and the
flow past the tandem arrangement of two circular cylinders at Re = 300. NACA 0012: the interface mesh
size yields ∼ 20 grid points in the boundary-layer at mid-chord, under zero incidence, and the averaging
time-span represents ∼ 15 − 20 shedding cycles, depending on the incidence. Tandem arrangement of
two circular cylinders: the interface mesh size yields ∼ 20 grid points in the boundary-layer of the main
cylinder, just prior to separation, and the averaging time-span represents ∼ 20 shedding cycles.

variance intervals.330

This half-failure can be explained by the steepness of the reward gradients with respect to the331

control variable in the vicinity of the global maximum. This is due to the existence of a secondary332

instability mechanism at play in a narrow range of center distances, as illustrated in figure 7(a)333

showing that for G ∼ 2, the flow settles to a first time-periodic solution, then bifurcates to a334

second time-periodic solution associated with increased lift oscillations (hence the large values of335

ti used for this case). Actually, DRL does identify high reward positions close to G = 2 (circle336

symbols in figure 6), whose value cy,rms ∼ 2 is consistent with the global maximum, but there are337

very few times where the global maximum is met during the exploration phase (compared to its338

local counterpart, again because of the topology of the reward function). Because PPO voluntarily339

dismisses large policy updates to avoid performance collapse, the clipped policy updates only lead340

to limited exploration and trap the optimization process into a local maximum. Low to moderate341
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(a) (b)

(c) (d)

Figure 8. Open-loop control of the circular cylinder flow by a small control cylinder of diameter d = 0.1 -
(a) Schematic diagram of the configuration. (b-d) Iso-contours of the vorticity field computed at Re = 3900
for representative positions (xc, yc) of the control cylinder, namely (b) (0.61, 1.13), (c) (−2.10, 0.00) and
(d) (1.56, 0.41).

Reynolds numbers are likely required for such instability cascade scenario to occur, so such results342

do not cast doubt on the applicability of single-step PPO to practically meaningful high Reynolds343

flows. They do stress, however, that the method can benefit from carefully tuning the trade-off344

between exploration and exploitation, which will be addressed in future work.345

IV. APPLICATION TO OPEN-LOOP FLOW CONTROL346

A. Optimal cylinder drag reduction using a smaller control cylinder347

The relevance of single-step PPO is now showcased by tackling various open-loop control prob-348

lems. The first one is that of a cylinder in a uniform stream, controlled open-loop by a much349

smaller circular cylinder. Figure 8(a) presents a sketch of the configuration pertaining to a cir-350

cular geometry of the main cylinder, where we refer to the large and small cylinders as “main”351

and “control”, respectively, but section IVA4 also considers a square geometry. The origin of the352

coordinate system is at the center of the main cylinder. The objective is to minimize the mean drag353

cx of the two-cylinder system, which requires reducing the drag of the main cylinder sufficiently354

to compensate for the fact that the control cylinder itself is a source of drag. Several laminar and355

turbulent Reynolds numbers Re = U∞D/ν are considered, where D is the diameter of the main356

cylinder. The diameter of the control cylinder is set to d = 0.1, therefore the sole control parameter357

is the 2-D position of the control cylinder center, measured by the gap distance G between the358

two cylinders and the azimuthal position θ with respect to the rear stagnation point. This may359

not seem overly complicated on paper, but the parameter space is actually large enough to dismiss360

mapping the best positions for placement of the control cylinder by DNS, as tens of thousands361

of runs are required to cover merely a few diameters around the main cylinder. In the following,362
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single-step PPO is thus compared to theoretical predictions obtained by the adjoint method. The363

latter has proven fruitful to gain insight into the most efficient region from the linear sensitivity of364

the uncontrolled flow (i.e., the flow past the main cylinder), without ever calculating the controlled365

states, using instead a simple model of the force exerted by the control cylinder on the flow. We366

shall not go into the technicalities of how to derive the related adjoint equations, as the line of367

thought here is to take the output sensitivity as a given to assess relevance of PPO-1. Suffice it368

to say here that we rely on various levels of adjoint modeling whose key assumptions are reviewed369

in appendix A. The reader interested in more details is directed to the original literature on this370

topic [25, 88, 89], where in-depth technical and mathematical information, together with extensive371

discussions regarding the validity of the approximations are available. From the numerical stand-372

point, all calculations are performed with the mixed finite elements adjoint solver presented and373

validated in [25].374

On the CFD side, one of the challenges lies in the fact that the control cylinder acts as a375

small local disturbance redistributing the vorticity in the separated shear layers; see figures 8(b-d)376

showing instantaneous vorticity fields computed for representative positions of the control cylinder.377

Accurate numerical methods are thus mandatory to capture the small drag variations induced by378

the control. Several values of the Reynolds number are investigated : a laminar, steady case at379

Re = 40, for which the flow remains steady-state regardless of the position of the control cylinder,380

a laminar, time-dependent case at Re = 100, for which vortex shedding consistently develops from381

the main cylinder but the flow past the control cylinder remains steady, and two turbulent cases at382

Re = 3900 and at Re = 22000 (hence modeled after the uRANS equations with negative Spalart–383

Allmaras as turbulence model), for which vortex shedding develops from both cylinders. This is384

because the Reynolds number in the wake of the control cylinder must be scaled by the ratio of the385

cylinder diameters, which yields values below (resp. above) the instability threshold at Re = 100386

(resp. Re = 3900 and Re = 22000).387

For each PPO-1 episode, the network outputs two values ξ1,2 in [−1; 1]2 mapped into388

G = 1 + ξ1
2 Gmax , θ = 1 + ξ2

2 θmax , (7)

for the gap to vary in [0;Gmax] with Gmax = 3, and the azimuthal position to vary in [0; θmax]389

with θmax = 180◦. This enables contact between the two cylinders, and allows taking advantage390

of the problem symmetry, as it amounts to moving the control cylinder in the upper half of a391

torus bounded by the surface of the main cylinder and the user-defined exterior radius Gmax. In392

the following, the center position is conveniently presented in terms of the Cartesian coordinates393

xc = ρ cos θ and yc = ρ sin θ, where we note ρ = G+ (1 + d)/2. Since the aim is to minimize drag,394

the reward r = −D is then computed using the simulation parameters documented in table III,395

after which the network is updated for 32 epochs using 8 environments and 2 steps mini-batches396

(note the zero averaging span in table III for Re = 40, as this is a steady case for which the steady397

asymptotic value of total drag can be evaluated at the final time tf , provided it is large enough for398

the solution to relax to steady-state).399

1. Laminar steady regime and circular geometry at Re=40400

For this first case, 100 episodes have been run, which represents 800 simulations, each of which401

lasts ∼ 35mn on 12 cores, hence ∼ 480h of total CPU cost (equivalently, ∼ 60h of resolution time).402

The moving average value of drag reaches a plateau after about 60 episodes in figure 9(a), with the403

optimal value cx ? = 1.53± 0.01 computed as the average over the 5 latest episodes representing a404

reduction by roughly 2% with respect to the uncontrolled value 1.56 (in good agreement with the405

reference 1.54 from the literature [90, 91]). Meanwhile, the instant value of drag actually keeps406

oscillating over the next 40 episodes with small but finite amplitude, which is further evidenced407

in figure 9(b-c) showing the instant and moving average center positions of the control cylinder.408

On the one hand, yc? quickly settles to zero, i.e., the control cylinder converges to the horizontal409

centerline. On the other hand, xc keeps exchanging positions between two regions distributed410

almost symmetrically on either side of the main cylinder, an upstream region associated with411

cx ∼ 1.51 and a slightly less efficient downstream region associated with cx ∼ 1.54, which suggests412

that the drag functional has global and local minima located in valleys of comparable depth.413

Confirmation comes from the theoretical drag variations computed (in steady mode) from the414
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(a) (b)

(c) (d)

Figure 9. Open-loop control of the circular cylinder flow by a small control cylinder of diameter d = 0.1 at
Re = 40 - (a) Evolution per episode for the instant (black line) and moving average (over episodes, orange
line) values of the mean drag (over time). The uncontrolled drag is at the bottom of the grey shaded
area. (b-c) Same as (a) for the xc and (c) yc positions of the control cylinder center. (d) Theoretical
mean drag variation computed by a steady adjoint method modeling the presence of the control cylinder
by a pointwise reacting force localized at the same location where the control cylinder is placed (only the
negative iso-contours are reported for clarity). The grey circles are the positions investigated by the DRL.
The light red circles are high reward positions spanned over the course of optimization. The dark red
circles are those high reward positions spanned over the last 5 episodes. The white circles are the median
values reported in the summarizing table III.

baseline adjoint method described in appendix A 1, whose negative iso-values (associated to drag415

reduction) are mapped in figure 9(d). The latter unveil two regions nestled against either side of416

the main cylinder and achieving similar drag reduction by ∼ 2%, a first one extending upstream417

over approximately 1 diameter, and a second one, slightly less efficient and extending downstream418

and along the outer boundary of the recirculation over 3 diameters. DRL manages to find high-419

reward positions in both, which is best seen from the various symbols in figure 9(d) showing the420

complete set of PPO-1 positions investigated over the course of optimization (grey circles) together421

with those positions achieving optimal drag reduction within 5% (light red circles), including422

a few non-centerline positions along the edge of both drag reduction regions. Nonetheless, the423

algorithm ultimately converges to almost symmetrical core positions, as evidenced by the dark red424

circles in figure 9(d) showing the positions spanned over the 5 latest episodes. Despite limited425

discrepancies regarding the exact position of the upstream region (slightly shifted upstream in the426

present approach), this is consistent with the adjoint-based results and clearly assesses the ability427

of single-step PPO to identify both regions of interest and to accurately predict the drag reduction428

achieved in these regions.429
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(a) (b)

(c) (d)

Figure 10. Open-loop control of the circular cylinder flow by a small control cylinder of diameter d = 0.1 at
Re = 100 - Same as figure 9, only the theoretical variations in (d) have been computed by the time-varying
adjoint method presented in [25].

2. Laminar time-dependent regime and circular geometry at Re=100430

For this case, 40 episodes have been run, which represents 320 simulations, each of which lasts431

∼ 1h on 12 cores, hence ∼ 320h of total CPU cost (equivalently, ∼ 40h of resolution time). The432

moving average reward plateaus after about 25 episodes in figure 10(a), with the optimal drag cx ? =433

1.30± 0.01 computed as the average over the 5 latest episodes representing a reduction by roughly434

5% with respect to the uncontrolled value 1.37 (close to the reference 1.35 from the literature435

[91]). Unlike the previous steady case at Re = 40, the center position of the control cylinder436

exhibits a similarly converging behavior in figure 10(b-c) with xc
? = −1.76 ± 0.03 and yc

? = 0,437

which suggests that the drag functional now has a well-defined global minimum. Confirmation438

comes from the theoretical drag variations computed (in unsteady mode) from the baseline adjoint439

method, whose negative iso-values mapped in figure 10(d) are reproduced from [92]. The latter440

unveil again two regions nestled against either side of the main cylinder, a first one extending441

upstream over approximately 2 diameter (more than at Re = 40), and a second one extending442

downstream and along the outer boundary of the mean recirculation over 2 diameters (less than443

at Re = 40). Drag is reduced by roughly 2% upstream, but almost 8% downstream, meaning444

that the drag functional has global and local minima in valleys of different depth, in line with the445

DRL results. Again, DRL finds high-reward positions in both regions, as evidenced in figure 10(d)446

by the complete set of PPO-1 positions investigated over the course of optimization (small grey447

circles) and the positions achieving optimal drag reduction within 5% (light red circles), including448

a few centerline upstream positions. The algorithm however quickly settles for the most efficient449

downstream region, as the positions spanned over the 5 latest episodes (dark red circles) all lie in450
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(a) (b)

(c) (d)

Figure 11. Open-loop control of the circular cylinder flow by a small control cylinder of diameter d = 0.1
at Re = 3900 - Same as figure 9, only the theoretical variations in (d) have been computed by the (steady)
simplified mean-flow adjoint method presented in [25]. The green dashed circle in (d) indicates the range
of center positions spanned experimentally in [93], with the green triangles marking the sets of positions
found to optimally reduce the drag of the main cylinder only.

the core of the mean recirculation region, in striking agreement with the adjoint-based results.451

3. Turbulent regime and circular geometry at Re=3900452

Another 40 episodes have been run for this case, which represents 320 simulations, each of which453

lasts ∼ 2h30 on 12 cores (much longer than at Re = 100 due to the halved time step), hence454

∼ 800h of total CPU cost (equivalently, ∼ 100h of resolution time). After about 20 episodes, the455

moving average reward in figure 11(a) converges to cx ? = 1.50±0.01, which represents a reduction456

of drag by 9% with respect to the uncontrolled value 1.65 (in good agreement with reference 2-D457

RANS data from the literature [94]). The center position of the control cylinder however keeps458

oscillating over the next 15 episodes in figure 11(b-c), as yc? goes to zero but xc exchanges positions459

between two regions located on either side of the main cylinder, an upstream region associated460

with cx ∼ 1.52 and a downstream region associated with cx ∼ 1.46. This suggests that the drag461

functional has global and local minima in valleys of comparable depth, which is reminiscent of the462

steady case at Re = 40, only the deepest valley is now downstream, not upstream. Interestingly,463

Ref. [93] determines experimentally different optimal positions (G, θ) = (0.14 − 0.16, 60◦) and464

(0.06 − 0.14, 115◦), shown as the green triangles in figure 11(d). Additional DNS runs have thus465

been carried out to confirm sub-optimality for our case, although the algorithm does identify466

a couple of high-reward positions in the vicinity of the downstream experimental region. This467
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probably stems from the noticeable differences between both studies, as the Reynolds number468

in [93] is larger by one order of magnitude (Re = 65000), the control cylinder is almost twice as469

small (d = 0.06), and the experiments focus on the drag of the main cylinder (not the total drag)470

while spanning a much smaller range of center positions (indicated by the green dashed circle in471

figure 11(d)).472

The DRL results are conversely qualitatively in line with the negative iso-values of the adjoint-473

based drag variations shown in figure 11(d). Those indicate that drag is reduced in two distinct474

regions nestled against either side of the main cylinder, a first narrow one extending upstream475

along the centerline over approximately 2 diameters, and a second one extending downstream over476

a half-diameter and in the vicinity of the mean separation points. Nonetheless, the agreement is not477

quantitative, as the theoretical variations are by a mere 1% upstream (and even lower downstream).478

This is most likely because all theoretical variations have been modeled after a simplified adjoint479

method intended to guide near-optimal design with marginal computational effort (as it requires480

knowledge of the sole mean uncontrolled solution, as explained in appendix A2), that ends up481

miscalculating the effect of the control cylinder because of an insufficient level of sophistication. On482

the one hand, the marginal size of the downstream region (as well as the marginal drag reduction483

predicted in this region) is ascribed to the fact that the approach has been shown to possibly484

miss out on sensitivity regions involving strong interactions of the mean and fluctuating solution485

components via the formation of Reynolds stresses [92]: the mean recirculation is one such region486

where reducing the drag of the main cylinder, even by a small amount, suffices to reduce the total487

drag because the x velocity is negative and the control cylinder is thus a source of thrust, not drag.488

On the other hand, the outcome in the upstream region is sensitive to the force model used to489

mimic the effect of the control cylinder, as it turns out its drag balances almost exactly the amount490

by which it reduces the drag of the main cylinder. The weak upstream control efficiency may thus491

be due to the fact that the simplified adjoint method considers only the mean component of the492

force acting on the control cylinder, but overlooks the potential for additional drag reduction via493

the fluctuating component. Moreover, this is a region where the control cylinder likely induces494

strong mean flow modifications because the local inhomogeneity length scale becomes smaller than495

the diameter of the control cylinder, which in turn may invalidate the linear assumption inherent496

to the adjoint method (the retained diameter d = 0.1 is a compromise between smallness and cost497

control, as implementing a smaller control cylinder would require increasing the number of grid498

points and decreasing the time-step to capture properly the wake of the control cylinder).499

4. Turbulent regime and square geometry at Re=22000500

In order to push the comparison further, additional calculations have been undertaken for a501

square geometry of the main cylinder, whose larger upstream sensitivity yields more clear-cut502

control efficiency, as can be inferred from the results in [25, 92]. This is because the blunt square503

geometry strengthens the upstream pressure gradient (compared to its bluff circular shape). In504

return, the gap flow velocity between the two cylinders decreases and so does the drag of the control505

cylinder, hence a boost in efficiency that helps mitigate the issue of sensitivity to the force model.506

Another 40 episodes have been run for this case, which represents 320 simulations, each of which507

lasts ∼ 3h20 on 12 cores, hence ∼ 1020h of total CPU cost (equivalently, ∼ 130h of resolution508

time). One difficulty for this case is that the main and control cylinders can intersect each other509

under mapping (7), in which case it has been found relevant to simply discard the CFD and510

force the reward to its uncontrolled value. The moving average reward plateaus after about 30511

episodes in figure 12(a), with the optimal drag cx ? = 1.49 ± 0.01 computed as the average over512

the 5 latest episodes representing a reduction by 30% with respect to the uncontrolled value 2.16513

(close to the reference 2.1 − 2.2 from the literature [96, 97]). The center position of the control514

cylinder exhibits a similarly converging behavior in figures 12(b-c) with xc? = −2.04 ± 0.02, and515

yc
? = 0, which suggests that the drag functional has a well-defined global minimum. This is in516

excellent agreement with [95] reporting experimental reduction of the total drag by 30% inserting517

control cylinders of comparable sizes upstream of the main cylinder at a slightly different Reynolds518

number Re = 32000 (the optimal reported position for d = 0.1 being xc? ∼ −2.0). This is also519

in line with the theoretical drag variations computed from the same simplified adjoint method as520

in section IVA3, whose negative iso-values mapped in figure 12(d) are reproduced from [25]. The521

latter unveil a main region of interest, that extends upstream over approximately 4 diameters, and522
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(a) (b)

(c) (d)

Figure 12. Same as figure 11 for the open-loop control of the square cylinder flow by a small control
cylinder of diameter d = 0.1 at Re = 22000. In (d), the grey symbols circled in red are downstream
sub-optimal position. The dark circles are dismissed positions for which the control and main cylinders
intersect, and the green triangle marks the experimental position found in [95] to optimally reduce the
drag of the two-cylinder system at Re = 32000.

in which drag is reduced by almost 20%, which represents a satisfactory qualitative and quantitative523

compliance with the present PPO-1 results. Drag is also reduced in a second region originating524

from the separation points (pinned here at the front edges), that extends downstream and along525

the outer boundary of the mean recirculation over 1 diameter (similar to what has been found using526

a circular geometry of the main cylinder). It is worth noticing that the algorithm does identify527

sub-optimal positions in this region (shown in figure 12(d) as the grey symbols circled in red). Also,528

a couple of other low-efficiency PPO-1 positions lie further downstream, which is consistent with529

the idea that the simplified adjoint method may miss on additional drag reduction occurring via530

the formation of Reynolds stresses (this is not true of the upstream drag reduction region, whose531

flow is essentially steady, except for low-amplitude oscillations in the gap flow between the two532

cylinders).533

B. Optimal drag reduction of a triangular bluff-body using rotating cylinders534

The second control problem presented in figure 13(a) is the fluidic pinball [98], an equilateral535

triangle arrangement of three identical circular cylinders oriented against a uniform stream (i.e.,536

the leftmost triangle vertex points upstream, and the rightmost side is orthogonal to the on-coming537

flow), controlled open-loop via user-defined angular velocities. The origin of the coordinate system538

is between the top and bottom cylinders, where we refer to the upstream and downstream cylinders539
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cx xc
a yc cx xc

a yc cx xc
a yc cx xc

a yc

1.51 −1.29 0 1.30 -1.72 0 1.46 0.68 0 1.49 −2.0 0 Optimal1.54 1.50 0 1.52 −2.40 0
CFD

40 100 3900 22000 Reynolds number
0.1 » 0.05 » Time step

[150; 150] [100; 200] » » Averaging time span
[−15; 40]× [−15; 15] » » [−6; 15]× [−7; 7] Mesh dimensions

150000 » » 190000 Nb. mesh elements
0.001 » » » Interface ⊥ mesh size

12 » » » Nb. Cores
PPO-1

100 40 » » Nb. episodes
8 » » » Nb. environments

32 » » » Nb. epochs
1 » 2 » Size of mini-batches

480h 320h 800h 1020h CPU time
60h 40h 100h 130h Resolution time

a Only the median value of the optimal interval is reported to ease the presentation.

Table III. Open-loop control of circular and square cylinder flows by a small control cylinder of diameter
d = 0.1 - Simulation parameters and convergence data. The interface mesh size yields ∼ 25 − 40 grid
points in the boundary-layer of the control cylinder, just prior to separation, and the averaging time-span
in unsteady flow regimes represents ∼ 15 − 25 shedding cycles, depending on the geometry of the main
cylinder, the position of the control cylinder and the Reynolds number.

as “front”, “top”, and “bottom”, respectively (also labeled 1, 2 and 3 to ease the notation). The540

gap spacing G = 1.5 between cylinders yields a master cross-section of 2.5. A turbulent case at541

Re = U∞D/ν = 2200 is modeled after the negative Spalart–Allmaras uRANS equations, where542

D is the diameter of either cylinder. The objective is to minimize the mean drag D of the three-543

cylinder system, using the cylinders individual angular velocities Ω1−3 as control parameters (with544

the convention that Ωk < 0 for clockwise rotation). This is a versatile experiment well suited to545

challenge the single-step approach, as the requirement to span large ranges of control parameters546

emulating a variety of steady and unsteady actuation (e.g., base bleed, suction) under turbulent547

conditions makes it especially challenging to rely on the adjoint method (as further discussed in548

section V), not to mention DNS.549

1. Steady actuation550

First, constant angular velocities are applied to each cylinder to alter the vorticity flux fed to the551

wake, as evidenced in figure 13(b-d) showing instantaneous vorticity fields computed under several552

control configurations. Drag is optimized by minimizing the compound reward function553

r = −D − β
3∑
k=1
|Ωk|3 , (8)

where the leftmost term is the power of the drag force and is thus associated to performance, the554

rightmost term estimates the power to be supplied to the rotating cylinders and is thus associated to555

cost, and β is a weighting coefficient set empirically to β = 0.025 (a value found to be large enough556

for cost considerations to impact the optimization procedure, but not so large as to dominate557

the reward signal, in which case actuating is meaningless). For each PPO-1 learning episode, the558

network outputs three values ξ1−3 in [−1; 1]3 mapped into559

Ωk = ξkΩmax , (9)



20

(a) (b)

(c) (d)

(e) (f)

Figure 13. Open-loop control of a fluid pinball - (a) Schematic diagram of the configuration. (b-f) Iso-
contours of the vorticity field computed at Re = 2200 for steady angular velocities (Ω1,Ω2,Ω3) of the
individual cylinders, namely (b) (3.09,−1.05, 5.00), (c) (1.46,−0.62,−2.75) (d) (−5.00,−2.74, 0.81), (e)
(3.70, 3.00, 0.61) and (f) (−3.48,−1.04, 5.00). The rotation directions are marked by the various arrows
whose length is proportional to the angular velocity.

for the non-dimensional angular velocities to vary in [−Ωmax; Ωmax] with Ωmax = 5. The reward560

defined in (8) is computed using the simulation parameters documented in table IV, after which the561

network is updated for 32 epochs using 8 environments and 2 steps mini-batches. Note, rotation562

is actually ramped up over a time-span [tΩi
; tΩf

] to smooth out the transient, using effective rates563

Ω̃k(t) =
min(max(t, tΩi

), tΩf
)− tΩi

tΩf
− tΩi

Ωk , (10)

forced to zero on [0, tΩi
], to Ωk on [tΩf

; tf ], and linearly increasing in between.564

For this case, 120 episodes have been run, which represents 960 simulations, each of which lasts565

∼ 3h20 on 12 cores, hence ∼ 3200h of total CPU cost (equivalently, ∼ 400h of resolution time).566

The moving average reward reaches a plateau after about 80 episodes in figure 14(a), where the567
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(a) (b)

(c) (d)

Figure 14. Open-loop control of a fluid pinball at Re = 2200 - (a) Evolution per episode for the instant
(black line) and moving average (over episodes, light orange line) values of the mean drag (over time),
together with related cost (light grey/dark orange) and reward (dark grey/orange) information computed
under steady actuation for β = 0.025. The uncontrolled drag is at the bottom of the grey shaded area. (b)
Same as (a) for the angular velocities of the front (blak/light orange), top (dark grey/orange) and bottom
cylinders (light grey/dark orange). (c) Iso-contours of the vorticity field computed under the optimal
velocities (Ω1

?,Ω2
?,Ω3

?) = (0.34,−2.49, 2.44). (d) Time history of drag computed under the sub-optimal
velocities (Ω1,Ω2,Ω3) = (0,−2.47, 2.47) (black lines), whose cost is identical to that of the optimal (red
lines). The thick lines denote the drag of the three-cylinder system. The thin lines pertain to the front
(dashed lines), top (solid lines) and bottom cylinders (dash-dotted lines).

relevance of the weighing coefficient value β = 0.025 shows through the fact that the performance568

and cost components of the reward are of the same order of magnitude. The optimal value of drag569

cx
? = 1.17 ± 0.01 computed as the average over the 5 latest episodes represents a tremendous570

reduction by almost 60% with respect to the uncontrolled value 2.91. The associated angular571

velocities whose evolution is depicted in figure 14(b) correspond to a boat tail-like arrangement,572

i.e., the top cylinder rotates clockwise (Ω2
? = −2.49± 0.01), the bottom cylinder rotates counter-573

clockwise and almost symmetrically (Ω3
? = 2.44±0.01), and the front cylinder rotates more slowly574

and also counter-clockwise (Ω1
? = 0.34± 0.01). The net rotation is thus in the same direction as575

the front cylinder, and we show in figure 14(c) that the tilting of the shear layers to the centerline576

alleviates the secondary flow from the gap between the two downstream cylinders, which is found577

to eventually suppress vortex shedding. Interestingly, an experimentally implemented machine578

learning approach using genetic algorithms yields similar optimal arrangements in [34]. For two579

different values of the weighing parameter, the authors therein report optimal angular velocities580

(0.68,−2.26, 2.56) and (1.40,-1.70,2.04) and optimal drag reductions by 78% and 49%, respectively,581

but it is uneasy to push further the comparison because the latter study uses a different reward582

function in which drag is approximated from a small, discrete number of sensors distributed in the583

wake.584
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(a) (b)

Figure 15. Open-loop control of a fluid pinball at Re = 2200 - (a) Iso-contours of the vorticity field and (b)
time history of drag computed under periodic actuation (11) with angular velocity Ω = 2.47 and frequency
f = 4f0. The thick and fine lines in (b) denote the controlled and uncontrolled values, respectively.

For the purpose of reducing drag, the above asymmetrical boat tailing actuation turns to be585

more efficient than its pure, symmetrical counterpart emulated by (Ω1,Ω2,Ω3) = (0,−|Ω|, |Ω|).4586

This is illustrated in figure 14(d) comparing the optimal drag to its symmetrical value computed587

with |Ω| = 2.47 (to maintain the same cost efficiency, the associated drag reduction being by588

∼ 58%). Pure boat tailing is insufficient to inhibit vortex shedding, as the symmetrical drag of589

all three individual cylinders is seen to exhibit small but finite-amplitude oscillations. Moreover,590

the drag of the downstream cylinders turns to be roughly identical on average. This suggests that591

the edge of asymmetrical over symmetrical boat tailing lies in its ability to reduce the drag of the592

front cylinder, an effect similar to that of suppressing vortex development and reducing drag by593

creating circulation around a single rotating bluff body [99]. Asymmetrical boat tailing is also more594

efficient than base bleed, another method widely used to reduce drag by blowing fluid directly into595

the wake, and that can be emulated by (Ω1,Ω2,Ω3) = (0, |Ω|,−|Ω|) for the reverse rotation of the596

downstream cylinders to conversely enhance the gap flow in between them (not shown here).597

2. Periodic actuation598

Periodic actuation at frequency f has also been considered using a simplified configuration599

Ω1 = 0 , Ω2 = −Ω3 = Ω sin(2πft) , (11)

whose front cylinder is fixed, and whose downstream cylinders are periodically and symmetrically600

driven with maximum angular velocity Ω. Such a control oscillates between symmetrical boat601

tailing (found to be nearly-optimal under steady actuation) and base-bleed, and we assess the602

extent to which an additional degree of freedom (the oscillation frequency) creates room to improve603

the performance. The optimization relies on the compound reward604

r = −D − 2β|Ω|3 , (12)

computed using the same weighing parameter β = 0.025 as before. For each PPO-1 learning605

episode, the network outputs two values ξ1,2 in [−1; 1]2 mapped into606

Ω = 1 + ξ1
2 Ωmax ,

f

f0
= 1− ξ2

2 λmin + 1 + ξ2
2 λmax , (13)

where f0 = 0.16 is the dominant frequency of vortex shedding computed in the absence of control.607

The angular velocity therefore varies in [0; Ωmax] with Ωmax = 5 (the case Ω < 0 is covered by608

4 At least if β is large enough for cost to matter in the optimization procedure, otherwise the algorithm has
been found to converge to the symmetrical boat tailing configuration (0,−Ωmax,Ωmax), and the reverse flow is
completely suppressed (not shown here).
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r cx Ω1 Ω2 Ω3 r cx Ω f

−1.93 1.17 0.34 −2.47 2.44 −2.91 2.91 0 N/D Optimal

CFD
2200 » Reynolds number

Steady Periodic Actuation
0.05 0.025 Time-step

[5; 10] » Rotation ramp-up time span
[300; 400] » Averaging time span

[−6; 20]× [−6; 6] » Mesh dimensions
110000 » Nb. mesh elements

0.001 » Interface ⊥ mesh size
12 » Nb. Cores

PPO-1
120 40 Nb. episodes
8 » Nb. environments

32 » Nb. epochs
2 » Size of mini-baches

3200h 2100h CPU time
400h 260h Resolution time

Table IV. Simulation parameters and convergence data for open-loop control of a fluid pinball at Re = 2200.
The interface mesh size yields ∼ 20 grid points in the boundary-layer of the non-rotating front, top and
bottom cylinder, just prior to separation, and the averaging time-span represents ∼ 15−20 shedding cycles,
depending on the angular velocities. For the periodic case, the time step yields ∼ 60 data points over the
smallest actuation period.

periodicity) and the frequency ratio varies in [λmin;λmax] with λmin = 0.5 and λmax = 4. This609

is a compromise between size of the parameter space and cost control, as investigating smaller610

frequencies would require to increase the averaging time-span, and resolving accurately larger611

frequencies would require to decrease the time-step. We shall not go into the details of the obtained612

results, because the frequency ratio ends up oscillating randomly in [λmin;λmax], while the angular613

velocity converges to Ω? = 0. It is definitively possible to reduce drag under the considered periodic614

actuation, as we show for instance in figure 15 that a velocity Ω = 2.47 (identical to that used615

previously to compare asymmetrical and symmetrical boat tailing) and a frequency ratio λ = 4616

reduce drag by 20%, but the cost of doing so is too large, as the associated reward actually increases617

by 5% (note the period doubling bifurcation phenomenon in figure 15(b): drag is found to exhibit618

sub-harmonic oscillations at half the forcing frequency, which is a classical dynamical responses of619

harmonically forced nonlinear oscillators). These are only preliminary results intended to compare620

the efficiency of steady and periodic strategies using identical reward functions. We therefore defer621

to future work the computation of non-trivial periodic optimal distributions, for which it may be622

necessary to modify the reward function and/or to reduce the cost (by adequately decreasing the623

weighing parameter).624

V. DISCUSSION625

This section is intended to provide insight into the efficiency of the single-step PPO algorithm626

compared to that of other well-established methods. We skip voluntarily DNS, as systematical op-627

timization procedures are useless if a problem is simple enough that a small number of numerical628

simulations suffices to find the optimal. This is true of the optimization cases documented in sec-629

tion III, although the results remain valuable to assess accuracy and highlight the limit of applying630

conservative policy updates to optimize sharp reward functions (that are common occurrence in631

low to moderate-Reynolds-number-fluid mechanical systems sustaining linear instabilities).632
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A. Adjoint methods633

We begin with the adjoint method used in section IVA for systematic validation purposes.634

As explained in appendix A, this is an approach intended to compute the drag of a control-635

induced disturbance modeled after the linearized governing equations forced by small-amplitude636

momentum source δf and wall velocity δuw, without ever computing the disturbance itself. The637

main assumptions and limitations at various levels of sophistication are reviewed in the appendix,638

so the line of though is to describe only the specifics of the control problems considered herein.639

The general picture is that the baseline adjoint method is accurate and fairly efficient in terms of640

CPU cost, but demanding in terms of storage and increasingly difficult to apply rigorously when641

turbulence sets in (this is discussed in appendix A 1). On the other hand, the frozen Reynolds642

stresses approximation has marginal CPU and storage costs, it carries over to any turbulence643

modeling under the so-called frozen viscosity assumption, but accuracy must be assessed on a644

case-by-case basis (see appendix A 2).645

1. Open-loop control by a small control cylinder646

Open-loop control by a small control cylinder is a favorable case in the sense that only the center647

position of the control cylinder (not its shape, nor its size) is optimized, hence the adjoint problem648

needs be solved only once. Nonetheless, it comes with a substantial modeling component, as the649

source term δf used in the adjoint calculations must adequately represent the effect of a true650

control cylinder. We use here the pointwise reacting force proposed in [25], equal and opposite to651

the force felt by a control cylinder of same diameter in a uniform flow at the local, mean velocity.652

The latter is carefully crafted to reference data, but there are inherent approximations associated653

with overlooking the lift component of the force induced by the local velocity gradient (since the654

control cylinder, albeit small, has finite size) and inertia (for the model force at each time instant655

to be the force that would act if the upstream flow at the same instant was a steady one). This can656

hurt accuracy and undermine the results in flow regions where the control cylinder drag is close to657

balancing the decrease in the drag of the main cylinder, all the more so in turbulent regimes where658

additional simplifications are needed to allow implementing the adjoint method itself (e.g., frozen659

eddy viscosity and/or Reynolds stresses).660

In terms of pure performance, the baseline adjoint method is beyond compare for the laminar,661

steady case at Re = 40, because it merely requires solving a couple of steady solutions (one662

nonlinear, one linear), and PPO-1 would need converge in less than two episodes to approach that663

cost. Regarding the laminar, time-dependent case at Re = 100, the results reported herein rely on a664

naive implementation of the adjoint method: all time steps of the uncontrolled solution are written665

to disk, the adjoint equations are solved over the same time interval and with the same time step,666

and meaningful time averages of the adjoint-based integrands are computing after discarding the667

early and late time steps (corresponding to transients of the uncontrolled and adjoint solutions).668

In practice, this takes 45 Gb of storage. The cost of tackling similarly a three-dimensional (3-D)669

case with 40 points distributed in the span-wise direction would thus be about 2 Tb (as estimated670

by simple cross-multiplication), which is close to intractable without sophisticated integration,671

interpolation and/or checkpointing schemes. Meanwhile, the storage cost of PPO-1 is barely a672

few hundred Mb overall, and is expected to jump to a few ten Gb in 3-D without any additional673

development. As for CPU cost, the adjoint method amounts to roughly 7-8 episodes, which is674

about thrice as less as the number of episodes needed to achieve convergence with PPO-1 (this is675

an estimation for two numerical simulations oversized by the repeated IO calls, although an exact676

comparison is difficult because our DRL and adjoint results have been obtained using a different677

finite element codes on different hardware resources). Finally, for the turbulent cases at Re = 3900678

and Re = 22000, the cost of the adjoint method is again marginal, as we relied on the frozen679

Reynolds stresses formulation for which it suffices to compute a nonlinear uncontrolled mean flow680

and a linear steady adjoint solution. PPO-1 would need to converge in one single episode to match681

the cost, but we believe the case at Re = 3900 to provide clear evidence that the simplifying682

assumptions can make it intricate to compare both qualitatively and quantitatively.683
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2. Open-loop control of a fluidic pinball684

The adjoint modeling of the fluidic pinball is straightforward, since the wall velocity δuw is simply685

the cylinder linear velocity. The challenge for this case rather lies in the large value of the optimal686

angular velocities (found to induce velocities close to the ambient velocity in the vicinity of the687

downstream cylinders), that suffice to invalidate the linearity assumption inherent to the adjoint688

method. On paper, this problem can still be tackled with a nonlinear steepest descent algorithm689

recursively solving an adjoint problem and modifying the control parameters in the direction of690

the negative gradient. While it usually takes about ten iterations for fluid mechanical systems691

to converge (provided relevant update strategy and descent step are used), we did not attempt692

to do so, as it would magnify the limitations of the adjoint method underlined in the appendix.693

Namely, the storage cost would increase (even a simple conjugate gradient algorithm would require694

availability of multiple time histories of adjoint solutions) and convergence could be weakened or695

even sapped if the simplifications made in turbulent regimes yield inaccurate gradient evaluations.696

B. Evolution strategies697

Evolution strategies (ES) are another popular family of division of population-based algorithms698

performing black-box optimization in continuous search spaces without computing directly the699

gradient of the target function. ES imitate principles of organic evolution processes as rules for700

optimum seeking procedures, using repeated interplay of variation (via recombination and muta-701

tion) and selection in populations of candidate solutions. They rely on a stochastic description of702

the variables to optimize, i.e., they consider probability density functions instead of deterministic703

variables. At each generation (or iteration) new candidate solutions are sampled isotropically by704

variation of the current parental individuals according to a multivariate normal distribution. After705

applying recombination and mutation transformations (respectively amounting to selecting a new706

mean for the distribution, and to adding a random perturbation with zero mean), the individuals707

with the highest cost function are then selected to become the parents in the next generation. Im-708

proved variants include the covariance matrix adaptation evolution strategy (CMA-ES), that also709

updates its full covariance matrix to accelerate convergence toward the optimum (which amounts710

to learning a second-order model of the underlying objective function).711

As has been said for introductory purposes, it lies out of the scope of this paper to provide712

exhaustive performance comparison data against state-of-the art evolution algorithms. The efforts713

for developing single-step PPO remain at an early stage, so we do not expect the method to be able714

to compete right away. Nonetheless, we do not expect it to be utterly outmatched either, as genetic715

algorithms5 have been shown capable to learn optimal open- and closed-loop control strategies716

within a few hundreds to a few thousands test runs (see [100] and the references therein), and it717

takes a few hundred (resp. less than one thousand) simulations for single-step PPO to learn the718

optimal open-loop strategy for control by a small cylinder (resp. for control of the fluidic pinball). In719

present form, the method can be thought as an evolutionary-like algorithm with simpler heuristics720

(i.e., without an evolutionary update strategy, since the optimal model parameters are learnt via721

gradient ascent). Its performance should thus be comparable to that of standard ES methods722

with isotropic covariance matrix, meaning that further characterization and fine-tuning, as well as723

pre-trained deep learning models (as is done in transfer learning) are likely required to outperform724

more advanced methods.725

VI. CONCLUSION726

Open-loop control of laminar and turbulent flow past bluff bodies is achieved here training a727

fully connected network with a novel single-step PPO deep reinforcement algorithm, in which it728

gets only one attempt per learning episode at finding the optimal. The numerical reward fed to729

5 Another class of evolutionary algorithms with slightly different implementation details. Namely, most parameters
in genetic algorithms (GA) are exogenous, i.e., set by the practitioner, while ES features endogenous parameters
associated with individuals, that evolve together with them. Also, only the fittest individuals are selected to
become parents in GA, while parents are selected randomly in ES and the fittest offsprings are selected and
inserted in the next generation.
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the network is computed with a finite elements CFD environment solving stabilized weak forms730

of the governing equations (Navier–Stokes, otherwise uRANS with negative Spalart–Allmaras as731

turbulence model) with a combination of variational multiscale approach, immersed volume method732

and anisotropic mesh adaptation.733

Convergence and accuracy are assessed from two optimization cases (maximizing the mean lift of734

a NACA 0012 airfoil and the fluctuating lift of two side-by-side circular cylinders, both in laminar735

regimes). Those are simple enough to allow comparison to in-house DNS data, yet they stress736

that the occurrence of instability yields sharp reward functions for which the conservative policy737

updates specific to PPO can trap the optimization process into local optima. The method is also738

applied to two open-loop control problems whose parameter spaces are large enough to dismiss739

DNS. Single-step PPO is found to successfully reduce the drag of laminar and turbulent cylinder740

flows by mapping the best positions for placement of a small control cylinder in good agreement741

with reference data obtained by the adjoint method. The achieved reduction ranges from 2%742

using a circular geometry of the main cylinder at Re = 40, up to 30% using a square geometry743

at Re = 22000. Second, the method proves fruitful to reduce the drag of the fluidic pinball, an744

arrangement of three identical, rotating circular cylinders immersed in a turbulent stream. An745

optimal reduction by almost 60% (consistent with that recently obtained using genetic algorithms)746

is reported using a boat tailing actuation made up of a slowly rotating front cylinder and two747

downstream cylinders rotating in opposite directions so as to reduce the gap flow in between them.748

For both cases, convergence is reached after a few ten episodes, which represents a few hundreds749

CFD runs. Exhaustive computational efficiency data are reported with the hope to foster future750

comparisons, but it is worth emphasizing that we did not seek to optimize said efficiency, neither751

by optimizing the hyper parameters, nor by using pre-trained deep learning models.752

Fluid dynamicists have just begun to gauge the relevance of deep reinforcement learning tech-753

niques to assist the design of optimal flow control strategies. This research weighs in on this issue754

and shows that the proposed single-step PPO holds a high potential as a reliable, go-to black-box755

optimizer for complex CFD problems. The one advantages here are scope and applicability, as the756

storage cost of an episode is simply that of a CFD run (times the number of environments), and757

there is no prerequisite beyond the ability to compute accurate numerical solutions (which behoves758

the CFD solver, not the RL algorithm). Consequently, we would not anticipate any additional759

numerical developments before tackling a 3-D turbulent flow with the same CFD environment,760

even with a more sophisticated turbulence modeling (since the built-in small-scale component of761

the VMS solution also acts as an implicit LES). Despite these achievements, further development,762

characterization and fine-tuning are needed to consolidate the acquired knowledge, whether it be763

via an improved balance between exploration and exploitation to deal with steep global maxima764

(for instance using Trust Region-Guided PPO, as it effectively encourages the policy to explore765

more on the potential valuable actions, no matter whether they were preferred by the previous766

policies or not), via non-normal probability density functions to deal with multiple global maxima,767

or via coupling with a surrogate model trained on-the-fly.768

Appendix A: A quick survey of adjoint-based optimization769

We briefly review here the various adjoint frameworks used in section IVA for systematic vali-770

dation purposes of the PPO-1 results. The starting point is a so-called uncontrolled solution (u, p)771

to the non-linear equations of motion (Navier–Stokes, unless specified otherwise) forced by a mo-772

mentum source f and a velocity uw distributed over all solid surfaces Γw in the computational773

domain (although it is possible to restrict to a subset).774

1. Baseline adjoint method775

The adjoint method computes the change in drag induced by small variations (δf , δuw) of these776

control parameters as777

δcx =
∫

Ω
u† · δf ds+

∫
Γw

(σ†(−p†,u†) · n) · δuw dl , (A1)
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where n is the unit outward normal to Γw annd we note σ†(−p†,u†) = p†I + 1
Re∇u

†. Finally,778

(u†, p†) are adjoint velocity and pressure fields solution to779

∇ · u† = 0 , −(∂tu† +∇u† · u) +∇uT · u† +∇ · σ†(−p†,u†) = 0 , (A2)

forced at Γw by a velocity equal to twice the ambient velocity (the factor of 2 stems from the780

definition of dynamic pressure), as obtained multiplying u† and p† onto the linearized momentum781

and continuity equations, using the divergence theorem to integrate by parts over the computational782

domain, and integrating in time over the span of the simulation. In essence, this amounts to783

computing the drag of the control induced disturbance modeled after the forced, linearized Navier–784

Stokes equations, without ever computing the disturbance itself.785

A typical implementation consists of two sequential numerical simulations (for the uncontrolled786

and adjoint solutions, respectively) plus a series of vector dot products, to give the drag variation787

at each grid point. This is simple on paper, but the method has some limitations :
788

- the adjoint equations are problem-specific and must be derived and implemented manually789

on a case-by-case basis.
790

- the cost is marginal in steady flow regimes, because the time-independence of the uncontrolled791

solution makes the adjoint problem purely linear. Otherwise, the entire time history of uncontrolled792

solutions must be available at every adjoint time step because of the reversal of space-time direc-793

tionality; see the minus sign ahead of the material derivative term in eqs. (A2). This is very794

demanding in terms of storage (the repeated IO also increases the computational burden compared795

to a classical CFD run with identical simulation parameters) but these issues can be mitigated796

using checkpointing [101] and high-order time-integration and interpolation schemes [102].
797

- not all cost functions are admissible due to the need for consistent adjoint boundary conditions,798

although this can be overcome with augmented Lagrangian methods based on auxiliary boundary799

equations [103].
800

- applicability to high-fidelity turbulence modeling is uncertain because the noise-induced sen-801

sitivity to initial conditions (the “butterfly effect”) is expected to yield exponentially diverging802

solutions if the length of the adjoint simulation exceeds the predictability time scale. Possible803

solutions include averaging over a large number of ensemble calculations [104] (which increases804

significantly the computational cost and decreases the attractiveness of the method) or invoking805

sophisticated shadowing and space-split techniques sampling on selected flow trajectories [105, 106]806

(which comes at the cost of ease of implementation). Moreover, the literature somehow oddly re-807

ports several cases of turbulent adjoint solution blowing up in 2-D [107, 108] and 3-D [109], but808

also several instances in 3-D where no blow-up is observed [110–112].
809

- applicability to RANS simulations is conversely generally acknowledged. However, discarding810

the linearization and adjointization of even the simplest turbulence models (using the so-called811

frozen eddy-viscosity approximation) to avoid massive debugging and validation efforts has some-812

how become standard lore, even though completeness and exactness are required to ensure numer-813

ical accuracy and avoid diverging adjoint solutions due to error propagation and amplification.814

2. Frozen Reynolds stresses approximation815

A simple adjoint formalism has been proposed in [25] to provide insight into the reliability of816

adjoint-based predictions in practical situations where no complete history of time and space-817

accurate solutions is available. The approach is closely related to existing studies considering the818

mean flow an admissible solution for linear stability analysis, as it simply dismisses the way the819

control-induced modification to the fluctuating uncontrolled solution feeds back onto the mean820

(hence the frozen Reynolds stress moniker to echo the above frozen eddy viscosity). In doing so,821

(A1) can be shown to reduce to822

δcx =
∫

Ω
u† · δf ds+

∫
Γs

(σ†(p†,u†) · n) · δuw dl , (A3)

where the double overline denotes approximations to the true time-averaged quantities, and the823

adjoint velocity and pressure fields are solution to824

∇ · u† = 0 , −∇u† · u+∇uT · u† +∇ · σ(−p†,u†) = 0 , (A4)
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forced at Γw by the same velocity equal to twice the ambient velocity. The strength of the approach825

lies in the fact that once the mean uncontrolled solution is known, computing the approximated826

adjoint solution merely requires solving a single linear problem. Accuracy must be assessed on827

a case-by-case basis, but the computational and storage costs of doing so are marginal, and the828

approach carries over to any turbulence modeling method under the frozen viscosity assumption.829
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